1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines a set of BugReporter "visitors" which can be used to
10 //  enhance the diagnostics reported for a bug.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/None.h"
50 #include "llvm/ADT/Optional.h"
51 #include "llvm/ADT/STLExtras.h"
52 #include "llvm/ADT/SmallPtrSet.h"
53 #include "llvm/ADT/SmallString.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 
66 using namespace clang;
67 using namespace ento;
68 using namespace bugreporter;
69 
70 //===----------------------------------------------------------------------===//
71 // Utility functions.
72 //===----------------------------------------------------------------------===//
73 
74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
75   if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76     if (B->getLHS()->getType()->isPointerType()) {
77       return B->getLHS();
78     } else if (B->getRHS()->getType()->isPointerType()) {
79       return B->getRHS();
80     }
81   }
82   return nullptr;
83 }
84 
85 /// \return A subexpression of @c Ex which represents the
86 /// expression-of-interest.
87 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
88 
89 /// Given that expression S represents a pointer that would be dereferenced,
90 /// try to find a sub-expression from which the pointer came from.
91 /// This is used for tracking down origins of a null or undefined value:
92 /// "this is null because that is null because that is null" etc.
93 /// We wipe away field and element offsets because they merely add offsets.
94 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
95 /// latter represent an actual pointer dereference; however, we remove
96 /// the final lvalue-to-rvalue cast before returning from this function
97 /// because it demonstrates more clearly from where the pointer rvalue was
98 /// loaded. Examples:
99 ///   x->y.z      ==>  x (lvalue)
100 ///   foo()->y.z  ==>  foo() (rvalue)
101 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
102   const auto *E = dyn_cast<Expr>(S);
103   if (!E)
104     return nullptr;
105 
106   while (true) {
107     if (const auto *CE = dyn_cast<CastExpr>(E)) {
108       if (CE->getCastKind() == CK_LValueToRValue) {
109         // This cast represents the load we're looking for.
110         break;
111       }
112       E = CE->getSubExpr();
113     } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114       // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115       if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116         E = Inner;
117       } else {
118         // Probably more arithmetic can be pattern-matched here,
119         // but for now give up.
120         break;
121       }
122     } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
123       if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
124           (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
125         // Operators '*' and '&' don't actually mean anything.
126         // We look at casts instead.
127         E = U->getSubExpr();
128       } else {
129         // Probably more arithmetic can be pattern-matched here,
130         // but for now give up.
131         break;
132       }
133     }
134     // Pattern match for a few useful cases: a[0], p->f, *p etc.
135     else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
136       E = ME->getBase();
137     } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
138       E = IvarRef->getBase();
139     } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
140       E = AE->getBase();
141     } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
142       E = PE->getSubExpr();
143     } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
144       E = FE->getSubExpr();
145     } else {
146       // Other arbitrary stuff.
147       break;
148     }
149   }
150 
151   // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
152   // deeper into the sub-expression. This way we return the lvalue from which
153   // our pointer rvalue was loaded.
154   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
155     if (CE->getCastKind() == CK_LValueToRValue)
156       E = CE->getSubExpr();
157 
158   return E;
159 }
160 
161 static const MemRegion *
162 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
163                              bool LookingForReference = true) {
164   if (const auto *DR = dyn_cast<DeclRefExpr>(E)) {
165     if (const auto *VD = dyn_cast<VarDecl>(DR->getDecl())) {
166       if (LookingForReference && !VD->getType()->isReferenceType())
167         return nullptr;
168       return N->getState()
169           ->getLValue(VD, N->getLocationContext())
170           .getAsRegion();
171     }
172   }
173 
174   // FIXME: This does not handle other kinds of null references,
175   // for example, references from FieldRegions:
176   //   struct Wrapper { int &ref; };
177   //   Wrapper w = { *(int *)0 };
178   //   w.ref = 1;
179 
180   return nullptr;
181 }
182 
183 /// Comparing internal representations of symbolic values (via
184 /// SVal::operator==()) is a valid way to check if the value was updated,
185 /// unless it's a LazyCompoundVal that may have a different internal
186 /// representation every time it is loaded from the state. In this function we
187 /// do an approximate comparison for lazy compound values, checking that they
188 /// are the immediate snapshots of the tracked region's bindings within the
189 /// node's respective states but not really checking that these snapshots
190 /// actually contain the same set of bindings.
191 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
192                              const ExplodedNode *RightNode, SVal RightVal) {
193   if (LeftVal == RightVal)
194     return true;
195 
196   const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
197   if (!LLCV)
198     return false;
199 
200   const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
201   if (!RLCV)
202     return false;
203 
204   return LLCV->getRegion() == RLCV->getRegion() &&
205     LLCV->getStore() == LeftNode->getState()->getStore() &&
206     RLCV->getStore() == RightNode->getState()->getStore();
207 }
208 
209 static Optional<SVal> getSValForVar(const Expr *CondVarExpr,
210                                     const ExplodedNode *N) {
211   ProgramStateRef State = N->getState();
212   const LocationContext *LCtx = N->getLocationContext();
213 
214   assert(CondVarExpr);
215   CondVarExpr = CondVarExpr->IgnoreImpCasts();
216 
217   // The declaration of the value may rely on a pointer so take its l-value.
218   // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
219   // evaluate to a FieldRegion when it refers to a declaration of a lambda
220   // capture variable. We most likely need to duplicate that logic here.
221   if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
222     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
223       return State->getSVal(State->getLValue(VD, LCtx));
224 
225   if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
226     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
227       if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
228         return State->getRawSVal(*FieldL, FD->getType());
229 
230   return None;
231 }
232 
233 static Optional<const llvm::APSInt *>
234 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
235 
236   if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
237     if (auto CI = V->getAs<nonloc::ConcreteInt>())
238       return &CI->getValue();
239   return None;
240 }
241 
242 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
243                                         const ExplodedNode *N,
244                                         const PathSensitiveBugReport *B) {
245   // Even if this condition is marked as interesting, it isn't *that*
246   // interesting if it didn't happen in a nested stackframe, the user could just
247   // follow the arrows.
248   if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
249     return false;
250 
251   if (Optional<SVal> V = getSValForVar(CondVarExpr, N))
252     if (Optional<bugreporter::TrackingKind> K = B->getInterestingnessKind(*V))
253       return *K == bugreporter::TrackingKind::Condition;
254 
255   return false;
256 }
257 
258 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
259                               const PathSensitiveBugReport *B) {
260   if (Optional<SVal> V = getSValForVar(E, N))
261     return B->getInterestingnessKind(*V).has_value();
262   return false;
263 }
264 
265 /// \return name of the macro inside the location \p Loc.
266 static StringRef getMacroName(SourceLocation Loc,
267     BugReporterContext &BRC) {
268   return Lexer::getImmediateMacroName(
269       Loc,
270       BRC.getSourceManager(),
271       BRC.getASTContext().getLangOpts());
272 }
273 
274 /// \return Whether given spelling location corresponds to an expansion
275 /// of a function-like macro.
276 static bool isFunctionMacroExpansion(SourceLocation Loc,
277                                 const SourceManager &SM) {
278   if (!Loc.isMacroID())
279     return false;
280   while (SM.isMacroArgExpansion(Loc))
281     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
282   std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
283   SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
284   const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
285   return EInfo.isFunctionMacroExpansion();
286 }
287 
288 /// \return Whether \c RegionOfInterest was modified at \p N,
289 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
290 /// stack frame.
291 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
292                                           const ExplodedNode *N,
293                                           SVal ValueAfter) {
294   ProgramStateRef State = N->getState();
295   ProgramStateManager &Mgr = N->getState()->getStateManager();
296 
297   if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
298       !N->getLocationAs<PostStmt>())
299     return false;
300 
301   // Writing into region of interest.
302   if (auto PS = N->getLocationAs<PostStmt>())
303     if (auto *BO = PS->getStmtAs<BinaryOperator>())
304       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
305                                       N->getSVal(BO->getLHS()).getAsRegion()))
306         return true;
307 
308   // SVal after the state is possibly different.
309   SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
310   if (!Mgr.getSValBuilder()
311            .areEqual(State, ValueAtN, ValueAfter)
312            .isConstrainedTrue() &&
313       (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
314     return true;
315 
316   return false;
317 }
318 
319 //===----------------------------------------------------------------------===//
320 // Implementation of BugReporterVisitor.
321 //===----------------------------------------------------------------------===//
322 
323 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
324                                                       const ExplodedNode *,
325                                                       PathSensitiveBugReport &) {
326   return nullptr;
327 }
328 
329 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
330                                          const ExplodedNode *,
331                                          PathSensitiveBugReport &) {}
332 
333 PathDiagnosticPieceRef
334 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
335                                       const ExplodedNode *EndPathNode,
336                                       const PathSensitiveBugReport &BR) {
337   PathDiagnosticLocation L = BR.getLocation();
338   const auto &Ranges = BR.getRanges();
339 
340   // Only add the statement itself as a range if we didn't specify any
341   // special ranges for this report.
342   auto P = std::make_shared<PathDiagnosticEventPiece>(
343       L, BR.getDescription(), Ranges.begin() == Ranges.end());
344   for (SourceRange Range : Ranges)
345     P->addRange(Range);
346 
347   return P;
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // Implementation of NoStateChangeFuncVisitor.
352 //===----------------------------------------------------------------------===//
353 
354 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
355   const LocationContext *Ctx = N->getLocationContext();
356   const StackFrameContext *SCtx = Ctx->getStackFrame();
357   if (!FramesModifyingCalculated.count(SCtx))
358     findModifyingFrames(N);
359   return FramesModifying.count(SCtx);
360 }
361 
362 void NoStateChangeFuncVisitor::markFrameAsModifying(
363     const StackFrameContext *SCtx) {
364   while (!SCtx->inTopFrame()) {
365     auto p = FramesModifying.insert(SCtx);
366     if (!p.second)
367       break; // Frame and all its parents already inserted.
368 
369     SCtx = SCtx->getParent()->getStackFrame();
370   }
371 }
372 
373 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
374   assert(N->getLocationAs<CallEnter>());
375   // The stackframe of the callee is only found in the nodes succeeding
376   // the CallEnter node. CallEnter's stack frame refers to the caller.
377   const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
378 
379   // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
380   // frame.
381   auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
382     return N->getLocationAs<CallExitEnd>() &&
383            OrigSCtx == N->getFirstPred()->getStackFrame();
384   };
385   while (N && !IsMatchingCallExitEnd(N)) {
386     assert(N->succ_size() <= 1 &&
387            "This function is to be used on the trimmed ExplodedGraph!");
388     N = N->getFirstSucc();
389   }
390   return N;
391 }
392 
393 void NoStateChangeFuncVisitor::findModifyingFrames(
394     const ExplodedNode *const CallExitBeginN) {
395 
396   assert(CallExitBeginN->getLocationAs<CallExitBegin>());
397 
398   const StackFrameContext *const OriginalSCtx =
399       CallExitBeginN->getLocationContext()->getStackFrame();
400 
401   const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
402   const StackFrameContext *CurrentSCtx = OriginalSCtx;
403 
404   for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
405        CurrN = CurrN->getFirstPred()) {
406     // Found a new inlined call.
407     if (CurrN->getLocationAs<CallExitBegin>()) {
408       CurrCallExitBeginN = CurrN;
409       CurrentSCtx = CurrN->getStackFrame();
410       FramesModifyingCalculated.insert(CurrentSCtx);
411       // We won't see a change in between two identical exploded nodes: skip.
412       continue;
413     }
414 
415     if (auto CE = CurrN->getLocationAs<CallEnter>()) {
416       if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
417         if (wasModifiedInFunction(CurrN, CallExitEndN))
418           markFrameAsModifying(CurrentSCtx);
419 
420       // We exited this inlined call, lets actualize the stack frame.
421       CurrentSCtx = CurrN->getStackFrame();
422 
423       // Stop calculating at the current function, but always regard it as
424       // modifying, so we can avoid notes like this:
425       //   void f(Foo &F) {
426       //     F.field = 0; // note: 0 assigned to 'F.field'
427       //                  // note: returning without writing to 'F.field'
428       //   }
429       if (CE->getCalleeContext() == OriginalSCtx) {
430         markFrameAsModifying(CurrentSCtx);
431         break;
432       }
433     }
434 
435     if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
436       markFrameAsModifying(CurrentSCtx);
437   }
438 }
439 
440 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
441     const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
442 
443   const LocationContext *Ctx = N->getLocationContext();
444   const StackFrameContext *SCtx = Ctx->getStackFrame();
445   ProgramStateRef State = N->getState();
446   auto CallExitLoc = N->getLocationAs<CallExitBegin>();
447 
448   // No diagnostic if region was modified inside the frame.
449   if (!CallExitLoc || isModifiedInFrame(N))
450     return nullptr;
451 
452   CallEventRef<> Call =
453       BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
454 
455   // Optimistically suppress uninitialized value bugs that result
456   // from system headers having a chance to initialize the value
457   // but failing to do so. It's too unlikely a system header's fault.
458   // It's much more likely a situation in which the function has a failure
459   // mode that the user decided not to check. If we want to hunt such
460   // omitted checks, we should provide an explicit function-specific note
461   // describing the precondition under which the function isn't supposed to
462   // initialize its out-parameter, and additionally check that such
463   // precondition can actually be fulfilled on the current path.
464   if (Call->isInSystemHeader()) {
465     // We make an exception for system header functions that have no branches.
466     // Such functions unconditionally fail to initialize the variable.
467     // If they call other functions that have more paths within them,
468     // this suppression would still apply when we visit these inner functions.
469     // One common example of a standard function that doesn't ever initialize
470     // its out parameter is operator placement new; it's up to the follow-up
471     // constructor (if any) to initialize the memory.
472     if (!N->getStackFrame()->getCFG()->isLinear()) {
473       static int i = 0;
474       R.markInvalid(&i, nullptr);
475     }
476     return nullptr;
477   }
478 
479   if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
480     // If we failed to construct a piece for self, we still want to check
481     // whether the entity of interest is in a parameter.
482     if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
483       return Piece;
484   }
485 
486   if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
487     // Do not generate diagnostics for not modified parameters in
488     // constructors.
489     return maybeEmitNoteForCXXThis(R, *CCall, N);
490   }
491 
492   return maybeEmitNoteForParameters(R, *Call, N);
493 }
494 
495 //===----------------------------------------------------------------------===//
496 // Implementation of NoStoreFuncVisitor.
497 //===----------------------------------------------------------------------===//
498 
499 namespace {
500 /// Put a diagnostic on return statement of all inlined functions
501 /// for which  the region of interest \p RegionOfInterest was passed into,
502 /// but not written inside, and it has caused an undefined read or a null
503 /// pointer dereference outside.
504 class NoStoreFuncVisitor final : public NoStateChangeFuncVisitor {
505   const SubRegion *RegionOfInterest;
506   MemRegionManager &MmrMgr;
507   const SourceManager &SM;
508   const PrintingPolicy &PP;
509 
510   /// Recursion limit for dereferencing fields when looking for the
511   /// region of interest.
512   /// The limit of two indicates that we will dereference fields only once.
513   static const unsigned DEREFERENCE_LIMIT = 2;
514 
515   using RegionVector = SmallVector<const MemRegion *, 5>;
516 
517 public:
518   NoStoreFuncVisitor(const SubRegion *R, bugreporter::TrackingKind TKind)
519       : NoStateChangeFuncVisitor(TKind), RegionOfInterest(R),
520         MmrMgr(R->getMemRegionManager()),
521         SM(MmrMgr.getContext().getSourceManager()),
522         PP(MmrMgr.getContext().getPrintingPolicy()) {}
523 
524   void Profile(llvm::FoldingSetNodeID &ID) const override {
525     static int Tag = 0;
526     ID.AddPointer(&Tag);
527     ID.AddPointer(RegionOfInterest);
528   }
529 
530 private:
531   /// \return Whether \c RegionOfInterest was modified at \p CurrN compared to
532   /// the value it holds in \p CallExitBeginN.
533   bool wasModifiedBeforeCallExit(const ExplodedNode *CurrN,
534                                  const ExplodedNode *CallExitBeginN) override;
535 
536   /// Attempts to find the region of interest in a given record decl,
537   /// by either following the base classes or fields.
538   /// Dereferences fields up to a given recursion limit.
539   /// Note that \p Vec is passed by value, leading to quadratic copying cost,
540   /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
541   /// \return A chain fields leading to the region of interest or None.
542   const Optional<RegionVector>
543   findRegionOfInterestInRecord(const RecordDecl *RD, ProgramStateRef State,
544                                const MemRegion *R, const RegionVector &Vec = {},
545                                int depth = 0);
546 
547   // Region of interest corresponds to an IVar, exiting a method
548   // which could have written into that IVar, but did not.
549   PathDiagnosticPieceRef maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
550                                                   const ObjCMethodCall &Call,
551                                                   const ExplodedNode *N) final;
552 
553   PathDiagnosticPieceRef maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
554                                                  const CXXConstructorCall &Call,
555                                                  const ExplodedNode *N) final;
556 
557   PathDiagnosticPieceRef
558   maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call,
559                              const ExplodedNode *N) final;
560 
561   /// Consume the information on the no-store stack frame in order to
562   /// either emit a note or suppress the report enirely.
563   /// \return Diagnostics piece for region not modified in the current function,
564   /// if it decides to emit one.
565   PathDiagnosticPieceRef
566   maybeEmitNote(PathSensitiveBugReport &R, const CallEvent &Call,
567                 const ExplodedNode *N, const RegionVector &FieldChain,
568                 const MemRegion *MatchedRegion, StringRef FirstElement,
569                 bool FirstIsReferenceType, unsigned IndirectionLevel);
570 
571   bool prettyPrintRegionName(const RegionVector &FieldChain,
572                              const MemRegion *MatchedRegion,
573                              StringRef FirstElement, bool FirstIsReferenceType,
574                              unsigned IndirectionLevel,
575                              llvm::raw_svector_ostream &os);
576 
577   StringRef prettyPrintFirstElement(StringRef FirstElement,
578                                     bool MoreItemsExpected,
579                                     int IndirectionLevel,
580                                     llvm::raw_svector_ostream &os);
581 };
582 } // namespace
583 
584 /// \return Whether the method declaration \p Parent
585 /// syntactically has a binary operation writing into the ivar \p Ivar.
586 static bool potentiallyWritesIntoIvar(const Decl *Parent,
587                                       const ObjCIvarDecl *Ivar) {
588   using namespace ast_matchers;
589   const char *IvarBind = "Ivar";
590   if (!Parent || !Parent->hasBody())
591     return false;
592   StatementMatcher WriteIntoIvarM = binaryOperator(
593       hasOperatorName("="),
594       hasLHS(ignoringParenImpCasts(
595           objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
596   StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
597   auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
598   for (BoundNodes &Match : Matches) {
599     auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
600     if (IvarRef->isFreeIvar())
601       return true;
602 
603     const Expr *Base = IvarRef->getBase();
604     if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
605       Base = ICE->getSubExpr();
606 
607     if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
608       if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
609         if (ID->getParameterKind() == ImplicitParamDecl::ObjCSelf)
610           return true;
611 
612     return false;
613   }
614   return false;
615 }
616 
617 /// Attempts to find the region of interest in a given CXX decl,
618 /// by either following the base classes or fields.
619 /// Dereferences fields up to a given recursion limit.
620 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
621 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
622 /// \return A chain fields leading to the region of interest or None.
623 const Optional<NoStoreFuncVisitor::RegionVector>
624 NoStoreFuncVisitor::findRegionOfInterestInRecord(
625     const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
626     const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
627     int depth /* = 0 */) {
628 
629   if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
630     return None;
631 
632   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
633     if (!RDX->hasDefinition())
634       return None;
635 
636   // Recursively examine the base classes.
637   // Note that following base classes does not increase the recursion depth.
638   if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
639     for (const auto &II : RDX->bases())
640       if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
641         if (Optional<RegionVector> Out =
642                 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
643           return Out;
644 
645   for (const FieldDecl *I : RD->fields()) {
646     QualType FT = I->getType();
647     const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
648     const SVal V = State->getSVal(FR);
649     const MemRegion *VR = V.getAsRegion();
650 
651     RegionVector VecF = Vec;
652     VecF.push_back(FR);
653 
654     if (RegionOfInterest == VR)
655       return VecF;
656 
657     if (const RecordDecl *RRD = FT->getAsRecordDecl())
658       if (auto Out =
659               findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
660         return Out;
661 
662     QualType PT = FT->getPointeeType();
663     if (PT.isNull() || PT->isVoidType() || !VR)
664       continue;
665 
666     if (const RecordDecl *RRD = PT->getAsRecordDecl())
667       if (Optional<RegionVector> Out =
668               findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
669         return Out;
670   }
671 
672   return None;
673 }
674 
675 PathDiagnosticPieceRef
676 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
677                                              const ObjCMethodCall &Call,
678                                              const ExplodedNode *N) {
679   if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
680     const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
681     if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
682         potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
683                                   IvarR->getDecl()))
684       return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
685                            /*FirstIsReferenceType=*/false, 1);
686   }
687   return nullptr;
688 }
689 
690 PathDiagnosticPieceRef
691 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
692                                             const CXXConstructorCall &Call,
693                                             const ExplodedNode *N) {
694   const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
695   if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
696     return maybeEmitNote(R, Call, N, {}, ThisR, "this",
697                          /*FirstIsReferenceType=*/false, 1);
698 
699   // Do not generate diagnostics for not modified parameters in
700   // constructors.
701   return nullptr;
702 }
703 
704 /// \return whether \p Ty points to a const type, or is a const reference.
705 static bool isPointerToConst(QualType Ty) {
706   return !Ty->getPointeeType().isNull() &&
707          Ty->getPointeeType().getCanonicalType().isConstQualified();
708 }
709 
710 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
711     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
712   ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
713   for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
714     const ParmVarDecl *PVD = Parameters[I];
715     SVal V = Call.getArgSVal(I);
716     bool ParamIsReferenceType = PVD->getType()->isReferenceType();
717     std::string ParamName = PVD->getNameAsString();
718 
719     unsigned IndirectionLevel = 1;
720     QualType T = PVD->getType();
721     while (const MemRegion *MR = V.getAsRegion()) {
722       if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
723         return maybeEmitNote(R, Call, N, {}, MR, ParamName,
724                              ParamIsReferenceType, IndirectionLevel);
725 
726       QualType PT = T->getPointeeType();
727       if (PT.isNull() || PT->isVoidType())
728         break;
729 
730       ProgramStateRef State = N->getState();
731 
732       if (const RecordDecl *RD = PT->getAsRecordDecl())
733         if (Optional<RegionVector> P =
734                 findRegionOfInterestInRecord(RD, State, MR))
735           return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
736                                ParamIsReferenceType, IndirectionLevel);
737 
738       V = State->getSVal(MR, PT);
739       T = PT;
740       IndirectionLevel++;
741     }
742   }
743 
744   return nullptr;
745 }
746 
747 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
748     const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
749   return ::wasRegionOfInterestModifiedAt(
750       RegionOfInterest, CurrN,
751       CallExitBeginN->getState()->getSVal(RegionOfInterest));
752 }
753 
754 static llvm::StringLiteral WillBeUsedForACondition =
755     ", which participates in a condition later";
756 
757 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
758     PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
759     const RegionVector &FieldChain, const MemRegion *MatchedRegion,
760     StringRef FirstElement, bool FirstIsReferenceType,
761     unsigned IndirectionLevel) {
762 
763   PathDiagnosticLocation L =
764       PathDiagnosticLocation::create(N->getLocation(), SM);
765 
766   // For now this shouldn't trigger, but once it does (as we add more
767   // functions to the body farm), we'll need to decide if these reports
768   // are worth suppressing as well.
769   if (!L.hasValidLocation())
770     return nullptr;
771 
772   SmallString<256> sbuf;
773   llvm::raw_svector_ostream os(sbuf);
774   os << "Returning without writing to '";
775 
776   // Do not generate the note if failed to pretty-print.
777   if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
778                              FirstIsReferenceType, IndirectionLevel, os))
779     return nullptr;
780 
781   os << "'";
782   if (TKind == bugreporter::TrackingKind::Condition)
783     os << WillBeUsedForACondition;
784   return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
785 }
786 
787 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
788                                                const MemRegion *MatchedRegion,
789                                                StringRef FirstElement,
790                                                bool FirstIsReferenceType,
791                                                unsigned IndirectionLevel,
792                                                llvm::raw_svector_ostream &os) {
793 
794   if (FirstIsReferenceType)
795     IndirectionLevel--;
796 
797   RegionVector RegionSequence;
798 
799   // Add the regions in the reverse order, then reverse the resulting array.
800   assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
801   const MemRegion *R = RegionOfInterest;
802   while (R != MatchedRegion) {
803     RegionSequence.push_back(R);
804     R = cast<SubRegion>(R)->getSuperRegion();
805   }
806   std::reverse(RegionSequence.begin(), RegionSequence.end());
807   RegionSequence.append(FieldChain.begin(), FieldChain.end());
808 
809   StringRef Sep;
810   for (const MemRegion *R : RegionSequence) {
811 
812     // Just keep going up to the base region.
813     // Element regions may appear due to casts.
814     if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
815       continue;
816 
817     if (Sep.empty())
818       Sep = prettyPrintFirstElement(FirstElement,
819                                     /*MoreItemsExpected=*/true,
820                                     IndirectionLevel, os);
821 
822     os << Sep;
823 
824     // Can only reasonably pretty-print DeclRegions.
825     if (!isa<DeclRegion>(R))
826       return false;
827 
828     const auto *DR = cast<DeclRegion>(R);
829     Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
830     DR->getDecl()->getDeclName().print(os, PP);
831   }
832 
833   if (Sep.empty())
834     prettyPrintFirstElement(FirstElement,
835                             /*MoreItemsExpected=*/false, IndirectionLevel, os);
836   return true;
837 }
838 
839 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
840     StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
841     llvm::raw_svector_ostream &os) {
842   StringRef Out = ".";
843 
844   if (IndirectionLevel > 0 && MoreItemsExpected) {
845     IndirectionLevel--;
846     Out = "->";
847   }
848 
849   if (IndirectionLevel > 0 && MoreItemsExpected)
850     os << "(";
851 
852   for (int i = 0; i < IndirectionLevel; i++)
853     os << "*";
854   os << FirstElement;
855 
856   if (IndirectionLevel > 0 && MoreItemsExpected)
857     os << ")";
858 
859   return Out;
860 }
861 
862 //===----------------------------------------------------------------------===//
863 // Implementation of MacroNullReturnSuppressionVisitor.
864 //===----------------------------------------------------------------------===//
865 
866 namespace {
867 
868 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
869 /// the macro.
870 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
871   const SubRegion *RegionOfInterest;
872   const SVal ValueAtDereference;
873 
874   // Do not invalidate the reports where the value was modified
875   // after it got assigned to from the macro.
876   bool WasModified = false;
877 
878 public:
879   MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
880       : RegionOfInterest(R), ValueAtDereference(V) {}
881 
882   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
883                                    BugReporterContext &BRC,
884                                    PathSensitiveBugReport &BR) override {
885     if (WasModified)
886       return nullptr;
887 
888     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
889     if (!BugPoint)
890       return nullptr;
891 
892     const SourceManager &SMgr = BRC.getSourceManager();
893     if (auto Loc = matchAssignment(N)) {
894       if (isFunctionMacroExpansion(*Loc, SMgr)) {
895         std::string MacroName = std::string(getMacroName(*Loc, BRC));
896         SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
897         if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
898           BR.markInvalid(getTag(), MacroName.c_str());
899       }
900     }
901 
902     if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
903       WasModified = true;
904 
905     return nullptr;
906   }
907 
908   static void addMacroVisitorIfNecessary(
909         const ExplodedNode *N, const MemRegion *R,
910         bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
911         const SVal V) {
912     AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
913     if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
914         isa<Loc>(V))
915       BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
916                                                        V);
917   }
918 
919   void* getTag() const {
920     static int Tag = 0;
921     return static_cast<void *>(&Tag);
922   }
923 
924   void Profile(llvm::FoldingSetNodeID &ID) const override {
925     ID.AddPointer(getTag());
926   }
927 
928 private:
929   /// \return Source location of right hand side of an assignment
930   /// into \c RegionOfInterest, empty optional if none found.
931   Optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
932     const Stmt *S = N->getStmtForDiagnostics();
933     ProgramStateRef State = N->getState();
934     auto *LCtx = N->getLocationContext();
935     if (!S)
936       return None;
937 
938     if (const auto *DS = dyn_cast<DeclStmt>(S)) {
939       if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
940         if (const Expr *RHS = VD->getInit())
941           if (RegionOfInterest->isSubRegionOf(
942                   State->getLValue(VD, LCtx).getAsRegion()))
943             return RHS->getBeginLoc();
944     } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
945       const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
946       const Expr *RHS = BO->getRHS();
947       if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
948         return RHS->getBeginLoc();
949       }
950     }
951     return None;
952   }
953 };
954 
955 } // end of anonymous namespace
956 
957 namespace {
958 
959 /// Emits an extra note at the return statement of an interesting stack frame.
960 ///
961 /// The returned value is marked as an interesting value, and if it's null,
962 /// adds a visitor to track where it became null.
963 ///
964 /// This visitor is intended to be used when another visitor discovers that an
965 /// interesting value comes from an inlined function call.
966 class ReturnVisitor : public TrackingBugReporterVisitor {
967   const StackFrameContext *CalleeSFC;
968   enum {
969     Initial,
970     MaybeUnsuppress,
971     Satisfied
972   } Mode = Initial;
973 
974   bool EnableNullFPSuppression;
975   bool ShouldInvalidate = true;
976   AnalyzerOptions& Options;
977   bugreporter::TrackingKind TKind;
978 
979 public:
980   ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
981                 bool Suppressed, AnalyzerOptions &Options,
982                 bugreporter::TrackingKind TKind)
983       : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
984         EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
985 
986   static void *getTag() {
987     static int Tag = 0;
988     return static_cast<void *>(&Tag);
989   }
990 
991   void Profile(llvm::FoldingSetNodeID &ID) const override {
992     ID.AddPointer(ReturnVisitor::getTag());
993     ID.AddPointer(CalleeSFC);
994     ID.AddBoolean(EnableNullFPSuppression);
995   }
996 
997   PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
998                                           BugReporterContext &BRC,
999                                           PathSensitiveBugReport &BR) {
1000     // Only print a message at the interesting return statement.
1001     if (N->getLocationContext() != CalleeSFC)
1002       return nullptr;
1003 
1004     Optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
1005     if (!SP)
1006       return nullptr;
1007 
1008     const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
1009     if (!Ret)
1010       return nullptr;
1011 
1012     // Okay, we're at the right return statement, but do we have the return
1013     // value available?
1014     ProgramStateRef State = N->getState();
1015     SVal V = State->getSVal(Ret, CalleeSFC);
1016     if (V.isUnknownOrUndef())
1017       return nullptr;
1018 
1019     // Don't print any more notes after this one.
1020     Mode = Satisfied;
1021 
1022     const Expr *RetE = Ret->getRetValue();
1023     assert(RetE && "Tracking a return value for a void function");
1024 
1025     // Handle cases where a reference is returned and then immediately used.
1026     Optional<Loc> LValue;
1027     if (RetE->isGLValue()) {
1028       if ((LValue = V.getAs<Loc>())) {
1029         SVal RValue = State->getRawSVal(*LValue, RetE->getType());
1030         if (isa<DefinedSVal>(RValue))
1031           V = RValue;
1032       }
1033     }
1034 
1035     // Ignore aggregate rvalues.
1036     if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
1037       return nullptr;
1038 
1039     RetE = RetE->IgnoreParenCasts();
1040 
1041     // Let's track the return value.
1042     getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
1043 
1044     // Build an appropriate message based on the return value.
1045     SmallString<64> Msg;
1046     llvm::raw_svector_ostream Out(Msg);
1047 
1048     bool WouldEventBeMeaningless = false;
1049 
1050     if (State->isNull(V).isConstrainedTrue()) {
1051       if (isa<Loc>(V)) {
1052 
1053         // If we have counter-suppression enabled, make sure we keep visiting
1054         // future nodes. We want to emit a path note as well, in case
1055         // the report is resurrected as valid later on.
1056         if (EnableNullFPSuppression &&
1057             Options.ShouldAvoidSuppressingNullArgumentPaths)
1058           Mode = MaybeUnsuppress;
1059 
1060         if (RetE->getType()->isObjCObjectPointerType()) {
1061           Out << "Returning nil";
1062         } else {
1063           Out << "Returning null pointer";
1064         }
1065       } else {
1066         Out << "Returning zero";
1067       }
1068 
1069     } else {
1070       if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1071         Out << "Returning the value " << CI->getValue();
1072       } else {
1073         // There is nothing interesting about returning a value, when it is
1074         // plain value without any constraints, and the function is guaranteed
1075         // to return that every time. We could use CFG::isLinear() here, but
1076         // constexpr branches are obvious to the compiler, not necesserily to
1077         // the programmer.
1078         if (N->getCFG().size() == 3)
1079           WouldEventBeMeaningless = true;
1080 
1081         Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1082       }
1083     }
1084 
1085     if (LValue) {
1086       if (const MemRegion *MR = LValue->getAsRegion()) {
1087         if (MR->canPrintPretty()) {
1088           Out << " (reference to ";
1089           MR->printPretty(Out);
1090           Out << ")";
1091         }
1092       }
1093     } else {
1094       // FIXME: We should have a more generalized location printing mechanism.
1095       if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1096         if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1097           Out << " (loaded from '" << *DD << "')";
1098     }
1099 
1100     PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1101     if (!L.isValid() || !L.asLocation().isValid())
1102       return nullptr;
1103 
1104     if (TKind == bugreporter::TrackingKind::Condition)
1105       Out << WillBeUsedForACondition;
1106 
1107     auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1108 
1109     // If we determined that the note is meaningless, make it prunable, and
1110     // don't mark the stackframe interesting.
1111     if (WouldEventBeMeaningless)
1112       EventPiece->setPrunable(true);
1113     else
1114       BR.markInteresting(CalleeSFC);
1115 
1116     return EventPiece;
1117   }
1118 
1119   PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1120                                                   BugReporterContext &BRC,
1121                                                   PathSensitiveBugReport &BR) {
1122     assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1123 
1124     // Are we at the entry node for this call?
1125     Optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1126     if (!CE)
1127       return nullptr;
1128 
1129     if (CE->getCalleeContext() != CalleeSFC)
1130       return nullptr;
1131 
1132     Mode = Satisfied;
1133 
1134     // Don't automatically suppress a report if one of the arguments is
1135     // known to be a null pointer. Instead, start tracking /that/ null
1136     // value back to its origin.
1137     ProgramStateManager &StateMgr = BRC.getStateManager();
1138     CallEventManager &CallMgr = StateMgr.getCallEventManager();
1139 
1140     ProgramStateRef State = N->getState();
1141     CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1142     for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1143       Optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1144       if (!ArgV)
1145         continue;
1146 
1147       const Expr *ArgE = Call->getArgExpr(I);
1148       if (!ArgE)
1149         continue;
1150 
1151       // Is it possible for this argument to be non-null?
1152       if (!State->isNull(*ArgV).isConstrainedTrue())
1153         continue;
1154 
1155       if (getParentTracker()
1156               .track(ArgE, N, {TKind, EnableNullFPSuppression})
1157               .FoundSomethingToTrack)
1158         ShouldInvalidate = false;
1159 
1160       // If we /can't/ track the null pointer, we should err on the side of
1161       // false negatives, and continue towards marking this report invalid.
1162       // (We will still look at the other arguments, though.)
1163     }
1164 
1165     return nullptr;
1166   }
1167 
1168   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1169                                    BugReporterContext &BRC,
1170                                    PathSensitiveBugReport &BR) override {
1171     switch (Mode) {
1172     case Initial:
1173       return visitNodeInitial(N, BRC, BR);
1174     case MaybeUnsuppress:
1175       return visitNodeMaybeUnsuppress(N, BRC, BR);
1176     case Satisfied:
1177       return nullptr;
1178     }
1179 
1180     llvm_unreachable("Invalid visit mode!");
1181   }
1182 
1183   void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1184                        PathSensitiveBugReport &BR) override {
1185     if (EnableNullFPSuppression && ShouldInvalidate)
1186       BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1187   }
1188 };
1189 
1190 } // end of anonymous namespace
1191 
1192 //===----------------------------------------------------------------------===//
1193 //                               StoreSiteFinder
1194 //===----------------------------------------------------------------------===//
1195 
1196 /// Finds last store into the given region,
1197 /// which is different from a given symbolic value.
1198 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1199   const MemRegion *R;
1200   SVal V;
1201   bool Satisfied = false;
1202 
1203   TrackingOptions Options;
1204   const StackFrameContext *OriginSFC;
1205 
1206 public:
1207   /// \param V We're searching for the store where \c R received this value.
1208   /// \param R The region we're tracking.
1209   /// \param Options Tracking behavior options.
1210   /// \param OriginSFC Only adds notes when the last store happened in a
1211   ///        different stackframe to this one. Disregarded if the tracking kind
1212   ///        is thorough.
1213   ///        This is useful, because for non-tracked regions, notes about
1214   ///        changes to its value in a nested stackframe could be pruned, and
1215   ///        this visitor can prevent that without polluting the bugpath too
1216   ///        much.
1217   StoreSiteFinder(bugreporter::TrackerRef ParentTracker, KnownSVal V,
1218                   const MemRegion *R, TrackingOptions Options,
1219                   const StackFrameContext *OriginSFC = nullptr)
1220       : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1221         OriginSFC(OriginSFC) {
1222     assert(R);
1223   }
1224 
1225   void Profile(llvm::FoldingSetNodeID &ID) const override;
1226 
1227   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1228                                    BugReporterContext &BRC,
1229                                    PathSensitiveBugReport &BR) override;
1230 };
1231 
1232 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1233   static int tag = 0;
1234   ID.AddPointer(&tag);
1235   ID.AddPointer(R);
1236   ID.Add(V);
1237   ID.AddInteger(static_cast<int>(Options.Kind));
1238   ID.AddBoolean(Options.EnableNullFPSuppression);
1239 }
1240 
1241 /// Returns true if \p N represents the DeclStmt declaring and initializing
1242 /// \p VR.
1243 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1244   Optional<PostStmt> P = N->getLocationAs<PostStmt>();
1245   if (!P)
1246     return false;
1247 
1248   const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1249   if (!DS)
1250     return false;
1251 
1252   if (DS->getSingleDecl() != VR->getDecl())
1253     return false;
1254 
1255   const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1256   const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1257   if (!FrameSpace) {
1258     // If we ever directly evaluate global DeclStmts, this assertion will be
1259     // invalid, but this still seems preferable to silently accepting an
1260     // initialization that may be for a path-sensitive variable.
1261     assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1262     return true;
1263   }
1264 
1265   assert(VR->getDecl()->hasLocalStorage());
1266   const LocationContext *LCtx = N->getLocationContext();
1267   return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1268 }
1269 
1270 static bool isObjCPointer(const MemRegion *R) {
1271   if (R->isBoundable())
1272     if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1273       return TR->getValueType()->isObjCObjectPointerType();
1274 
1275   return false;
1276 }
1277 
1278 static bool isObjCPointer(const ValueDecl *D) {
1279   return D->getType()->isObjCObjectPointerType();
1280 }
1281 
1282 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1283 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1284   const bool HasPrefix = SI.Dest->canPrintPretty();
1285 
1286   if (HasPrefix) {
1287     SI.Dest->printPretty(OS);
1288     OS << " ";
1289   }
1290 
1291   const char *Action = nullptr;
1292 
1293   switch (SI.StoreKind) {
1294   case StoreInfo::Initialization:
1295     Action = HasPrefix ? "initialized to " : "Initializing to ";
1296     break;
1297   case StoreInfo::BlockCapture:
1298     Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1299     break;
1300   default:
1301     llvm_unreachable("Unexpected store kind");
1302   }
1303 
1304   if (isa<loc::ConcreteInt>(SI.Value)) {
1305     OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1306 
1307   } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1308     OS << Action << CVal->getValue();
1309 
1310   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1311     OS << Action << "the value of ";
1312     SI.Origin->printPretty(OS);
1313 
1314   } else if (SI.StoreKind == StoreInfo::Initialization) {
1315     // We don't need to check here, all these conditions were
1316     // checked by StoreSiteFinder, when it figured out that it is
1317     // initialization.
1318     const auto *DS =
1319         cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1320 
1321     if (SI.Value.isUndef()) {
1322       if (isa<VarRegion>(SI.Dest)) {
1323         const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1324 
1325         if (VD->getInit()) {
1326           OS << (HasPrefix ? "initialized" : "Initializing")
1327              << " to a garbage value";
1328         } else {
1329           OS << (HasPrefix ? "declared" : "Declaring")
1330              << " without an initial value";
1331         }
1332       }
1333     } else {
1334       OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1335     }
1336   }
1337 }
1338 
1339 /// Display diagnostics for passing bad region as a parameter.
1340 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1341                                    StoreInfo SI) {
1342   const auto *VR = cast<VarRegion>(SI.Dest);
1343   const auto *Param = cast<ParmVarDecl>(VR->getDecl());
1344 
1345   OS << "Passing ";
1346 
1347   if (isa<loc::ConcreteInt>(SI.Value)) {
1348     OS << (isObjCPointer(Param) ? "nil object reference"
1349                                 : "null pointer value");
1350 
1351   } else if (SI.Value.isUndef()) {
1352     OS << "uninitialized value";
1353 
1354   } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1355     OS << "the value " << CI->getValue();
1356 
1357   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1358     SI.Origin->printPretty(OS);
1359 
1360   } else {
1361     OS << "value";
1362   }
1363 
1364   // Printed parameter indexes are 1-based, not 0-based.
1365   unsigned Idx = Param->getFunctionScopeIndex() + 1;
1366   OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1367   if (VR->canPrintPretty()) {
1368     OS << " ";
1369     VR->printPretty(OS);
1370   }
1371 }
1372 
1373 /// Show default diagnostics for storing bad region.
1374 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1375                                      StoreInfo SI) {
1376   const bool HasSuffix = SI.Dest->canPrintPretty();
1377 
1378   if (isa<loc::ConcreteInt>(SI.Value)) {
1379     OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1380                                   : (HasSuffix ? "Null pointer value stored"
1381                                                : "Storing null pointer value"));
1382 
1383   } else if (SI.Value.isUndef()) {
1384     OS << (HasSuffix ? "Uninitialized value stored"
1385                      : "Storing uninitialized value");
1386 
1387   } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1388     if (HasSuffix)
1389       OS << "The value " << CV->getValue() << " is assigned";
1390     else
1391       OS << "Assigning " << CV->getValue();
1392 
1393   } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1394     if (HasSuffix) {
1395       OS << "The value of ";
1396       SI.Origin->printPretty(OS);
1397       OS << " is assigned";
1398     } else {
1399       OS << "Assigning the value of ";
1400       SI.Origin->printPretty(OS);
1401     }
1402 
1403   } else {
1404     OS << (HasSuffix ? "Value assigned" : "Assigning value");
1405   }
1406 
1407   if (HasSuffix) {
1408     OS << " to ";
1409     SI.Dest->printPretty(OS);
1410   }
1411 }
1412 
1413 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1414                                                   BugReporterContext &BRC,
1415                                                   PathSensitiveBugReport &BR) {
1416   if (Satisfied)
1417     return nullptr;
1418 
1419   const ExplodedNode *StoreSite = nullptr;
1420   const ExplodedNode *Pred = Succ->getFirstPred();
1421   const Expr *InitE = nullptr;
1422   bool IsParam = false;
1423 
1424   // First see if we reached the declaration of the region.
1425   if (const auto *VR = dyn_cast<VarRegion>(R)) {
1426     if (isInitializationOfVar(Pred, VR)) {
1427       StoreSite = Pred;
1428       InitE = VR->getDecl()->getInit();
1429     }
1430   }
1431 
1432   // If this is a post initializer expression, initializing the region, we
1433   // should track the initializer expression.
1434   if (Optional<PostInitializer> PIP = Pred->getLocationAs<PostInitializer>()) {
1435     const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1436     if (FieldReg == R) {
1437       StoreSite = Pred;
1438       InitE = PIP->getInitializer()->getInit();
1439     }
1440   }
1441 
1442   // Otherwise, see if this is the store site:
1443   // (1) Succ has this binding and Pred does not, i.e. this is
1444   //     where the binding first occurred.
1445   // (2) Succ has this binding and is a PostStore node for this region, i.e.
1446   //     the same binding was re-assigned here.
1447   if (!StoreSite) {
1448     if (Succ->getState()->getSVal(R) != V)
1449       return nullptr;
1450 
1451     if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1452       Optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1453       if (!PS || PS->getLocationValue() != R)
1454         return nullptr;
1455     }
1456 
1457     StoreSite = Succ;
1458 
1459     // If this is an assignment expression, we can track the value
1460     // being assigned.
1461     if (Optional<PostStmt> P = Succ->getLocationAs<PostStmt>())
1462       if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>())
1463         if (BO->isAssignmentOp())
1464           InitE = BO->getRHS();
1465 
1466     // If this is a call entry, the variable should be a parameter.
1467     // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1468     // 'this' should never be NULL, but this visitor isn't just for NULL and
1469     // UndefinedVal.)
1470     if (Optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1471       if (const auto *VR = dyn_cast<VarRegion>(R)) {
1472 
1473         if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1474           ProgramStateManager &StateMgr = BRC.getStateManager();
1475           CallEventManager &CallMgr = StateMgr.getCallEventManager();
1476 
1477           CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1478                                                   Succ->getState());
1479           InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1480         } else {
1481           // Handle Objective-C 'self'.
1482           assert(isa<ImplicitParamDecl>(VR->getDecl()));
1483           InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1484                       ->getInstanceReceiver()->IgnoreParenCasts();
1485         }
1486         IsParam = true;
1487       }
1488     }
1489 
1490     // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1491     // is wrapped inside of it.
1492     if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1493       InitE = TmpR->getExpr();
1494   }
1495 
1496   if (!StoreSite)
1497     return nullptr;
1498 
1499   Satisfied = true;
1500 
1501   // If we have an expression that provided the value, try to track where it
1502   // came from.
1503   if (InitE) {
1504     if (!IsParam)
1505       InitE = InitE->IgnoreParenCasts();
1506 
1507     getParentTracker().track(InitE, StoreSite, Options);
1508   }
1509 
1510   // Let's try to find the region where the value came from.
1511   const MemRegion *OldRegion = nullptr;
1512 
1513   // If we have init expression, it might be simply a reference
1514   // to a variable, so we can use it.
1515   if (InitE) {
1516     // That region might still be not exactly what we are looking for.
1517     // In situations like `int &ref = val;`, we can't say that
1518     // `ref` is initialized with `val`, rather refers to `val`.
1519     //
1520     // In order, to mitigate situations like this, we check if the last
1521     // stored value in that region is the value that we track.
1522     //
1523     // TODO: support other situations better.
1524     if (const MemRegion *Candidate =
1525             getLocationRegionIfReference(InitE, Succ, false)) {
1526       const StoreManager &SM = BRC.getStateManager().getStoreManager();
1527 
1528       // Here we traverse the graph up to find the last node where the
1529       // candidate region is still in the store.
1530       for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1531         if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1532           // And if it was bound to the target value, we can use it.
1533           if (N->getState()->getSVal(Candidate) == V) {
1534             OldRegion = Candidate;
1535           }
1536           break;
1537         }
1538       }
1539     }
1540   }
1541 
1542   // Otherwise, if the current region does indeed contain the value
1543   // we are looking for, we can look for a region where this value
1544   // was before.
1545   //
1546   // It can be useful for situations like:
1547   //     new = identity(old)
1548   // where the analyzer knows that 'identity' returns the value of its
1549   // first argument.
1550   //
1551   // NOTE: If the region R is not a simple var region, it can contain
1552   //       V in one of its subregions.
1553   if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1554     // Let's go up the graph to find the node where the region is
1555     // bound to V.
1556     const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1557     for (;
1558          NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1559          NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1560     }
1561 
1562     if (NodeWithoutBinding) {
1563       // Let's try to find a unique binding for the value in that node.
1564       // We want to use this to find unique bindings because of the following
1565       // situations:
1566       //     b = a;
1567       //     c = identity(b);
1568       //
1569       // Telling the user that the value of 'a' is assigned to 'c', while
1570       // correct, can be confusing.
1571       StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1572       BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1573       if (FB)
1574         OldRegion = FB.getRegion();
1575     }
1576   }
1577 
1578   if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1579       !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1580     return nullptr;
1581 
1582   // Okay, we've found the binding. Emit an appropriate message.
1583   SmallString<256> sbuf;
1584   llvm::raw_svector_ostream os(sbuf);
1585 
1586   StoreInfo SI = {StoreInfo::Assignment, // default kind
1587                   StoreSite,
1588                   InitE,
1589                   V,
1590                   R,
1591                   OldRegion};
1592 
1593   if (Optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1594     const Stmt *S = PS->getStmt();
1595     const auto *DS = dyn_cast<DeclStmt>(S);
1596     const auto *VR = dyn_cast<VarRegion>(R);
1597 
1598     if (DS) {
1599       SI.StoreKind = StoreInfo::Initialization;
1600     } else if (isa<BlockExpr>(S)) {
1601       SI.StoreKind = StoreInfo::BlockCapture;
1602       if (VR) {
1603         // See if we can get the BlockVarRegion.
1604         ProgramStateRef State = StoreSite->getState();
1605         SVal V = StoreSite->getSVal(S);
1606         if (const auto *BDR =
1607                 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1608           if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1609             getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1610                                      Options, OriginSFC);
1611           }
1612         }
1613       }
1614     }
1615   } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1616              isa<VarRegion>(SI.Dest)) {
1617     SI.StoreKind = StoreInfo::CallArgument;
1618   }
1619 
1620   return getParentTracker().handle(SI, BRC, Options);
1621 }
1622 
1623 //===----------------------------------------------------------------------===//
1624 // Implementation of TrackConstraintBRVisitor.
1625 //===----------------------------------------------------------------------===//
1626 
1627 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1628   static int tag = 0;
1629   ID.AddPointer(&tag);
1630   ID.AddBoolean(Assumption);
1631   ID.Add(Constraint);
1632 }
1633 
1634 /// Return the tag associated with this visitor.  This tag will be used
1635 /// to make all PathDiagnosticPieces created by this visitor.
1636 const char *TrackConstraintBRVisitor::getTag() {
1637   return "TrackConstraintBRVisitor";
1638 }
1639 
1640 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1641   if (IsZeroCheck)
1642     return N->getState()->isNull(Constraint).isUnderconstrained();
1643   return (bool)N->getState()->assume(Constraint, !Assumption);
1644 }
1645 
1646 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1647     const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1648   const ExplodedNode *PrevN = N->getFirstPred();
1649   if (IsSatisfied)
1650     return nullptr;
1651 
1652   // Start tracking after we see the first state in which the value is
1653   // constrained.
1654   if (!IsTrackingTurnedOn)
1655     if (!isUnderconstrained(N))
1656       IsTrackingTurnedOn = true;
1657   if (!IsTrackingTurnedOn)
1658     return nullptr;
1659 
1660   // Check if in the previous state it was feasible for this constraint
1661   // to *not* be true.
1662   if (isUnderconstrained(PrevN)) {
1663     IsSatisfied = true;
1664 
1665     // At this point, the negation of the constraint should be infeasible. If it
1666     // is feasible, make sure that the negation of the constrainti was
1667     // infeasible in the current state.  If it is feasible, we somehow missed
1668     // the transition point.
1669     assert(!isUnderconstrained(N));
1670 
1671     // We found the transition point for the constraint.  We now need to
1672     // pretty-print the constraint. (work-in-progress)
1673     SmallString<64> sbuf;
1674     llvm::raw_svector_ostream os(sbuf);
1675 
1676     if (isa<Loc>(Constraint)) {
1677       os << "Assuming pointer value is ";
1678       os << (Assumption ? "non-null" : "null");
1679     }
1680 
1681     if (os.str().empty())
1682       return nullptr;
1683 
1684     // Construct a new PathDiagnosticPiece.
1685     ProgramPoint P = N->getLocation();
1686 
1687     // If this node already have a specialized note, it's probably better
1688     // than our generic note.
1689     // FIXME: This only looks for note tags, not for other ways to add a note.
1690     if (isa_and_nonnull<NoteTag>(P.getTag()))
1691       return nullptr;
1692 
1693     PathDiagnosticLocation L =
1694       PathDiagnosticLocation::create(P, BRC.getSourceManager());
1695     if (!L.isValid())
1696       return nullptr;
1697 
1698     auto X = std::make_shared<PathDiagnosticEventPiece>(L, os.str());
1699     X->setTag(getTag());
1700     return std::move(X);
1701   }
1702 
1703   return nullptr;
1704 }
1705 
1706 //===----------------------------------------------------------------------===//
1707 // Implementation of SuppressInlineDefensiveChecksVisitor.
1708 //===----------------------------------------------------------------------===//
1709 
1710 SuppressInlineDefensiveChecksVisitor::
1711 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1712     : V(Value) {
1713   // Check if the visitor is disabled.
1714   AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1715   if (!Options.ShouldSuppressInlinedDefensiveChecks)
1716     IsSatisfied = true;
1717 }
1718 
1719 void SuppressInlineDefensiveChecksVisitor::Profile(
1720     llvm::FoldingSetNodeID &ID) const {
1721   static int id = 0;
1722   ID.AddPointer(&id);
1723   ID.Add(V);
1724 }
1725 
1726 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1727   return "IDCVisitor";
1728 }
1729 
1730 PathDiagnosticPieceRef
1731 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1732                                                 BugReporterContext &BRC,
1733                                                 PathSensitiveBugReport &BR) {
1734   const ExplodedNode *Pred = Succ->getFirstPred();
1735   if (IsSatisfied)
1736     return nullptr;
1737 
1738   // Start tracking after we see the first state in which the value is null.
1739   if (!IsTrackingTurnedOn)
1740     if (Succ->getState()->isNull(V).isConstrainedTrue())
1741       IsTrackingTurnedOn = true;
1742   if (!IsTrackingTurnedOn)
1743     return nullptr;
1744 
1745   // Check if in the previous state it was feasible for this value
1746   // to *not* be null.
1747   if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1748       Succ->getState()->isNull(V).isConstrainedTrue()) {
1749     IsSatisfied = true;
1750 
1751     // Check if this is inlined defensive checks.
1752     const LocationContext *CurLC = Succ->getLocationContext();
1753     const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1754     if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1755       BR.markInvalid("Suppress IDC", CurLC);
1756       return nullptr;
1757     }
1758 
1759     // Treat defensive checks in function-like macros as if they were an inlined
1760     // defensive check. If the bug location is not in a macro and the
1761     // terminator for the current location is in a macro then suppress the
1762     // warning.
1763     auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1764 
1765     if (!BugPoint)
1766       return nullptr;
1767 
1768     ProgramPoint CurPoint = Succ->getLocation();
1769     const Stmt *CurTerminatorStmt = nullptr;
1770     if (auto BE = CurPoint.getAs<BlockEdge>()) {
1771       CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1772     } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1773       const Stmt *CurStmt = SP->getStmt();
1774       if (!CurStmt->getBeginLoc().isMacroID())
1775         return nullptr;
1776 
1777       CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1778       CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1779     } else {
1780       return nullptr;
1781     }
1782 
1783     if (!CurTerminatorStmt)
1784       return nullptr;
1785 
1786     SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1787     if (TerminatorLoc.isMacroID()) {
1788       SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1789 
1790       // Suppress reports unless we are in that same macro.
1791       if (!BugLoc.isMacroID() ||
1792           getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1793         BR.markInvalid("Suppress Macro IDC", CurLC);
1794       }
1795       return nullptr;
1796     }
1797   }
1798   return nullptr;
1799 }
1800 
1801 //===----------------------------------------------------------------------===//
1802 // TrackControlDependencyCondBRVisitor.
1803 //===----------------------------------------------------------------------===//
1804 
1805 namespace {
1806 /// Tracks the expressions that are a control dependency of the node that was
1807 /// supplied to the constructor.
1808 /// For example:
1809 ///
1810 ///   cond = 1;
1811 ///   if (cond)
1812 ///     10 / 0;
1813 ///
1814 /// An error is emitted at line 3. This visitor realizes that the branch
1815 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1816 /// trackExpressionValue().
1817 class TrackControlDependencyCondBRVisitor final
1818     : public TrackingBugReporterVisitor {
1819   const ExplodedNode *Origin;
1820   ControlDependencyCalculator ControlDeps;
1821   llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1822 
1823 public:
1824   TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
1825                                       const ExplodedNode *O)
1826       : TrackingBugReporterVisitor(ParentTracker), Origin(O),
1827         ControlDeps(&O->getCFG()) {}
1828 
1829   void Profile(llvm::FoldingSetNodeID &ID) const override {
1830     static int x = 0;
1831     ID.AddPointer(&x);
1832   }
1833 
1834   PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1835                                    BugReporterContext &BRC,
1836                                    PathSensitiveBugReport &BR) override;
1837 };
1838 } // end of anonymous namespace
1839 
1840 static std::shared_ptr<PathDiagnosticEventPiece>
1841 constructDebugPieceForTrackedCondition(const Expr *Cond,
1842                                        const ExplodedNode *N,
1843                                        BugReporterContext &BRC) {
1844 
1845   if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
1846       !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
1847     return nullptr;
1848 
1849   std::string ConditionText = std::string(Lexer::getSourceText(
1850       CharSourceRange::getTokenRange(Cond->getSourceRange()),
1851       BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
1852 
1853   return std::make_shared<PathDiagnosticEventPiece>(
1854       PathDiagnosticLocation::createBegin(
1855           Cond, BRC.getSourceManager(), N->getLocationContext()),
1856           (Twine() + "Tracking condition '" + ConditionText + "'").str());
1857 }
1858 
1859 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
1860   if (B->succ_size() != 2)
1861     return false;
1862 
1863   const CFGBlock *Then = B->succ_begin()->getReachableBlock();
1864   const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
1865 
1866   if (!Then || !Else)
1867     return false;
1868 
1869   if (Then->isInevitablySinking() != Else->isInevitablySinking())
1870     return true;
1871 
1872   // For the following condition the following CFG would be built:
1873   //
1874   //                          ------------->
1875   //                         /              \
1876   //                       [B1] -> [B2] -> [B3] -> [sink]
1877   // assert(A && B || C);            \       \
1878   //                                  -----------> [go on with the execution]
1879   //
1880   // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
1881   // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
1882   // reached the end of the condition!
1883   if (const Stmt *ElseCond = Else->getTerminatorCondition())
1884     if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
1885       if (BinOp->isLogicalOp())
1886         return isAssertlikeBlock(Else, Context);
1887 
1888   return false;
1889 }
1890 
1891 PathDiagnosticPieceRef
1892 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
1893                                                BugReporterContext &BRC,
1894                                                PathSensitiveBugReport &BR) {
1895   // We can only reason about control dependencies within the same stack frame.
1896   if (Origin->getStackFrame() != N->getStackFrame())
1897     return nullptr;
1898 
1899   CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
1900 
1901   // Skip if we already inspected this block.
1902   if (!VisitedBlocks.insert(NB).second)
1903     return nullptr;
1904 
1905   CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
1906 
1907   // TODO: Cache CFGBlocks for each ExplodedNode.
1908   if (!OriginB || !NB)
1909     return nullptr;
1910 
1911   if (isAssertlikeBlock(NB, BRC.getASTContext()))
1912     return nullptr;
1913 
1914   if (ControlDeps.isControlDependent(OriginB, NB)) {
1915     // We don't really want to explain for range loops. Evidence suggests that
1916     // the only thing that leads to is the addition of calls to operator!=.
1917     if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
1918       return nullptr;
1919 
1920     if (const Expr *Condition = NB->getLastCondition()) {
1921 
1922       // If we can't retrieve a sensible condition, just bail out.
1923       const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
1924       if (!InnerExpr)
1925         return nullptr;
1926 
1927       // If the condition was a function call, we likely won't gain much from
1928       // tracking it either. Evidence suggests that it will mostly trigger in
1929       // scenarios like this:
1930       //
1931       //   void f(int *x) {
1932       //     x = nullptr;
1933       //     if (alwaysTrue()) // We don't need a whole lot of explanation
1934       //                       // here, the function name is good enough.
1935       //       *x = 5;
1936       //   }
1937       //
1938       // Its easy to create a counterexample where this heuristic would make us
1939       // lose valuable information, but we've never really seen one in practice.
1940       if (isa<CallExpr>(InnerExpr))
1941         return nullptr;
1942 
1943       // Keeping track of the already tracked conditions on a visitor level
1944       // isn't sufficient, because a new visitor is created for each tracked
1945       // expression, hence the BugReport level set.
1946       if (BR.addTrackedCondition(N)) {
1947         getParentTracker().track(InnerExpr, N,
1948                                  {bugreporter::TrackingKind::Condition,
1949                                   /*EnableNullFPSuppression=*/false});
1950         return constructDebugPieceForTrackedCondition(Condition, N, BRC);
1951       }
1952     }
1953   }
1954 
1955   return nullptr;
1956 }
1957 
1958 //===----------------------------------------------------------------------===//
1959 // Implementation of trackExpressionValue.
1960 //===----------------------------------------------------------------------===//
1961 
1962 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
1963 
1964   Ex = Ex->IgnoreParenCasts();
1965   if (const auto *FE = dyn_cast<FullExpr>(Ex))
1966     return peelOffOuterExpr(FE->getSubExpr(), N);
1967   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
1968     return peelOffOuterExpr(OVE->getSourceExpr(), N);
1969   if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
1970     const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
1971     if (PropRef && PropRef->isMessagingGetter()) {
1972       const Expr *GetterMessageSend =
1973           POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
1974       assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
1975       return peelOffOuterExpr(GetterMessageSend, N);
1976     }
1977   }
1978 
1979   // Peel off the ternary operator.
1980   if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
1981     // Find a node where the branching occurred and find out which branch
1982     // we took (true/false) by looking at the ExplodedGraph.
1983     const ExplodedNode *NI = N;
1984     do {
1985       ProgramPoint ProgPoint = NI->getLocation();
1986       if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
1987         const CFGBlock *srcBlk = BE->getSrc();
1988         if (const Stmt *term = srcBlk->getTerminatorStmt()) {
1989           if (term == CO) {
1990             bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
1991             if (TookTrueBranch)
1992               return peelOffOuterExpr(CO->getTrueExpr(), N);
1993             else
1994               return peelOffOuterExpr(CO->getFalseExpr(), N);
1995           }
1996         }
1997       }
1998       NI = NI->getFirstPred();
1999     } while (NI);
2000   }
2001 
2002   if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2003     if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2004       return peelOffOuterExpr(SubEx, N);
2005 
2006   if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2007     if (UO->getOpcode() == UO_LNot)
2008       return peelOffOuterExpr(UO->getSubExpr(), N);
2009 
2010     // FIXME: There's a hack in our Store implementation that always computes
2011     // field offsets around null pointers as if they are always equal to 0.
2012     // The idea here is to report accesses to fields as null dereferences
2013     // even though the pointer value that's being dereferenced is actually
2014     // the offset of the field rather than exactly 0.
2015     // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2016     // This code interacts heavily with this hack; otherwise the value
2017     // would not be null at all for most fields, so we'd be unable to track it.
2018     if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2019       if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2020         return peelOffOuterExpr(DerefEx, N);
2021   }
2022 
2023   return Ex;
2024 }
2025 
2026 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2027 /// was computed.
2028 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2029                                                  const Expr *Inner) {
2030   while (N) {
2031     if (N->getStmtForDiagnostics() == Inner)
2032       return N;
2033     N = N->getFirstPred();
2034   }
2035   return N;
2036 }
2037 
2038 //===----------------------------------------------------------------------===//
2039 //                            Tracker implementation
2040 //===----------------------------------------------------------------------===//
2041 
2042 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2043                                                    BugReporterContext &BRC,
2044                                                    StringRef NodeText) {
2045   // Construct a new PathDiagnosticPiece.
2046   ProgramPoint P = SI.StoreSite->getLocation();
2047   PathDiagnosticLocation L;
2048   if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2049     L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2050                                P.getLocationContext());
2051 
2052   if (!L.isValid() || !L.asLocation().isValid())
2053     L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2054 
2055   if (!L.isValid() || !L.asLocation().isValid())
2056     return nullptr;
2057 
2058   return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2059 }
2060 
2061 class DefaultStoreHandler final : public StoreHandler {
2062 public:
2063   using StoreHandler::StoreHandler;
2064 
2065   PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2066                                 TrackingOptions Opts) override {
2067     // Okay, we've found the binding. Emit an appropriate message.
2068     SmallString<256> Buffer;
2069     llvm::raw_svector_ostream OS(Buffer);
2070 
2071     switch (SI.StoreKind) {
2072     case StoreInfo::Initialization:
2073     case StoreInfo::BlockCapture:
2074       showBRDiagnostics(OS, SI);
2075       break;
2076     case StoreInfo::CallArgument:
2077       showBRParamDiagnostics(OS, SI);
2078       break;
2079     case StoreInfo::Assignment:
2080       showBRDefaultDiagnostics(OS, SI);
2081       break;
2082     }
2083 
2084     if (Opts.Kind == bugreporter::TrackingKind::Condition)
2085       OS << WillBeUsedForACondition;
2086 
2087     return constructNote(SI, BRC, OS.str());
2088   }
2089 };
2090 
2091 class ControlDependencyHandler final : public ExpressionHandler {
2092 public:
2093   using ExpressionHandler::ExpressionHandler;
2094 
2095   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2096                          const ExplodedNode *LVNode,
2097                          TrackingOptions Opts) override {
2098     PathSensitiveBugReport &Report = getParentTracker().getReport();
2099 
2100     // We only track expressions if we believe that they are important. Chances
2101     // are good that control dependencies to the tracking point are also
2102     // important because of this, let's explain why we believe control reached
2103     // this point.
2104     // TODO: Shouldn't we track control dependencies of every bug location,
2105     // rather than only tracked expressions?
2106     if (LVNode->getState()
2107             ->getAnalysisManager()
2108             .getAnalyzerOptions()
2109             .ShouldTrackConditions) {
2110       Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2111           &getParentTracker(), InputNode);
2112       return {/*FoundSomethingToTrack=*/true};
2113     }
2114 
2115     return {};
2116   }
2117 };
2118 
2119 class NilReceiverHandler final : public ExpressionHandler {
2120 public:
2121   using ExpressionHandler::ExpressionHandler;
2122 
2123   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2124                          const ExplodedNode *LVNode,
2125                          TrackingOptions Opts) override {
2126     // The message send could be nil due to the receiver being nil.
2127     // At this point in the path, the receiver should be live since we are at
2128     // the message send expr. If it is nil, start tracking it.
2129     if (const Expr *Receiver =
2130             NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2131       return getParentTracker().track(Receiver, LVNode, Opts);
2132 
2133     return {};
2134   }
2135 };
2136 
2137 class ArrayIndexHandler final : public ExpressionHandler {
2138 public:
2139   using ExpressionHandler::ExpressionHandler;
2140 
2141   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2142                          const ExplodedNode *LVNode,
2143                          TrackingOptions Opts) override {
2144     // Track the index if this is an array subscript.
2145     if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2146       return getParentTracker().track(
2147           Arr->getIdx(), LVNode,
2148           {Opts.Kind, /*EnableNullFPSuppression*/ false});
2149 
2150     return {};
2151   }
2152 };
2153 
2154 // TODO: extract it into more handlers
2155 class InterestingLValueHandler final : public ExpressionHandler {
2156 public:
2157   using ExpressionHandler::ExpressionHandler;
2158 
2159   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2160                          const ExplodedNode *LVNode,
2161                          TrackingOptions Opts) override {
2162     ProgramStateRef LVState = LVNode->getState();
2163     const StackFrameContext *SFC = LVNode->getStackFrame();
2164     PathSensitiveBugReport &Report = getParentTracker().getReport();
2165     Tracker::Result Result;
2166 
2167     // See if the expression we're interested refers to a variable.
2168     // If so, we can track both its contents and constraints on its value.
2169     if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2170       SVal LVal = LVNode->getSVal(Inner);
2171 
2172       const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2173       bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2174 
2175       // If this is a C++ reference to a null pointer, we are tracking the
2176       // pointer. In addition, we should find the store at which the reference
2177       // got initialized.
2178       if (RR && !LVIsNull)
2179         Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2180 
2181       // In case of C++ references, we want to differentiate between a null
2182       // reference and reference to null pointer.
2183       // If the LVal is null, check if we are dealing with null reference.
2184       // For those, we want to track the location of the reference.
2185       const MemRegion *R =
2186           (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2187 
2188       if (R) {
2189 
2190         // Mark both the variable region and its contents as interesting.
2191         SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2192         Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2193 
2194         // When we got here, we do have something to track, and we will
2195         // interrupt.
2196         Result.FoundSomethingToTrack = true;
2197         Result.WasInterrupted = true;
2198 
2199         MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2200             LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2201 
2202         Report.markInteresting(V, Opts.Kind);
2203         Report.addVisitor<UndefOrNullArgVisitor>(R);
2204 
2205         // If the contents are symbolic and null, find out when they became
2206         // null.
2207         if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2208           if (LVState->isNull(V).isConstrainedTrue())
2209             Report.addVisitor<TrackConstraintBRVisitor>(V.castAs<DefinedSVal>(),
2210                                                         false);
2211 
2212         // Add visitor, which will suppress inline defensive checks.
2213         if (auto DV = V.getAs<DefinedSVal>())
2214           if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2215             // Note that LVNode may be too late (i.e., too far from the
2216             // InputNode) because the lvalue may have been computed before the
2217             // inlined call was evaluated. InputNode may as well be too early
2218             // here, because the symbol is already dead; this, however, is fine
2219             // because we can still find the node in which it collapsed to null
2220             // previously.
2221             Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2222                                                                     InputNode);
2223         getParentTracker().track(V, R, Opts, SFC);
2224       }
2225     }
2226 
2227     return Result;
2228   }
2229 };
2230 
2231 /// Adds a ReturnVisitor if the given statement represents a call that was
2232 /// inlined.
2233 ///
2234 /// This will search back through the ExplodedGraph, starting from the given
2235 /// node, looking for when the given statement was processed. If it turns out
2236 /// the statement is a call that was inlined, we add the visitor to the
2237 /// bug report, so it can print a note later.
2238 class InlinedFunctionCallHandler final : public ExpressionHandler {
2239   using ExpressionHandler::ExpressionHandler;
2240 
2241   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2242                          const ExplodedNode *ExprNode,
2243                          TrackingOptions Opts) override {
2244     if (!CallEvent::isCallStmt(E))
2245       return {};
2246 
2247     // First, find when we processed the statement.
2248     // If we work with a 'CXXNewExpr' that is going to be purged away before
2249     // its call take place. We would catch that purge in the last condition
2250     // as a 'StmtPoint' so we have to bypass it.
2251     const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2252 
2253     // This is moving forward when we enter into another context.
2254     const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2255 
2256     do {
2257       // If that is satisfied we found our statement as an inlined call.
2258       if (Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>())
2259         if (CEE->getCalleeContext()->getCallSite() == E)
2260           break;
2261 
2262       // Try to move forward to the end of the call-chain.
2263       ExprNode = ExprNode->getFirstPred();
2264       if (!ExprNode)
2265         break;
2266 
2267       const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2268 
2269       // If that is satisfied we found our statement.
2270       // FIXME: This code currently bypasses the call site for the
2271       //        conservatively evaluated allocator.
2272       if (!BypassCXXNewExprEval)
2273         if (Optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2274           // See if we do not enter into another context.
2275           if (SP->getStmt() == E && CurrentSFC == PredSFC)
2276             break;
2277 
2278       CurrentSFC = PredSFC;
2279     } while (ExprNode->getStackFrame() == CurrentSFC);
2280 
2281     // Next, step over any post-statement checks.
2282     while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2283       ExprNode = ExprNode->getFirstPred();
2284     if (!ExprNode)
2285       return {};
2286 
2287     // Finally, see if we inlined the call.
2288     Optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2289     if (!CEE)
2290       return {};
2291 
2292     const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2293     if (CalleeContext->getCallSite() != E)
2294       return {};
2295 
2296     // Check the return value.
2297     ProgramStateRef State = ExprNode->getState();
2298     SVal RetVal = ExprNode->getSVal(E);
2299 
2300     // Handle cases where a reference is returned and then immediately used.
2301     if (cast<Expr>(E)->isGLValue())
2302       if (Optional<Loc> LValue = RetVal.getAs<Loc>())
2303         RetVal = State->getSVal(*LValue);
2304 
2305     // See if the return value is NULL. If so, suppress the report.
2306     AnalyzerOptions &Options = State->getAnalysisManager().options;
2307 
2308     bool EnableNullFPSuppression = false;
2309     if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2310       if (Optional<Loc> RetLoc = RetVal.getAs<Loc>())
2311         EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2312 
2313     PathSensitiveBugReport &Report = getParentTracker().getReport();
2314     Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2315                                      EnableNullFPSuppression, Options,
2316                                      Opts.Kind);
2317     return {true};
2318   }
2319 };
2320 
2321 class DefaultExpressionHandler final : public ExpressionHandler {
2322 public:
2323   using ExpressionHandler::ExpressionHandler;
2324 
2325   Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2326                          const ExplodedNode *LVNode,
2327                          TrackingOptions Opts) override {
2328     ProgramStateRef LVState = LVNode->getState();
2329     const StackFrameContext *SFC = LVNode->getStackFrame();
2330     PathSensitiveBugReport &Report = getParentTracker().getReport();
2331     Tracker::Result Result;
2332 
2333     // If the expression is not an "lvalue expression", we can still
2334     // track the constraints on its contents.
2335     SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2336 
2337     // Is it a symbolic value?
2338     if (auto L = V.getAs<loc::MemRegionVal>()) {
2339       // FIXME: this is a hack for fixing a later crash when attempting to
2340       // dereference a void* pointer.
2341       // We should not try to dereference pointers at all when we don't care
2342       // what is written inside the pointer.
2343       bool CanDereference = true;
2344       if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2345         if (SR->getSymbol()->getType()->getPointeeType()->isVoidType())
2346           CanDereference = false;
2347       } else if (L->getRegionAs<AllocaRegion>())
2348         CanDereference = false;
2349 
2350       // At this point we are dealing with the region's LValue.
2351       // However, if the rvalue is a symbolic region, we should track it as
2352       // well. Try to use the correct type when looking up the value.
2353       SVal RVal;
2354       if (ExplodedGraph::isInterestingLValueExpr(Inner))
2355         RVal = LVState->getRawSVal(*L, Inner->getType());
2356       else if (CanDereference)
2357         RVal = LVState->getSVal(L->getRegion());
2358 
2359       if (CanDereference) {
2360         Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2361         Result.FoundSomethingToTrack = true;
2362 
2363         if (auto KV = RVal.getAs<KnownSVal>())
2364           Result.combineWith(
2365               getParentTracker().track(*KV, L->getRegion(), Opts, SFC));
2366       }
2367 
2368       const MemRegion *RegionRVal = RVal.getAsRegion();
2369       if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2370         Report.markInteresting(RegionRVal, Opts.Kind);
2371         Report.addVisitor<TrackConstraintBRVisitor>(
2372             loc::MemRegionVal(RegionRVal),
2373             /*assumption=*/false);
2374         Result.FoundSomethingToTrack = true;
2375       }
2376     }
2377 
2378     return Result;
2379   }
2380 };
2381 
2382 /// Attempts to add visitors to track an RValue expression back to its point of
2383 /// origin.
2384 class PRValueHandler final : public ExpressionHandler {
2385 public:
2386   using ExpressionHandler::ExpressionHandler;
2387 
2388   Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2389                          const ExplodedNode *ExprNode,
2390                          TrackingOptions Opts) override {
2391     if (!E->isPRValue())
2392       return {};
2393 
2394     const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2395     if (!RVNode)
2396       return {};
2397 
2398     ProgramStateRef RVState = RVNode->getState();
2399     SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2400     const auto *BO = dyn_cast<BinaryOperator>(E);
2401 
2402     if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2403       return {};
2404 
2405     SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2406     SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2407 
2408     // Track both LHS and RHS of a multiplication.
2409     Tracker::Result CombinedResult;
2410     Tracker &Parent = getParentTracker();
2411 
2412     const auto track = [&CombinedResult, &Parent, ExprNode, Opts](Expr *Inner) {
2413       CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2414     };
2415 
2416     if (BO->getOpcode() == BO_Mul) {
2417       if (LHSV.isZeroConstant())
2418         track(BO->getLHS());
2419       if (RHSV.isZeroConstant())
2420         track(BO->getRHS());
2421     } else { // Track only the LHS of a division or a modulo.
2422       if (LHSV.isZeroConstant())
2423         track(BO->getLHS());
2424     }
2425 
2426     return CombinedResult;
2427   }
2428 };
2429 
2430 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2431   // Default expression handlers.
2432   addLowPriorityHandler<ControlDependencyHandler>();
2433   addLowPriorityHandler<NilReceiverHandler>();
2434   addLowPriorityHandler<ArrayIndexHandler>();
2435   addLowPriorityHandler<InterestingLValueHandler>();
2436   addLowPriorityHandler<InlinedFunctionCallHandler>();
2437   addLowPriorityHandler<DefaultExpressionHandler>();
2438   addLowPriorityHandler<PRValueHandler>();
2439   // Default store handlers.
2440   addHighPriorityHandler<DefaultStoreHandler>();
2441 }
2442 
2443 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2444                                TrackingOptions Opts) {
2445   if (!E || !N)
2446     return {};
2447 
2448   const Expr *Inner = peelOffOuterExpr(E, N);
2449   const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2450   if (!LVNode)
2451     return {};
2452 
2453   Result CombinedResult;
2454   // Iterate through the handlers in the order according to their priorities.
2455   for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2456     CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2457     if (CombinedResult.WasInterrupted) {
2458       // There is no need to confuse our users here.
2459       // We got interrupted, but our users don't need to know about it.
2460       CombinedResult.WasInterrupted = false;
2461       break;
2462     }
2463   }
2464 
2465   return CombinedResult;
2466 }
2467 
2468 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2469                                const StackFrameContext *Origin) {
2470   if (auto KV = V.getAs<KnownSVal>()) {
2471     Report.addVisitor<StoreSiteFinder>(this, *KV, R, Opts, Origin);
2472     return {true};
2473   }
2474   return {};
2475 }
2476 
2477 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2478                                        TrackingOptions Opts) {
2479   // Iterate through the handlers in the order according to their priorities.
2480   for (StoreHandlerPtr &Handler : StoreHandlers) {
2481     if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2482       // If the handler produced a non-null piece, return it.
2483       // There is no need in asking other handlers.
2484       return Result;
2485   }
2486   return {};
2487 }
2488 
2489 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2490                                        const Expr *E,
2491 
2492                                        PathSensitiveBugReport &Report,
2493                                        TrackingOptions Opts) {
2494   return Tracker::create(Report)
2495       ->track(E, InputNode, Opts)
2496       .FoundSomethingToTrack;
2497 }
2498 
2499 void bugreporter::trackStoredValue(KnownSVal V, const MemRegion *R,
2500                                    PathSensitiveBugReport &Report,
2501                                    TrackingOptions Opts,
2502                                    const StackFrameContext *Origin) {
2503   Tracker::create(Report)->track(V, R, Opts, Origin);
2504 }
2505 
2506 //===----------------------------------------------------------------------===//
2507 // Implementation of NulReceiverBRVisitor.
2508 //===----------------------------------------------------------------------===//
2509 
2510 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2511                                                  const ExplodedNode *N) {
2512   const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2513   if (!ME)
2514     return nullptr;
2515   if (const Expr *Receiver = ME->getInstanceReceiver()) {
2516     ProgramStateRef state = N->getState();
2517     SVal V = N->getSVal(Receiver);
2518     if (state->isNull(V).isConstrainedTrue())
2519       return Receiver;
2520   }
2521   return nullptr;
2522 }
2523 
2524 PathDiagnosticPieceRef
2525 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2526                                 PathSensitiveBugReport &BR) {
2527   Optional<PreStmt> P = N->getLocationAs<PreStmt>();
2528   if (!P)
2529     return nullptr;
2530 
2531   const Stmt *S = P->getStmt();
2532   const Expr *Receiver = getNilReceiver(S, N);
2533   if (!Receiver)
2534     return nullptr;
2535 
2536   llvm::SmallString<256> Buf;
2537   llvm::raw_svector_ostream OS(Buf);
2538 
2539   if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2540     OS << "'";
2541     ME->getSelector().print(OS);
2542     OS << "' not called";
2543   }
2544   else {
2545     OS << "No method is called";
2546   }
2547   OS << " because the receiver is nil";
2548 
2549   // The receiver was nil, and hence the method was skipped.
2550   // Register a BugReporterVisitor to issue a message telling us how
2551   // the receiver was null.
2552   bugreporter::trackExpressionValue(N, Receiver, BR,
2553                                     {bugreporter::TrackingKind::Thorough,
2554                                      /*EnableNullFPSuppression*/ false});
2555   // Issue a message saying that the method was skipped.
2556   PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2557                                      N->getLocationContext());
2558   return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2559 }
2560 
2561 //===----------------------------------------------------------------------===//
2562 // Visitor that tries to report interesting diagnostics from conditions.
2563 //===----------------------------------------------------------------------===//
2564 
2565 /// Return the tag associated with this visitor.  This tag will be used
2566 /// to make all PathDiagnosticPieces created by this visitor.
2567 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2568 
2569 PathDiagnosticPieceRef
2570 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2571                               PathSensitiveBugReport &BR) {
2572   auto piece = VisitNodeImpl(N, BRC, BR);
2573   if (piece) {
2574     piece->setTag(getTag());
2575     if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2576       ev->setPrunable(true, /* override */ false);
2577   }
2578   return piece;
2579 }
2580 
2581 PathDiagnosticPieceRef
2582 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2583                                   BugReporterContext &BRC,
2584                                   PathSensitiveBugReport &BR) {
2585   ProgramPoint ProgPoint = N->getLocation();
2586   const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2587       ExprEngine::geteagerlyAssumeBinOpBifurcationTags();
2588 
2589   // If an assumption was made on a branch, it should be caught
2590   // here by looking at the state transition.
2591   if (Optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2592     const CFGBlock *SrcBlock = BE->getSrc();
2593     if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2594       // If the tag of the previous node is 'Eagerly Assume...' the current
2595       // 'BlockEdge' has the same constraint information. We do not want to
2596       // report the value as it is just an assumption on the predecessor node
2597       // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2598       const ProgramPointTag *PreviousNodeTag =
2599           N->getFirstPred()->getLocation().getTag();
2600       if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2601         return nullptr;
2602 
2603       return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2604     }
2605     return nullptr;
2606   }
2607 
2608   if (Optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2609     const ProgramPointTag *CurrentNodeTag = PS->getTag();
2610     if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2611       return nullptr;
2612 
2613     bool TookTrue = CurrentNodeTag == Tags.first;
2614     return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2615   }
2616 
2617   return nullptr;
2618 }
2619 
2620 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2621     const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2622     const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2623     BugReporterContext &BRC) {
2624   const Expr *Cond = nullptr;
2625 
2626   // In the code below, Term is a CFG terminator and Cond is a branch condition
2627   // expression upon which the decision is made on this terminator.
2628   //
2629   // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2630   // and "x == 0" is the respective condition.
2631   //
2632   // Another example: in "if (x && y)", we've got two terminators and two
2633   // conditions due to short-circuit nature of operator "&&":
2634   // 1. The "if (x && y)" statement is a terminator,
2635   //    and "y" is the respective condition.
2636   // 2. Also "x && ..." is another terminator,
2637   //    and "x" is its condition.
2638 
2639   switch (Term->getStmtClass()) {
2640   // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2641   // more tricky because there are more than two branches to account for.
2642   default:
2643     return nullptr;
2644   case Stmt::IfStmtClass:
2645     Cond = cast<IfStmt>(Term)->getCond();
2646     break;
2647   case Stmt::ConditionalOperatorClass:
2648     Cond = cast<ConditionalOperator>(Term)->getCond();
2649     break;
2650   case Stmt::BinaryOperatorClass:
2651     // When we encounter a logical operator (&& or ||) as a CFG terminator,
2652     // then the condition is actually its LHS; otherwise, we'd encounter
2653     // the parent, such as if-statement, as a terminator.
2654     const auto *BO = cast<BinaryOperator>(Term);
2655     assert(BO->isLogicalOp() &&
2656            "CFG terminator is not a short-circuit operator!");
2657     Cond = BO->getLHS();
2658     break;
2659   }
2660 
2661   Cond = Cond->IgnoreParens();
2662 
2663   // However, when we encounter a logical operator as a branch condition,
2664   // then the condition is actually its RHS, because LHS would be
2665   // the condition for the logical operator terminator.
2666   while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2667     if (!InnerBO->isLogicalOp())
2668       break;
2669     Cond = InnerBO->getRHS()->IgnoreParens();
2670   }
2671 
2672   assert(Cond);
2673   assert(srcBlk->succ_size() == 2);
2674   const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2675   return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2676 }
2677 
2678 PathDiagnosticPieceRef
2679 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2680                                   PathSensitiveBugReport &R,
2681                                   const ExplodedNode *N, bool TookTrue) {
2682   ProgramStateRef CurrentState = N->getState();
2683   ProgramStateRef PrevState = N->getFirstPred()->getState();
2684   const LocationContext *LCtx = N->getLocationContext();
2685 
2686   // If the constraint information is changed between the current and the
2687   // previous program state we assuming the newly seen constraint information.
2688   // If we cannot evaluate the condition (and the constraints are the same)
2689   // the analyzer has no information about the value and just assuming it.
2690   bool IsAssuming =
2691       !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2692       CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2693 
2694   // These will be modified in code below, but we need to preserve the original
2695   //  values in case we want to throw the generic message.
2696   const Expr *CondTmp = Cond;
2697   bool TookTrueTmp = TookTrue;
2698 
2699   while (true) {
2700     CondTmp = CondTmp->IgnoreParenCasts();
2701     switch (CondTmp->getStmtClass()) {
2702       default:
2703         break;
2704       case Stmt::BinaryOperatorClass:
2705         if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2706                                    BRC, R, N, TookTrueTmp, IsAssuming))
2707           return P;
2708         break;
2709       case Stmt::DeclRefExprClass:
2710         if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2711                                    BRC, R, N, TookTrueTmp, IsAssuming))
2712           return P;
2713         break;
2714       case Stmt::MemberExprClass:
2715         if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2716                                    BRC, R, N, TookTrueTmp, IsAssuming))
2717           return P;
2718         break;
2719       case Stmt::UnaryOperatorClass: {
2720         const auto *UO = cast<UnaryOperator>(CondTmp);
2721         if (UO->getOpcode() == UO_LNot) {
2722           TookTrueTmp = !TookTrueTmp;
2723           CondTmp = UO->getSubExpr();
2724           continue;
2725         }
2726         break;
2727       }
2728     }
2729     break;
2730   }
2731 
2732   // Condition too complex to explain? Just say something so that the user
2733   // knew we've made some path decision at this point.
2734   // If it is too complex and we know the evaluation of the condition do not
2735   // repeat the note from 'BugReporter.cpp'
2736   if (!IsAssuming)
2737     return nullptr;
2738 
2739   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2740   if (!Loc.isValid() || !Loc.asLocation().isValid())
2741     return nullptr;
2742 
2743   return std::make_shared<PathDiagnosticEventPiece>(
2744       Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2745 }
2746 
2747 bool ConditionBRVisitor::patternMatch(const Expr *Ex,
2748                                       const Expr *ParentEx,
2749                                       raw_ostream &Out,
2750                                       BugReporterContext &BRC,
2751                                       PathSensitiveBugReport &report,
2752                                       const ExplodedNode *N,
2753                                       Optional<bool> &prunable,
2754                                       bool IsSameFieldName) {
2755   const Expr *OriginalExpr = Ex;
2756   Ex = Ex->IgnoreParenCasts();
2757 
2758   if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2759           FloatingLiteral>(Ex)) {
2760     // Use heuristics to determine if the expression is a macro
2761     // expanding to a literal and if so, use the macro's name.
2762     SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2763     SourceLocation EndLoc = OriginalExpr->getEndLoc();
2764     if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2765       const SourceManager &SM = BRC.getSourceManager();
2766       const LangOptions &LO = BRC.getASTContext().getLangOpts();
2767       if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2768           Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2769         CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2770         Out << Lexer::getSourceText(R, SM, LO);
2771         return false;
2772       }
2773     }
2774   }
2775 
2776   if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2777     const bool quotes = isa<VarDecl>(DR->getDecl());
2778     if (quotes) {
2779       Out << '\'';
2780       const LocationContext *LCtx = N->getLocationContext();
2781       const ProgramState *state = N->getState().get();
2782       if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2783                                                 LCtx).getAsRegion()) {
2784         if (report.isInteresting(R))
2785           prunable = false;
2786         else {
2787           const ProgramState *state = N->getState().get();
2788           SVal V = state->getSVal(R);
2789           if (report.isInteresting(V))
2790             prunable = false;
2791         }
2792       }
2793     }
2794     Out << DR->getDecl()->getDeclName().getAsString();
2795     if (quotes)
2796       Out << '\'';
2797     return quotes;
2798   }
2799 
2800   if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2801     QualType OriginalTy = OriginalExpr->getType();
2802     if (OriginalTy->isPointerType()) {
2803       if (IL->getValue() == 0) {
2804         Out << "null";
2805         return false;
2806       }
2807     }
2808     else if (OriginalTy->isObjCObjectPointerType()) {
2809       if (IL->getValue() == 0) {
2810         Out << "nil";
2811         return false;
2812       }
2813     }
2814 
2815     Out << IL->getValue();
2816     return false;
2817   }
2818 
2819   if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
2820     if (!IsSameFieldName)
2821       Out << "field '" << ME->getMemberDecl()->getName() << '\'';
2822     else
2823       Out << '\''
2824           << Lexer::getSourceText(
2825                  CharSourceRange::getTokenRange(Ex->getSourceRange()),
2826                  BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
2827                  nullptr)
2828           << '\'';
2829   }
2830 
2831   return false;
2832 }
2833 
2834 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2835     const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
2836     PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
2837     bool IsAssuming) {
2838   bool shouldInvert = false;
2839   Optional<bool> shouldPrune;
2840 
2841   // Check if the field name of the MemberExprs is ambiguous. Example:
2842   // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
2843   bool IsSameFieldName = false;
2844   const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
2845   const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
2846 
2847   if (LhsME && RhsME)
2848     IsSameFieldName =
2849         LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
2850 
2851   SmallString<128> LhsString, RhsString;
2852   {
2853     llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2854     const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
2855                                        N, shouldPrune, IsSameFieldName);
2856     const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
2857                                        N, shouldPrune, IsSameFieldName);
2858 
2859     shouldInvert = !isVarLHS && isVarRHS;
2860   }
2861 
2862   BinaryOperator::Opcode Op = BExpr->getOpcode();
2863 
2864   if (BinaryOperator::isAssignmentOp(Op)) {
2865     // For assignment operators, all that we care about is that the LHS
2866     // evaluates to "true" or "false".
2867     return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
2868                                   TookTrue);
2869   }
2870 
2871   // For non-assignment operations, we require that we can understand
2872   // both the LHS and RHS.
2873   if (LhsString.empty() || RhsString.empty() ||
2874       !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2875     return nullptr;
2876 
2877   // Should we invert the strings if the LHS is not a variable name?
2878   SmallString<256> buf;
2879   llvm::raw_svector_ostream Out(buf);
2880   Out << (IsAssuming ? "Assuming " : "")
2881       << (shouldInvert ? RhsString : LhsString) << " is ";
2882 
2883   // Do we need to invert the opcode?
2884   if (shouldInvert)
2885     switch (Op) {
2886       default: break;
2887       case BO_LT: Op = BO_GT; break;
2888       case BO_GT: Op = BO_LT; break;
2889       case BO_LE: Op = BO_GE; break;
2890       case BO_GE: Op = BO_LE; break;
2891     }
2892 
2893   if (!TookTrue)
2894     switch (Op) {
2895       case BO_EQ: Op = BO_NE; break;
2896       case BO_NE: Op = BO_EQ; break;
2897       case BO_LT: Op = BO_GE; break;
2898       case BO_GT: Op = BO_LE; break;
2899       case BO_LE: Op = BO_GT; break;
2900       case BO_GE: Op = BO_LT; break;
2901       default:
2902         return nullptr;
2903     }
2904 
2905   switch (Op) {
2906     case BO_EQ:
2907       Out << "equal to ";
2908       break;
2909     case BO_NE:
2910       Out << "not equal to ";
2911       break;
2912     default:
2913       Out << BinaryOperator::getOpcodeStr(Op) << ' ';
2914       break;
2915   }
2916 
2917   Out << (shouldInvert ? LhsString : RhsString);
2918   const LocationContext *LCtx = N->getLocationContext();
2919   const SourceManager &SM = BRC.getSourceManager();
2920 
2921   if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
2922       isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
2923     Out << WillBeUsedForACondition;
2924 
2925   // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
2926   std::string Message = std::string(Out.str());
2927   Message[0] = toupper(Message[0]);
2928 
2929   // If we know the value create a pop-up note to the value part of 'BExpr'.
2930   if (!IsAssuming) {
2931     PathDiagnosticLocation Loc;
2932     if (!shouldInvert) {
2933       if (LhsME && LhsME->getMemberLoc().isValid())
2934         Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
2935       else
2936         Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
2937     } else {
2938       if (RhsME && RhsME->getMemberLoc().isValid())
2939         Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
2940       else
2941         Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
2942     }
2943 
2944     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
2945   }
2946 
2947   PathDiagnosticLocation Loc(Cond, SM, LCtx);
2948   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
2949   if (shouldPrune)
2950     event->setPrunable(shouldPrune.value());
2951   return event;
2952 }
2953 
2954 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
2955     StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
2956     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
2957   // FIXME: If there's already a constraint tracker for this variable,
2958   // we shouldn't emit anything here (c.f. the double note in
2959   // test/Analysis/inlining/path-notes.c)
2960   SmallString<256> buf;
2961   llvm::raw_svector_ostream Out(buf);
2962   Out << "Assuming " << LhsString << " is ";
2963 
2964   if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
2965     return nullptr;
2966 
2967   const LocationContext *LCtx = N->getLocationContext();
2968   PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
2969 
2970   if (isVarAnInterestingCondition(CondVarExpr, N, &report))
2971     Out << WillBeUsedForACondition;
2972 
2973   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
2974 
2975   if (isInterestingExpr(CondVarExpr, N, &report))
2976     event->setPrunable(false);
2977 
2978   return event;
2979 }
2980 
2981 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2982     const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
2983     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
2984     bool IsAssuming) {
2985   const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
2986   if (!VD)
2987     return nullptr;
2988 
2989   SmallString<256> Buf;
2990   llvm::raw_svector_ostream Out(Buf);
2991 
2992   Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
2993 
2994   if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
2995     return nullptr;
2996 
2997   const LocationContext *LCtx = N->getLocationContext();
2998 
2999   if (isVarAnInterestingCondition(DRE, N, &report))
3000     Out << WillBeUsedForACondition;
3001 
3002   // If we know the value create a pop-up note to the 'DRE'.
3003   if (!IsAssuming) {
3004     PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3005     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3006   }
3007 
3008   PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3009   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3010 
3011   if (isInterestingExpr(DRE, N, &report))
3012     event->setPrunable(false);
3013 
3014   return std::move(event);
3015 }
3016 
3017 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3018     const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3019     PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3020     bool IsAssuming) {
3021   SmallString<256> Buf;
3022   llvm::raw_svector_ostream Out(Buf);
3023 
3024   Out << (IsAssuming ? "Assuming field '" : "Field '")
3025       << ME->getMemberDecl()->getName() << "' is ";
3026 
3027   if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3028     return nullptr;
3029 
3030   const LocationContext *LCtx = N->getLocationContext();
3031   PathDiagnosticLocation Loc;
3032 
3033   // If we know the value create a pop-up note to the member of the MemberExpr.
3034   if (!IsAssuming && ME->getMemberLoc().isValid())
3035     Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3036   else
3037     Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3038 
3039   if (!Loc.isValid() || !Loc.asLocation().isValid())
3040     return nullptr;
3041 
3042   if (isVarAnInterestingCondition(ME, N, &report))
3043     Out << WillBeUsedForACondition;
3044 
3045   // If we know the value create a pop-up note.
3046   if (!IsAssuming)
3047     return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3048 
3049   auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3050   if (isInterestingExpr(ME, N, &report))
3051     event->setPrunable(false);
3052   return event;
3053 }
3054 
3055 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3056                                     const ExplodedNode *N, bool TookTrue,
3057                                     bool IsAssuming) {
3058   QualType Ty = CondVarExpr->getType();
3059 
3060   if (Ty->isPointerType()) {
3061     Out << (TookTrue ? "non-null" : "null");
3062     return true;
3063   }
3064 
3065   if (Ty->isObjCObjectPointerType()) {
3066     Out << (TookTrue ? "non-nil" : "nil");
3067     return true;
3068   }
3069 
3070   if (!Ty->isIntegralOrEnumerationType())
3071     return false;
3072 
3073   Optional<const llvm::APSInt *> IntValue;
3074   if (!IsAssuming)
3075     IntValue = getConcreteIntegerValue(CondVarExpr, N);
3076 
3077   if (IsAssuming || !IntValue) {
3078     if (Ty->isBooleanType())
3079       Out << (TookTrue ? "true" : "false");
3080     else
3081       Out << (TookTrue ? "not equal to 0" : "0");
3082   } else {
3083     if (Ty->isBooleanType())
3084       Out << (IntValue.value()->getBoolValue() ? "true" : "false");
3085     else
3086       Out << *IntValue.value();
3087   }
3088 
3089   return true;
3090 }
3091 
3092 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3093 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3094 
3095 bool ConditionBRVisitor::isPieceMessageGeneric(
3096     const PathDiagnosticPiece *Piece) {
3097   return Piece->getString() == GenericTrueMessage ||
3098          Piece->getString() == GenericFalseMessage;
3099 }
3100 
3101 //===----------------------------------------------------------------------===//
3102 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3103 //===----------------------------------------------------------------------===//
3104 
3105 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3106     BugReporterContext &BRC, const ExplodedNode *N,
3107     PathSensitiveBugReport &BR) {
3108   // Here we suppress false positives coming from system headers. This list is
3109   // based on known issues.
3110   const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3111   const Decl *D = N->getLocationContext()->getDecl();
3112 
3113   if (AnalysisDeclContext::isInStdNamespace(D)) {
3114     // Skip reports within the 'std' namespace. Although these can sometimes be
3115     // the user's fault, we currently don't report them very well, and
3116     // Note that this will not help for any other data structure libraries, like
3117     // TR1, Boost, or llvm/ADT.
3118     if (Options.ShouldSuppressFromCXXStandardLibrary) {
3119       BR.markInvalid(getTag(), nullptr);
3120       return;
3121     } else {
3122       // If the complete 'std' suppression is not enabled, suppress reports
3123       // from the 'std' namespace that are known to produce false positives.
3124 
3125       // The analyzer issues a false use-after-free when std::list::pop_front
3126       // or std::list::pop_back are called multiple times because we cannot
3127       // reason about the internal invariants of the data structure.
3128       if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3129         const CXXRecordDecl *CD = MD->getParent();
3130         if (CD->getName() == "list") {
3131           BR.markInvalid(getTag(), nullptr);
3132           return;
3133         }
3134       }
3135 
3136       // The analyzer issues a false positive when the constructor of
3137       // std::__independent_bits_engine from algorithms is used.
3138       if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3139         const CXXRecordDecl *CD = MD->getParent();
3140         if (CD->getName() == "__independent_bits_engine") {
3141           BR.markInvalid(getTag(), nullptr);
3142           return;
3143         }
3144       }
3145 
3146       for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3147            LCtx = LCtx->getParent()) {
3148         const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3149         if (!MD)
3150           continue;
3151 
3152         const CXXRecordDecl *CD = MD->getParent();
3153         // The analyzer issues a false positive on
3154         //   std::basic_string<uint8_t> v; v.push_back(1);
3155         // and
3156         //   std::u16string s; s += u'a';
3157         // because we cannot reason about the internal invariants of the
3158         // data structure.
3159         if (CD->getName() == "basic_string") {
3160           BR.markInvalid(getTag(), nullptr);
3161           return;
3162         }
3163 
3164         // The analyzer issues a false positive on
3165         //    std::shared_ptr<int> p(new int(1)); p = nullptr;
3166         // because it does not reason properly about temporary destructors.
3167         if (CD->getName() == "shared_ptr") {
3168           BR.markInvalid(getTag(), nullptr);
3169           return;
3170         }
3171       }
3172     }
3173   }
3174 
3175   // Skip reports within the sys/queue.h macros as we do not have the ability to
3176   // reason about data structure shapes.
3177   const SourceManager &SM = BRC.getSourceManager();
3178   FullSourceLoc Loc = BR.getLocation().asLocation();
3179   while (Loc.isMacroID()) {
3180     Loc = Loc.getSpellingLoc();
3181     if (SM.getFilename(Loc).endswith("sys/queue.h")) {
3182       BR.markInvalid(getTag(), nullptr);
3183       return;
3184     }
3185   }
3186 }
3187 
3188 //===----------------------------------------------------------------------===//
3189 // Implementation of UndefOrNullArgVisitor.
3190 //===----------------------------------------------------------------------===//
3191 
3192 PathDiagnosticPieceRef
3193 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3194                                  PathSensitiveBugReport &BR) {
3195   ProgramStateRef State = N->getState();
3196   ProgramPoint ProgLoc = N->getLocation();
3197 
3198   // We are only interested in visiting CallEnter nodes.
3199   Optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3200   if (!CEnter)
3201     return nullptr;
3202 
3203   // Check if one of the arguments is the region the visitor is tracking.
3204   CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3205   CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3206   unsigned Idx = 0;
3207   ArrayRef<ParmVarDecl *> parms = Call->parameters();
3208 
3209   for (const auto ParamDecl : parms) {
3210     const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3211     ++Idx;
3212 
3213     // Are we tracking the argument or its subregion?
3214     if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3215       continue;
3216 
3217     // Check the function parameter type.
3218     assert(ParamDecl && "Formal parameter has no decl?");
3219     QualType T = ParamDecl->getType();
3220 
3221     if (!(T->isAnyPointerType() || T->isReferenceType())) {
3222       // Function can only change the value passed in by address.
3223       continue;
3224     }
3225 
3226     // If it is a const pointer value, the function does not intend to
3227     // change the value.
3228     if (T->getPointeeType().isConstQualified())
3229       continue;
3230 
3231     // Mark the call site (LocationContext) as interesting if the value of the
3232     // argument is undefined or '0'/'NULL'.
3233     SVal BoundVal = State->getSVal(R);
3234     if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3235       BR.markInteresting(CEnter->getCalleeContext());
3236       return nullptr;
3237     }
3238   }
3239   return nullptr;
3240 }
3241 
3242 //===----------------------------------------------------------------------===//
3243 // Implementation of FalsePositiveRefutationBRVisitor.
3244 //===----------------------------------------------------------------------===//
3245 
3246 FalsePositiveRefutationBRVisitor::FalsePositiveRefutationBRVisitor()
3247     : Constraints(ConstraintMap::Factory().getEmptyMap()) {}
3248 
3249 void FalsePositiveRefutationBRVisitor::finalizeVisitor(
3250     BugReporterContext &BRC, const ExplodedNode *EndPathNode,
3251     PathSensitiveBugReport &BR) {
3252   // Collect new constraints
3253   addConstraints(EndPathNode, /*OverwriteConstraintsOnExistingSyms=*/true);
3254 
3255   // Create a refutation manager
3256   llvm::SMTSolverRef RefutationSolver = llvm::CreateZ3Solver();
3257   ASTContext &Ctx = BRC.getASTContext();
3258 
3259   // Add constraints to the solver
3260   for (const auto &I : Constraints) {
3261     const SymbolRef Sym = I.first;
3262     auto RangeIt = I.second.begin();
3263 
3264     llvm::SMTExprRef SMTConstraints = SMTConv::getRangeExpr(
3265         RefutationSolver, Ctx, Sym, RangeIt->From(), RangeIt->To(),
3266         /*InRange=*/true);
3267     while ((++RangeIt) != I.second.end()) {
3268       SMTConstraints = RefutationSolver->mkOr(
3269           SMTConstraints, SMTConv::getRangeExpr(RefutationSolver, Ctx, Sym,
3270                                                 RangeIt->From(), RangeIt->To(),
3271                                                 /*InRange=*/true));
3272     }
3273 
3274     RefutationSolver->addConstraint(SMTConstraints);
3275   }
3276 
3277   // And check for satisfiability
3278   Optional<bool> IsSAT = RefutationSolver->check();
3279   if (!IsSAT)
3280     return;
3281 
3282   if (!IsSAT.value())
3283     BR.markInvalid("Infeasible constraints", EndPathNode->getLocationContext());
3284 }
3285 
3286 void FalsePositiveRefutationBRVisitor::addConstraints(
3287     const ExplodedNode *N, bool OverwriteConstraintsOnExistingSyms) {
3288   // Collect new constraints
3289   ConstraintMap NewCs = getConstraintMap(N->getState());
3290   ConstraintMap::Factory &CF = N->getState()->get_context<ConstraintMap>();
3291 
3292   // Add constraints if we don't have them yet
3293   for (auto const &C : NewCs) {
3294     const SymbolRef &Sym = C.first;
3295     if (!Constraints.contains(Sym)) {
3296       // This symbol is new, just add the constraint.
3297       Constraints = CF.add(Constraints, Sym, C.second);
3298     } else if (OverwriteConstraintsOnExistingSyms) {
3299       // Overwrite the associated constraint of the Symbol.
3300       Constraints = CF.remove(Constraints, Sym);
3301       Constraints = CF.add(Constraints, Sym, C.second);
3302     }
3303   }
3304 }
3305 
3306 PathDiagnosticPieceRef FalsePositiveRefutationBRVisitor::VisitNode(
3307     const ExplodedNode *N, BugReporterContext &, PathSensitiveBugReport &) {
3308   addConstraints(N, /*OverwriteConstraintsOnExistingSyms=*/false);
3309   return nullptr;
3310 }
3311 
3312 void FalsePositiveRefutationBRVisitor::Profile(
3313     llvm::FoldingSetNodeID &ID) const {
3314   static int Tag = 0;
3315   ID.AddPointer(&Tag);
3316 }
3317 
3318 //===----------------------------------------------------------------------===//
3319 // Implementation of TagVisitor.
3320 //===----------------------------------------------------------------------===//
3321 
3322 int NoteTag::Kind = 0;
3323 
3324 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3325   static int Tag = 0;
3326   ID.AddPointer(&Tag);
3327 }
3328 
3329 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3330                                              BugReporterContext &BRC,
3331                                              PathSensitiveBugReport &R) {
3332   ProgramPoint PP = N->getLocation();
3333   const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3334   if (!T)
3335     return nullptr;
3336 
3337   if (Optional<std::string> Msg = T->generateMessage(BRC, R)) {
3338     PathDiagnosticLocation Loc =
3339         PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3340     auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3341     Piece->setPrunable(T->isPrunable());
3342     return Piece;
3343   }
3344 
3345   return nullptr;
3346 }
3347