1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   AnalysisDeclContext *ADC =
176       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
177 
178   return ADC;
179 }
180 
181 const StackFrameContext *
182 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
183   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
184   if (!ADC)
185     return nullptr;
186 
187   const Expr *E = getOriginExpr();
188   if (!E)
189     return nullptr;
190 
191   // Recover CFG block via reverse lookup.
192   // TODO: If we were to keep CFG element information as part of the CallEvent
193   // instead of doing this reverse lookup, we would be able to build the stack
194   // frame for non-expression-based calls, and also we wouldn't need the reverse
195   // lookup.
196   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
197   const CFGBlock *B = Map->getBlock(E);
198   assert(B);
199 
200   // Also recover CFG index by scanning the CFG block.
201   unsigned Idx = 0, Sz = B->size();
202   for (; Idx < Sz; ++Idx)
203     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
204       if (StmtElem->getStmt() == E)
205         break;
206   assert(Idx < Sz);
207 
208   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
209 }
210 
211 const ParamVarRegion
212 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
213   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
214   // We cannot construct a VarRegion without a stack frame.
215   if (!SFC)
216     return nullptr;
217 
218   const ParamVarRegion *PVR =
219     State->getStateManager().getRegionManager().getParamVarRegion(
220         getOriginExpr(), Index, SFC);
221   return PVR;
222 }
223 
224 /// Returns true if a type is a pointer-to-const or reference-to-const
225 /// with no further indirection.
226 static bool isPointerToConst(QualType Ty) {
227   QualType PointeeTy = Ty->getPointeeType();
228   if (PointeeTy == QualType())
229     return false;
230   if (!PointeeTy.isConstQualified())
231     return false;
232   if (PointeeTy->isAnyPointerType())
233     return false;
234   return true;
235 }
236 
237 // Try to retrieve the function declaration and find the function parameter
238 // types which are pointers/references to a non-pointer const.
239 // We will not invalidate the corresponding argument regions.
240 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
241                                  const CallEvent &Call) {
242   unsigned Idx = 0;
243   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
244                                       E = Call.param_type_end();
245        I != E; ++I, ++Idx) {
246     if (isPointerToConst(*I))
247       PreserveArgs.insert(Idx);
248   }
249 }
250 
251 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
252                                              ProgramStateRef Orig) const {
253   ProgramStateRef Result = (Orig ? Orig : getState());
254 
255   // Don't invalidate anything if the callee is marked pure/const.
256   if (const Decl *callee = getDecl())
257     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
258       return Result;
259 
260   SmallVector<SVal, 8> ValuesToInvalidate;
261   RegionAndSymbolInvalidationTraits ETraits;
262 
263   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
264 
265   // Indexes of arguments whose values will be preserved by the call.
266   llvm::SmallSet<unsigned, 4> PreserveArgs;
267   if (!argumentsMayEscape())
268     findPtrToConstParams(PreserveArgs, *this);
269 
270   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
271     // Mark this region for invalidation.  We batch invalidate regions
272     // below for efficiency.
273     if (PreserveArgs.count(Idx))
274       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
275         ETraits.setTrait(MR->getBaseRegion(),
276                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
277         // TODO: Factor this out + handle the lower level const pointers.
278 
279     ValuesToInvalidate.push_back(getArgSVal(Idx));
280 
281     // If a function accepts an object by argument (which would of course be a
282     // temporary that isn't lifetime-extended), invalidate the object itself,
283     // not only other objects reachable from it. This is necessary because the
284     // destructor has access to the temporary object after the call.
285     // TODO: Support placement arguments once we start
286     // constructing them directly.
287     // TODO: This is unnecessary when there's no destructor, but that's
288     // currently hard to figure out.
289     if (getKind() != CE_CXXAllocator)
290       if (isArgumentConstructedDirectly(Idx))
291         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
292           if (const TypedValueRegion *TVR =
293                   getParameterLocation(*AdjIdx, BlockCount))
294             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
295   }
296 
297   // Invalidate designated regions using the batch invalidation API.
298   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
299   //  global variables.
300   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
301                                    BlockCount, getLocationContext(),
302                                    /*CausedByPointerEscape*/ true,
303                                    /*Symbols=*/nullptr, this, &ETraits);
304 }
305 
306 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
307                                         const ProgramPointTag *Tag) const {
308   if (const Expr *E = getOriginExpr()) {
309     if (IsPreVisit)
310       return PreStmt(E, getLocationContext(), Tag);
311     return PostStmt(E, getLocationContext(), Tag);
312   }
313 
314   const Decl *D = getDecl();
315   assert(D && "Cannot get a program point without a statement or decl");
316 
317   SourceLocation Loc = getSourceRange().getBegin();
318   if (IsPreVisit)
319     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
320   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
321 }
322 
323 bool CallEvent::isCalled(const CallDescription &CD) const {
324   // FIXME: Add ObjC Message support.
325   if (getKind() == CE_ObjCMessage)
326     return false;
327 
328   const IdentifierInfo *II = getCalleeIdentifier();
329   if (!II)
330     return false;
331   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
332   if (!FD)
333     return false;
334 
335   if (CD.Flags & CDF_MaybeBuiltin) {
336     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
337            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
338            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
339   }
340 
341   if (!CD.IsLookupDone) {
342     CD.IsLookupDone = true;
343     CD.II = &getState()->getStateManager().getContext().Idents.get(
344         CD.getFunctionName());
345   }
346 
347   if (II != CD.II)
348     return false;
349 
350   // If CallDescription provides prefix names, use them to improve matching
351   // accuracy.
352   if (CD.QualifiedName.size() > 1 && FD) {
353     const DeclContext *Ctx = FD->getDeclContext();
354     // See if we'll be able to match them all.
355     size_t NumUnmatched = CD.QualifiedName.size() - 1;
356     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
357       if (NumUnmatched == 0)
358         break;
359 
360       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
361         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
362           --NumUnmatched;
363         continue;
364       }
365 
366       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
367         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
368           --NumUnmatched;
369         continue;
370       }
371     }
372 
373     if (NumUnmatched > 0)
374       return false;
375   }
376 
377   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
378          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
379 }
380 
381 SVal CallEvent::getArgSVal(unsigned Index) const {
382   const Expr *ArgE = getArgExpr(Index);
383   if (!ArgE)
384     return UnknownVal();
385   return getSVal(ArgE);
386 }
387 
388 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
389   const Expr *ArgE = getArgExpr(Index);
390   if (!ArgE)
391     return {};
392   return ArgE->getSourceRange();
393 }
394 
395 SVal CallEvent::getReturnValue() const {
396   const Expr *E = getOriginExpr();
397   if (!E)
398     return UndefinedVal();
399   return getSVal(E);
400 }
401 
402 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
403 
404 void CallEvent::dump(raw_ostream &Out) const {
405   ASTContext &Ctx = getState()->getStateManager().getContext();
406   if (const Expr *E = getOriginExpr()) {
407     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
408     Out << "\n";
409     return;
410   }
411 
412   if (const Decl *D = getDecl()) {
413     Out << "Call to ";
414     D->print(Out, Ctx.getPrintingPolicy());
415     return;
416   }
417 
418   Out << "Unknown call (type " << getKindAsString() << ")";
419 }
420 
421 bool CallEvent::isCallStmt(const Stmt *S) {
422   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
423                           || isa<CXXConstructExpr>(S)
424                           || isa<CXXNewExpr>(S);
425 }
426 
427 QualType CallEvent::getDeclaredResultType(const Decl *D) {
428   assert(D);
429   if (const auto *FD = dyn_cast<FunctionDecl>(D))
430     return FD->getReturnType();
431   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
432     return MD->getReturnType();
433   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
434     // Blocks are difficult because the return type may not be stored in the
435     // BlockDecl itself. The AST should probably be enhanced, but for now we
436     // just do what we can.
437     // If the block is declared without an explicit argument list, the
438     // signature-as-written just includes the return type, not the entire
439     // function type.
440     // FIXME: All blocks should have signatures-as-written, even if the return
441     // type is inferred. (That's signified with a dependent result type.)
442     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
443       QualType Ty = TSI->getType();
444       if (const FunctionType *FT = Ty->getAs<FunctionType>())
445         Ty = FT->getReturnType();
446       if (!Ty->isDependentType())
447         return Ty;
448     }
449 
450     return {};
451   }
452 
453   llvm_unreachable("unknown callable kind");
454 }
455 
456 bool CallEvent::isVariadic(const Decl *D) {
457   assert(D);
458 
459   if (const auto *FD = dyn_cast<FunctionDecl>(D))
460     return FD->isVariadic();
461   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
462     return MD->isVariadic();
463   if (const auto *BD = dyn_cast<BlockDecl>(D))
464     return BD->isVariadic();
465 
466   llvm_unreachable("unknown callable kind");
467 }
468 
469 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
470                                          CallEvent::BindingsTy &Bindings,
471                                          SValBuilder &SVB,
472                                          const CallEvent &Call,
473                                          ArrayRef<ParmVarDecl*> parameters) {
474   MemRegionManager &MRMgr = SVB.getRegionManager();
475 
476   // If the function has fewer parameters than the call has arguments, we simply
477   // do not bind any values to them.
478   unsigned NumArgs = Call.getNumArgs();
479   unsigned Idx = 0;
480   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
481   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
482     assert(*I && "Formal parameter has no decl?");
483 
484     // TODO: Support allocator calls.
485     if (Call.getKind() != CE_CXXAllocator)
486       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
487         continue;
488 
489     // TODO: Allocators should receive the correct size and possibly alignment,
490     // determined in compile-time but not represented as arg-expressions,
491     // which makes getArgSVal() fail and return UnknownVal.
492     SVal ArgVal = Call.getArgSVal(Idx);
493     if (!ArgVal.isUnknown()) {
494       Loc ParamLoc = SVB.makeLoc(
495           MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
496       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
497     }
498   }
499 
500   // FIXME: Variadic arguments are not handled at all right now.
501 }
502 
503 const ConstructionContext *CallEvent::getConstructionContext() const {
504   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
505   if (!StackFrame)
506     return nullptr;
507 
508   const CFGElement Element = StackFrame->getCallSiteCFGElement();
509   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
510     return Ctor->getConstructionContext();
511   }
512 
513   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
514     return RecCall->getConstructionContext();
515   }
516 
517   return nullptr;
518 }
519 
520 Optional<SVal>
521 CallEvent::getReturnValueUnderConstruction() const {
522   const auto *CC = getConstructionContext();
523   if (!CC)
524     return None;
525 
526   EvalCallOptions CallOpts;
527   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
528   SVal RetVal =
529     Engine.computeObjectUnderConstruction(getOriginExpr(), getState(),
530                                           getLocationContext(), CC, CallOpts);
531   return RetVal;
532 }
533 
534 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
535   const FunctionDecl *D = getDecl();
536   if (!D)
537     return None;
538   return D->parameters();
539 }
540 
541 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
542   const FunctionDecl *FD = getDecl();
543   if (!FD)
544     return {};
545 
546   // Note that the AnalysisDeclContext will have the FunctionDecl with
547   // the definition (if one exists).
548   AnalysisDeclContext *AD =
549     getLocationContext()->getAnalysisDeclContext()->
550     getManager()->getContext(FD);
551   bool IsAutosynthesized;
552   Stmt* Body = AD->getBody(IsAutosynthesized);
553   LLVM_DEBUG({
554     if (IsAutosynthesized)
555       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
556                    << "\n";
557   });
558   if (Body) {
559     const Decl* Decl = AD->getDecl();
560     return RuntimeDefinition(Decl);
561   }
562 
563   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
564   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
565 
566   // Try to get CTU definition only if CTUDir is provided.
567   if (!Opts.IsNaiveCTUEnabled)
568     return {};
569 
570   cross_tu::CrossTranslationUnitContext &CTUCtx =
571       *Engine.getCrossTranslationUnitContext();
572   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
573       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
574                                   Opts.DisplayCTUProgress);
575 
576   if (!CTUDeclOrError) {
577     handleAllErrors(CTUDeclOrError.takeError(),
578                     [&](const cross_tu::IndexError &IE) {
579                       CTUCtx.emitCrossTUDiagnostics(IE);
580                     });
581     return {};
582   }
583 
584   return RuntimeDefinition(*CTUDeclOrError);
585 }
586 
587 void AnyFunctionCall::getInitialStackFrameContents(
588                                         const StackFrameContext *CalleeCtx,
589                                         BindingsTy &Bindings) const {
590   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
591   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
592   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
593                                D->parameters());
594 }
595 
596 bool AnyFunctionCall::argumentsMayEscape() const {
597   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
598     return true;
599 
600   const FunctionDecl *D = getDecl();
601   if (!D)
602     return true;
603 
604   const IdentifierInfo *II = D->getIdentifier();
605   if (!II)
606     return false;
607 
608   // This set of "escaping" APIs is
609 
610   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
611   //   value into thread local storage. The value can later be retrieved with
612   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
613   //   parameter is 'const void *', the region escapes through the call.
614   if (II->isStr("pthread_setspecific"))
615     return true;
616 
617   // - xpc_connection_set_context stores a value which can be retrieved later
618   //   with xpc_connection_get_context.
619   if (II->isStr("xpc_connection_set_context"))
620     return true;
621 
622   // - funopen - sets a buffer for future IO calls.
623   if (II->isStr("funopen"))
624     return true;
625 
626   // - __cxa_demangle - can reallocate memory and can return the pointer to
627   // the input buffer.
628   if (II->isStr("__cxa_demangle"))
629     return true;
630 
631   StringRef FName = II->getName();
632 
633   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
634   //   buffer even if it is const.
635   if (FName.endswith("NoCopy"))
636     return true;
637 
638   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
639   //   be deallocated by NSMapRemove.
640   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
641     return true;
642 
643   // - Many CF containers allow objects to escape through custom
644   //   allocators/deallocators upon container construction. (PR12101)
645   if (FName.startswith("CF") || FName.startswith("CG")) {
646     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
647            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
648            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
649            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
650            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
652   }
653 
654   return false;
655 }
656 
657 const FunctionDecl *SimpleFunctionCall::getDecl() const {
658   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
659   if (D)
660     return D;
661 
662   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
663 }
664 
665 const FunctionDecl *CXXInstanceCall::getDecl() const {
666   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
667   if (!CE)
668     return AnyFunctionCall::getDecl();
669 
670   const FunctionDecl *D = CE->getDirectCallee();
671   if (D)
672     return D;
673 
674   return getSVal(CE->getCallee()).getAsFunctionDecl();
675 }
676 
677 void CXXInstanceCall::getExtraInvalidatedValues(
678     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
679   SVal ThisVal = getCXXThisVal();
680   Values.push_back(ThisVal);
681 
682   // Don't invalidate if the method is const and there are no mutable fields.
683   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
684     if (!D->isConst())
685       return;
686     // Get the record decl for the class of 'This'. D->getParent() may return a
687     // base class decl, rather than the class of the instance which needs to be
688     // checked for mutable fields.
689     // TODO: We might as well look at the dynamic type of the object.
690     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
691     QualType T = Ex->getType();
692     if (T->isPointerType()) // Arrow or implicit-this syntax?
693       T = T->getPointeeType();
694     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
695     assert(ParentRecord);
696     if (ParentRecord->hasMutableFields())
697       return;
698     // Preserve CXXThis.
699     const MemRegion *ThisRegion = ThisVal.getAsRegion();
700     if (!ThisRegion)
701       return;
702 
703     ETraits->setTrait(ThisRegion->getBaseRegion(),
704                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
705   }
706 }
707 
708 SVal CXXInstanceCall::getCXXThisVal() const {
709   const Expr *Base = getCXXThisExpr();
710   // FIXME: This doesn't handle an overloaded ->* operator.
711   if (!Base)
712     return UnknownVal();
713 
714   SVal ThisVal = getSVal(Base);
715   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
716   return ThisVal;
717 }
718 
719 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
720   // Do we have a decl at all?
721   const Decl *D = getDecl();
722   if (!D)
723     return {};
724 
725   // If the method is non-virtual, we know we can inline it.
726   const auto *MD = cast<CXXMethodDecl>(D);
727   if (!MD->isVirtual())
728     return AnyFunctionCall::getRuntimeDefinition();
729 
730   // Do we know the implicit 'this' object being called?
731   const MemRegion *R = getCXXThisVal().getAsRegion();
732   if (!R)
733     return {};
734 
735   // Do we know anything about the type of 'this'?
736   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
737   if (!DynType.isValid())
738     return {};
739 
740   // Is the type a C++ class? (This is mostly a defensive check.)
741   QualType RegionType = DynType.getType()->getPointeeType();
742   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
743 
744   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
745   if (!RD || !RD->hasDefinition())
746     return {};
747 
748   // Find the decl for this method in that class.
749   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
750   if (!Result) {
751     // We might not even get the original statically-resolved method due to
752     // some particularly nasty casting (e.g. casts to sister classes).
753     // However, we should at least be able to search up and down our own class
754     // hierarchy, and some real bugs have been caught by checking this.
755     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
756 
757     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
758     // the static type. However, because we currently don't update
759     // DynamicTypeInfo when an object is cast, we can't actually be sure the
760     // DynamicTypeInfo is up to date. This assert should be re-enabled once
761     // this is fixed. <rdar://problem/12287087>
762     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
763 
764     return {};
765   }
766 
767   // Does the decl that we found have an implementation?
768   const FunctionDecl *Definition;
769   if (!Result->hasBody(Definition)) {
770     if (!DynType.canBeASubClass())
771       return AnyFunctionCall::getRuntimeDefinition();
772     return {};
773   }
774 
775   // We found a definition. If we're not sure that this devirtualization is
776   // actually what will happen at runtime, make sure to provide the region so
777   // that ExprEngine can decide what to do with it.
778   if (DynType.canBeASubClass())
779     return RuntimeDefinition(Definition, R->StripCasts());
780   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
781 }
782 
783 void CXXInstanceCall::getInitialStackFrameContents(
784                                             const StackFrameContext *CalleeCtx,
785                                             BindingsTy &Bindings) const {
786   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
787 
788   // Handle the binding of 'this' in the new stack frame.
789   SVal ThisVal = getCXXThisVal();
790   if (!ThisVal.isUnknown()) {
791     ProgramStateManager &StateMgr = getState()->getStateManager();
792     SValBuilder &SVB = StateMgr.getSValBuilder();
793 
794     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
795     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
796 
797     // If we devirtualized to a different member function, we need to make sure
798     // we have the proper layering of CXXBaseObjectRegions.
799     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
800       ASTContext &Ctx = SVB.getContext();
801       const CXXRecordDecl *Class = MD->getParent();
802       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
803 
804       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
805       bool Failed;
806       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
807       if (Failed) {
808         // We might have suffered some sort of placement new earlier, so
809         // we're constructing in a completely unexpected storage.
810         // Fall back to a generic pointer cast for this-value.
811         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
812         const CXXRecordDecl *StaticClass = StaticMD->getParent();
813         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
814         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
815       }
816     }
817 
818     if (!ThisVal.isUnknown())
819       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
820   }
821 }
822 
823 const Expr *CXXMemberCall::getCXXThisExpr() const {
824   return getOriginExpr()->getImplicitObjectArgument();
825 }
826 
827 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
828   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
829   // id-expression in the class member access expression is a qualified-id,
830   // that function is called. Otherwise, its final overrider in the dynamic type
831   // of the object expression is called.
832   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
833     if (ME->hasQualifier())
834       return AnyFunctionCall::getRuntimeDefinition();
835 
836   return CXXInstanceCall::getRuntimeDefinition();
837 }
838 
839 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
840   return getOriginExpr()->getArg(0);
841 }
842 
843 const BlockDataRegion *BlockCall::getBlockRegion() const {
844   const Expr *Callee = getOriginExpr()->getCallee();
845   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
846 
847   return dyn_cast_or_null<BlockDataRegion>(DataReg);
848 }
849 
850 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
851   const BlockDecl *D = getDecl();
852   if (!D)
853     return None;
854   return D->parameters();
855 }
856 
857 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
858                   RegionAndSymbolInvalidationTraits *ETraits) const {
859   // FIXME: This also needs to invalidate captured globals.
860   if (const MemRegion *R = getBlockRegion())
861     Values.push_back(loc::MemRegionVal(R));
862 }
863 
864 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
865                                              BindingsTy &Bindings) const {
866   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
867   ArrayRef<ParmVarDecl*> Params;
868   if (isConversionFromLambda()) {
869     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
870     Params = LambdaOperatorDecl->parameters();
871 
872     // For blocks converted from a C++ lambda, the callee declaration is the
873     // operator() method on the lambda so we bind "this" to
874     // the lambda captured by the block.
875     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
876     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
877     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
878     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
879   } else {
880     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
881   }
882 
883   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
884                                Params);
885 }
886 
887 SVal AnyCXXConstructorCall::getCXXThisVal() const {
888   if (Data)
889     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
890   return UnknownVal();
891 }
892 
893 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
894                            RegionAndSymbolInvalidationTraits *ETraits) const {
895   SVal V = getCXXThisVal();
896   if (SymbolRef Sym = V.getAsSymbol(true))
897     ETraits->setTrait(Sym,
898                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
899   Values.push_back(V);
900 }
901 
902 void AnyCXXConstructorCall::getInitialStackFrameContents(
903                                              const StackFrameContext *CalleeCtx,
904                                              BindingsTy &Bindings) const {
905   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
906 
907   SVal ThisVal = getCXXThisVal();
908   if (!ThisVal.isUnknown()) {
909     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
910     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
911     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
912     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
913   }
914 }
915 
916 const StackFrameContext *
917 CXXInheritedConstructorCall::getInheritingStackFrame() const {
918   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
919   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
920     SFC = SFC->getParent()->getStackFrame();
921   return SFC;
922 }
923 
924 SVal CXXDestructorCall::getCXXThisVal() const {
925   if (Data)
926     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
927   return UnknownVal();
928 }
929 
930 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
931   // Base destructors are always called non-virtually.
932   // Skip CXXInstanceCall's devirtualization logic in this case.
933   if (isBaseDestructor())
934     return AnyFunctionCall::getRuntimeDefinition();
935 
936   return CXXInstanceCall::getRuntimeDefinition();
937 }
938 
939 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
940   const ObjCMethodDecl *D = getDecl();
941   if (!D)
942     return None;
943   return D->parameters();
944 }
945 
946 void ObjCMethodCall::getExtraInvalidatedValues(
947     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
948 
949   // If the method call is a setter for property known to be backed by
950   // an instance variable, don't invalidate the entire receiver, just
951   // the storage for that instance variable.
952   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
953     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
954       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
955       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
956         ETraits->setTrait(
957           IvarRegion,
958           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
959         ETraits->setTrait(
960           IvarRegion,
961           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
962         Values.push_back(IvarLVal);
963       }
964       return;
965     }
966   }
967 
968   Values.push_back(getReceiverSVal());
969 }
970 
971 SVal ObjCMethodCall::getReceiverSVal() const {
972   // FIXME: Is this the best way to handle class receivers?
973   if (!isInstanceMessage())
974     return UnknownVal();
975 
976   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
977     return getSVal(RecE);
978 
979   // An instance message with no expression means we are sending to super.
980   // In this case the object reference is the same as 'self'.
981   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
982   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
983   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
984   return SelfVal;
985 }
986 
987 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
988   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
989       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
990       return true;
991 
992   if (!isInstanceMessage())
993     return false;
994 
995   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
996   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
997 
998   return (RecVal == SelfVal);
999 }
1000 
1001 SourceRange ObjCMethodCall::getSourceRange() const {
1002   switch (getMessageKind()) {
1003   case OCM_Message:
1004     return getOriginExpr()->getSourceRange();
1005   case OCM_PropertyAccess:
1006   case OCM_Subscript:
1007     return getContainingPseudoObjectExpr()->getSourceRange();
1008   }
1009   llvm_unreachable("unknown message kind");
1010 }
1011 
1012 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1013 
1014 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1015   assert(Data && "Lazy lookup not yet performed.");
1016   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1017   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1018 }
1019 
1020 static const Expr *
1021 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1022   const Expr *Syntactic = POE->getSyntacticForm();
1023 
1024   // This handles the funny case of assigning to the result of a getter.
1025   // This can happen if the getter returns a non-const reference.
1026   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1027     Syntactic = BO->getLHS();
1028 
1029   return Syntactic;
1030 }
1031 
1032 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1033   if (!Data) {
1034     // Find the parent, ignoring implicit casts.
1035     const ParentMap &PM = getLocationContext()->getParentMap();
1036     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1037 
1038     // Check if parent is a PseudoObjectExpr.
1039     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1040       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1041 
1042       ObjCMessageKind K;
1043       switch (Syntactic->getStmtClass()) {
1044       case Stmt::ObjCPropertyRefExprClass:
1045         K = OCM_PropertyAccess;
1046         break;
1047       case Stmt::ObjCSubscriptRefExprClass:
1048         K = OCM_Subscript;
1049         break;
1050       default:
1051         // FIXME: Can this ever happen?
1052         K = OCM_Message;
1053         break;
1054       }
1055 
1056       if (K != OCM_Message) {
1057         const_cast<ObjCMethodCall *>(this)->Data
1058           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1059         assert(getMessageKind() == K);
1060         return K;
1061       }
1062     }
1063 
1064     const_cast<ObjCMethodCall *>(this)->Data
1065       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1066     assert(getMessageKind() == OCM_Message);
1067     return OCM_Message;
1068   }
1069 
1070   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1071   if (!Info.getPointer())
1072     return OCM_Message;
1073   return static_cast<ObjCMessageKind>(Info.getInt());
1074 }
1075 
1076 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1077   // Look for properties accessed with property syntax (foo.bar = ...)
1078   if (getMessageKind() == OCM_PropertyAccess) {
1079     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1080     assert(POE && "Property access without PseudoObjectExpr?");
1081 
1082     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1083     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1084 
1085     if (RefExpr->isExplicitProperty())
1086       return RefExpr->getExplicitProperty();
1087   }
1088 
1089   // Look for properties accessed with method syntax ([foo setBar:...]).
1090   const ObjCMethodDecl *MD = getDecl();
1091   if (!MD || !MD->isPropertyAccessor())
1092     return nullptr;
1093 
1094   // Note: This is potentially quite slow.
1095   return MD->findPropertyDecl();
1096 }
1097 
1098 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1099                                              Selector Sel) const {
1100   assert(IDecl);
1101   AnalysisManager &AMgr =
1102       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1103   // If the class interface is declared inside the main file, assume it is not
1104   // subcassed.
1105   // TODO: It could actually be subclassed if the subclass is private as well.
1106   // This is probably very rare.
1107   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1108   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1109     return false;
1110 
1111   // Assume that property accessors are not overridden.
1112   if (getMessageKind() == OCM_PropertyAccess)
1113     return false;
1114 
1115   // We assume that if the method is public (declared outside of main file) or
1116   // has a parent which publicly declares the method, the method could be
1117   // overridden in a subclass.
1118 
1119   // Find the first declaration in the class hierarchy that declares
1120   // the selector.
1121   ObjCMethodDecl *D = nullptr;
1122   while (true) {
1123     D = IDecl->lookupMethod(Sel, true);
1124 
1125     // Cannot find a public definition.
1126     if (!D)
1127       return false;
1128 
1129     // If outside the main file,
1130     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1131       return true;
1132 
1133     if (D->isOverriding()) {
1134       // Search in the superclass on the next iteration.
1135       IDecl = D->getClassInterface();
1136       if (!IDecl)
1137         return false;
1138 
1139       IDecl = IDecl->getSuperClass();
1140       if (!IDecl)
1141         return false;
1142 
1143       continue;
1144     }
1145 
1146     return false;
1147   };
1148 
1149   llvm_unreachable("The while loop should always terminate.");
1150 }
1151 
1152 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1153   if (!MD)
1154     return MD;
1155 
1156   // Find the redeclaration that defines the method.
1157   if (!MD->hasBody()) {
1158     for (auto I : MD->redecls())
1159       if (I->hasBody())
1160         MD = cast<ObjCMethodDecl>(I);
1161   }
1162   return MD;
1163 }
1164 
1165 struct PrivateMethodKey {
1166   const ObjCInterfaceDecl *Interface;
1167   Selector LookupSelector;
1168   bool IsClassMethod;
1169 };
1170 
1171 namespace llvm {
1172 template <> struct DenseMapInfo<PrivateMethodKey> {
1173   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1174   using SelectorInfo = DenseMapInfo<Selector>;
1175 
1176   static inline PrivateMethodKey getEmptyKey() {
1177     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1178   }
1179 
1180   static inline PrivateMethodKey getTombstoneKey() {
1181     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1182             true};
1183   }
1184 
1185   static unsigned getHashValue(const PrivateMethodKey &Key) {
1186     return llvm::hash_combine(
1187         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1188         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1189         Key.IsClassMethod);
1190   }
1191 
1192   static bool isEqual(const PrivateMethodKey &LHS,
1193                       const PrivateMethodKey &RHS) {
1194     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1195            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1196            LHS.IsClassMethod == RHS.IsClassMethod;
1197   }
1198 };
1199 } // end namespace llvm
1200 
1201 static const ObjCMethodDecl *
1202 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1203                         Selector LookupSelector, bool InstanceMethod) {
1204   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1205   // when in many cases it returns null.  We cache the results so
1206   // that repeated queries on the same ObjCIntefaceDecl and Selector
1207   // don't incur the same cost.  On some test cases, we can see the
1208   // same query being issued thousands of times.
1209   //
1210   // NOTE: This cache is essentially a "global" variable, but it
1211   // only gets lazily created when we get here.  The value of the
1212   // cache probably comes from it being global across ExprEngines,
1213   // where the same queries may get issued.  If we are worried about
1214   // concurrency, or possibly loading/unloading ASTs, etc., we may
1215   // need to revisit this someday.  In terms of memory, this table
1216   // stays around until clang quits, which also may be bad if we
1217   // need to release memory.
1218   using PrivateMethodCache =
1219       llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1220 
1221   static PrivateMethodCache PMC;
1222   Optional<const ObjCMethodDecl *> &Val =
1223       PMC[{Interface, LookupSelector, InstanceMethod}];
1224 
1225   // Query lookupPrivateMethod() if the cache does not hit.
1226   if (!Val.hasValue()) {
1227     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1228 
1229     if (!*Val) {
1230       // Query 'lookupMethod' as a backup.
1231       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1232     }
1233   }
1234 
1235   return Val.getValue();
1236 }
1237 
1238 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1239   const ObjCMessageExpr *E = getOriginExpr();
1240   assert(E);
1241   Selector Sel = E->getSelector();
1242 
1243   if (E->isInstanceMessage()) {
1244     // Find the receiver type.
1245     const ObjCObjectType *ReceiverT = nullptr;
1246     bool CanBeSubClassed = false;
1247     bool LookingForInstanceMethod = true;
1248     QualType SupersType = E->getSuperType();
1249     const MemRegion *Receiver = nullptr;
1250 
1251     if (!SupersType.isNull()) {
1252       // The receiver is guaranteed to be 'super' in this case.
1253       // Super always means the type of immediate predecessor to the method
1254       // where the call occurs.
1255       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1256     } else {
1257       Receiver = getReceiverSVal().getAsRegion();
1258       if (!Receiver)
1259         return {};
1260 
1261       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1262       if (!DTI.isValid()) {
1263         assert(isa<AllocaRegion>(Receiver) &&
1264                "Unhandled untyped region class!");
1265         return {};
1266       }
1267 
1268       QualType DynType = DTI.getType();
1269       CanBeSubClassed = DTI.canBeASubClass();
1270 
1271       const auto *ReceiverDynT =
1272           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1273 
1274       if (ReceiverDynT) {
1275         ReceiverT = ReceiverDynT->getObjectType();
1276 
1277         // It can be actually class methods called with Class object as a
1278         // receiver. This type of messages is treated by the compiler as
1279         // instance (not class).
1280         if (ReceiverT->isObjCClass()) {
1281 
1282           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1283           // For [self classMethod], return compiler visible declaration.
1284           if (Receiver == SelfVal.getAsRegion()) {
1285             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1286           }
1287 
1288           // Otherwise, let's check if we know something about the type
1289           // inside of this class object.
1290           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1291             DynamicTypeInfo DTI =
1292                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1293             if (DTI.isValid()) {
1294               // Let's use this type for lookup.
1295               ReceiverT =
1296                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1297 
1298               CanBeSubClassed = DTI.canBeASubClass();
1299               // And it should be a class method instead.
1300               LookingForInstanceMethod = false;
1301             }
1302           }
1303         }
1304 
1305         if (CanBeSubClassed)
1306           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1307             // Even if `DynamicTypeInfo` told us that it can be
1308             // not necessarily this type, but its descendants, we still want
1309             // to check again if this selector can be actually overridden.
1310             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1311       }
1312     }
1313 
1314     // Lookup the instance method implementation.
1315     if (ReceiverT)
1316       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1317         const ObjCMethodDecl *MD =
1318             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1319 
1320         if (MD && !MD->hasBody())
1321           MD = MD->getCanonicalDecl();
1322 
1323         if (CanBeSubClassed)
1324           return RuntimeDefinition(MD, Receiver);
1325         else
1326           return RuntimeDefinition(MD, nullptr);
1327       }
1328   } else {
1329     // This is a class method.
1330     // If we have type info for the receiver class, we are calling via
1331     // class name.
1332     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1333       // Find/Return the method implementation.
1334       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1335     }
1336   }
1337 
1338   return {};
1339 }
1340 
1341 bool ObjCMethodCall::argumentsMayEscape() const {
1342   if (isInSystemHeader() && !isInstanceMessage()) {
1343     Selector Sel = getSelector();
1344     if (Sel.getNumArgs() == 1 &&
1345         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1346       return true;
1347   }
1348 
1349   return CallEvent::argumentsMayEscape();
1350 }
1351 
1352 void ObjCMethodCall::getInitialStackFrameContents(
1353                                              const StackFrameContext *CalleeCtx,
1354                                              BindingsTy &Bindings) const {
1355   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1356   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1357   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1358                                D->parameters());
1359 
1360   SVal SelfVal = getReceiverSVal();
1361   if (!SelfVal.isUnknown()) {
1362     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1363     MemRegionManager &MRMgr = SVB.getRegionManager();
1364     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1365     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1366   }
1367 }
1368 
1369 CallEventRef<>
1370 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1371                                 const LocationContext *LCtx) {
1372   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1373     return create<CXXMemberCall>(MCE, State, LCtx);
1374 
1375   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1376     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1377     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1378       if (MD->isInstance())
1379         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1380 
1381   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1382     return create<BlockCall>(CE, State, LCtx);
1383   }
1384 
1385   // Otherwise, it's a normal function call, static member function call, or
1386   // something we can't reason about.
1387   return create<SimpleFunctionCall>(CE, State, LCtx);
1388 }
1389 
1390 CallEventRef<>
1391 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1392                             ProgramStateRef State) {
1393   const LocationContext *ParentCtx = CalleeCtx->getParent();
1394   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1395   assert(CallerCtx && "This should not be used for top-level stack frames");
1396 
1397   const Stmt *CallSite = CalleeCtx->getCallSite();
1398 
1399   if (CallSite) {
1400     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1401       return Out;
1402 
1403     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1404     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1405     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1406     SVal ThisVal = State->getSVal(ThisPtr);
1407 
1408     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1409       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1410     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1411       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1412                                             CallerCtx);
1413     else {
1414       // All other cases are handled by getCall.
1415       llvm_unreachable("This is not an inlineable statement");
1416     }
1417   }
1418 
1419   // Fall back to the CFG. The only thing we haven't handled yet is
1420   // destructors, though this could change in the future.
1421   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1422   CFGElement E = (*B)[CalleeCtx->getIndex()];
1423   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1424          "All other CFG elements should have exprs");
1425 
1426   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1427   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1428   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1429   SVal ThisVal = State->getSVal(ThisPtr);
1430 
1431   const Stmt *Trigger;
1432   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1433     Trigger = AutoDtor->getTriggerStmt();
1434   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1435     Trigger = DeleteDtor->getDeleteExpr();
1436   else
1437     Trigger = Dtor->getBody();
1438 
1439   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1440                               E.getAs<CFGBaseDtor>().hasValue(), State,
1441                               CallerCtx);
1442 }
1443 
1444 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1445                                          const LocationContext *LC) {
1446   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1447     return getSimpleCall(CE, State, LC);
1448   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1449     return getCXXAllocatorCall(NE, State, LC);
1450   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1451     return getObjCMethodCall(ME, State, LC);
1452   } else {
1453     return nullptr;
1454   }
1455 }
1456