1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/ImmutableList.h"
51 #include "llvm/ADT/None.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/PointerIntPair.h"
54 #include "llvm/ADT/SmallSet.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <cassert>
64 #include <utility>
65 
66 #define DEBUG_TYPE "static-analyzer-call-event"
67 
68 using namespace clang;
69 using namespace ento;
70 
71 QualType CallEvent::getResultType() const {
72   ASTContext &Ctx = getState()->getStateManager().getContext();
73   const Expr *E = getOriginExpr();
74   if (!E)
75     return Ctx.VoidTy;
76   assert(E);
77 
78   QualType ResultTy = E->getType();
79 
80   // A function that returns a reference to 'int' will have a result type
81   // of simply 'int'. Check the origin expr's value kind to recover the
82   // proper type.
83   switch (E->getValueKind()) {
84   case VK_LValue:
85     ResultTy = Ctx.getLValueReferenceType(ResultTy);
86     break;
87   case VK_XValue:
88     ResultTy = Ctx.getRValueReferenceType(ResultTy);
89     break;
90   case VK_PRValue:
91     // No adjustment is necessary.
92     break;
93   }
94 
95   return ResultTy;
96 }
97 
98 static bool isCallback(QualType T) {
99   // If a parameter is a block or a callback, assume it can modify pointer.
100   if (T->isBlockPointerType() ||
101       T->isFunctionPointerType() ||
102       T->isObjCSelType())
103     return true;
104 
105   // Check if a callback is passed inside a struct (for both, struct passed by
106   // reference and by value). Dig just one level into the struct for now.
107 
108   if (T->isAnyPointerType() || T->isReferenceType())
109     T = T->getPointeeType();
110 
111   if (const RecordType *RT = T->getAsStructureType()) {
112     const RecordDecl *RD = RT->getDecl();
113     for (const auto *I : RD->fields()) {
114       QualType FieldT = I->getType();
115       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
116         return true;
117     }
118   }
119   return false;
120 }
121 
122 static bool isVoidPointerToNonConst(QualType T) {
123   if (const auto *PT = T->getAs<PointerType>()) {
124     QualType PointeeTy = PT->getPointeeType();
125     if (PointeeTy.isConstQualified())
126       return false;
127     return PointeeTy->isVoidType();
128   } else
129     return false;
130 }
131 
132 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
133   unsigned NumOfArgs = getNumArgs();
134 
135   // If calling using a function pointer, assume the function does not
136   // satisfy the callback.
137   // TODO: We could check the types of the arguments here.
138   if (!getDecl())
139     return false;
140 
141   unsigned Idx = 0;
142   for (CallEvent::param_type_iterator I = param_type_begin(),
143                                       E = param_type_end();
144        I != E && Idx < NumOfArgs; ++I, ++Idx) {
145     // If the parameter is 0, it's harmless.
146     if (getArgSVal(Idx).isZeroConstant())
147       continue;
148 
149     if (Condition(*I))
150       return true;
151   }
152   return false;
153 }
154 
155 bool CallEvent::hasNonZeroCallbackArg() const {
156   return hasNonNullArgumentsWithType(isCallback);
157 }
158 
159 bool CallEvent::hasVoidPointerToNonConstArg() const {
160   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
161 }
162 
163 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
164   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
165   if (!FD)
166     return false;
167 
168   return CheckerContext::isCLibraryFunction(FD, FunctionName);
169 }
170 
171 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
172   const Decl *D = getDecl();
173   if (!D)
174     return nullptr;
175 
176   AnalysisDeclContext *ADC =
177       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
178 
179   return ADC;
180 }
181 
182 const StackFrameContext *
183 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
184   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
185   if (!ADC)
186     return nullptr;
187 
188   const Expr *E = getOriginExpr();
189   if (!E)
190     return nullptr;
191 
192   // Recover CFG block via reverse lookup.
193   // TODO: If we were to keep CFG element information as part of the CallEvent
194   // instead of doing this reverse lookup, we would be able to build the stack
195   // frame for non-expression-based calls, and also we wouldn't need the reverse
196   // lookup.
197   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
198   const CFGBlock *B = Map->getBlock(E);
199   assert(B);
200 
201   // Also recover CFG index by scanning the CFG block.
202   unsigned Idx = 0, Sz = B->size();
203   for (; Idx < Sz; ++Idx)
204     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
205       if (StmtElem->getStmt() == E)
206         break;
207   assert(Idx < Sz);
208 
209   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
210 }
211 
212 const ParamVarRegion
213 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
214   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
215   // We cannot construct a VarRegion without a stack frame.
216   if (!SFC)
217     return nullptr;
218 
219   const ParamVarRegion *PVR =
220     State->getStateManager().getRegionManager().getParamVarRegion(
221         getOriginExpr(), Index, SFC);
222   return PVR;
223 }
224 
225 /// Returns true if a type is a pointer-to-const or reference-to-const
226 /// with no further indirection.
227 static bool isPointerToConst(QualType Ty) {
228   QualType PointeeTy = Ty->getPointeeType();
229   if (PointeeTy == QualType())
230     return false;
231   if (!PointeeTy.isConstQualified())
232     return false;
233   if (PointeeTy->isAnyPointerType())
234     return false;
235   return true;
236 }
237 
238 // Try to retrieve the function declaration and find the function parameter
239 // types which are pointers/references to a non-pointer const.
240 // We will not invalidate the corresponding argument regions.
241 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
242                                  const CallEvent &Call) {
243   unsigned Idx = 0;
244   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
245                                       E = Call.param_type_end();
246        I != E; ++I, ++Idx) {
247     if (isPointerToConst(*I))
248       PreserveArgs.insert(Idx);
249   }
250 }
251 
252 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
253                                              ProgramStateRef Orig) const {
254   ProgramStateRef Result = (Orig ? Orig : getState());
255 
256   // Don't invalidate anything if the callee is marked pure/const.
257   if (const Decl *callee = getDecl())
258     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
259       return Result;
260 
261   SmallVector<SVal, 8> ValuesToInvalidate;
262   RegionAndSymbolInvalidationTraits ETraits;
263 
264   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
265 
266   // Indexes of arguments whose values will be preserved by the call.
267   llvm::SmallSet<unsigned, 4> PreserveArgs;
268   if (!argumentsMayEscape())
269     findPtrToConstParams(PreserveArgs, *this);
270 
271   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
272     // Mark this region for invalidation.  We batch invalidate regions
273     // below for efficiency.
274     if (PreserveArgs.count(Idx))
275       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
276         ETraits.setTrait(MR->getBaseRegion(),
277                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
278         // TODO: Factor this out + handle the lower level const pointers.
279 
280     ValuesToInvalidate.push_back(getArgSVal(Idx));
281 
282     // If a function accepts an object by argument (which would of course be a
283     // temporary that isn't lifetime-extended), invalidate the object itself,
284     // not only other objects reachable from it. This is necessary because the
285     // destructor has access to the temporary object after the call.
286     // TODO: Support placement arguments once we start
287     // constructing them directly.
288     // TODO: This is unnecessary when there's no destructor, but that's
289     // currently hard to figure out.
290     if (getKind() != CE_CXXAllocator)
291       if (isArgumentConstructedDirectly(Idx))
292         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
293           if (const TypedValueRegion *TVR =
294                   getParameterLocation(*AdjIdx, BlockCount))
295             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
296   }
297 
298   // Invalidate designated regions using the batch invalidation API.
299   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
300   //  global variables.
301   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
302                                    BlockCount, getLocationContext(),
303                                    /*CausedByPointerEscape*/ true,
304                                    /*Symbols=*/nullptr, this, &ETraits);
305 }
306 
307 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
308                                         const ProgramPointTag *Tag) const {
309   if (const Expr *E = getOriginExpr()) {
310     if (IsPreVisit)
311       return PreStmt(E, getLocationContext(), Tag);
312     return PostStmt(E, getLocationContext(), Tag);
313   }
314 
315   const Decl *D = getDecl();
316   assert(D && "Cannot get a program point without a statement or decl");
317 
318   SourceLocation Loc = getSourceRange().getBegin();
319   if (IsPreVisit)
320     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
321   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
322 }
323 
324 bool CallEvent::isCalled(const CallDescription &CD) const {
325   // FIXME: Add ObjC Message support.
326   if (getKind() == CE_ObjCMessage)
327     return false;
328 
329   const IdentifierInfo *II = getCalleeIdentifier();
330   if (!II)
331     return false;
332   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
333   if (!FD)
334     return false;
335 
336   if (CD.Flags & CDF_MaybeBuiltin) {
337     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
338            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
339            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
340   }
341 
342   if (!CD.IsLookupDone) {
343     CD.IsLookupDone = true;
344     CD.II = &getState()->getStateManager().getContext().Idents.get(
345         CD.getFunctionName());
346   }
347 
348   if (II != CD.II)
349     return false;
350 
351   // If CallDescription provides prefix names, use them to improve matching
352   // accuracy.
353   if (CD.QualifiedName.size() > 1 && FD) {
354     const DeclContext *Ctx = FD->getDeclContext();
355     // See if we'll be able to match them all.
356     size_t NumUnmatched = CD.QualifiedName.size() - 1;
357     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
358       if (NumUnmatched == 0)
359         break;
360 
361       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
362         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
363           --NumUnmatched;
364         continue;
365       }
366 
367       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
368         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
369           --NumUnmatched;
370         continue;
371       }
372     }
373 
374     if (NumUnmatched > 0)
375       return false;
376   }
377 
378   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
379          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
380 }
381 
382 SVal CallEvent::getArgSVal(unsigned Index) const {
383   const Expr *ArgE = getArgExpr(Index);
384   if (!ArgE)
385     return UnknownVal();
386   return getSVal(ArgE);
387 }
388 
389 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
390   const Expr *ArgE = getArgExpr(Index);
391   if (!ArgE)
392     return {};
393   return ArgE->getSourceRange();
394 }
395 
396 SVal CallEvent::getReturnValue() const {
397   const Expr *E = getOriginExpr();
398   if (!E)
399     return UndefinedVal();
400   return getSVal(E);
401 }
402 
403 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
404 
405 void CallEvent::dump(raw_ostream &Out) const {
406   ASTContext &Ctx = getState()->getStateManager().getContext();
407   if (const Expr *E = getOriginExpr()) {
408     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
409     Out << "\n";
410     return;
411   }
412 
413   if (const Decl *D = getDecl()) {
414     Out << "Call to ";
415     D->print(Out, Ctx.getPrintingPolicy());
416     return;
417   }
418 
419   Out << "Unknown call (type " << getKindAsString() << ")";
420 }
421 
422 bool CallEvent::isCallStmt(const Stmt *S) {
423   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
424                           || isa<CXXConstructExpr>(S)
425                           || isa<CXXNewExpr>(S);
426 }
427 
428 QualType CallEvent::getDeclaredResultType(const Decl *D) {
429   assert(D);
430   if (const auto *FD = dyn_cast<FunctionDecl>(D))
431     return FD->getReturnType();
432   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
433     return MD->getReturnType();
434   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
435     // Blocks are difficult because the return type may not be stored in the
436     // BlockDecl itself. The AST should probably be enhanced, but for now we
437     // just do what we can.
438     // If the block is declared without an explicit argument list, the
439     // signature-as-written just includes the return type, not the entire
440     // function type.
441     // FIXME: All blocks should have signatures-as-written, even if the return
442     // type is inferred. (That's signified with a dependent result type.)
443     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
444       QualType Ty = TSI->getType();
445       if (const FunctionType *FT = Ty->getAs<FunctionType>())
446         Ty = FT->getReturnType();
447       if (!Ty->isDependentType())
448         return Ty;
449     }
450 
451     return {};
452   }
453 
454   llvm_unreachable("unknown callable kind");
455 }
456 
457 bool CallEvent::isVariadic(const Decl *D) {
458   assert(D);
459 
460   if (const auto *FD = dyn_cast<FunctionDecl>(D))
461     return FD->isVariadic();
462   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
463     return MD->isVariadic();
464   if (const auto *BD = dyn_cast<BlockDecl>(D))
465     return BD->isVariadic();
466 
467   llvm_unreachable("unknown callable kind");
468 }
469 
470 static bool isTransparentUnion(QualType T) {
471   const RecordType *UT = T->getAsUnionType();
472   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
473 }
474 
475 // In some cases, symbolic cases should be transformed before we associate
476 // them with parameters.  This function incapsulates such cases.
477 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
478                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
479   QualType ParamType = Parameter->getType();
480   QualType ArgumentType = ArgumentExpr->getType();
481 
482   // Transparent unions allow users to easily convert values of union field
483   // types into union-typed objects.
484   //
485   // Also, more importantly, they allow users to define functions with different
486   // different parameter types, substituting types matching transparent union
487   // field types with the union type itself.
488   //
489   // Here, we check specifically for latter cases and prevent binding
490   // field-typed values to union-typed regions.
491   if (isTransparentUnion(ParamType) &&
492       // Let's check that we indeed trying to bind different types.
493       !isTransparentUnion(ArgumentType)) {
494     BasicValueFactory &BVF = SVB.getBasicValueFactory();
495 
496     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
497     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
498 
499     // Wrap it with compound value.
500     return SVB.makeCompoundVal(ParamType, CompoundSVals);
501   }
502 
503   return Value;
504 }
505 
506 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
507                                          CallEvent::BindingsTy &Bindings,
508                                          SValBuilder &SVB,
509                                          const CallEvent &Call,
510                                          ArrayRef<ParmVarDecl*> parameters) {
511   MemRegionManager &MRMgr = SVB.getRegionManager();
512 
513   // If the function has fewer parameters than the call has arguments, we simply
514   // do not bind any values to them.
515   unsigned NumArgs = Call.getNumArgs();
516   unsigned Idx = 0;
517   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
518   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
519     assert(*I && "Formal parameter has no decl?");
520 
521     // TODO: Support allocator calls.
522     if (Call.getKind() != CE_CXXAllocator)
523       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
524         continue;
525 
526     // TODO: Allocators should receive the correct size and possibly alignment,
527     // determined in compile-time but not represented as arg-expressions,
528     // which makes getArgSVal() fail and return UnknownVal.
529     SVal ArgVal = Call.getArgSVal(Idx);
530     const Expr *ArgExpr = Call.getArgExpr(Idx);
531     if (!ArgVal.isUnknown()) {
532       Loc ParamLoc = SVB.makeLoc(
533           MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
534       Bindings.push_back(
535           std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
536     }
537   }
538 
539   // FIXME: Variadic arguments are not handled at all right now.
540 }
541 
542 const ConstructionContext *CallEvent::getConstructionContext() const {
543   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
544   if (!StackFrame)
545     return nullptr;
546 
547   const CFGElement Element = StackFrame->getCallSiteCFGElement();
548   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
549     return Ctor->getConstructionContext();
550   }
551 
552   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
553     return RecCall->getConstructionContext();
554   }
555 
556   return nullptr;
557 }
558 
559 Optional<SVal>
560 CallEvent::getReturnValueUnderConstruction() const {
561   const auto *CC = getConstructionContext();
562   if (!CC)
563     return None;
564 
565   EvalCallOptions CallOpts;
566   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
567   SVal RetVal =
568     Engine.computeObjectUnderConstruction(getOriginExpr(), getState(),
569                                           getLocationContext(), CC, CallOpts);
570   return RetVal;
571 }
572 
573 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
574   const FunctionDecl *D = getDecl();
575   if (!D)
576     return None;
577   return D->parameters();
578 }
579 
580 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
581   const FunctionDecl *FD = getDecl();
582   if (!FD)
583     return {};
584 
585   // Note that the AnalysisDeclContext will have the FunctionDecl with
586   // the definition (if one exists).
587   AnalysisDeclContext *AD =
588     getLocationContext()->getAnalysisDeclContext()->
589     getManager()->getContext(FD);
590   bool IsAutosynthesized;
591   Stmt* Body = AD->getBody(IsAutosynthesized);
592   LLVM_DEBUG({
593     if (IsAutosynthesized)
594       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
595                    << "\n";
596   });
597   if (Body) {
598     const Decl* Decl = AD->getDecl();
599     return RuntimeDefinition(Decl);
600   }
601 
602   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
603   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
604 
605   // Try to get CTU definition only if CTUDir is provided.
606   if (!Opts.IsNaiveCTUEnabled)
607     return {};
608 
609   cross_tu::CrossTranslationUnitContext &CTUCtx =
610       *Engine.getCrossTranslationUnitContext();
611   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
612       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
613                                   Opts.DisplayCTUProgress);
614 
615   if (!CTUDeclOrError) {
616     handleAllErrors(CTUDeclOrError.takeError(),
617                     [&](const cross_tu::IndexError &IE) {
618                       CTUCtx.emitCrossTUDiagnostics(IE);
619                     });
620     return {};
621   }
622 
623   return RuntimeDefinition(*CTUDeclOrError);
624 }
625 
626 void AnyFunctionCall::getInitialStackFrameContents(
627                                         const StackFrameContext *CalleeCtx,
628                                         BindingsTy &Bindings) const {
629   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
630   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
631   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
632                                D->parameters());
633 }
634 
635 bool AnyFunctionCall::argumentsMayEscape() const {
636   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
637     return true;
638 
639   const FunctionDecl *D = getDecl();
640   if (!D)
641     return true;
642 
643   const IdentifierInfo *II = D->getIdentifier();
644   if (!II)
645     return false;
646 
647   // This set of "escaping" APIs is
648 
649   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
650   //   value into thread local storage. The value can later be retrieved with
651   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
652   //   parameter is 'const void *', the region escapes through the call.
653   if (II->isStr("pthread_setspecific"))
654     return true;
655 
656   // - xpc_connection_set_context stores a value which can be retrieved later
657   //   with xpc_connection_get_context.
658   if (II->isStr("xpc_connection_set_context"))
659     return true;
660 
661   // - funopen - sets a buffer for future IO calls.
662   if (II->isStr("funopen"))
663     return true;
664 
665   // - __cxa_demangle - can reallocate memory and can return the pointer to
666   // the input buffer.
667   if (II->isStr("__cxa_demangle"))
668     return true;
669 
670   StringRef FName = II->getName();
671 
672   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
673   //   buffer even if it is const.
674   if (FName.endswith("NoCopy"))
675     return true;
676 
677   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
678   //   be deallocated by NSMapRemove.
679   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
680     return true;
681 
682   // - Many CF containers allow objects to escape through custom
683   //   allocators/deallocators upon container construction. (PR12101)
684   if (FName.startswith("CF") || FName.startswith("CG")) {
685     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
686            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
687            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
688            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
689            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
690            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
691   }
692 
693   return false;
694 }
695 
696 const FunctionDecl *SimpleFunctionCall::getDecl() const {
697   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
698   if (D)
699     return D;
700 
701   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
702 }
703 
704 const FunctionDecl *CXXInstanceCall::getDecl() const {
705   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
706   if (!CE)
707     return AnyFunctionCall::getDecl();
708 
709   const FunctionDecl *D = CE->getDirectCallee();
710   if (D)
711     return D;
712 
713   return getSVal(CE->getCallee()).getAsFunctionDecl();
714 }
715 
716 void CXXInstanceCall::getExtraInvalidatedValues(
717     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
718   SVal ThisVal = getCXXThisVal();
719   Values.push_back(ThisVal);
720 
721   // Don't invalidate if the method is const and there are no mutable fields.
722   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
723     if (!D->isConst())
724       return;
725     // Get the record decl for the class of 'This'. D->getParent() may return a
726     // base class decl, rather than the class of the instance which needs to be
727     // checked for mutable fields.
728     // TODO: We might as well look at the dynamic type of the object.
729     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
730     QualType T = Ex->getType();
731     if (T->isPointerType()) // Arrow or implicit-this syntax?
732       T = T->getPointeeType();
733     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
734     assert(ParentRecord);
735     if (ParentRecord->hasMutableFields())
736       return;
737     // Preserve CXXThis.
738     const MemRegion *ThisRegion = ThisVal.getAsRegion();
739     if (!ThisRegion)
740       return;
741 
742     ETraits->setTrait(ThisRegion->getBaseRegion(),
743                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
744   }
745 }
746 
747 SVal CXXInstanceCall::getCXXThisVal() const {
748   const Expr *Base = getCXXThisExpr();
749   // FIXME: This doesn't handle an overloaded ->* operator.
750   if (!Base)
751     return UnknownVal();
752 
753   SVal ThisVal = getSVal(Base);
754   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
755   return ThisVal;
756 }
757 
758 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
759   // Do we have a decl at all?
760   const Decl *D = getDecl();
761   if (!D)
762     return {};
763 
764   // If the method is non-virtual, we know we can inline it.
765   const auto *MD = cast<CXXMethodDecl>(D);
766   if (!MD->isVirtual())
767     return AnyFunctionCall::getRuntimeDefinition();
768 
769   // Do we know the implicit 'this' object being called?
770   const MemRegion *R = getCXXThisVal().getAsRegion();
771   if (!R)
772     return {};
773 
774   // Do we know anything about the type of 'this'?
775   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
776   if (!DynType.isValid())
777     return {};
778 
779   // Is the type a C++ class? (This is mostly a defensive check.)
780   QualType RegionType = DynType.getType()->getPointeeType();
781   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
782 
783   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
784   if (!RD || !RD->hasDefinition())
785     return {};
786 
787   // Find the decl for this method in that class.
788   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
789   if (!Result) {
790     // We might not even get the original statically-resolved method due to
791     // some particularly nasty casting (e.g. casts to sister classes).
792     // However, we should at least be able to search up and down our own class
793     // hierarchy, and some real bugs have been caught by checking this.
794     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
795 
796     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
797     // the static type. However, because we currently don't update
798     // DynamicTypeInfo when an object is cast, we can't actually be sure the
799     // DynamicTypeInfo is up to date. This assert should be re-enabled once
800     // this is fixed. <rdar://problem/12287087>
801     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
802 
803     return {};
804   }
805 
806   // Does the decl that we found have an implementation?
807   const FunctionDecl *Definition;
808   if (!Result->hasBody(Definition)) {
809     if (!DynType.canBeASubClass())
810       return AnyFunctionCall::getRuntimeDefinition();
811     return {};
812   }
813 
814   // We found a definition. If we're not sure that this devirtualization is
815   // actually what will happen at runtime, make sure to provide the region so
816   // that ExprEngine can decide what to do with it.
817   if (DynType.canBeASubClass())
818     return RuntimeDefinition(Definition, R->StripCasts());
819   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
820 }
821 
822 void CXXInstanceCall::getInitialStackFrameContents(
823                                             const StackFrameContext *CalleeCtx,
824                                             BindingsTy &Bindings) const {
825   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
826 
827   // Handle the binding of 'this' in the new stack frame.
828   SVal ThisVal = getCXXThisVal();
829   if (!ThisVal.isUnknown()) {
830     ProgramStateManager &StateMgr = getState()->getStateManager();
831     SValBuilder &SVB = StateMgr.getSValBuilder();
832 
833     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
834     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
835 
836     // If we devirtualized to a different member function, we need to make sure
837     // we have the proper layering of CXXBaseObjectRegions.
838     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
839       ASTContext &Ctx = SVB.getContext();
840       const CXXRecordDecl *Class = MD->getParent();
841       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
842 
843       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
844       bool Failed;
845       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
846       if (Failed) {
847         // We might have suffered some sort of placement new earlier, so
848         // we're constructing in a completely unexpected storage.
849         // Fall back to a generic pointer cast for this-value.
850         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
851         const CXXRecordDecl *StaticClass = StaticMD->getParent();
852         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
853         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
854       }
855     }
856 
857     if (!ThisVal.isUnknown())
858       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
859   }
860 }
861 
862 const Expr *CXXMemberCall::getCXXThisExpr() const {
863   return getOriginExpr()->getImplicitObjectArgument();
864 }
865 
866 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
867   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
868   // id-expression in the class member access expression is a qualified-id,
869   // that function is called. Otherwise, its final overrider in the dynamic type
870   // of the object expression is called.
871   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
872     if (ME->hasQualifier())
873       return AnyFunctionCall::getRuntimeDefinition();
874 
875   return CXXInstanceCall::getRuntimeDefinition();
876 }
877 
878 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
879   return getOriginExpr()->getArg(0);
880 }
881 
882 const BlockDataRegion *BlockCall::getBlockRegion() const {
883   const Expr *Callee = getOriginExpr()->getCallee();
884   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
885 
886   return dyn_cast_or_null<BlockDataRegion>(DataReg);
887 }
888 
889 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
890   const BlockDecl *D = getDecl();
891   if (!D)
892     return None;
893   return D->parameters();
894 }
895 
896 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
897                   RegionAndSymbolInvalidationTraits *ETraits) const {
898   // FIXME: This also needs to invalidate captured globals.
899   if (const MemRegion *R = getBlockRegion())
900     Values.push_back(loc::MemRegionVal(R));
901 }
902 
903 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
904                                              BindingsTy &Bindings) const {
905   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
906   ArrayRef<ParmVarDecl*> Params;
907   if (isConversionFromLambda()) {
908     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
909     Params = LambdaOperatorDecl->parameters();
910 
911     // For blocks converted from a C++ lambda, the callee declaration is the
912     // operator() method on the lambda so we bind "this" to
913     // the lambda captured by the block.
914     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
915     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
916     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
917     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
918   } else {
919     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
920   }
921 
922   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
923                                Params);
924 }
925 
926 SVal AnyCXXConstructorCall::getCXXThisVal() const {
927   if (Data)
928     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
929   return UnknownVal();
930 }
931 
932 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
933                            RegionAndSymbolInvalidationTraits *ETraits) const {
934   SVal V = getCXXThisVal();
935   if (SymbolRef Sym = V.getAsSymbol(true))
936     ETraits->setTrait(Sym,
937                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
938   Values.push_back(V);
939 }
940 
941 void AnyCXXConstructorCall::getInitialStackFrameContents(
942                                              const StackFrameContext *CalleeCtx,
943                                              BindingsTy &Bindings) const {
944   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
945 
946   SVal ThisVal = getCXXThisVal();
947   if (!ThisVal.isUnknown()) {
948     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
949     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
950     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
951     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
952   }
953 }
954 
955 const StackFrameContext *
956 CXXInheritedConstructorCall::getInheritingStackFrame() const {
957   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
958   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
959     SFC = SFC->getParent()->getStackFrame();
960   return SFC;
961 }
962 
963 SVal CXXDestructorCall::getCXXThisVal() const {
964   if (Data)
965     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
966   return UnknownVal();
967 }
968 
969 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
970   // Base destructors are always called non-virtually.
971   // Skip CXXInstanceCall's devirtualization logic in this case.
972   if (isBaseDestructor())
973     return AnyFunctionCall::getRuntimeDefinition();
974 
975   return CXXInstanceCall::getRuntimeDefinition();
976 }
977 
978 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
979   const ObjCMethodDecl *D = getDecl();
980   if (!D)
981     return None;
982   return D->parameters();
983 }
984 
985 void ObjCMethodCall::getExtraInvalidatedValues(
986     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
987 
988   // If the method call is a setter for property known to be backed by
989   // an instance variable, don't invalidate the entire receiver, just
990   // the storage for that instance variable.
991   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
992     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
993       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
994       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
995         ETraits->setTrait(
996           IvarRegion,
997           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
998         ETraits->setTrait(
999           IvarRegion,
1000           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1001         Values.push_back(IvarLVal);
1002       }
1003       return;
1004     }
1005   }
1006 
1007   Values.push_back(getReceiverSVal());
1008 }
1009 
1010 SVal ObjCMethodCall::getReceiverSVal() const {
1011   // FIXME: Is this the best way to handle class receivers?
1012   if (!isInstanceMessage())
1013     return UnknownVal();
1014 
1015   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
1016     return getSVal(RecE);
1017 
1018   // An instance message with no expression means we are sending to super.
1019   // In this case the object reference is the same as 'self'.
1020   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
1021   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1022   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
1023   return SelfVal;
1024 }
1025 
1026 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
1027   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
1028       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
1029       return true;
1030 
1031   if (!isInstanceMessage())
1032     return false;
1033 
1034   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1035   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1036 
1037   return (RecVal == SelfVal);
1038 }
1039 
1040 SourceRange ObjCMethodCall::getSourceRange() const {
1041   switch (getMessageKind()) {
1042   case OCM_Message:
1043     return getOriginExpr()->getSourceRange();
1044   case OCM_PropertyAccess:
1045   case OCM_Subscript:
1046     return getContainingPseudoObjectExpr()->getSourceRange();
1047   }
1048   llvm_unreachable("unknown message kind");
1049 }
1050 
1051 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1052 
1053 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1054   assert(Data && "Lazy lookup not yet performed.");
1055   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1056   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1057 }
1058 
1059 static const Expr *
1060 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1061   const Expr *Syntactic = POE->getSyntacticForm();
1062 
1063   // This handles the funny case of assigning to the result of a getter.
1064   // This can happen if the getter returns a non-const reference.
1065   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1066     Syntactic = BO->getLHS();
1067 
1068   return Syntactic;
1069 }
1070 
1071 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1072   if (!Data) {
1073     // Find the parent, ignoring implicit casts.
1074     const ParentMap &PM = getLocationContext()->getParentMap();
1075     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1076 
1077     // Check if parent is a PseudoObjectExpr.
1078     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1079       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1080 
1081       ObjCMessageKind K;
1082       switch (Syntactic->getStmtClass()) {
1083       case Stmt::ObjCPropertyRefExprClass:
1084         K = OCM_PropertyAccess;
1085         break;
1086       case Stmt::ObjCSubscriptRefExprClass:
1087         K = OCM_Subscript;
1088         break;
1089       default:
1090         // FIXME: Can this ever happen?
1091         K = OCM_Message;
1092         break;
1093       }
1094 
1095       if (K != OCM_Message) {
1096         const_cast<ObjCMethodCall *>(this)->Data
1097           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1098         assert(getMessageKind() == K);
1099         return K;
1100       }
1101     }
1102 
1103     const_cast<ObjCMethodCall *>(this)->Data
1104       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1105     assert(getMessageKind() == OCM_Message);
1106     return OCM_Message;
1107   }
1108 
1109   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1110   if (!Info.getPointer())
1111     return OCM_Message;
1112   return static_cast<ObjCMessageKind>(Info.getInt());
1113 }
1114 
1115 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1116   // Look for properties accessed with property syntax (foo.bar = ...)
1117   if (getMessageKind() == OCM_PropertyAccess) {
1118     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1119     assert(POE && "Property access without PseudoObjectExpr?");
1120 
1121     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1122     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1123 
1124     if (RefExpr->isExplicitProperty())
1125       return RefExpr->getExplicitProperty();
1126   }
1127 
1128   // Look for properties accessed with method syntax ([foo setBar:...]).
1129   const ObjCMethodDecl *MD = getDecl();
1130   if (!MD || !MD->isPropertyAccessor())
1131     return nullptr;
1132 
1133   // Note: This is potentially quite slow.
1134   return MD->findPropertyDecl();
1135 }
1136 
1137 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1138                                              Selector Sel) const {
1139   assert(IDecl);
1140   AnalysisManager &AMgr =
1141       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1142   // If the class interface is declared inside the main file, assume it is not
1143   // subcassed.
1144   // TODO: It could actually be subclassed if the subclass is private as well.
1145   // This is probably very rare.
1146   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1147   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1148     return false;
1149 
1150   // Assume that property accessors are not overridden.
1151   if (getMessageKind() == OCM_PropertyAccess)
1152     return false;
1153 
1154   // We assume that if the method is public (declared outside of main file) or
1155   // has a parent which publicly declares the method, the method could be
1156   // overridden in a subclass.
1157 
1158   // Find the first declaration in the class hierarchy that declares
1159   // the selector.
1160   ObjCMethodDecl *D = nullptr;
1161   while (true) {
1162     D = IDecl->lookupMethod(Sel, true);
1163 
1164     // Cannot find a public definition.
1165     if (!D)
1166       return false;
1167 
1168     // If outside the main file,
1169     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1170       return true;
1171 
1172     if (D->isOverriding()) {
1173       // Search in the superclass on the next iteration.
1174       IDecl = D->getClassInterface();
1175       if (!IDecl)
1176         return false;
1177 
1178       IDecl = IDecl->getSuperClass();
1179       if (!IDecl)
1180         return false;
1181 
1182       continue;
1183     }
1184 
1185     return false;
1186   };
1187 
1188   llvm_unreachable("The while loop should always terminate.");
1189 }
1190 
1191 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1192   if (!MD)
1193     return MD;
1194 
1195   // Find the redeclaration that defines the method.
1196   if (!MD->hasBody()) {
1197     for (auto I : MD->redecls())
1198       if (I->hasBody())
1199         MD = cast<ObjCMethodDecl>(I);
1200   }
1201   return MD;
1202 }
1203 
1204 struct PrivateMethodKey {
1205   const ObjCInterfaceDecl *Interface;
1206   Selector LookupSelector;
1207   bool IsClassMethod;
1208 };
1209 
1210 namespace llvm {
1211 template <> struct DenseMapInfo<PrivateMethodKey> {
1212   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1213   using SelectorInfo = DenseMapInfo<Selector>;
1214 
1215   static inline PrivateMethodKey getEmptyKey() {
1216     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1217   }
1218 
1219   static inline PrivateMethodKey getTombstoneKey() {
1220     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1221             true};
1222   }
1223 
1224   static unsigned getHashValue(const PrivateMethodKey &Key) {
1225     return llvm::hash_combine(
1226         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1227         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1228         Key.IsClassMethod);
1229   }
1230 
1231   static bool isEqual(const PrivateMethodKey &LHS,
1232                       const PrivateMethodKey &RHS) {
1233     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1234            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1235            LHS.IsClassMethod == RHS.IsClassMethod;
1236   }
1237 };
1238 } // end namespace llvm
1239 
1240 static const ObjCMethodDecl *
1241 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1242                         Selector LookupSelector, bool InstanceMethod) {
1243   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1244   // when in many cases it returns null.  We cache the results so
1245   // that repeated queries on the same ObjCIntefaceDecl and Selector
1246   // don't incur the same cost.  On some test cases, we can see the
1247   // same query being issued thousands of times.
1248   //
1249   // NOTE: This cache is essentially a "global" variable, but it
1250   // only gets lazily created when we get here.  The value of the
1251   // cache probably comes from it being global across ExprEngines,
1252   // where the same queries may get issued.  If we are worried about
1253   // concurrency, or possibly loading/unloading ASTs, etc., we may
1254   // need to revisit this someday.  In terms of memory, this table
1255   // stays around until clang quits, which also may be bad if we
1256   // need to release memory.
1257   using PrivateMethodCache =
1258       llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1259 
1260   static PrivateMethodCache PMC;
1261   Optional<const ObjCMethodDecl *> &Val =
1262       PMC[{Interface, LookupSelector, InstanceMethod}];
1263 
1264   // Query lookupPrivateMethod() if the cache does not hit.
1265   if (!Val.hasValue()) {
1266     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1267 
1268     if (!*Val) {
1269       // Query 'lookupMethod' as a backup.
1270       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1271     }
1272   }
1273 
1274   return Val.getValue();
1275 }
1276 
1277 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1278   const ObjCMessageExpr *E = getOriginExpr();
1279   assert(E);
1280   Selector Sel = E->getSelector();
1281 
1282   if (E->isInstanceMessage()) {
1283     // Find the receiver type.
1284     const ObjCObjectType *ReceiverT = nullptr;
1285     bool CanBeSubClassed = false;
1286     bool LookingForInstanceMethod = true;
1287     QualType SupersType = E->getSuperType();
1288     const MemRegion *Receiver = nullptr;
1289 
1290     if (!SupersType.isNull()) {
1291       // The receiver is guaranteed to be 'super' in this case.
1292       // Super always means the type of immediate predecessor to the method
1293       // where the call occurs.
1294       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1295     } else {
1296       Receiver = getReceiverSVal().getAsRegion();
1297       if (!Receiver)
1298         return {};
1299 
1300       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1301       if (!DTI.isValid()) {
1302         assert(isa<AllocaRegion>(Receiver) &&
1303                "Unhandled untyped region class!");
1304         return {};
1305       }
1306 
1307       QualType DynType = DTI.getType();
1308       CanBeSubClassed = DTI.canBeASubClass();
1309 
1310       const auto *ReceiverDynT =
1311           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1312 
1313       if (ReceiverDynT) {
1314         ReceiverT = ReceiverDynT->getObjectType();
1315 
1316         // It can be actually class methods called with Class object as a
1317         // receiver. This type of messages is treated by the compiler as
1318         // instance (not class).
1319         if (ReceiverT->isObjCClass()) {
1320 
1321           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1322           // For [self classMethod], return compiler visible declaration.
1323           if (Receiver == SelfVal.getAsRegion()) {
1324             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1325           }
1326 
1327           // Otherwise, let's check if we know something about the type
1328           // inside of this class object.
1329           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1330             DynamicTypeInfo DTI =
1331                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1332             if (DTI.isValid()) {
1333               // Let's use this type for lookup.
1334               ReceiverT =
1335                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1336 
1337               CanBeSubClassed = DTI.canBeASubClass();
1338               // And it should be a class method instead.
1339               LookingForInstanceMethod = false;
1340             }
1341           }
1342         }
1343 
1344         if (CanBeSubClassed)
1345           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1346             // Even if `DynamicTypeInfo` told us that it can be
1347             // not necessarily this type, but its descendants, we still want
1348             // to check again if this selector can be actually overridden.
1349             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1350       }
1351     }
1352 
1353     // Lookup the instance method implementation.
1354     if (ReceiverT)
1355       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1356         const ObjCMethodDecl *MD =
1357             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1358 
1359         if (MD && !MD->hasBody())
1360           MD = MD->getCanonicalDecl();
1361 
1362         if (CanBeSubClassed)
1363           return RuntimeDefinition(MD, Receiver);
1364         else
1365           return RuntimeDefinition(MD, nullptr);
1366       }
1367   } else {
1368     // This is a class method.
1369     // If we have type info for the receiver class, we are calling via
1370     // class name.
1371     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1372       // Find/Return the method implementation.
1373       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1374     }
1375   }
1376 
1377   return {};
1378 }
1379 
1380 bool ObjCMethodCall::argumentsMayEscape() const {
1381   if (isInSystemHeader() && !isInstanceMessage()) {
1382     Selector Sel = getSelector();
1383     if (Sel.getNumArgs() == 1 &&
1384         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1385       return true;
1386   }
1387 
1388   return CallEvent::argumentsMayEscape();
1389 }
1390 
1391 void ObjCMethodCall::getInitialStackFrameContents(
1392                                              const StackFrameContext *CalleeCtx,
1393                                              BindingsTy &Bindings) const {
1394   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1395   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1396   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1397                                D->parameters());
1398 
1399   SVal SelfVal = getReceiverSVal();
1400   if (!SelfVal.isUnknown()) {
1401     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1402     MemRegionManager &MRMgr = SVB.getRegionManager();
1403     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1404     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1405   }
1406 }
1407 
1408 CallEventRef<>
1409 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1410                                 const LocationContext *LCtx) {
1411   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1412     return create<CXXMemberCall>(MCE, State, LCtx);
1413 
1414   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1415     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1416     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1417       if (MD->isInstance())
1418         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1419 
1420   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1421     return create<BlockCall>(CE, State, LCtx);
1422   }
1423 
1424   // Otherwise, it's a normal function call, static member function call, or
1425   // something we can't reason about.
1426   return create<SimpleFunctionCall>(CE, State, LCtx);
1427 }
1428 
1429 CallEventRef<>
1430 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1431                             ProgramStateRef State) {
1432   const LocationContext *ParentCtx = CalleeCtx->getParent();
1433   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1434   assert(CallerCtx && "This should not be used for top-level stack frames");
1435 
1436   const Stmt *CallSite = CalleeCtx->getCallSite();
1437 
1438   if (CallSite) {
1439     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1440       return Out;
1441 
1442     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1443     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1444     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1445     SVal ThisVal = State->getSVal(ThisPtr);
1446 
1447     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1448       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1449     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1450       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1451                                             CallerCtx);
1452     else {
1453       // All other cases are handled by getCall.
1454       llvm_unreachable("This is not an inlineable statement");
1455     }
1456   }
1457 
1458   // Fall back to the CFG. The only thing we haven't handled yet is
1459   // destructors, though this could change in the future.
1460   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1461   CFGElement E = (*B)[CalleeCtx->getIndex()];
1462   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1463          "All other CFG elements should have exprs");
1464 
1465   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1466   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1467   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1468   SVal ThisVal = State->getSVal(ThisPtr);
1469 
1470   const Stmt *Trigger;
1471   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1472     Trigger = AutoDtor->getTriggerStmt();
1473   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1474     Trigger = DeleteDtor->getDeleteExpr();
1475   else
1476     Trigger = Dtor->getBody();
1477 
1478   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1479                               E.getAs<CFGBaseDtor>().hasValue(), State,
1480                               CallerCtx);
1481 }
1482 
1483 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1484                                          const LocationContext *LC) {
1485   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1486     return getSimpleCall(CE, State, LC);
1487   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1488     return getCXXAllocatorCall(NE, State, LC);
1489   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1490     return getObjCMethodCall(ME, State, LC);
1491   } else {
1492     return nullptr;
1493   }
1494 }
1495