1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/None.h"
51 #include "llvm/ADT/Optional.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <utility>
64 
65 #define DEBUG_TYPE "static-analyzer-call-event"
66 
67 using namespace clang;
68 using namespace ento;
69 
70 QualType CallEvent::getResultType() const {
71   ASTContext &Ctx = getState()->getStateManager().getContext();
72   const Expr *E = getOriginExpr();
73   if (!E)
74     return Ctx.VoidTy;
75   assert(E);
76 
77   QualType ResultTy = E->getType();
78 
79   // A function that returns a reference to 'int' will have a result type
80   // of simply 'int'. Check the origin expr's value kind to recover the
81   // proper type.
82   switch (E->getValueKind()) {
83   case VK_LValue:
84     ResultTy = Ctx.getLValueReferenceType(ResultTy);
85     break;
86   case VK_XValue:
87     ResultTy = Ctx.getRValueReferenceType(ResultTy);
88     break;
89   case VK_RValue:
90     // No adjustment is necessary.
91     break;
92   }
93 
94   return ResultTy;
95 }
96 
97 static bool isCallback(QualType T) {
98   // If a parameter is a block or a callback, assume it can modify pointer.
99   if (T->isBlockPointerType() ||
100       T->isFunctionPointerType() ||
101       T->isObjCSelType())
102     return true;
103 
104   // Check if a callback is passed inside a struct (for both, struct passed by
105   // reference and by value). Dig just one level into the struct for now.
106 
107   if (T->isAnyPointerType() || T->isReferenceType())
108     T = T->getPointeeType();
109 
110   if (const RecordType *RT = T->getAsStructureType()) {
111     const RecordDecl *RD = RT->getDecl();
112     for (const auto *I : RD->fields()) {
113       QualType FieldT = I->getType();
114       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
115         return true;
116     }
117   }
118   return false;
119 }
120 
121 static bool isVoidPointerToNonConst(QualType T) {
122   if (const auto *PT = T->getAs<PointerType>()) {
123     QualType PointeeTy = PT->getPointeeType();
124     if (PointeeTy.isConstQualified())
125       return false;
126     return PointeeTy->isVoidType();
127   } else
128     return false;
129 }
130 
131 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
132   unsigned NumOfArgs = getNumArgs();
133 
134   // If calling using a function pointer, assume the function does not
135   // satisfy the callback.
136   // TODO: We could check the types of the arguments here.
137   if (!getDecl())
138     return false;
139 
140   unsigned Idx = 0;
141   for (CallEvent::param_type_iterator I = param_type_begin(),
142                                       E = param_type_end();
143        I != E && Idx < NumOfArgs; ++I, ++Idx) {
144     // If the parameter is 0, it's harmless.
145     if (getArgSVal(Idx).isZeroConstant())
146       continue;
147 
148     if (Condition(*I))
149       return true;
150   }
151   return false;
152 }
153 
154 bool CallEvent::hasNonZeroCallbackArg() const {
155   return hasNonNullArgumentsWithType(isCallback);
156 }
157 
158 bool CallEvent::hasVoidPointerToNonConstArg() const {
159   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
160 }
161 
162 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
163   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
164   if (!FD)
165     return false;
166 
167   return CheckerContext::isCLibraryFunction(FD, FunctionName);
168 }
169 
170 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
171   const Decl *D = getDecl();
172   if (!D)
173     return nullptr;
174 
175   // TODO: For now we skip functions without definitions, even if we have
176   // our own getDecl(), because it's hard to find out which re-declaration
177   // is going to be used, and usually clients don't really care about this
178   // situation because there's a loss of precision anyway because we cannot
179   // inline the call.
180   RuntimeDefinition RD = getRuntimeDefinition();
181   if (!RD.getDecl())
182     return nullptr;
183 
184   AnalysisDeclContext *ADC =
185       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
186 
187   // TODO: For now we skip virtual functions, because this also rises
188   // the problem of which decl to use, but now it's across different classes.
189   if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
190     return nullptr;
191 
192   return ADC;
193 }
194 
195 const StackFrameContext *
196 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
197   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
198   if (!ADC)
199     return nullptr;
200 
201   const Expr *E = getOriginExpr();
202   if (!E)
203     return nullptr;
204 
205   // Recover CFG block via reverse lookup.
206   // TODO: If we were to keep CFG element information as part of the CallEvent
207   // instead of doing this reverse lookup, we would be able to build the stack
208   // frame for non-expression-based calls, and also we wouldn't need the reverse
209   // lookup.
210   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
211   const CFGBlock *B = Map->getBlock(E);
212   assert(B);
213 
214   // Also recover CFG index by scanning the CFG block.
215   unsigned Idx = 0, Sz = B->size();
216   for (; Idx < Sz; ++Idx)
217     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
218       if (StmtElem->getStmt() == E)
219         break;
220   assert(Idx < Sz);
221 
222   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
223 }
224 
225 const VarRegion *CallEvent::getParameterLocation(unsigned Index,
226                                                  unsigned BlockCount) const {
227   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
228   // We cannot construct a VarRegion without a stack frame.
229   if (!SFC)
230     return nullptr;
231 
232   // Retrieve parameters of the definition, which are different from
233   // CallEvent's parameters() because getDecl() isn't necessarily
234   // the definition. SFC contains the definition that would be used
235   // during analysis.
236   const Decl *D = SFC->getDecl();
237 
238   // TODO: Refactor into a virtual method of CallEvent, like parameters().
239   const ParmVarDecl *PVD = nullptr;
240   if (const auto *FD = dyn_cast<FunctionDecl>(D))
241     PVD = FD->parameters()[Index];
242   else if (const auto *BD = dyn_cast<BlockDecl>(D))
243     PVD = BD->parameters()[Index];
244   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
245     PVD = MD->parameters()[Index];
246   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
247     PVD = CD->parameters()[Index];
248   assert(PVD && "Unexpected Decl kind!");
249 
250   const VarRegion *VR =
251       State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
252 
253   // This sanity check would fail if our parameter declaration doesn't
254   // correspond to the stack frame's function declaration.
255   assert(VR->getStackFrame() == SFC);
256 
257   return VR;
258 }
259 
260 /// Returns true if a type is a pointer-to-const or reference-to-const
261 /// with no further indirection.
262 static bool isPointerToConst(QualType Ty) {
263   QualType PointeeTy = Ty->getPointeeType();
264   if (PointeeTy == QualType())
265     return false;
266   if (!PointeeTy.isConstQualified())
267     return false;
268   if (PointeeTy->isAnyPointerType())
269     return false;
270   return true;
271 }
272 
273 // Try to retrieve the function declaration and find the function parameter
274 // types which are pointers/references to a non-pointer const.
275 // We will not invalidate the corresponding argument regions.
276 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
277                                  const CallEvent &Call) {
278   unsigned Idx = 0;
279   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
280                                       E = Call.param_type_end();
281        I != E; ++I, ++Idx) {
282     if (isPointerToConst(*I))
283       PreserveArgs.insert(Idx);
284   }
285 }
286 
287 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
288                                              ProgramStateRef Orig) const {
289   ProgramStateRef Result = (Orig ? Orig : getState());
290 
291   // Don't invalidate anything if the callee is marked pure/const.
292   if (const Decl *callee = getDecl())
293     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
294       return Result;
295 
296   SmallVector<SVal, 8> ValuesToInvalidate;
297   RegionAndSymbolInvalidationTraits ETraits;
298 
299   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
300 
301   // Indexes of arguments whose values will be preserved by the call.
302   llvm::SmallSet<unsigned, 4> PreserveArgs;
303   if (!argumentsMayEscape())
304     findPtrToConstParams(PreserveArgs, *this);
305 
306   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
307     // Mark this region for invalidation.  We batch invalidate regions
308     // below for efficiency.
309     if (PreserveArgs.count(Idx))
310       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
311         ETraits.setTrait(MR->getBaseRegion(),
312                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
313         // TODO: Factor this out + handle the lower level const pointers.
314 
315     ValuesToInvalidate.push_back(getArgSVal(Idx));
316 
317     // If a function accepts an object by argument (which would of course be a
318     // temporary that isn't lifetime-extended), invalidate the object itself,
319     // not only other objects reachable from it. This is necessary because the
320     // destructor has access to the temporary object after the call.
321     // TODO: Support placement arguments once we start
322     // constructing them directly.
323     // TODO: This is unnecessary when there's no destructor, but that's
324     // currently hard to figure out.
325     if (getKind() != CE_CXXAllocator)
326       if (isArgumentConstructedDirectly(Idx))
327         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
328           if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
329             ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
330   }
331 
332   // Invalidate designated regions using the batch invalidation API.
333   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
334   //  global variables.
335   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
336                                    BlockCount, getLocationContext(),
337                                    /*CausedByPointerEscape*/ true,
338                                    /*Symbols=*/nullptr, this, &ETraits);
339 }
340 
341 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
342                                         const ProgramPointTag *Tag) const {
343   if (const Expr *E = getOriginExpr()) {
344     if (IsPreVisit)
345       return PreStmt(E, getLocationContext(), Tag);
346     return PostStmt(E, getLocationContext(), Tag);
347   }
348 
349   const Decl *D = getDecl();
350   assert(D && "Cannot get a program point without a statement or decl");
351 
352   SourceLocation Loc = getSourceRange().getBegin();
353   if (IsPreVisit)
354     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
355   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
356 }
357 
358 bool CallEvent::isCalled(const CallDescription &CD) const {
359   // FIXME: Add ObjC Message support.
360   if (getKind() == CE_ObjCMessage)
361     return false;
362 
363   const IdentifierInfo *II = getCalleeIdentifier();
364   if (!II)
365     return false;
366   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
367   if (!FD)
368     return false;
369 
370   if (CD.Flags & CDF_MaybeBuiltin) {
371     return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
372            (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
373            (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
374   }
375 
376   if (!CD.IsLookupDone) {
377     CD.IsLookupDone = true;
378     CD.II = &getState()->getStateManager().getContext().Idents.get(
379         CD.getFunctionName());
380   }
381 
382   if (II != CD.II)
383     return false;
384 
385   // If CallDescription provides prefix names, use them to improve matching
386   // accuracy.
387   if (CD.QualifiedName.size() > 1 && FD) {
388     const DeclContext *Ctx = FD->getDeclContext();
389     // See if we'll be able to match them all.
390     size_t NumUnmatched = CD.QualifiedName.size() - 1;
391     for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
392       if (NumUnmatched == 0)
393         break;
394 
395       if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
396         if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
397           --NumUnmatched;
398         continue;
399       }
400 
401       if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
402         if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
403           --NumUnmatched;
404         continue;
405       }
406     }
407 
408     if (NumUnmatched > 0)
409       return false;
410   }
411 
412   return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
413          (!CD.RequiredParams || CD.RequiredParams == parameters().size());
414 }
415 
416 SVal CallEvent::getArgSVal(unsigned Index) const {
417   const Expr *ArgE = getArgExpr(Index);
418   if (!ArgE)
419     return UnknownVal();
420   return getSVal(ArgE);
421 }
422 
423 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
424   const Expr *ArgE = getArgExpr(Index);
425   if (!ArgE)
426     return {};
427   return ArgE->getSourceRange();
428 }
429 
430 SVal CallEvent::getReturnValue() const {
431   const Expr *E = getOriginExpr();
432   if (!E)
433     return UndefinedVal();
434   return getSVal(E);
435 }
436 
437 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
438 
439 void CallEvent::dump(raw_ostream &Out) const {
440   ASTContext &Ctx = getState()->getStateManager().getContext();
441   if (const Expr *E = getOriginExpr()) {
442     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
443     Out << "\n";
444     return;
445   }
446 
447   if (const Decl *D = getDecl()) {
448     Out << "Call to ";
449     D->print(Out, Ctx.getPrintingPolicy());
450     return;
451   }
452 
453   // FIXME: a string representation of the kind would be nice.
454   Out << "Unknown call (type " << getKind() << ")";
455 }
456 
457 bool CallEvent::isCallStmt(const Stmt *S) {
458   return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
459                           || isa<CXXConstructExpr>(S)
460                           || isa<CXXNewExpr>(S);
461 }
462 
463 QualType CallEvent::getDeclaredResultType(const Decl *D) {
464   assert(D);
465   if (const auto *FD = dyn_cast<FunctionDecl>(D))
466     return FD->getReturnType();
467   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
468     return MD->getReturnType();
469   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
470     // Blocks are difficult because the return type may not be stored in the
471     // BlockDecl itself. The AST should probably be enhanced, but for now we
472     // just do what we can.
473     // If the block is declared without an explicit argument list, the
474     // signature-as-written just includes the return type, not the entire
475     // function type.
476     // FIXME: All blocks should have signatures-as-written, even if the return
477     // type is inferred. (That's signified with a dependent result type.)
478     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
479       QualType Ty = TSI->getType();
480       if (const FunctionType *FT = Ty->getAs<FunctionType>())
481         Ty = FT->getReturnType();
482       if (!Ty->isDependentType())
483         return Ty;
484     }
485 
486     return {};
487   }
488 
489   llvm_unreachable("unknown callable kind");
490 }
491 
492 bool CallEvent::isVariadic(const Decl *D) {
493   assert(D);
494 
495   if (const auto *FD = dyn_cast<FunctionDecl>(D))
496     return FD->isVariadic();
497   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
498     return MD->isVariadic();
499   if (const auto *BD = dyn_cast<BlockDecl>(D))
500     return BD->isVariadic();
501 
502   llvm_unreachable("unknown callable kind");
503 }
504 
505 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
506                                          CallEvent::BindingsTy &Bindings,
507                                          SValBuilder &SVB,
508                                          const CallEvent &Call,
509                                          ArrayRef<ParmVarDecl*> parameters) {
510   MemRegionManager &MRMgr = SVB.getRegionManager();
511 
512   // If the function has fewer parameters than the call has arguments, we simply
513   // do not bind any values to them.
514   unsigned NumArgs = Call.getNumArgs();
515   unsigned Idx = 0;
516   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
517   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
518     const ParmVarDecl *ParamDecl = *I;
519     assert(ParamDecl && "Formal parameter has no decl?");
520 
521     // TODO: Support allocator calls.
522     if (Call.getKind() != CE_CXXAllocator)
523       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
524         continue;
525 
526     // TODO: Allocators should receive the correct size and possibly alignment,
527     // determined in compile-time but not represented as arg-expressions,
528     // which makes getArgSVal() fail and return UnknownVal.
529     SVal ArgVal = Call.getArgSVal(Idx);
530     if (!ArgVal.isUnknown()) {
531       Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
532       Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
533     }
534   }
535 
536   // FIXME: Variadic arguments are not handled at all right now.
537 }
538 
539 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
540   const FunctionDecl *D = getDecl();
541   if (!D)
542     return None;
543   return D->parameters();
544 }
545 
546 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
547   const FunctionDecl *FD = getDecl();
548   if (!FD)
549     return {};
550 
551   // Note that the AnalysisDeclContext will have the FunctionDecl with
552   // the definition (if one exists).
553   AnalysisDeclContext *AD =
554     getLocationContext()->getAnalysisDeclContext()->
555     getManager()->getContext(FD);
556   bool IsAutosynthesized;
557   Stmt* Body = AD->getBody(IsAutosynthesized);
558   LLVM_DEBUG({
559     if (IsAutosynthesized)
560       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
561                    << "\n";
562   });
563   if (Body) {
564     const Decl* Decl = AD->getDecl();
565     return RuntimeDefinition(Decl);
566   }
567 
568   SubEngine &Engine = getState()->getStateManager().getOwningEngine();
569   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
570 
571   // Try to get CTU definition only if CTUDir is provided.
572   if (!Opts.IsNaiveCTUEnabled)
573     return {};
574 
575   cross_tu::CrossTranslationUnitContext &CTUCtx =
576       *Engine.getCrossTranslationUnitContext();
577   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
578       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
579                                   Opts.DisplayCTUProgress);
580 
581   if (!CTUDeclOrError) {
582     handleAllErrors(CTUDeclOrError.takeError(),
583                     [&](const cross_tu::IndexError &IE) {
584                       CTUCtx.emitCrossTUDiagnostics(IE);
585                     });
586     return {};
587   }
588 
589   return RuntimeDefinition(*CTUDeclOrError);
590 }
591 
592 void AnyFunctionCall::getInitialStackFrameContents(
593                                         const StackFrameContext *CalleeCtx,
594                                         BindingsTy &Bindings) const {
595   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
596   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
597   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
598                                D->parameters());
599 }
600 
601 bool AnyFunctionCall::argumentsMayEscape() const {
602   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
603     return true;
604 
605   const FunctionDecl *D = getDecl();
606   if (!D)
607     return true;
608 
609   const IdentifierInfo *II = D->getIdentifier();
610   if (!II)
611     return false;
612 
613   // This set of "escaping" APIs is
614 
615   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
616   //   value into thread local storage. The value can later be retrieved with
617   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
618   //   parameter is 'const void *', the region escapes through the call.
619   if (II->isStr("pthread_setspecific"))
620     return true;
621 
622   // - xpc_connection_set_context stores a value which can be retrieved later
623   //   with xpc_connection_get_context.
624   if (II->isStr("xpc_connection_set_context"))
625     return true;
626 
627   // - funopen - sets a buffer for future IO calls.
628   if (II->isStr("funopen"))
629     return true;
630 
631   // - __cxa_demangle - can reallocate memory and can return the pointer to
632   // the input buffer.
633   if (II->isStr("__cxa_demangle"))
634     return true;
635 
636   StringRef FName = II->getName();
637 
638   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
639   //   buffer even if it is const.
640   if (FName.endswith("NoCopy"))
641     return true;
642 
643   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
644   //   be deallocated by NSMapRemove.
645   if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
646     return true;
647 
648   // - Many CF containers allow objects to escape through custom
649   //   allocators/deallocators upon container construction. (PR12101)
650   if (FName.startswith("CF") || FName.startswith("CG")) {
651     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
652            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
653            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
654            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
655            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
656            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
657   }
658 
659   return false;
660 }
661 
662 const FunctionDecl *SimpleFunctionCall::getDecl() const {
663   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
664   if (D)
665     return D;
666 
667   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
668 }
669 
670 const FunctionDecl *CXXInstanceCall::getDecl() const {
671   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
672   if (!CE)
673     return AnyFunctionCall::getDecl();
674 
675   const FunctionDecl *D = CE->getDirectCallee();
676   if (D)
677     return D;
678 
679   return getSVal(CE->getCallee()).getAsFunctionDecl();
680 }
681 
682 void CXXInstanceCall::getExtraInvalidatedValues(
683     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
684   SVal ThisVal = getCXXThisVal();
685   Values.push_back(ThisVal);
686 
687   // Don't invalidate if the method is const and there are no mutable fields.
688   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
689     if (!D->isConst())
690       return;
691     // Get the record decl for the class of 'This'. D->getParent() may return a
692     // base class decl, rather than the class of the instance which needs to be
693     // checked for mutable fields.
694     // TODO: We might as well look at the dynamic type of the object.
695     const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
696     QualType T = Ex->getType();
697     if (T->isPointerType()) // Arrow or implicit-this syntax?
698       T = T->getPointeeType();
699     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
700     assert(ParentRecord);
701     if (ParentRecord->hasMutableFields())
702       return;
703     // Preserve CXXThis.
704     const MemRegion *ThisRegion = ThisVal.getAsRegion();
705     if (!ThisRegion)
706       return;
707 
708     ETraits->setTrait(ThisRegion->getBaseRegion(),
709                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
710   }
711 }
712 
713 SVal CXXInstanceCall::getCXXThisVal() const {
714   const Expr *Base = getCXXThisExpr();
715   // FIXME: This doesn't handle an overloaded ->* operator.
716   if (!Base)
717     return UnknownVal();
718 
719   SVal ThisVal = getSVal(Base);
720   assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
721   return ThisVal;
722 }
723 
724 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
725   // Do we have a decl at all?
726   const Decl *D = getDecl();
727   if (!D)
728     return {};
729 
730   // If the method is non-virtual, we know we can inline it.
731   const auto *MD = cast<CXXMethodDecl>(D);
732   if (!MD->isVirtual())
733     return AnyFunctionCall::getRuntimeDefinition();
734 
735   // Do we know the implicit 'this' object being called?
736   const MemRegion *R = getCXXThisVal().getAsRegion();
737   if (!R)
738     return {};
739 
740   // Do we know anything about the type of 'this'?
741   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
742   if (!DynType.isValid())
743     return {};
744 
745   // Is the type a C++ class? (This is mostly a defensive check.)
746   QualType RegionType = DynType.getType()->getPointeeType();
747   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
748 
749   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
750   if (!RD || !RD->hasDefinition())
751     return {};
752 
753   // Find the decl for this method in that class.
754   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
755   if (!Result) {
756     // We might not even get the original statically-resolved method due to
757     // some particularly nasty casting (e.g. casts to sister classes).
758     // However, we should at least be able to search up and down our own class
759     // hierarchy, and some real bugs have been caught by checking this.
760     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
761 
762     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
763     // the static type. However, because we currently don't update
764     // DynamicTypeInfo when an object is cast, we can't actually be sure the
765     // DynamicTypeInfo is up to date. This assert should be re-enabled once
766     // this is fixed. <rdar://problem/12287087>
767     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
768 
769     return {};
770   }
771 
772   // Does the decl that we found have an implementation?
773   const FunctionDecl *Definition;
774   if (!Result->hasBody(Definition)) {
775     if (!DynType.canBeASubClass())
776       return AnyFunctionCall::getRuntimeDefinition();
777     return {};
778   }
779 
780   // We found a definition. If we're not sure that this devirtualization is
781   // actually what will happen at runtime, make sure to provide the region so
782   // that ExprEngine can decide what to do with it.
783   if (DynType.canBeASubClass())
784     return RuntimeDefinition(Definition, R->StripCasts());
785   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
786 }
787 
788 void CXXInstanceCall::getInitialStackFrameContents(
789                                             const StackFrameContext *CalleeCtx,
790                                             BindingsTy &Bindings) const {
791   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
792 
793   // Handle the binding of 'this' in the new stack frame.
794   SVal ThisVal = getCXXThisVal();
795   if (!ThisVal.isUnknown()) {
796     ProgramStateManager &StateMgr = getState()->getStateManager();
797     SValBuilder &SVB = StateMgr.getSValBuilder();
798 
799     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
800     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
801 
802     // If we devirtualized to a different member function, we need to make sure
803     // we have the proper layering of CXXBaseObjectRegions.
804     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
805       ASTContext &Ctx = SVB.getContext();
806       const CXXRecordDecl *Class = MD->getParent();
807       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
808 
809       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
810       bool Failed;
811       ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
812       if (Failed) {
813         // We might have suffered some sort of placement new earlier, so
814         // we're constructing in a completely unexpected storage.
815         // Fall back to a generic pointer cast for this-value.
816         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
817         const CXXRecordDecl *StaticClass = StaticMD->getParent();
818         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
819         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
820       }
821     }
822 
823     if (!ThisVal.isUnknown())
824       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
825   }
826 }
827 
828 const Expr *CXXMemberCall::getCXXThisExpr() const {
829   return getOriginExpr()->getImplicitObjectArgument();
830 }
831 
832 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
833   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
834   // id-expression in the class member access expression is a qualified-id,
835   // that function is called. Otherwise, its final overrider in the dynamic type
836   // of the object expression is called.
837   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
838     if (ME->hasQualifier())
839       return AnyFunctionCall::getRuntimeDefinition();
840 
841   return CXXInstanceCall::getRuntimeDefinition();
842 }
843 
844 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
845   return getOriginExpr()->getArg(0);
846 }
847 
848 const BlockDataRegion *BlockCall::getBlockRegion() const {
849   const Expr *Callee = getOriginExpr()->getCallee();
850   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
851 
852   return dyn_cast_or_null<BlockDataRegion>(DataReg);
853 }
854 
855 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
856   const BlockDecl *D = getDecl();
857   if (!D)
858     return None;
859   return D->parameters();
860 }
861 
862 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
863                   RegionAndSymbolInvalidationTraits *ETraits) const {
864   // FIXME: This also needs to invalidate captured globals.
865   if (const MemRegion *R = getBlockRegion())
866     Values.push_back(loc::MemRegionVal(R));
867 }
868 
869 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
870                                              BindingsTy &Bindings) const {
871   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
872   ArrayRef<ParmVarDecl*> Params;
873   if (isConversionFromLambda()) {
874     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
875     Params = LambdaOperatorDecl->parameters();
876 
877     // For blocks converted from a C++ lambda, the callee declaration is the
878     // operator() method on the lambda so we bind "this" to
879     // the lambda captured by the block.
880     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
881     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
882     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
883     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
884   } else {
885     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
886   }
887 
888   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
889                                Params);
890 }
891 
892 SVal CXXConstructorCall::getCXXThisVal() const {
893   if (Data)
894     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
895   return UnknownVal();
896 }
897 
898 void CXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
899                            RegionAndSymbolInvalidationTraits *ETraits) const {
900   if (Data) {
901     loc::MemRegionVal MV(static_cast<const MemRegion *>(Data));
902     if (SymbolRef Sym = MV.getAsSymbol(true))
903       ETraits->setTrait(Sym,
904                         RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
905     Values.push_back(MV);
906   }
907 }
908 
909 void CXXConstructorCall::getInitialStackFrameContents(
910                                              const StackFrameContext *CalleeCtx,
911                                              BindingsTy &Bindings) const {
912   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
913 
914   SVal ThisVal = getCXXThisVal();
915   if (!ThisVal.isUnknown()) {
916     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
917     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
918     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
919     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
920   }
921 }
922 
923 SVal CXXDestructorCall::getCXXThisVal() const {
924   if (Data)
925     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
926   return UnknownVal();
927 }
928 
929 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
930   // Base destructors are always called non-virtually.
931   // Skip CXXInstanceCall's devirtualization logic in this case.
932   if (isBaseDestructor())
933     return AnyFunctionCall::getRuntimeDefinition();
934 
935   return CXXInstanceCall::getRuntimeDefinition();
936 }
937 
938 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
939   const ObjCMethodDecl *D = getDecl();
940   if (!D)
941     return None;
942   return D->parameters();
943 }
944 
945 void ObjCMethodCall::getExtraInvalidatedValues(
946     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
947 
948   // If the method call is a setter for property known to be backed by
949   // an instance variable, don't invalidate the entire receiver, just
950   // the storage for that instance variable.
951   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
952     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
953       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
954       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
955         ETraits->setTrait(
956           IvarRegion,
957           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
958         ETraits->setTrait(
959           IvarRegion,
960           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
961         Values.push_back(IvarLVal);
962       }
963       return;
964     }
965   }
966 
967   Values.push_back(getReceiverSVal());
968 }
969 
970 SVal ObjCMethodCall::getSelfSVal() const {
971   const LocationContext *LCtx = getLocationContext();
972   const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
973   if (!SelfDecl)
974     return SVal();
975   return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
976 }
977 
978 SVal ObjCMethodCall::getReceiverSVal() const {
979   // FIXME: Is this the best way to handle class receivers?
980   if (!isInstanceMessage())
981     return UnknownVal();
982 
983   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
984     return getSVal(RecE);
985 
986   // An instance message with no expression means we are sending to super.
987   // In this case the object reference is the same as 'self'.
988   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
989   SVal SelfVal = getSelfSVal();
990   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
991   return SelfVal;
992 }
993 
994 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
995   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
996       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
997       return true;
998 
999   if (!isInstanceMessage())
1000     return false;
1001 
1002   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1003 
1004   return (RecVal == getSelfSVal());
1005 }
1006 
1007 SourceRange ObjCMethodCall::getSourceRange() const {
1008   switch (getMessageKind()) {
1009   case OCM_Message:
1010     return getOriginExpr()->getSourceRange();
1011   case OCM_PropertyAccess:
1012   case OCM_Subscript:
1013     return getContainingPseudoObjectExpr()->getSourceRange();
1014   }
1015   llvm_unreachable("unknown message kind");
1016 }
1017 
1018 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1019 
1020 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1021   assert(Data && "Lazy lookup not yet performed.");
1022   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1023   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1024 }
1025 
1026 static const Expr *
1027 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1028   const Expr *Syntactic = POE->getSyntacticForm();
1029 
1030   // This handles the funny case of assigning to the result of a getter.
1031   // This can happen if the getter returns a non-const reference.
1032   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1033     Syntactic = BO->getLHS();
1034 
1035   return Syntactic;
1036 }
1037 
1038 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1039   if (!Data) {
1040     // Find the parent, ignoring implicit casts.
1041     const ParentMap &PM = getLocationContext()->getParentMap();
1042     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1043 
1044     // Check if parent is a PseudoObjectExpr.
1045     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1046       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1047 
1048       ObjCMessageKind K;
1049       switch (Syntactic->getStmtClass()) {
1050       case Stmt::ObjCPropertyRefExprClass:
1051         K = OCM_PropertyAccess;
1052         break;
1053       case Stmt::ObjCSubscriptRefExprClass:
1054         K = OCM_Subscript;
1055         break;
1056       default:
1057         // FIXME: Can this ever happen?
1058         K = OCM_Message;
1059         break;
1060       }
1061 
1062       if (K != OCM_Message) {
1063         const_cast<ObjCMethodCall *>(this)->Data
1064           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1065         assert(getMessageKind() == K);
1066         return K;
1067       }
1068     }
1069 
1070     const_cast<ObjCMethodCall *>(this)->Data
1071       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1072     assert(getMessageKind() == OCM_Message);
1073     return OCM_Message;
1074   }
1075 
1076   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1077   if (!Info.getPointer())
1078     return OCM_Message;
1079   return static_cast<ObjCMessageKind>(Info.getInt());
1080 }
1081 
1082 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1083   // Look for properties accessed with property syntax (foo.bar = ...)
1084   if (getMessageKind() == OCM_PropertyAccess) {
1085     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1086     assert(POE && "Property access without PseudoObjectExpr?");
1087 
1088     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1089     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1090 
1091     if (RefExpr->isExplicitProperty())
1092       return RefExpr->getExplicitProperty();
1093   }
1094 
1095   // Look for properties accessed with method syntax ([foo setBar:...]).
1096   const ObjCMethodDecl *MD = getDecl();
1097   if (!MD || !MD->isPropertyAccessor())
1098     return nullptr;
1099 
1100   // Note: This is potentially quite slow.
1101   return MD->findPropertyDecl();
1102 }
1103 
1104 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1105                                              Selector Sel) const {
1106   assert(IDecl);
1107   AnalysisManager &AMgr =
1108       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1109   // If the class interface is declared inside the main file, assume it is not
1110   // subcassed.
1111   // TODO: It could actually be subclassed if the subclass is private as well.
1112   // This is probably very rare.
1113   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1114   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1115     return false;
1116 
1117   // Assume that property accessors are not overridden.
1118   if (getMessageKind() == OCM_PropertyAccess)
1119     return false;
1120 
1121   // We assume that if the method is public (declared outside of main file) or
1122   // has a parent which publicly declares the method, the method could be
1123   // overridden in a subclass.
1124 
1125   // Find the first declaration in the class hierarchy that declares
1126   // the selector.
1127   ObjCMethodDecl *D = nullptr;
1128   while (true) {
1129     D = IDecl->lookupMethod(Sel, true);
1130 
1131     // Cannot find a public definition.
1132     if (!D)
1133       return false;
1134 
1135     // If outside the main file,
1136     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1137       return true;
1138 
1139     if (D->isOverriding()) {
1140       // Search in the superclass on the next iteration.
1141       IDecl = D->getClassInterface();
1142       if (!IDecl)
1143         return false;
1144 
1145       IDecl = IDecl->getSuperClass();
1146       if (!IDecl)
1147         return false;
1148 
1149       continue;
1150     }
1151 
1152     return false;
1153   };
1154 
1155   llvm_unreachable("The while loop should always terminate.");
1156 }
1157 
1158 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1159   if (!MD)
1160     return MD;
1161 
1162   // Find the redeclaration that defines the method.
1163   if (!MD->hasBody()) {
1164     for (auto I : MD->redecls())
1165       if (I->hasBody())
1166         MD = cast<ObjCMethodDecl>(I);
1167   }
1168   return MD;
1169 }
1170 
1171 static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
1172   const Expr* InstRec = ME->getInstanceReceiver();
1173   if (!InstRec)
1174     return false;
1175   const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
1176 
1177   // Check that receiver is called 'self'.
1178   if (!InstRecIg || !InstRecIg->getFoundDecl() ||
1179       !InstRecIg->getFoundDecl()->getName().equals("self"))
1180     return false;
1181 
1182   // Check that the method name is 'class'.
1183   if (ME->getSelector().getNumArgs() != 0 ||
1184       !ME->getSelector().getNameForSlot(0).equals("class"))
1185     return false;
1186 
1187   return true;
1188 }
1189 
1190 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1191   const ObjCMessageExpr *E = getOriginExpr();
1192   assert(E);
1193   Selector Sel = E->getSelector();
1194 
1195   if (E->isInstanceMessage()) {
1196     // Find the receiver type.
1197     const ObjCObjectPointerType *ReceiverT = nullptr;
1198     bool CanBeSubClassed = false;
1199     QualType SupersType = E->getSuperType();
1200     const MemRegion *Receiver = nullptr;
1201 
1202     if (!SupersType.isNull()) {
1203       // The receiver is guaranteed to be 'super' in this case.
1204       // Super always means the type of immediate predecessor to the method
1205       // where the call occurs.
1206       ReceiverT = cast<ObjCObjectPointerType>(SupersType);
1207     } else {
1208       Receiver = getReceiverSVal().getAsRegion();
1209       if (!Receiver)
1210         return {};
1211 
1212       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1213       if (!DTI.isValid()) {
1214         assert(isa<AllocaRegion>(Receiver) &&
1215                "Unhandled untyped region class!");
1216         return {};
1217       }
1218 
1219       QualType DynType = DTI.getType();
1220       CanBeSubClassed = DTI.canBeASubClass();
1221       ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1222 
1223       if (ReceiverT && CanBeSubClassed)
1224         if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
1225           if (!canBeOverridenInSubclass(IDecl, Sel))
1226             CanBeSubClassed = false;
1227     }
1228 
1229     // Handle special cases of '[self classMethod]' and
1230     // '[[self class] classMethod]', which are treated by the compiler as
1231     // instance (not class) messages. We will statically dispatch to those.
1232     if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
1233       // For [self classMethod], return the compiler visible declaration.
1234       if (PT->getObjectType()->isObjCClass() &&
1235           Receiver == getSelfSVal().getAsRegion())
1236         return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1237 
1238       // Similarly, handle [[self class] classMethod].
1239       // TODO: We are currently doing a syntactic match for this pattern with is
1240       // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
1241       // shows. A better way would be to associate the meta type with the symbol
1242       // using the dynamic type info tracking and use it here. We can add a new
1243       // SVal for ObjC 'Class' values that know what interface declaration they
1244       // come from. Then 'self' in a class method would be filled in with
1245       // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
1246       // do proper dynamic dispatch for class methods just like we do for
1247       // instance methods now.
1248       if (E->getInstanceReceiver())
1249         if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
1250           if (isCallToSelfClass(M))
1251             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1252     }
1253 
1254     // Lookup the instance method implementation.
1255     if (ReceiverT)
1256       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
1257         // Repeatedly calling lookupPrivateMethod() is expensive, especially
1258         // when in many cases it returns null.  We cache the results so
1259         // that repeated queries on the same ObjCIntefaceDecl and Selector
1260         // don't incur the same cost.  On some test cases, we can see the
1261         // same query being issued thousands of times.
1262         //
1263         // NOTE: This cache is essentially a "global" variable, but it
1264         // only gets lazily created when we get here.  The value of the
1265         // cache probably comes from it being global across ExprEngines,
1266         // where the same queries may get issued.  If we are worried about
1267         // concurrency, or possibly loading/unloading ASTs, etc., we may
1268         // need to revisit this someday.  In terms of memory, this table
1269         // stays around until clang quits, which also may be bad if we
1270         // need to release memory.
1271         using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
1272         using PrivateMethodCache =
1273             llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
1274 
1275         static PrivateMethodCache PMC;
1276         Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
1277 
1278         // Query lookupPrivateMethod() if the cache does not hit.
1279         if (!Val.hasValue()) {
1280           Val = IDecl->lookupPrivateMethod(Sel);
1281 
1282           // If the method is a property accessor, we should try to "inline" it
1283           // even if we don't actually have an implementation.
1284           if (!*Val)
1285             if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
1286               if (CompileTimeMD->isPropertyAccessor()) {
1287                 if (!CompileTimeMD->getSelfDecl() &&
1288                     isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
1289                   // If the method is an accessor in a category, and it doesn't
1290                   // have a self declaration, first
1291                   // try to find the method in a class extension. This
1292                   // works around a bug in Sema where multiple accessors
1293                   // are synthesized for properties in class
1294                   // extensions that are redeclared in a category and the
1295                   // the implicit parameters are not filled in for
1296                   // the method on the category.
1297                   // This ensures we find the accessor in the extension, which
1298                   // has the implicit parameters filled in.
1299                   auto *ID = CompileTimeMD->getClassInterface();
1300                   for (auto *CatDecl : ID->visible_extensions()) {
1301                     Val = CatDecl->getMethod(Sel,
1302                                              CompileTimeMD->isInstanceMethod());
1303                     if (*Val)
1304                       break;
1305                   }
1306                 }
1307                 if (!*Val)
1308                   Val = IDecl->lookupInstanceMethod(Sel);
1309               }
1310         }
1311 
1312         const ObjCMethodDecl *MD = Val.getValue();
1313         if (MD && !MD->hasBody())
1314           MD = MD->getCanonicalDecl();
1315         if (CanBeSubClassed)
1316           return RuntimeDefinition(MD, Receiver);
1317         else
1318           return RuntimeDefinition(MD, nullptr);
1319       }
1320   } else {
1321     // This is a class method.
1322     // If we have type info for the receiver class, we are calling via
1323     // class name.
1324     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1325       // Find/Return the method implementation.
1326       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1327     }
1328   }
1329 
1330   return {};
1331 }
1332 
1333 bool ObjCMethodCall::argumentsMayEscape() const {
1334   if (isInSystemHeader() && !isInstanceMessage()) {
1335     Selector Sel = getSelector();
1336     if (Sel.getNumArgs() == 1 &&
1337         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1338       return true;
1339   }
1340 
1341   return CallEvent::argumentsMayEscape();
1342 }
1343 
1344 void ObjCMethodCall::getInitialStackFrameContents(
1345                                              const StackFrameContext *CalleeCtx,
1346                                              BindingsTy &Bindings) const {
1347   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1348   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1349   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1350                                D->parameters());
1351 
1352   SVal SelfVal = getReceiverSVal();
1353   if (!SelfVal.isUnknown()) {
1354     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1355     MemRegionManager &MRMgr = SVB.getRegionManager();
1356     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1357     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1358   }
1359 }
1360 
1361 CallEventRef<>
1362 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1363                                 const LocationContext *LCtx) {
1364   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1365     return create<CXXMemberCall>(MCE, State, LCtx);
1366 
1367   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1368     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1369     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1370       if (MD->isInstance())
1371         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1372 
1373   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1374     return create<BlockCall>(CE, State, LCtx);
1375   }
1376 
1377   // Otherwise, it's a normal function call, static member function call, or
1378   // something we can't reason about.
1379   return create<SimpleFunctionCall>(CE, State, LCtx);
1380 }
1381 
1382 CallEventRef<>
1383 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1384                             ProgramStateRef State) {
1385   const LocationContext *ParentCtx = CalleeCtx->getParent();
1386   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1387   assert(CallerCtx && "This should not be used for top-level stack frames");
1388 
1389   const Stmt *CallSite = CalleeCtx->getCallSite();
1390 
1391   if (CallSite) {
1392     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1393       return Out;
1394 
1395     // All other cases are handled by getCall.
1396     assert(isa<CXXConstructExpr>(CallSite) &&
1397            "This is not an inlineable statement");
1398 
1399     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1400     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1401     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1402     SVal ThisVal = State->getSVal(ThisPtr);
1403 
1404     return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
1405                                  ThisVal.getAsRegion(), State, CallerCtx);
1406   }
1407 
1408   // Fall back to the CFG. The only thing we haven't handled yet is
1409   // destructors, though this could change in the future.
1410   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1411   CFGElement E = (*B)[CalleeCtx->getIndex()];
1412   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1413          "All other CFG elements should have exprs");
1414 
1415   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1416   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1417   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1418   SVal ThisVal = State->getSVal(ThisPtr);
1419 
1420   const Stmt *Trigger;
1421   if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
1422     Trigger = AutoDtor->getTriggerStmt();
1423   else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1424     Trigger = DeleteDtor->getDeleteExpr();
1425   else
1426     Trigger = Dtor->getBody();
1427 
1428   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1429                               E.getAs<CFGBaseDtor>().hasValue(), State,
1430                               CallerCtx);
1431 }
1432 
1433 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1434                                          const LocationContext *LC) {
1435   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1436     return getSimpleCall(CE, State, LC);
1437   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1438     return getCXXAllocatorCall(NE, State, LC);
1439   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1440     return getObjCMethodCall(ME, State, LC);
1441   } else {
1442     return nullptr;
1443   }
1444 }
1445