1 //===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the template classes ExplodedNode and ExplodedGraph,
10 //  which represent a path-sensitive, intra-procedural "exploded graph."
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ParentMap.h"
18 #include "clang/AST/Stmt.h"
19 #include "clang/Analysis/CFGStmtMap.h"
20 #include "clang/Analysis/ProgramPoint.h"
21 #include "clang/Analysis/Support/BumpVector.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/PointerUnion.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/Support/Casting.h"
31 #include <cassert>
32 #include <memory>
33 #include <optional>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 //===----------------------------------------------------------------------===//
39 // Cleanup.
40 //===----------------------------------------------------------------------===//
41 
42 ExplodedGraph::ExplodedGraph() = default;
43 
44 ExplodedGraph::~ExplodedGraph() = default;
45 
46 //===----------------------------------------------------------------------===//
47 // Node reclamation.
48 //===----------------------------------------------------------------------===//
49 
50 bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
51   if (!Ex->isLValue())
52     return false;
53   return isa<DeclRefExpr, MemberExpr, ObjCIvarRefExpr, ArraySubscriptExpr>(Ex);
54 }
55 
56 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
57   // First, we only consider nodes for reclamation of the following
58   // conditions apply:
59   //
60   // (1) 1 predecessor (that has one successor)
61   // (2) 1 successor (that has one predecessor)
62   //
63   // If a node has no successor it is on the "frontier", while a node
64   // with no predecessor is a root.
65   //
66   // After these prerequisites, we discard all "filler" nodes that
67   // are used only for intermediate processing, and are not essential
68   // for analyzer history:
69   //
70   // (a) PreStmtPurgeDeadSymbols
71   //
72   // We then discard all other nodes where *all* of the following conditions
73   // apply:
74   //
75   // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
76   // (4) There is no 'tag' for the ProgramPoint.
77   // (5) The 'store' is the same as the predecessor.
78   // (6) The 'GDM' is the same as the predecessor.
79   // (7) The LocationContext is the same as the predecessor.
80   // (8) Expressions that are *not* lvalue expressions.
81   // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
82   // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or
83   //      PreImplicitCall (so that we would be able to find it when retrying a
84   //      call with no inlining).
85   // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.
86 
87   // Conditions 1 and 2.
88   if (node->pred_size() != 1 || node->succ_size() != 1)
89     return false;
90 
91   const ExplodedNode *pred = *(node->pred_begin());
92   if (pred->succ_size() != 1)
93     return false;
94 
95   const ExplodedNode *succ = *(node->succ_begin());
96   if (succ->pred_size() != 1)
97     return false;
98 
99   // Now reclaim any nodes that are (by definition) not essential to
100   // analysis history and are not consulted by any client code.
101   ProgramPoint progPoint = node->getLocation();
102   if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
103     return !progPoint.getTag();
104 
105   // Condition 3.
106   if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
107     return false;
108 
109   // Condition 4.
110   if (progPoint.getTag())
111     return false;
112 
113   // Conditions 5, 6, and 7.
114   ProgramStateRef state = node->getState();
115   ProgramStateRef pred_state = pred->getState();
116   if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
117       progPoint.getLocationContext() != pred->getLocationContext())
118     return false;
119 
120   // All further checks require expressions. As per #3, we know that we have
121   // a PostStmt.
122   const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt());
123   if (!Ex)
124     return false;
125 
126   // Condition 8.
127   // Do not collect nodes for "interesting" lvalue expressions since they are
128   // used extensively for generating path diagnostics.
129   if (isInterestingLValueExpr(Ex))
130     return false;
131 
132   // Condition 9.
133   // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
134   // diagnostic generation; specifically, so that we could anchor arrows
135   // pointing to the beginning of statements (as written in code).
136   const ParentMap &PM = progPoint.getLocationContext()->getParentMap();
137   if (!PM.isConsumedExpr(Ex))
138     return false;
139 
140   // Condition 10.
141   const ProgramPoint SuccLoc = succ->getLocation();
142   if (std::optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
143     if (CallEvent::isCallStmt(SP->getStmt()))
144       return false;
145 
146   // Condition 10, continuation.
147   if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>())
148     return false;
149 
150   return true;
151 }
152 
153 void ExplodedGraph::collectNode(ExplodedNode *node) {
154   // Removing a node means:
155   // (a) changing the predecessors successor to the successor of this node
156   // (b) changing the successors predecessor to the predecessor of this node
157   // (c) Putting 'node' onto freeNodes.
158   assert(node->pred_size() == 1 || node->succ_size() == 1);
159   ExplodedNode *pred = *(node->pred_begin());
160   ExplodedNode *succ = *(node->succ_begin());
161   pred->replaceSuccessor(succ);
162   succ->replacePredecessor(pred);
163   FreeNodes.push_back(node);
164   Nodes.RemoveNode(node);
165   --NumNodes;
166   node->~ExplodedNode();
167 }
168 
169 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
170   if (ChangedNodes.empty())
171     return;
172 
173   // Only periodically reclaim nodes so that we can build up a set of
174   // nodes that meet the reclamation criteria.  Freshly created nodes
175   // by definition have no successor, and thus cannot be reclaimed (see below).
176   assert(ReclaimCounter > 0);
177   if (--ReclaimCounter != 0)
178     return;
179   ReclaimCounter = ReclaimNodeInterval;
180 
181   for (const auto node : ChangedNodes)
182     if (shouldCollect(node))
183       collectNode(node);
184   ChangedNodes.clear();
185 }
186 
187 //===----------------------------------------------------------------------===//
188 // ExplodedNode.
189 //===----------------------------------------------------------------------===//
190 
191 // An NodeGroup's storage type is actually very much like a TinyPtrVector:
192 // it can be either a pointer to a single ExplodedNode, or a pointer to a
193 // BumpVector allocated with the ExplodedGraph's allocator. This allows the
194 // common case of single-node NodeGroups to be implemented with no extra memory.
195 //
196 // Consequently, each of the NodeGroup methods have up to four cases to handle:
197 // 1. The flag is set and this group does not actually contain any nodes.
198 // 2. The group is empty, in which case the storage value is null.
199 // 3. The group contains a single node.
200 // 4. The group contains more than one node.
201 using ExplodedNodeVector = BumpVector<ExplodedNode *>;
202 using GroupStorage = llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *>;
203 
204 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
205   assert(!V->isSink());
206   Preds.addNode(V, G);
207   V->Succs.addNode(this, G);
208 }
209 
210 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
211   assert(!getFlag());
212 
213   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
214   assert(Storage.is<ExplodedNode *>());
215   Storage = node;
216   assert(Storage.is<ExplodedNode *>());
217 }
218 
219 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
220   assert(!getFlag());
221 
222   GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
223   if (Storage.isNull()) {
224     Storage = N;
225     assert(Storage.is<ExplodedNode *>());
226     return;
227   }
228 
229   ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();
230 
231   if (!V) {
232     // Switch from single-node to multi-node representation.
233     ExplodedNode *Old = Storage.get<ExplodedNode *>();
234 
235     BumpVectorContext &Ctx = G.getNodeAllocator();
236     V = new (G.getAllocator()) ExplodedNodeVector(Ctx, 4);
237     V->push_back(Old, Ctx);
238 
239     Storage = V;
240     assert(!getFlag());
241     assert(Storage.is<ExplodedNodeVector *>());
242   }
243 
244   V->push_back(N, G.getNodeAllocator());
245 }
246 
247 unsigned ExplodedNode::NodeGroup::size() const {
248   if (getFlag())
249     return 0;
250 
251   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
252   if (Storage.isNull())
253     return 0;
254   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
255     return V->size();
256   return 1;
257 }
258 
259 ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
260   if (getFlag())
261     return nullptr;
262 
263   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
264   if (Storage.isNull())
265     return nullptr;
266   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
267     return V->begin();
268   return Storage.getAddrOfPtr1();
269 }
270 
271 ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
272   if (getFlag())
273     return nullptr;
274 
275   const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
276   if (Storage.isNull())
277     return nullptr;
278   if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
279     return V->end();
280   return Storage.getAddrOfPtr1() + 1;
281 }
282 
283 bool ExplodedNode::isTrivial() const {
284   return pred_size() == 1 && succ_size() == 1 &&
285          getFirstPred()->getState()->getID() == getState()->getID() &&
286          getFirstPred()->succ_size() == 1;
287 }
288 
289 const CFGBlock *ExplodedNode::getCFGBlock() const {
290   ProgramPoint P = getLocation();
291   if (auto BEP = P.getAs<BlockEntrance>())
292     return BEP->getBlock();
293 
294   // Find the node's current statement in the CFG.
295   // FIXME: getStmtForDiagnostics() does nasty things in order to provide
296   // a valid statement for body farms, do we need this behavior here?
297   if (const Stmt *S = getStmtForDiagnostics())
298     return getLocationContext()
299         ->getAnalysisDeclContext()
300         ->getCFGStmtMap()
301         ->getBlock(S);
302 
303   return nullptr;
304 }
305 
306 static const LocationContext *
307 findTopAutosynthesizedParentContext(const LocationContext *LC) {
308   assert(LC->getAnalysisDeclContext()->isBodyAutosynthesized());
309   const LocationContext *ParentLC = LC->getParent();
310   assert(ParentLC && "We don't start analysis from autosynthesized code");
311   while (ParentLC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
312     LC = ParentLC;
313     ParentLC = LC->getParent();
314     assert(ParentLC && "We don't start analysis from autosynthesized code");
315   }
316   return LC;
317 }
318 
319 const Stmt *ExplodedNode::getStmtForDiagnostics() const {
320   // We cannot place diagnostics on autosynthesized code.
321   // Put them onto the call site through which we jumped into autosynthesized
322   // code for the first time.
323   const LocationContext *LC = getLocationContext();
324   if (LC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
325     // It must be a stack frame because we only autosynthesize functions.
326     return cast<StackFrameContext>(findTopAutosynthesizedParentContext(LC))
327         ->getCallSite();
328   }
329   // Otherwise, see if the node's program point directly points to a statement.
330   // FIXME: Refactor into a ProgramPoint method?
331   ProgramPoint P = getLocation();
332   if (auto SP = P.getAs<StmtPoint>())
333     return SP->getStmt();
334   if (auto BE = P.getAs<BlockEdge>())
335     return BE->getSrc()->getTerminatorStmt();
336   if (auto CE = P.getAs<CallEnter>())
337     return CE->getCallExpr();
338   if (auto CEE = P.getAs<CallExitEnd>())
339     return CEE->getCalleeContext()->getCallSite();
340   if (auto PIPP = P.getAs<PostInitializer>())
341     return PIPP->getInitializer()->getInit();
342   if (auto CEB = P.getAs<CallExitBegin>())
343     return CEB->getReturnStmt();
344   if (auto FEP = P.getAs<FunctionExitPoint>())
345     return FEP->getStmt();
346 
347   return nullptr;
348 }
349 
350 const Stmt *ExplodedNode::getNextStmtForDiagnostics() const {
351   for (const ExplodedNode *N = getFirstSucc(); N; N = N->getFirstSucc()) {
352     if (const Stmt *S = N->getStmtForDiagnostics()) {
353       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
354       // not actual statement points.
355       switch (S->getStmtClass()) {
356         case Stmt::ChooseExprClass:
357         case Stmt::BinaryConditionalOperatorClass:
358         case Stmt::ConditionalOperatorClass:
359           continue;
360         case Stmt::BinaryOperatorClass: {
361           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
362           if (Op == BO_LAnd || Op == BO_LOr)
363             continue;
364           break;
365         }
366         default:
367           break;
368       }
369       // We found the statement, so return it.
370       return S;
371     }
372   }
373 
374   return nullptr;
375 }
376 
377 const Stmt *ExplodedNode::getPreviousStmtForDiagnostics() const {
378   for (const ExplodedNode *N = getFirstPred(); N; N = N->getFirstPred())
379     if (const Stmt *S = N->getStmtForDiagnostics())
380       return S;
381 
382   return nullptr;
383 }
384 
385 const Stmt *ExplodedNode::getCurrentOrPreviousStmtForDiagnostics() const {
386   if (const Stmt *S = getStmtForDiagnostics())
387     return S;
388 
389   return getPreviousStmtForDiagnostics();
390 }
391 
392 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
393                                      ProgramStateRef State,
394                                      bool IsSink,
395                                      bool* IsNew) {
396   // Profile 'State' to determine if we already have an existing node.
397   llvm::FoldingSetNodeID profile;
398   void *InsertPos = nullptr;
399 
400   NodeTy::Profile(profile, L, State, IsSink);
401   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
402 
403   if (!V) {
404     if (!FreeNodes.empty()) {
405       V = FreeNodes.back();
406       FreeNodes.pop_back();
407     }
408     else {
409       // Allocate a new node.
410       V = getAllocator().Allocate<NodeTy>();
411     }
412 
413     ++NumNodes;
414     new (V) NodeTy(L, State, NumNodes, IsSink);
415 
416     if (ReclaimNodeInterval)
417       ChangedNodes.push_back(V);
418 
419     // Insert the node into the node set and return it.
420     Nodes.InsertNode(V, InsertPos);
421 
422     if (IsNew) *IsNew = true;
423   }
424   else
425     if (IsNew) *IsNew = false;
426 
427   return V;
428 }
429 
430 ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L,
431                                                 ProgramStateRef State,
432                                                 int64_t Id,
433                                                 bool IsSink) {
434   NodeTy *V = getAllocator().Allocate<NodeTy>();
435   new (V) NodeTy(L, State, Id, IsSink);
436   return V;
437 }
438 
439 std::unique_ptr<ExplodedGraph>
440 ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
441                     InterExplodedGraphMap *ForwardMap,
442                     InterExplodedGraphMap *InverseMap) const {
443   if (Nodes.empty())
444     return nullptr;
445 
446   using Pass1Ty = llvm::DenseSet<const ExplodedNode *>;
447   Pass1Ty Pass1;
448 
449   using Pass2Ty = InterExplodedGraphMap;
450   InterExplodedGraphMap Pass2Scratch;
451   Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;
452 
453   SmallVector<const ExplodedNode*, 10> WL1, WL2;
454 
455   // ===- Pass 1 (reverse DFS) -===
456   for (const auto Sink : Sinks)
457     if (Sink)
458       WL1.push_back(Sink);
459 
460   // Process the first worklist until it is empty.
461   while (!WL1.empty()) {
462     const ExplodedNode *N = WL1.pop_back_val();
463 
464     // Have we already visited this node?  If so, continue to the next one.
465     if (!Pass1.insert(N).second)
466       continue;
467 
468     // If this is a root enqueue it to the second worklist.
469     if (N->Preds.empty()) {
470       WL2.push_back(N);
471       continue;
472     }
473 
474     // Visit our predecessors and enqueue them.
475     WL1.append(N->Preds.begin(), N->Preds.end());
476   }
477 
478   // We didn't hit a root? Return with a null pointer for the new graph.
479   if (WL2.empty())
480     return nullptr;
481 
482   // Create an empty graph.
483   std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph();
484 
485   // ===- Pass 2 (forward DFS to construct the new graph) -===
486   while (!WL2.empty()) {
487     const ExplodedNode *N = WL2.pop_back_val();
488 
489     // Skip this node if we have already processed it.
490     if (Pass2.contains(N))
491       continue;
492 
493     // Create the corresponding node in the new graph and record the mapping
494     // from the old node to the new node.
495     ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State,
496                                                N->getID(), N->isSink());
497     Pass2[N] = NewN;
498 
499     // Also record the reverse mapping from the new node to the old node.
500     if (InverseMap) (*InverseMap)[NewN] = N;
501 
502     // If this node is a root, designate it as such in the graph.
503     if (N->Preds.empty())
504       G->addRoot(NewN);
505 
506     // In the case that some of the intended predecessors of NewN have already
507     // been created, we should hook them up as predecessors.
508 
509     // Walk through the predecessors of 'N' and hook up their corresponding
510     // nodes in the new graph (if any) to the freshly created node.
511     for (const ExplodedNode *Pred : N->Preds) {
512       Pass2Ty::iterator PI = Pass2.find(Pred);
513       if (PI == Pass2.end())
514         continue;
515 
516       NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
517     }
518 
519     // In the case that some of the intended successors of NewN have already
520     // been created, we should hook them up as successors.  Otherwise, enqueue
521     // the new nodes from the original graph that should have nodes created
522     // in the new graph.
523     for (const ExplodedNode *Succ : N->Succs) {
524       Pass2Ty::iterator PI = Pass2.find(Succ);
525       if (PI != Pass2.end()) {
526         const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
527         continue;
528       }
529 
530       // Enqueue nodes to the worklist that were marked during pass 1.
531       if (Pass1.count(Succ))
532         WL2.push_back(Succ);
533     }
534   }
535 
536   return G;
537 }
538