1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for calls and returns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PrettyStackTraceLocationContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/Analysis/Analyses/LiveVariables.h"
18 #include "clang/Analysis/ConstructionContext.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/SaveAndRestore.h"
27 
28 using namespace clang;
29 using namespace ento;
30 
31 #define DEBUG_TYPE "ExprEngine"
32 
33 STATISTIC(NumOfDynamicDispatchPathSplits,
34   "The # of times we split the path due to imprecise dynamic dispatch info");
35 
36 STATISTIC(NumInlinedCalls,
37   "The # of times we inlined a call");
38 
39 STATISTIC(NumReachedInlineCountMax,
40   "The # of times we reached inline count maximum");
41 
42 void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE,
43                                   ExplodedNode *Pred) {
44   // Get the entry block in the CFG of the callee.
45   const StackFrameContext *calleeCtx = CE.getCalleeContext();
46   PrettyStackTraceLocationContext CrashInfo(calleeCtx);
47   const CFGBlock *Entry = CE.getEntry();
48 
49   // Validate the CFG.
50   assert(Entry->empty());
51   assert(Entry->succ_size() == 1);
52 
53   // Get the solitary successor.
54   const CFGBlock *Succ = *(Entry->succ_begin());
55 
56   // Construct an edge representing the starting location in the callee.
57   BlockEdge Loc(Entry, Succ, calleeCtx);
58 
59   ProgramStateRef state = Pred->getState();
60 
61   // Construct a new node, notify checkers that analysis of the function has
62   // begun, and add the resultant nodes to the worklist.
63   bool isNew;
64   ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
65   Node->addPredecessor(Pred, G);
66   if (isNew) {
67     ExplodedNodeSet DstBegin;
68     processBeginOfFunction(BC, Node, DstBegin, Loc);
69     Engine.enqueue(DstBegin);
70   }
71 }
72 
73 // Find the last statement on the path to the exploded node and the
74 // corresponding Block.
75 static std::pair<const Stmt*,
76                  const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
77   const Stmt *S = nullptr;
78   const CFGBlock *Blk = nullptr;
79   const StackFrameContext *SF = Node->getStackFrame();
80 
81   // Back up through the ExplodedGraph until we reach a statement node in this
82   // stack frame.
83   while (Node) {
84     const ProgramPoint &PP = Node->getLocation();
85 
86     if (PP.getStackFrame() == SF) {
87       if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
88         S = SP->getStmt();
89         break;
90       } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
91         S = CEE->getCalleeContext()->getCallSite();
92         if (S)
93           break;
94 
95         // If there is no statement, this is an implicitly-generated call.
96         // We'll walk backwards over it and then continue the loop to find
97         // an actual statement.
98         Optional<CallEnter> CE;
99         do {
100           Node = Node->getFirstPred();
101           CE = Node->getLocationAs<CallEnter>();
102         } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
103 
104         // Continue searching the graph.
105       } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
106         Blk = BE->getSrc();
107       }
108     } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
109       // If we reached the CallEnter for this function, it has no statements.
110       if (CE->getCalleeContext() == SF)
111         break;
112     }
113 
114     if (Node->pred_empty())
115       return std::make_pair(nullptr, nullptr);
116 
117     Node = *Node->pred_begin();
118   }
119 
120   return std::make_pair(S, Blk);
121 }
122 
123 /// Adjusts a return value when the called function's return type does not
124 /// match the caller's expression type. This can happen when a dynamic call
125 /// is devirtualized, and the overriding method has a covariant (more specific)
126 /// return type than the parent's method. For C++ objects, this means we need
127 /// to add base casts.
128 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
129                               StoreManager &StoreMgr) {
130   // For now, the only adjustments we handle apply only to locations.
131   if (!V.getAs<Loc>())
132     return V;
133 
134   // If the types already match, don't do any unnecessary work.
135   ExpectedTy = ExpectedTy.getCanonicalType();
136   ActualTy = ActualTy.getCanonicalType();
137   if (ExpectedTy == ActualTy)
138     return V;
139 
140   // No adjustment is needed between Objective-C pointer types.
141   if (ExpectedTy->isObjCObjectPointerType() &&
142       ActualTy->isObjCObjectPointerType())
143     return V;
144 
145   // C++ object pointers may need "derived-to-base" casts.
146   const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
147   const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
148   if (ExpectedClass && ActualClass) {
149     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
150                        /*DetectVirtual=*/false);
151     if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
152         !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
153       return StoreMgr.evalDerivedToBase(V, Paths.front());
154     }
155   }
156 
157   // Unfortunately, Objective-C does not enforce that overridden methods have
158   // covariant return types, so we can't assert that that never happens.
159   // Be safe and return UnknownVal().
160   return UnknownVal();
161 }
162 
163 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
164                                            ExplodedNode *Pred,
165                                            ExplodedNodeSet &Dst) {
166   // Find the last statement in the function and the corresponding basic block.
167   const Stmt *LastSt = nullptr;
168   const CFGBlock *Blk = nullptr;
169   std::tie(LastSt, Blk) = getLastStmt(Pred);
170   if (!Blk || !LastSt) {
171     Dst.Add(Pred);
172     return;
173   }
174 
175   // Here, we destroy the current location context. We use the current
176   // function's entire body as a diagnostic statement, with which the program
177   // point will be associated. However, we only want to use LastStmt as a
178   // reference for what to clean up if it's a ReturnStmt; otherwise, everything
179   // is dead.
180   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
181   const LocationContext *LCtx = Pred->getLocationContext();
182   removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
183              LCtx->getAnalysisDeclContext()->getBody(),
184              ProgramPoint::PostStmtPurgeDeadSymbolsKind);
185 }
186 
187 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
188     const StackFrameContext *calleeCtx) {
189   const Decl *RuntimeCallee = calleeCtx->getDecl();
190   const Decl *StaticDecl = Call->getDecl();
191   assert(RuntimeCallee);
192   if (!StaticDecl)
193     return true;
194   return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
195 }
196 
197 /// The call exit is simulated with a sequence of nodes, which occur between
198 /// CallExitBegin and CallExitEnd. The following operations occur between the
199 /// two program points:
200 /// 1. CallExitBegin (triggers the start of call exit sequence)
201 /// 2. Bind the return value
202 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
203 /// 4. CallExitEnd (switch to the caller context)
204 /// 5. PostStmt<CallExpr>
205 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
206   // Step 1 CEBNode was generated before the call.
207   PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
208   const StackFrameContext *calleeCtx = CEBNode->getStackFrame();
209 
210   // The parent context might not be a stack frame, so make sure we
211   // look up the first enclosing stack frame.
212   const StackFrameContext *callerCtx =
213     calleeCtx->getParent()->getStackFrame();
214 
215   const Stmt *CE = calleeCtx->getCallSite();
216   ProgramStateRef state = CEBNode->getState();
217   // Find the last statement in the function and the corresponding basic block.
218   const Stmt *LastSt = nullptr;
219   const CFGBlock *Blk = nullptr;
220   std::tie(LastSt, Blk) = getLastStmt(CEBNode);
221 
222   // Generate a CallEvent /before/ cleaning the state, so that we can get the
223   // correct value for 'this' (if necessary).
224   CallEventManager &CEMgr = getStateManager().getCallEventManager();
225   CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
226 
227   // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
228 
229   // If the callee returns an expression, bind its value to CallExpr.
230   if (CE) {
231     if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
232       const LocationContext *LCtx = CEBNode->getLocationContext();
233       SVal V = state->getSVal(RS, LCtx);
234 
235       // Ensure that the return type matches the type of the returned Expr.
236       if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
237         QualType ReturnedTy =
238           CallEvent::getDeclaredResultType(calleeCtx->getDecl());
239         if (!ReturnedTy.isNull()) {
240           if (const Expr *Ex = dyn_cast<Expr>(CE)) {
241             V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
242                                   getStoreManager());
243           }
244         }
245       }
246 
247       state = state->BindExpr(CE, callerCtx, V);
248     }
249 
250     // Bind the constructed object value to CXXConstructExpr.
251     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
252       loc::MemRegionVal This =
253         svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
254       SVal ThisV = state->getSVal(This);
255       ThisV = state->getSVal(ThisV.castAs<Loc>());
256       state = state->BindExpr(CCE, callerCtx, ThisV);
257     }
258 
259     if (const auto *CNE = dyn_cast<CXXNewExpr>(CE)) {
260       // We are currently evaluating a CXXNewAllocator CFGElement. It takes a
261       // while to reach the actual CXXNewExpr element from here, so keep the
262       // region for later use.
263       // Additionally cast the return value of the inlined operator new
264       // (which is of type 'void *') to the correct object type.
265       SVal AllocV = state->getSVal(CNE, callerCtx);
266       AllocV = svalBuilder.evalCast(
267           AllocV, CNE->getType(),
268           getContext().getPointerType(getContext().VoidTy));
269 
270       state = addObjectUnderConstruction(state, CNE, calleeCtx->getParent(),
271                                          AllocV);
272     }
273   }
274 
275   // Step 3: BindedRetNode -> CleanedNodes
276   // If we can find a statement and a block in the inlined function, run remove
277   // dead bindings before returning from the call. This is important to ensure
278   // that we report the issues such as leaks in the stack contexts in which
279   // they occurred.
280   ExplodedNodeSet CleanedNodes;
281   if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
282     static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
283     PostStmt Loc(LastSt, calleeCtx, &retValBind);
284     bool isNew;
285     ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
286     BindedRetNode->addPredecessor(CEBNode, G);
287     if (!isNew)
288       return;
289 
290     NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
291     currBldrCtx = &Ctx;
292     // Here, we call the Symbol Reaper with 0 statement and callee location
293     // context, telling it to clean up everything in the callee's context
294     // (and its children). We use the callee's function body as a diagnostic
295     // statement, with which the program point will be associated.
296     removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
297                calleeCtx->getAnalysisDeclContext()->getBody(),
298                ProgramPoint::PostStmtPurgeDeadSymbolsKind);
299     currBldrCtx = nullptr;
300   } else {
301     CleanedNodes.Add(CEBNode);
302   }
303 
304   for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
305                                  E = CleanedNodes.end(); I != E; ++I) {
306 
307     // Step 4: Generate the CallExit and leave the callee's context.
308     // CleanedNodes -> CEENode
309     CallExitEnd Loc(calleeCtx, callerCtx);
310     bool isNew;
311     ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
312 
313     ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
314     CEENode->addPredecessor(*I, G);
315     if (!isNew)
316       return;
317 
318     // Step 5: Perform the post-condition check of the CallExpr and enqueue the
319     // result onto the work list.
320     // CEENode -> Dst -> WorkList
321     NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
322     SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
323         &Ctx);
324     SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
325 
326     CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
327 
328     ExplodedNodeSet DstPostCall;
329     if (llvm::isa_and_nonnull<CXXNewExpr>(CE)) {
330       ExplodedNodeSet DstPostPostCallCallback;
331       getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
332                                                  CEENode, *UpdatedCall, *this,
333                                                  /*wasInlined=*/true);
334       for (ExplodedNode *I : DstPostPostCallCallback) {
335         getCheckerManager().runCheckersForNewAllocator(
336             cast<CXXAllocatorCall>(*UpdatedCall), DstPostCall, I, *this,
337             /*wasInlined=*/true);
338       }
339     } else {
340       getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
341                                                  *UpdatedCall, *this,
342                                                  /*wasInlined=*/true);
343     }
344     ExplodedNodeSet Dst;
345     if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
346       getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
347                                                         *this,
348                                                         /*wasInlined=*/true);
349     } else if (CE &&
350                !(isa<CXXNewExpr>(CE) && // Called when visiting CXXNewExpr.
351                  AMgr.getAnalyzerOptions().MayInlineCXXAllocator)) {
352       getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
353                                                  *this, /*wasInlined=*/true);
354     } else {
355       Dst.insert(DstPostCall);
356     }
357 
358     // Enqueue the next element in the block.
359     for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
360                                    PSI != PSE; ++PSI) {
361       Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
362                                     calleeCtx->getIndex()+1);
363     }
364   }
365 }
366 
367 bool ExprEngine::isSmall(AnalysisDeclContext *ADC) const {
368   // When there are no branches in the function, it means that there's no
369   // exponential complexity introduced by inlining such function.
370   // Such functions also don't trigger various fundamental problems
371   // with our inlining mechanism, such as the problem of
372   // inlined defensive checks. Hence isLinear().
373   const CFG *Cfg = ADC->getCFG();
374   return Cfg->isLinear() || Cfg->size() <= AMgr.options.AlwaysInlineSize;
375 }
376 
377 bool ExprEngine::isLarge(AnalysisDeclContext *ADC) const {
378   const CFG *Cfg = ADC->getCFG();
379   return Cfg->size() >= AMgr.options.MinCFGSizeTreatFunctionsAsLarge;
380 }
381 
382 bool ExprEngine::isHuge(AnalysisDeclContext *ADC) const {
383   const CFG *Cfg = ADC->getCFG();
384   return Cfg->getNumBlockIDs() > AMgr.options.MaxInlinableSize;
385 }
386 
387 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
388                                bool &IsRecursive, unsigned &StackDepth) {
389   IsRecursive = false;
390   StackDepth = 0;
391 
392   while (LCtx) {
393     if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
394       const Decl *DI = SFC->getDecl();
395 
396       // Mark recursive (and mutually recursive) functions and always count
397       // them when measuring the stack depth.
398       if (DI == D) {
399         IsRecursive = true;
400         ++StackDepth;
401         LCtx = LCtx->getParent();
402         continue;
403       }
404 
405       // Do not count the small functions when determining the stack depth.
406       AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
407       if (!isSmall(CalleeADC))
408         ++StackDepth;
409     }
410     LCtx = LCtx->getParent();
411   }
412 }
413 
414 // The GDM component containing the dynamic dispatch bifurcation info. When
415 // the exact type of the receiver is not known, we want to explore both paths -
416 // one on which we do inline it and the other one on which we don't. This is
417 // done to ensure we do not drop coverage.
418 // This is the map from the receiver region to a bool, specifying either we
419 // consider this region's information precise or not along the given path.
420 namespace {
421   enum DynamicDispatchMode {
422     DynamicDispatchModeInlined = 1,
423     DynamicDispatchModeConservative
424   };
425 } // end anonymous namespace
426 
427 REGISTER_MAP_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
428                                const MemRegion *, unsigned)
429 
430 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
431                             NodeBuilder &Bldr, ExplodedNode *Pred,
432                             ProgramStateRef State) {
433   assert(D);
434 
435   const LocationContext *CurLC = Pred->getLocationContext();
436   const StackFrameContext *CallerSFC = CurLC->getStackFrame();
437   const LocationContext *ParentOfCallee = CallerSFC;
438   if (Call.getKind() == CE_Block &&
439       !cast<BlockCall>(Call).isConversionFromLambda()) {
440     const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
441     assert(BR && "If we have the block definition we should have its region");
442     AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
443     ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
444                                                          cast<BlockDecl>(D),
445                                                          BR);
446   }
447 
448   // This may be NULL, but that's fine.
449   const Expr *CallE = Call.getOriginExpr();
450 
451   // Construct a new stack frame for the callee.
452   AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
453   const StackFrameContext *CalleeSFC =
454       CalleeADC->getStackFrame(ParentOfCallee, CallE, currBldrCtx->getBlock(),
455                                currBldrCtx->blockCount(), currStmtIdx);
456 
457   CallEnter Loc(CallE, CalleeSFC, CurLC);
458 
459   // Construct a new state which contains the mapping from actual to
460   // formal arguments.
461   State = State->enterStackFrame(Call, CalleeSFC);
462 
463   bool isNew;
464   if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
465     N->addPredecessor(Pred, G);
466     if (isNew)
467       Engine.getWorkList()->enqueue(N);
468   }
469 
470   // If we decided to inline the call, the successor has been manually
471   // added onto the work list so remove it from the node builder.
472   Bldr.takeNodes(Pred);
473 
474   NumInlinedCalls++;
475   Engine.FunctionSummaries->bumpNumTimesInlined(D);
476 
477   // Mark the decl as visited.
478   if (VisitedCallees)
479     VisitedCallees->insert(D);
480 
481   return true;
482 }
483 
484 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
485                                             const Stmt *CallE) {
486   const void *ReplayState = State->get<ReplayWithoutInlining>();
487   if (!ReplayState)
488     return nullptr;
489 
490   assert(ReplayState == CallE && "Backtracked to the wrong call.");
491   (void)CallE;
492 
493   return State->remove<ReplayWithoutInlining>();
494 }
495 
496 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
497                                ExplodedNodeSet &dst) {
498   // Perform the previsit of the CallExpr.
499   ExplodedNodeSet dstPreVisit;
500   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
501 
502   // Get the call in its initial state. We use this as a template to perform
503   // all the checks.
504   CallEventManager &CEMgr = getStateManager().getCallEventManager();
505   CallEventRef<> CallTemplate
506     = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
507 
508   // Evaluate the function call.  We try each of the checkers
509   // to see if the can evaluate the function call.
510   ExplodedNodeSet dstCallEvaluated;
511   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
512        I != E; ++I) {
513     evalCall(dstCallEvaluated, *I, *CallTemplate);
514   }
515 
516   // Finally, perform the post-condition check of the CallExpr and store
517   // the created nodes in 'Dst'.
518   // Note that if the call was inlined, dstCallEvaluated will be empty.
519   // The post-CallExpr check will occur in processCallExit.
520   getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
521                                              *this);
522 }
523 
524 ProgramStateRef ExprEngine::finishArgumentConstruction(ProgramStateRef State,
525                                                        const CallEvent &Call) {
526   const Expr *E = Call.getOriginExpr();
527   // FIXME: Constructors to placement arguments of operator new
528   // are not supported yet.
529   if (!E || isa<CXXNewExpr>(E))
530     return State;
531 
532   const LocationContext *LC = Call.getLocationContext();
533   for (unsigned CallI = 0, CallN = Call.getNumArgs(); CallI != CallN; ++CallI) {
534     unsigned I = Call.getASTArgumentIndex(CallI);
535     if (Optional<SVal> V =
536             getObjectUnderConstruction(State, {E, I}, LC)) {
537       SVal VV = *V;
538       (void)VV;
539       assert(cast<VarRegion>(VV.castAs<loc::MemRegionVal>().getRegion())
540                  ->getStackFrame()->getParent()
541                  ->getStackFrame() == LC->getStackFrame());
542       State = finishObjectConstruction(State, {E, I}, LC);
543     }
544   }
545 
546   return State;
547 }
548 
549 void ExprEngine::finishArgumentConstruction(ExplodedNodeSet &Dst,
550                                             ExplodedNode *Pred,
551                                             const CallEvent &Call) {
552   ProgramStateRef State = Pred->getState();
553   ProgramStateRef CleanedState = finishArgumentConstruction(State, Call);
554   if (CleanedState == State) {
555     Dst.insert(Pred);
556     return;
557   }
558 
559   const Expr *E = Call.getOriginExpr();
560   const LocationContext *LC = Call.getLocationContext();
561   NodeBuilder B(Pred, Dst, *currBldrCtx);
562   static SimpleProgramPointTag Tag("ExprEngine",
563                                    "Finish argument construction");
564   PreStmt PP(E, LC, &Tag);
565   B.generateNode(PP, CleanedState, Pred);
566 }
567 
568 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
569                           const CallEvent &Call) {
570   // WARNING: At this time, the state attached to 'Call' may be older than the
571   // state in 'Pred'. This is a minor optimization since CheckerManager will
572   // use an updated CallEvent instance when calling checkers, but if 'Call' is
573   // ever used directly in this function all callers should be updated to pass
574   // the most recent state. (It is probably not worth doing the work here since
575   // for some callers this will not be necessary.)
576 
577   // Run any pre-call checks using the generic call interface.
578   ExplodedNodeSet dstPreVisit;
579   getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred,
580                                             Call, *this);
581 
582   // Actually evaluate the function call.  We try each of the checkers
583   // to see if the can evaluate the function call, and get a callback at
584   // defaultEvalCall if all of them fail.
585   ExplodedNodeSet dstCallEvaluated;
586   getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
587                                              Call, *this, EvalCallOptions());
588 
589   // If there were other constructors called for object-type arguments
590   // of this call, clean them up.
591   ExplodedNodeSet dstArgumentCleanup;
592   for (ExplodedNode *I : dstCallEvaluated)
593     finishArgumentConstruction(dstArgumentCleanup, I, Call);
594 
595   ExplodedNodeSet dstPostCall;
596   getCheckerManager().runCheckersForPostCall(dstPostCall, dstArgumentCleanup,
597                                              Call, *this);
598 
599   // Escaping symbols conjured during invalidating the regions above.
600   // Note that, for inlined calls the nodes were put back into the worklist,
601   // so we can assume that every node belongs to a conservative call at this
602   // point.
603 
604   // Run pointerEscape callback with the newly conjured symbols.
605   SmallVector<std::pair<SVal, SVal>, 8> Escaped;
606   for (ExplodedNode *I : dstPostCall) {
607     NodeBuilder B(I, Dst, *currBldrCtx);
608     ProgramStateRef State = I->getState();
609     Escaped.clear();
610     {
611       unsigned Arg = -1;
612       for (const ParmVarDecl *PVD : Call.parameters()) {
613         ++Arg;
614         QualType ParamTy = PVD->getType();
615         if (ParamTy.isNull() ||
616             (!ParamTy->isPointerType() && !ParamTy->isReferenceType()))
617           continue;
618         QualType Pointee = ParamTy->getPointeeType();
619         if (Pointee.isConstQualified() || Pointee->isVoidType())
620           continue;
621         if (const MemRegion *MR = Call.getArgSVal(Arg).getAsRegion())
622           Escaped.emplace_back(loc::MemRegionVal(MR), State->getSVal(MR, Pointee));
623       }
624     }
625 
626     State = processPointerEscapedOnBind(State, Escaped, I->getLocationContext(),
627                                         PSK_EscapeOutParameters, &Call);
628 
629     if (State == I->getState())
630       Dst.insert(I);
631     else
632       B.generateNode(I->getLocation(), State, I);
633   }
634 }
635 
636 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
637                                             const LocationContext *LCtx,
638                                             ProgramStateRef State) {
639   const Expr *E = Call.getOriginExpr();
640   if (!E)
641     return State;
642 
643   // Some method families have known return values.
644   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
645     switch (Msg->getMethodFamily()) {
646     default:
647       break;
648     case OMF_autorelease:
649     case OMF_retain:
650     case OMF_self: {
651       // These methods return their receivers.
652       return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
653     }
654     }
655   } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
656     SVal ThisV = C->getCXXThisVal();
657     ThisV = State->getSVal(ThisV.castAs<Loc>());
658     return State->BindExpr(E, LCtx, ThisV);
659   }
660 
661   SVal R;
662   QualType ResultTy = Call.getResultType();
663   unsigned Count = currBldrCtx->blockCount();
664   if (auto RTC = getCurrentCFGElement().getAs<CFGCXXRecordTypedCall>()) {
665     // Conjure a temporary if the function returns an object by value.
666     SVal Target;
667     assert(RTC->getStmt() == Call.getOriginExpr());
668     EvalCallOptions CallOpts; // FIXME: We won't really need those.
669     std::tie(State, Target) =
670         handleConstructionContext(Call.getOriginExpr(), State, LCtx,
671                                   RTC->getConstructionContext(), CallOpts);
672     const MemRegion *TargetR = Target.getAsRegion();
673     assert(TargetR);
674     // Invalidate the region so that it didn't look uninitialized. If this is
675     // a field or element constructor, we do not want to invalidate
676     // the whole structure. Pointer escape is meaningless because
677     // the structure is a product of conservative evaluation
678     // and therefore contains nothing interesting at this point.
679     RegionAndSymbolInvalidationTraits ITraits;
680     ITraits.setTrait(TargetR,
681         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
682     State = State->invalidateRegions(TargetR, E, Count, LCtx,
683                                      /* CausesPointerEscape=*/false, nullptr,
684                                      &Call, &ITraits);
685 
686     R = State->getSVal(Target.castAs<Loc>(), E->getType());
687   } else {
688     // Conjure a symbol if the return value is unknown.
689 
690     // See if we need to conjure a heap pointer instead of
691     // a regular unknown pointer.
692     bool IsHeapPointer = false;
693     if (const auto *CNE = dyn_cast<CXXNewExpr>(E))
694       if (CNE->getOperatorNew()->isReplaceableGlobalAllocationFunction()) {
695         // FIXME: Delegate this to evalCall in MallocChecker?
696         IsHeapPointer = true;
697       }
698 
699     R = IsHeapPointer ? svalBuilder.getConjuredHeapSymbolVal(E, LCtx, Count)
700                       : svalBuilder.conjureSymbolVal(nullptr, E, LCtx, ResultTy,
701                                                      Count);
702   }
703   return State->BindExpr(E, LCtx, R);
704 }
705 
706 // Conservatively evaluate call by invalidating regions and binding
707 // a conjured return value.
708 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
709                                       ExplodedNode *Pred, ProgramStateRef State) {
710   State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
711   State = bindReturnValue(Call, Pred->getLocationContext(), State);
712 
713   // And make the result node.
714   Bldr.generateNode(Call.getProgramPoint(), State, Pred);
715 }
716 
717 ExprEngine::CallInlinePolicy
718 ExprEngine::mayInlineCallKind(const CallEvent &Call, const ExplodedNode *Pred,
719                               AnalyzerOptions &Opts,
720                               const EvalCallOptions &CallOpts) {
721   const LocationContext *CurLC = Pred->getLocationContext();
722   const StackFrameContext *CallerSFC = CurLC->getStackFrame();
723   switch (Call.getKind()) {
724   case CE_Function:
725   case CE_Block:
726     break;
727   case CE_CXXMember:
728   case CE_CXXMemberOperator:
729     if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
730       return CIP_DisallowedAlways;
731     break;
732   case CE_CXXConstructor: {
733     if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
734       return CIP_DisallowedAlways;
735 
736     const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
737 
738     const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
739 
740     auto CCE = getCurrentCFGElement().getAs<CFGConstructor>();
741     const ConstructionContext *CC = CCE ? CCE->getConstructionContext()
742                                         : nullptr;
743 
744     if (llvm::isa_and_nonnull<NewAllocatedObjectConstructionContext>(CC) &&
745         !Opts.MayInlineCXXAllocator)
746       return CIP_DisallowedOnce;
747 
748     // FIXME: We don't handle constructors or destructors for arrays properly.
749     // Even once we do, we still need to be careful about implicitly-generated
750     // initializers for array fields in default move/copy constructors.
751     // We still allow construction into ElementRegion targets when they don't
752     // represent array elements.
753     if (CallOpts.IsArrayCtorOrDtor)
754       return CIP_DisallowedOnce;
755 
756     // Inlining constructors requires including initializers in the CFG.
757     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
758     assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
759     (void)ADC;
760 
761     // If the destructor is trivial, it's always safe to inline the constructor.
762     if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
763       break;
764 
765     // For other types, only inline constructors if destructor inlining is
766     // also enabled.
767     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
768       return CIP_DisallowedAlways;
769 
770     if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete) {
771       // If we don't handle temporary destructors, we shouldn't inline
772       // their constructors.
773       if (CallOpts.IsTemporaryCtorOrDtor &&
774           !Opts.ShouldIncludeTemporaryDtorsInCFG)
775         return CIP_DisallowedOnce;
776 
777       // If we did not find the correct this-region, it would be pointless
778       // to inline the constructor. Instead we will simply invalidate
779       // the fake temporary target.
780       if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
781         return CIP_DisallowedOnce;
782 
783       // If the temporary is lifetime-extended by binding it to a reference-type
784       // field within an aggregate, automatic destructors don't work properly.
785       if (CallOpts.IsTemporaryLifetimeExtendedViaAggregate)
786         return CIP_DisallowedOnce;
787     }
788 
789     break;
790   }
791   case CE_CXXInheritedConstructor: {
792     // This doesn't really increase the cost of inlining ever, because
793     // the stack frame of the inherited constructor is trivial.
794     return CIP_Allowed;
795   }
796   case CE_CXXDestructor: {
797     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
798       return CIP_DisallowedAlways;
799 
800     // Inlining destructors requires building the CFG correctly.
801     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
802     assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
803     (void)ADC;
804 
805     // FIXME: We don't handle constructors or destructors for arrays properly.
806     if (CallOpts.IsArrayCtorOrDtor)
807       return CIP_DisallowedOnce;
808 
809     // Allow disabling temporary destructor inlining with a separate option.
810     if (CallOpts.IsTemporaryCtorOrDtor &&
811         !Opts.MayInlineCXXTemporaryDtors)
812       return CIP_DisallowedOnce;
813 
814     // If we did not find the correct this-region, it would be pointless
815     // to inline the destructor. Instead we will simply invalidate
816     // the fake temporary target.
817     if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
818       return CIP_DisallowedOnce;
819     break;
820   }
821   case CE_CXXDeallocator:
822     LLVM_FALLTHROUGH;
823   case CE_CXXAllocator:
824     if (Opts.MayInlineCXXAllocator)
825       break;
826     // Do not inline allocators until we model deallocators.
827     // This is unfortunate, but basically necessary for smart pointers and such.
828     return CIP_DisallowedAlways;
829   case CE_ObjCMessage:
830     if (!Opts.MayInlineObjCMethod)
831       return CIP_DisallowedAlways;
832     if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
833           Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
834       return CIP_DisallowedAlways;
835     break;
836   }
837 
838   return CIP_Allowed;
839 }
840 
841 /// Returns true if the given C++ class contains a member with the given name.
842 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
843                       StringRef Name) {
844   const IdentifierInfo &II = Ctx.Idents.get(Name);
845   return RD->hasMemberName(Ctx.DeclarationNames.getIdentifier(&II));
846 }
847 
848 /// Returns true if the given C++ class is a container or iterator.
849 ///
850 /// Our heuristic for this is whether it contains a method named 'begin()' or a
851 /// nested type named 'iterator' or 'iterator_category'.
852 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
853   return hasMember(Ctx, RD, "begin") ||
854          hasMember(Ctx, RD, "iterator") ||
855          hasMember(Ctx, RD, "iterator_category");
856 }
857 
858 /// Returns true if the given function refers to a method of a C++ container
859 /// or iterator.
860 ///
861 /// We generally do a poor job modeling most containers right now, and might
862 /// prefer not to inline their methods.
863 static bool isContainerMethod(const ASTContext &Ctx,
864                               const FunctionDecl *FD) {
865   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
866     return isContainerClass(Ctx, MD->getParent());
867   return false;
868 }
869 
870 /// Returns true if the given function is the destructor of a class named
871 /// "shared_ptr".
872 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
873   const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
874   if (!Dtor)
875     return false;
876 
877   const CXXRecordDecl *RD = Dtor->getParent();
878   if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
879     if (II->isStr("shared_ptr"))
880         return true;
881 
882   return false;
883 }
884 
885 /// Returns true if the function in \p CalleeADC may be inlined in general.
886 ///
887 /// This checks static properties of the function, such as its signature and
888 /// CFG, to determine whether the analyzer should ever consider inlining it,
889 /// in any context.
890 bool ExprEngine::mayInlineDecl(AnalysisDeclContext *CalleeADC) const {
891   AnalyzerOptions &Opts = AMgr.getAnalyzerOptions();
892   // FIXME: Do not inline variadic calls.
893   if (CallEvent::isVariadic(CalleeADC->getDecl()))
894     return false;
895 
896   // Check certain C++-related inlining policies.
897   ASTContext &Ctx = CalleeADC->getASTContext();
898   if (Ctx.getLangOpts().CPlusPlus) {
899     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
900       // Conditionally control the inlining of template functions.
901       if (!Opts.MayInlineTemplateFunctions)
902         if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
903           return false;
904 
905       // Conditionally control the inlining of C++ standard library functions.
906       if (!Opts.MayInlineCXXStandardLibrary)
907         if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
908           if (AnalysisDeclContext::isInStdNamespace(FD))
909             return false;
910 
911       // Conditionally control the inlining of methods on objects that look
912       // like C++ containers.
913       if (!Opts.MayInlineCXXContainerMethods)
914         if (!AMgr.isInCodeFile(FD->getLocation()))
915           if (isContainerMethod(Ctx, FD))
916             return false;
917 
918       // Conditionally control the inlining of the destructor of C++ shared_ptr.
919       // We don't currently do a good job modeling shared_ptr because we can't
920       // see the reference count, so treating as opaque is probably the best
921       // idea.
922       if (!Opts.MayInlineCXXSharedPtrDtor)
923         if (isCXXSharedPtrDtor(FD))
924           return false;
925     }
926   }
927 
928   // It is possible that the CFG cannot be constructed.
929   // Be safe, and check if the CalleeCFG is valid.
930   const CFG *CalleeCFG = CalleeADC->getCFG();
931   if (!CalleeCFG)
932     return false;
933 
934   // Do not inline large functions.
935   if (isHuge(CalleeADC))
936     return false;
937 
938   // It is possible that the live variables analysis cannot be
939   // run.  If so, bail out.
940   if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
941     return false;
942 
943   return true;
944 }
945 
946 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
947                                   const ExplodedNode *Pred,
948                                   const EvalCallOptions &CallOpts) {
949   if (!D)
950     return false;
951 
952   AnalysisManager &AMgr = getAnalysisManager();
953   AnalyzerOptions &Opts = AMgr.options;
954   AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
955   AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
956 
957   // The auto-synthesized bodies are essential to inline as they are
958   // usually small and commonly used. Note: we should do this check early on to
959   // ensure we always inline these calls.
960   if (CalleeADC->isBodyAutosynthesized())
961     return true;
962 
963   if (!AMgr.shouldInlineCall())
964     return false;
965 
966   // Check if this function has been marked as non-inlinable.
967   Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
968   if (MayInline.hasValue()) {
969     if (!MayInline.getValue())
970       return false;
971 
972   } else {
973     // We haven't actually checked the static properties of this function yet.
974     // Do that now, and record our decision in the function summaries.
975     if (mayInlineDecl(CalleeADC)) {
976       Engine.FunctionSummaries->markMayInline(D);
977     } else {
978       Engine.FunctionSummaries->markShouldNotInline(D);
979       return false;
980     }
981   }
982 
983   // Check if we should inline a call based on its kind.
984   // FIXME: this checks both static and dynamic properties of the call, which
985   // means we're redoing a bit of work that could be cached in the function
986   // summary.
987   CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts, CallOpts);
988   if (CIP != CIP_Allowed) {
989     if (CIP == CIP_DisallowedAlways) {
990       assert(!MayInline.hasValue() || MayInline.getValue());
991       Engine.FunctionSummaries->markShouldNotInline(D);
992     }
993     return false;
994   }
995 
996   // Do not inline if recursive or we've reached max stack frame count.
997   bool IsRecursive = false;
998   unsigned StackDepth = 0;
999   examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
1000   if ((StackDepth >= Opts.InlineMaxStackDepth) &&
1001       (!isSmall(CalleeADC) || IsRecursive))
1002     return false;
1003 
1004   // Do not inline large functions too many times.
1005   if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
1006        Opts.MaxTimesInlineLarge) &&
1007       isLarge(CalleeADC)) {
1008     NumReachedInlineCountMax++;
1009     return false;
1010   }
1011 
1012   if (HowToInline == Inline_Minimal && (!isSmall(CalleeADC) || IsRecursive))
1013     return false;
1014 
1015   return true;
1016 }
1017 
1018 static bool isTrivialObjectAssignment(const CallEvent &Call) {
1019   const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
1020   if (!ICall)
1021     return false;
1022 
1023   const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
1024   if (!MD)
1025     return false;
1026   if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
1027     return false;
1028 
1029   return MD->isTrivial();
1030 }
1031 
1032 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
1033                                  const CallEvent &CallTemplate,
1034                                  const EvalCallOptions &CallOpts) {
1035   // Make sure we have the most recent state attached to the call.
1036   ProgramStateRef State = Pred->getState();
1037   CallEventRef<> Call = CallTemplate.cloneWithState(State);
1038 
1039   // Special-case trivial assignment operators.
1040   if (isTrivialObjectAssignment(*Call)) {
1041     performTrivialCopy(Bldr, Pred, *Call);
1042     return;
1043   }
1044 
1045   // Try to inline the call.
1046   // The origin expression here is just used as a kind of checksum;
1047   // this should still be safe even for CallEvents that don't come from exprs.
1048   const Expr *E = Call->getOriginExpr();
1049 
1050   ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
1051   if (InlinedFailedState) {
1052     // If we already tried once and failed, make sure we don't retry later.
1053     State = InlinedFailedState;
1054   } else {
1055     RuntimeDefinition RD = Call->getRuntimeDefinition();
1056     const Decl *D = RD.getDecl();
1057     if (shouldInlineCall(*Call, D, Pred, CallOpts)) {
1058       if (RD.mayHaveOtherDefinitions()) {
1059         AnalyzerOptions &Options = getAnalysisManager().options;
1060 
1061         // Explore with and without inlining the call.
1062         if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
1063           BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
1064           return;
1065         }
1066 
1067         // Don't inline if we're not in any dynamic dispatch mode.
1068         if (Options.getIPAMode() != IPAK_DynamicDispatch) {
1069           conservativeEvalCall(*Call, Bldr, Pred, State);
1070           return;
1071         }
1072       }
1073 
1074       // We are not bifurcating and we do have a Decl, so just inline.
1075       if (inlineCall(*Call, D, Bldr, Pred, State))
1076         return;
1077     }
1078   }
1079 
1080   // If we can't inline it, handle the return value and invalidate the regions.
1081   conservativeEvalCall(*Call, Bldr, Pred, State);
1082 }
1083 
1084 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
1085                                const CallEvent &Call, const Decl *D,
1086                                NodeBuilder &Bldr, ExplodedNode *Pred) {
1087   assert(BifurReg);
1088   BifurReg = BifurReg->StripCasts();
1089 
1090   // Check if we've performed the split already - note, we only want
1091   // to split the path once per memory region.
1092   ProgramStateRef State = Pred->getState();
1093   const unsigned *BState =
1094                         State->get<DynamicDispatchBifurcationMap>(BifurReg);
1095   if (BState) {
1096     // If we are on "inline path", keep inlining if possible.
1097     if (*BState == DynamicDispatchModeInlined)
1098       if (inlineCall(Call, D, Bldr, Pred, State))
1099         return;
1100     // If inline failed, or we are on the path where we assume we
1101     // don't have enough info about the receiver to inline, conjure the
1102     // return value and invalidate the regions.
1103     conservativeEvalCall(Call, Bldr, Pred, State);
1104     return;
1105   }
1106 
1107   // If we got here, this is the first time we process a message to this
1108   // region, so split the path.
1109   ProgramStateRef IState =
1110       State->set<DynamicDispatchBifurcationMap>(BifurReg,
1111                                                DynamicDispatchModeInlined);
1112   inlineCall(Call, D, Bldr, Pred, IState);
1113 
1114   ProgramStateRef NoIState =
1115       State->set<DynamicDispatchBifurcationMap>(BifurReg,
1116                                                DynamicDispatchModeConservative);
1117   conservativeEvalCall(Call, Bldr, Pred, NoIState);
1118 
1119   NumOfDynamicDispatchPathSplits++;
1120 }
1121 
1122 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
1123                                  ExplodedNodeSet &Dst) {
1124   ExplodedNodeSet dstPreVisit;
1125   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
1126 
1127   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
1128 
1129   if (RS->getRetValue()) {
1130     for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
1131                                   ei = dstPreVisit.end(); it != ei; ++it) {
1132       B.generateNode(RS, *it, (*it)->getState());
1133     }
1134   }
1135 }
1136