1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for calls and returns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
15 #include "PrettyStackTraceLocationContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/Analysis/Analyses/LiveVariables.h"
19 #include "clang/Analysis/ConstructionContext.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/SaveAndRestore.h"
25 
26 using namespace clang;
27 using namespace ento;
28 
29 #define DEBUG_TYPE "ExprEngine"
30 
31 STATISTIC(NumOfDynamicDispatchPathSplits,
32   "The # of times we split the path due to imprecise dynamic dispatch info");
33 
34 STATISTIC(NumInlinedCalls,
35   "The # of times we inlined a call");
36 
37 STATISTIC(NumReachedInlineCountMax,
38   "The # of times we reached inline count maximum");
39 
40 void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE,
41                                   ExplodedNode *Pred) {
42   // Get the entry block in the CFG of the callee.
43   const StackFrameContext *calleeCtx = CE.getCalleeContext();
44   PrettyStackTraceLocationContext CrashInfo(calleeCtx);
45   const CFGBlock *Entry = CE.getEntry();
46 
47   // Validate the CFG.
48   assert(Entry->empty());
49   assert(Entry->succ_size() == 1);
50 
51   // Get the solitary successor.
52   const CFGBlock *Succ = *(Entry->succ_begin());
53 
54   // Construct an edge representing the starting location in the callee.
55   BlockEdge Loc(Entry, Succ, calleeCtx);
56 
57   ProgramStateRef state = Pred->getState();
58 
59   // Construct a new node, notify checkers that analysis of the function has
60   // begun, and add the resultant nodes to the worklist.
61   bool isNew;
62   ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
63   Node->addPredecessor(Pred, G);
64   if (isNew) {
65     ExplodedNodeSet DstBegin;
66     processBeginOfFunction(BC, Node, DstBegin, Loc);
67     Engine.enqueue(DstBegin);
68   }
69 }
70 
71 // Find the last statement on the path to the exploded node and the
72 // corresponding Block.
73 static std::pair<const Stmt*,
74                  const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
75   const Stmt *S = nullptr;
76   const CFGBlock *Blk = nullptr;
77   const StackFrameContext *SF = Node->getStackFrame();
78 
79   // Back up through the ExplodedGraph until we reach a statement node in this
80   // stack frame.
81   while (Node) {
82     const ProgramPoint &PP = Node->getLocation();
83 
84     if (PP.getStackFrame() == SF) {
85       if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
86         S = SP->getStmt();
87         break;
88       } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
89         S = CEE->getCalleeContext()->getCallSite();
90         if (S)
91           break;
92 
93         // If there is no statement, this is an implicitly-generated call.
94         // We'll walk backwards over it and then continue the loop to find
95         // an actual statement.
96         Optional<CallEnter> CE;
97         do {
98           Node = Node->getFirstPred();
99           CE = Node->getLocationAs<CallEnter>();
100         } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
101 
102         // Continue searching the graph.
103       } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
104         Blk = BE->getSrc();
105       }
106     } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
107       // If we reached the CallEnter for this function, it has no statements.
108       if (CE->getCalleeContext() == SF)
109         break;
110     }
111 
112     if (Node->pred_empty())
113       return std::make_pair(nullptr, nullptr);
114 
115     Node = *Node->pred_begin();
116   }
117 
118   return std::make_pair(S, Blk);
119 }
120 
121 /// Adjusts a return value when the called function's return type does not
122 /// match the caller's expression type. This can happen when a dynamic call
123 /// is devirtualized, and the overriding method has a covariant (more specific)
124 /// return type than the parent's method. For C++ objects, this means we need
125 /// to add base casts.
126 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
127                               StoreManager &StoreMgr) {
128   // For now, the only adjustments we handle apply only to locations.
129   if (!V.getAs<Loc>())
130     return V;
131 
132   // If the types already match, don't do any unnecessary work.
133   ExpectedTy = ExpectedTy.getCanonicalType();
134   ActualTy = ActualTy.getCanonicalType();
135   if (ExpectedTy == ActualTy)
136     return V;
137 
138   // No adjustment is needed between Objective-C pointer types.
139   if (ExpectedTy->isObjCObjectPointerType() &&
140       ActualTy->isObjCObjectPointerType())
141     return V;
142 
143   // C++ object pointers may need "derived-to-base" casts.
144   const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
145   const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
146   if (ExpectedClass && ActualClass) {
147     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
148                        /*DetectVirtual=*/false);
149     if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
150         !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
151       return StoreMgr.evalDerivedToBase(V, Paths.front());
152     }
153   }
154 
155   // Unfortunately, Objective-C does not enforce that overridden methods have
156   // covariant return types, so we can't assert that that never happens.
157   // Be safe and return UnknownVal().
158   return UnknownVal();
159 }
160 
161 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
162                                            ExplodedNode *Pred,
163                                            ExplodedNodeSet &Dst) {
164   // Find the last statement in the function and the corresponding basic block.
165   const Stmt *LastSt = nullptr;
166   const CFGBlock *Blk = nullptr;
167   std::tie(LastSt, Blk) = getLastStmt(Pred);
168   if (!Blk || !LastSt) {
169     Dst.Add(Pred);
170     return;
171   }
172 
173   // Here, we destroy the current location context. We use the current
174   // function's entire body as a diagnostic statement, with which the program
175   // point will be associated. However, we only want to use LastStmt as a
176   // reference for what to clean up if it's a ReturnStmt; otherwise, everything
177   // is dead.
178   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
179   const LocationContext *LCtx = Pred->getLocationContext();
180   removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
181              LCtx->getAnalysisDeclContext()->getBody(),
182              ProgramPoint::PostStmtPurgeDeadSymbolsKind);
183 }
184 
185 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
186     const StackFrameContext *calleeCtx) {
187   const Decl *RuntimeCallee = calleeCtx->getDecl();
188   const Decl *StaticDecl = Call->getDecl();
189   assert(RuntimeCallee);
190   if (!StaticDecl)
191     return true;
192   return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
193 }
194 
195 /// The call exit is simulated with a sequence of nodes, which occur between
196 /// CallExitBegin and CallExitEnd. The following operations occur between the
197 /// two program points:
198 /// 1. CallExitBegin (triggers the start of call exit sequence)
199 /// 2. Bind the return value
200 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
201 /// 4. CallExitEnd (switch to the caller context)
202 /// 5. PostStmt<CallExpr>
203 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
204   // Step 1 CEBNode was generated before the call.
205   PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
206   const StackFrameContext *calleeCtx = CEBNode->getStackFrame();
207 
208   // The parent context might not be a stack frame, so make sure we
209   // look up the first enclosing stack frame.
210   const StackFrameContext *callerCtx =
211     calleeCtx->getParent()->getStackFrame();
212 
213   const Stmt *CE = calleeCtx->getCallSite();
214   ProgramStateRef state = CEBNode->getState();
215   // Find the last statement in the function and the corresponding basic block.
216   const Stmt *LastSt = nullptr;
217   const CFGBlock *Blk = nullptr;
218   std::tie(LastSt, Blk) = getLastStmt(CEBNode);
219 
220   // Generate a CallEvent /before/ cleaning the state, so that we can get the
221   // correct value for 'this' (if necessary).
222   CallEventManager &CEMgr = getStateManager().getCallEventManager();
223   CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
224 
225   // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
226 
227   // If the callee returns an expression, bind its value to CallExpr.
228   if (CE) {
229     if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
230       const LocationContext *LCtx = CEBNode->getLocationContext();
231       SVal V = state->getSVal(RS, LCtx);
232 
233       // Ensure that the return type matches the type of the returned Expr.
234       if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
235         QualType ReturnedTy =
236           CallEvent::getDeclaredResultType(calleeCtx->getDecl());
237         if (!ReturnedTy.isNull()) {
238           if (const Expr *Ex = dyn_cast<Expr>(CE)) {
239             V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
240                                   getStoreManager());
241           }
242         }
243       }
244 
245       state = state->BindExpr(CE, callerCtx, V);
246     }
247 
248     // Bind the constructed object value to CXXConstructExpr.
249     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
250       loc::MemRegionVal This =
251         svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
252       SVal ThisV = state->getSVal(This);
253       ThisV = state->getSVal(ThisV.castAs<Loc>());
254       state = state->BindExpr(CCE, callerCtx, ThisV);
255     }
256 
257     if (const auto *CNE = dyn_cast<CXXNewExpr>(CE)) {
258       // We are currently evaluating a CXXNewAllocator CFGElement. It takes a
259       // while to reach the actual CXXNewExpr element from here, so keep the
260       // region for later use.
261       // Additionally cast the return value of the inlined operator new
262       // (which is of type 'void *') to the correct object type.
263       SVal AllocV = state->getSVal(CNE, callerCtx);
264       AllocV = svalBuilder.evalCast(
265           AllocV, CNE->getType(),
266           getContext().getPointerType(getContext().VoidTy));
267 
268       state = addObjectUnderConstruction(state, CNE, calleeCtx->getParent(),
269                                          AllocV);
270     }
271   }
272 
273   // Step 3: BindedRetNode -> CleanedNodes
274   // If we can find a statement and a block in the inlined function, run remove
275   // dead bindings before returning from the call. This is important to ensure
276   // that we report the issues such as leaks in the stack contexts in which
277   // they occurred.
278   ExplodedNodeSet CleanedNodes;
279   if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
280     static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
281     PostStmt Loc(LastSt, calleeCtx, &retValBind);
282     bool isNew;
283     ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
284     BindedRetNode->addPredecessor(CEBNode, G);
285     if (!isNew)
286       return;
287 
288     NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
289     currBldrCtx = &Ctx;
290     // Here, we call the Symbol Reaper with 0 statement and callee location
291     // context, telling it to clean up everything in the callee's context
292     // (and its children). We use the callee's function body as a diagnostic
293     // statement, with which the program point will be associated.
294     removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
295                calleeCtx->getAnalysisDeclContext()->getBody(),
296                ProgramPoint::PostStmtPurgeDeadSymbolsKind);
297     currBldrCtx = nullptr;
298   } else {
299     CleanedNodes.Add(CEBNode);
300   }
301 
302   for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
303                                  E = CleanedNodes.end(); I != E; ++I) {
304 
305     // Step 4: Generate the CallExit and leave the callee's context.
306     // CleanedNodes -> CEENode
307     CallExitEnd Loc(calleeCtx, callerCtx);
308     bool isNew;
309     ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
310 
311     ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
312     CEENode->addPredecessor(*I, G);
313     if (!isNew)
314       return;
315 
316     // Step 5: Perform the post-condition check of the CallExpr and enqueue the
317     // result onto the work list.
318     // CEENode -> Dst -> WorkList
319     NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
320     SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
321         &Ctx);
322     SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
323 
324     CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
325 
326     ExplodedNodeSet DstPostCall;
327     if (const CXXNewExpr *CNE = dyn_cast_or_null<CXXNewExpr>(CE)) {
328       ExplodedNodeSet DstPostPostCallCallback;
329       getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
330                                                  CEENode, *UpdatedCall, *this,
331                                                  /*wasInlined=*/true);
332       for (auto I : DstPostPostCallCallback) {
333         getCheckerManager().runCheckersForNewAllocator(
334             CNE,
335             *getObjectUnderConstruction(I->getState(), CNE,
336                                         calleeCtx->getParent()),
337             DstPostCall, I, *this,
338             /*wasInlined=*/true);
339       }
340     } else {
341       getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
342                                                  *UpdatedCall, *this,
343                                                  /*wasInlined=*/true);
344     }
345     ExplodedNodeSet Dst;
346     if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
347       getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
348                                                         *this,
349                                                         /*wasInlined=*/true);
350     } else if (CE &&
351                !(isa<CXXNewExpr>(CE) && // Called when visiting CXXNewExpr.
352                  AMgr.getAnalyzerOptions().MayInlineCXXAllocator)) {
353       getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
354                                                  *this, /*wasInlined=*/true);
355     } else {
356       Dst.insert(DstPostCall);
357     }
358 
359     // Enqueue the next element in the block.
360     for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
361                                    PSI != PSE; ++PSI) {
362       Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
363                                     calleeCtx->getIndex()+1);
364     }
365   }
366 }
367 
368 bool ExprEngine::isSmall(AnalysisDeclContext *ADC) const {
369   // When there are no branches in the function, it means that there's no
370   // exponential complexity introduced by inlining such function.
371   // Such functions also don't trigger various fundamental problems
372   // with our inlining mechanism, such as the problem of
373   // inlined defensive checks. Hence isLinear().
374   const CFG *Cfg = ADC->getCFG();
375   return Cfg->isLinear() || Cfg->size() <= AMgr.options.AlwaysInlineSize;
376 }
377 
378 bool ExprEngine::isLarge(AnalysisDeclContext *ADC) const {
379   const CFG *Cfg = ADC->getCFG();
380   return Cfg->size() >= AMgr.options.MinCFGSizeTreatFunctionsAsLarge;
381 }
382 
383 bool ExprEngine::isHuge(AnalysisDeclContext *ADC) const {
384   const CFG *Cfg = ADC->getCFG();
385   return Cfg->getNumBlockIDs() > AMgr.options.MaxInlinableSize;
386 }
387 
388 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
389                                bool &IsRecursive, unsigned &StackDepth) {
390   IsRecursive = false;
391   StackDepth = 0;
392 
393   while (LCtx) {
394     if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
395       const Decl *DI = SFC->getDecl();
396 
397       // Mark recursive (and mutually recursive) functions and always count
398       // them when measuring the stack depth.
399       if (DI == D) {
400         IsRecursive = true;
401         ++StackDepth;
402         LCtx = LCtx->getParent();
403         continue;
404       }
405 
406       // Do not count the small functions when determining the stack depth.
407       AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
408       if (!isSmall(CalleeADC))
409         ++StackDepth;
410     }
411     LCtx = LCtx->getParent();
412   }
413 }
414 
415 // The GDM component containing the dynamic dispatch bifurcation info. When
416 // the exact type of the receiver is not known, we want to explore both paths -
417 // one on which we do inline it and the other one on which we don't. This is
418 // done to ensure we do not drop coverage.
419 // This is the map from the receiver region to a bool, specifying either we
420 // consider this region's information precise or not along the given path.
421 namespace {
422   enum DynamicDispatchMode {
423     DynamicDispatchModeInlined = 1,
424     DynamicDispatchModeConservative
425   };
426 } // end anonymous namespace
427 
428 REGISTER_MAP_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
429                                const MemRegion *, unsigned)
430 
431 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
432                             NodeBuilder &Bldr, ExplodedNode *Pred,
433                             ProgramStateRef State) {
434   assert(D);
435 
436   const LocationContext *CurLC = Pred->getLocationContext();
437   const StackFrameContext *CallerSFC = CurLC->getStackFrame();
438   const LocationContext *ParentOfCallee = CallerSFC;
439   if (Call.getKind() == CE_Block &&
440       !cast<BlockCall>(Call).isConversionFromLambda()) {
441     const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
442     assert(BR && "If we have the block definition we should have its region");
443     AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
444     ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
445                                                          cast<BlockDecl>(D),
446                                                          BR);
447   }
448 
449   // This may be NULL, but that's fine.
450   const Expr *CallE = Call.getOriginExpr();
451 
452   // Construct a new stack frame for the callee.
453   AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
454   const StackFrameContext *CalleeSFC =
455       CalleeADC->getStackFrame(ParentOfCallee, CallE, currBldrCtx->getBlock(),
456                                currBldrCtx->blockCount(), currStmtIdx);
457 
458   CallEnter Loc(CallE, CalleeSFC, CurLC);
459 
460   // Construct a new state which contains the mapping from actual to
461   // formal arguments.
462   State = State->enterStackFrame(Call, CalleeSFC);
463 
464   bool isNew;
465   if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
466     N->addPredecessor(Pred, G);
467     if (isNew)
468       Engine.getWorkList()->enqueue(N);
469   }
470 
471   // If we decided to inline the call, the successor has been manually
472   // added onto the work list so remove it from the node builder.
473   Bldr.takeNodes(Pred);
474 
475   NumInlinedCalls++;
476   Engine.FunctionSummaries->bumpNumTimesInlined(D);
477 
478   // Mark the decl as visited.
479   if (VisitedCallees)
480     VisitedCallees->insert(D);
481 
482   return true;
483 }
484 
485 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
486                                             const Stmt *CallE) {
487   const void *ReplayState = State->get<ReplayWithoutInlining>();
488   if (!ReplayState)
489     return nullptr;
490 
491   assert(ReplayState == CallE && "Backtracked to the wrong call.");
492   (void)CallE;
493 
494   return State->remove<ReplayWithoutInlining>();
495 }
496 
497 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
498                                ExplodedNodeSet &dst) {
499   // Perform the previsit of the CallExpr.
500   ExplodedNodeSet dstPreVisit;
501   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
502 
503   // Get the call in its initial state. We use this as a template to perform
504   // all the checks.
505   CallEventManager &CEMgr = getStateManager().getCallEventManager();
506   CallEventRef<> CallTemplate
507     = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
508 
509   // Evaluate the function call.  We try each of the checkers
510   // to see if the can evaluate the function call.
511   ExplodedNodeSet dstCallEvaluated;
512   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
513        I != E; ++I) {
514     evalCall(dstCallEvaluated, *I, *CallTemplate);
515   }
516 
517   // Finally, perform the post-condition check of the CallExpr and store
518   // the created nodes in 'Dst'.
519   // Note that if the call was inlined, dstCallEvaluated will be empty.
520   // The post-CallExpr check will occur in processCallExit.
521   getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
522                                              *this);
523 }
524 
525 ProgramStateRef ExprEngine::finishArgumentConstruction(ProgramStateRef State,
526                                                        const CallEvent &Call) {
527   const Expr *E = Call.getOriginExpr();
528   // FIXME: Constructors to placement arguments of operator new
529   // are not supported yet.
530   if (!E || isa<CXXNewExpr>(E))
531     return State;
532 
533   const LocationContext *LC = Call.getLocationContext();
534   for (unsigned CallI = 0, CallN = Call.getNumArgs(); CallI != CallN; ++CallI) {
535     unsigned I = Call.getASTArgumentIndex(CallI);
536     if (Optional<SVal> V =
537             getObjectUnderConstruction(State, {E, I}, LC)) {
538       SVal VV = *V;
539       (void)VV;
540       assert(cast<VarRegion>(VV.castAs<loc::MemRegionVal>().getRegion())
541                  ->getStackFrame()->getParent()
542                  ->getStackFrame() == LC->getStackFrame());
543       State = finishObjectConstruction(State, {E, I}, LC);
544     }
545   }
546 
547   return State;
548 }
549 
550 void ExprEngine::finishArgumentConstruction(ExplodedNodeSet &Dst,
551                                             ExplodedNode *Pred,
552                                             const CallEvent &Call) {
553   ProgramStateRef State = Pred->getState();
554   ProgramStateRef CleanedState = finishArgumentConstruction(State, Call);
555   if (CleanedState == State) {
556     Dst.insert(Pred);
557     return;
558   }
559 
560   const Expr *E = Call.getOriginExpr();
561   const LocationContext *LC = Call.getLocationContext();
562   NodeBuilder B(Pred, Dst, *currBldrCtx);
563   static SimpleProgramPointTag Tag("ExprEngine",
564                                    "Finish argument construction");
565   PreStmt PP(E, LC, &Tag);
566   B.generateNode(PP, CleanedState, Pred);
567 }
568 
569 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
570                           const CallEvent &Call) {
571   // WARNING: At this time, the state attached to 'Call' may be older than the
572   // state in 'Pred'. This is a minor optimization since CheckerManager will
573   // use an updated CallEvent instance when calling checkers, but if 'Call' is
574   // ever used directly in this function all callers should be updated to pass
575   // the most recent state. (It is probably not worth doing the work here since
576   // for some callers this will not be necessary.)
577 
578   // Run any pre-call checks using the generic call interface.
579   ExplodedNodeSet dstPreVisit;
580   getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred,
581                                             Call, *this);
582 
583   // Actually evaluate the function call.  We try each of the checkers
584   // to see if the can evaluate the function call, and get a callback at
585   // defaultEvalCall if all of them fail.
586   ExplodedNodeSet dstCallEvaluated;
587   getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
588                                              Call, *this);
589 
590   // If there were other constructors called for object-type arguments
591   // of this call, clean them up.
592   ExplodedNodeSet dstArgumentCleanup;
593   for (auto I : dstCallEvaluated)
594     finishArgumentConstruction(dstArgumentCleanup, I, Call);
595 
596   ExplodedNodeSet dstPostCall;
597   getCheckerManager().runCheckersForPostCall(dstPostCall, dstArgumentCleanup,
598                                              Call, *this);
599 
600   // Escaping symbols conjured during invalidating the regions above.
601   // Note that, for inlined calls the nodes were put back into the worklist,
602   // so we can assume that every node belongs to a conservative call at this
603   // point.
604 
605   // Run pointerEscape callback with the newly conjured symbols.
606   SmallVector<std::pair<SVal, SVal>, 8> Escaped;
607   for (auto I : dstPostCall) {
608     NodeBuilder B(I, Dst, *currBldrCtx);
609     ProgramStateRef State = I->getState();
610     Escaped.clear();
611     {
612       unsigned Arg = -1;
613       for (const ParmVarDecl *PVD : Call.parameters()) {
614         ++Arg;
615         QualType ParamTy = PVD->getType();
616         if (ParamTy.isNull() ||
617             (!ParamTy->isPointerType() && !ParamTy->isReferenceType()))
618           continue;
619         QualType Pointee = ParamTy->getPointeeType();
620         if (Pointee.isConstQualified() || Pointee->isVoidType())
621           continue;
622         if (const MemRegion *MR = Call.getArgSVal(Arg).getAsRegion())
623           Escaped.emplace_back(loc::MemRegionVal(MR), State->getSVal(MR, Pointee));
624       }
625     }
626 
627     State = processPointerEscapedOnBind(State, Escaped, I->getLocationContext(),
628                                         PSK_EscapeOutParameters, &Call);
629 
630     if (State == I->getState())
631       Dst.insert(I);
632     else
633       B.generateNode(I->getLocation(), State, I);
634   }
635 }
636 
637 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
638                                             const LocationContext *LCtx,
639                                             ProgramStateRef State) {
640   const Expr *E = Call.getOriginExpr();
641   if (!E)
642     return State;
643 
644   // Some method families have known return values.
645   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
646     switch (Msg->getMethodFamily()) {
647     default:
648       break;
649     case OMF_autorelease:
650     case OMF_retain:
651     case OMF_self: {
652       // These methods return their receivers.
653       return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
654     }
655     }
656   } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
657     SVal ThisV = C->getCXXThisVal();
658     ThisV = State->getSVal(ThisV.castAs<Loc>());
659     return State->BindExpr(E, LCtx, ThisV);
660   }
661 
662   SVal R;
663   QualType ResultTy = Call.getResultType();
664   unsigned Count = currBldrCtx->blockCount();
665   if (auto RTC = getCurrentCFGElement().getAs<CFGCXXRecordTypedCall>()) {
666     // Conjure a temporary if the function returns an object by value.
667     SVal Target;
668     assert(RTC->getStmt() == Call.getOriginExpr());
669     EvalCallOptions CallOpts; // FIXME: We won't really need those.
670     std::tie(State, Target) =
671         prepareForObjectConstruction(Call.getOriginExpr(), State, LCtx,
672                                      RTC->getConstructionContext(), CallOpts);
673     const MemRegion *TargetR = Target.getAsRegion();
674     assert(TargetR);
675     // Invalidate the region so that it didn't look uninitialized. If this is
676     // a field or element constructor, we do not want to invalidate
677     // the whole structure. Pointer escape is meaningless because
678     // the structure is a product of conservative evaluation
679     // and therefore contains nothing interesting at this point.
680     RegionAndSymbolInvalidationTraits ITraits;
681     ITraits.setTrait(TargetR,
682         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
683     State = State->invalidateRegions(TargetR, E, Count, LCtx,
684                                      /* CausesPointerEscape=*/false, nullptr,
685                                      &Call, &ITraits);
686 
687     R = State->getSVal(Target.castAs<Loc>(), E->getType());
688   } else {
689     // Conjure a symbol if the return value is unknown.
690 
691     // See if we need to conjure a heap pointer instead of
692     // a regular unknown pointer.
693     bool IsHeapPointer = false;
694     if (const auto *CNE = dyn_cast<CXXNewExpr>(E))
695       if (CNE->getOperatorNew()->isReplaceableGlobalAllocationFunction()) {
696         // FIXME: Delegate this to evalCall in MallocChecker?
697         IsHeapPointer = true;
698       }
699 
700     R = IsHeapPointer ? svalBuilder.getConjuredHeapSymbolVal(E, LCtx, Count)
701                       : svalBuilder.conjureSymbolVal(nullptr, E, LCtx, ResultTy,
702                                                      Count);
703   }
704   return State->BindExpr(E, LCtx, R);
705 }
706 
707 // Conservatively evaluate call by invalidating regions and binding
708 // a conjured return value.
709 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
710                                       ExplodedNode *Pred, ProgramStateRef State) {
711   State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
712   State = bindReturnValue(Call, Pred->getLocationContext(), State);
713 
714   // And make the result node.
715   Bldr.generateNode(Call.getProgramPoint(), State, Pred);
716 }
717 
718 ExprEngine::CallInlinePolicy
719 ExprEngine::mayInlineCallKind(const CallEvent &Call, const ExplodedNode *Pred,
720                               AnalyzerOptions &Opts,
721                               const ExprEngine::EvalCallOptions &CallOpts) {
722   const LocationContext *CurLC = Pred->getLocationContext();
723   const StackFrameContext *CallerSFC = CurLC->getStackFrame();
724   switch (Call.getKind()) {
725   case CE_Function:
726   case CE_Block:
727     break;
728   case CE_CXXMember:
729   case CE_CXXMemberOperator:
730     if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
731       return CIP_DisallowedAlways;
732     break;
733   case CE_CXXConstructor: {
734     if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
735       return CIP_DisallowedAlways;
736 
737     const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
738 
739     const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
740 
741     auto CCE = getCurrentCFGElement().getAs<CFGConstructor>();
742     const ConstructionContext *CC = CCE ? CCE->getConstructionContext()
743                                         : nullptr;
744 
745     if (CC && isa<NewAllocatedObjectConstructionContext>(CC) &&
746         !Opts.MayInlineCXXAllocator)
747       return CIP_DisallowedOnce;
748 
749     // FIXME: We don't handle constructors or destructors for arrays properly.
750     // Even once we do, we still need to be careful about implicitly-generated
751     // initializers for array fields in default move/copy constructors.
752     // We still allow construction into ElementRegion targets when they don't
753     // represent array elements.
754     if (CallOpts.IsArrayCtorOrDtor)
755       return CIP_DisallowedOnce;
756 
757     // Inlining constructors requires including initializers in the CFG.
758     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
759     assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
760     (void)ADC;
761 
762     // If the destructor is trivial, it's always safe to inline the constructor.
763     if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
764       break;
765 
766     // For other types, only inline constructors if destructor inlining is
767     // also enabled.
768     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
769       return CIP_DisallowedAlways;
770 
771     if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete) {
772       // If we don't handle temporary destructors, we shouldn't inline
773       // their constructors.
774       if (CallOpts.IsTemporaryCtorOrDtor &&
775           !Opts.ShouldIncludeTemporaryDtorsInCFG)
776         return CIP_DisallowedOnce;
777 
778       // If we did not find the correct this-region, it would be pointless
779       // to inline the constructor. Instead we will simply invalidate
780       // the fake temporary target.
781       if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
782         return CIP_DisallowedOnce;
783 
784       // If the temporary is lifetime-extended by binding it to a reference-type
785       // field within an aggregate, automatic destructors don't work properly.
786       if (CallOpts.IsTemporaryLifetimeExtendedViaAggregate)
787         return CIP_DisallowedOnce;
788     }
789 
790     break;
791   }
792   case CE_CXXDestructor: {
793     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
794       return CIP_DisallowedAlways;
795 
796     // Inlining destructors requires building the CFG correctly.
797     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
798     assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
799     (void)ADC;
800 
801     // FIXME: We don't handle constructors or destructors for arrays properly.
802     if (CallOpts.IsArrayCtorOrDtor)
803       return CIP_DisallowedOnce;
804 
805     // Allow disabling temporary destructor inlining with a separate option.
806     if (CallOpts.IsTemporaryCtorOrDtor &&
807         !Opts.MayInlineCXXTemporaryDtors)
808       return CIP_DisallowedOnce;
809 
810     // If we did not find the correct this-region, it would be pointless
811     // to inline the destructor. Instead we will simply invalidate
812     // the fake temporary target.
813     if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
814       return CIP_DisallowedOnce;
815     break;
816   }
817   case CE_CXXAllocator:
818     if (Opts.MayInlineCXXAllocator)
819       break;
820     // Do not inline allocators until we model deallocators.
821     // This is unfortunate, but basically necessary for smart pointers and such.
822     return CIP_DisallowedAlways;
823   case CE_ObjCMessage:
824     if (!Opts.MayInlineObjCMethod)
825       return CIP_DisallowedAlways;
826     if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
827           Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
828       return CIP_DisallowedAlways;
829     break;
830   }
831 
832   return CIP_Allowed;
833 }
834 
835 /// Returns true if the given C++ class contains a member with the given name.
836 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
837                       StringRef Name) {
838   const IdentifierInfo &II = Ctx.Idents.get(Name);
839   DeclarationName DeclName = Ctx.DeclarationNames.getIdentifier(&II);
840   if (!RD->lookup(DeclName).empty())
841     return true;
842 
843   CXXBasePaths Paths(false, false, false);
844   if (RD->lookupInBases(
845           [DeclName](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
846             return CXXRecordDecl::FindOrdinaryMember(Specifier, Path, DeclName);
847           },
848           Paths))
849     return true;
850 
851   return false;
852 }
853 
854 /// Returns true if the given C++ class is a container or iterator.
855 ///
856 /// Our heuristic for this is whether it contains a method named 'begin()' or a
857 /// nested type named 'iterator' or 'iterator_category'.
858 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
859   return hasMember(Ctx, RD, "begin") ||
860          hasMember(Ctx, RD, "iterator") ||
861          hasMember(Ctx, RD, "iterator_category");
862 }
863 
864 /// Returns true if the given function refers to a method of a C++ container
865 /// or iterator.
866 ///
867 /// We generally do a poor job modeling most containers right now, and might
868 /// prefer not to inline their methods.
869 static bool isContainerMethod(const ASTContext &Ctx,
870                               const FunctionDecl *FD) {
871   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
872     return isContainerClass(Ctx, MD->getParent());
873   return false;
874 }
875 
876 /// Returns true if the given function is the destructor of a class named
877 /// "shared_ptr".
878 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
879   const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
880   if (!Dtor)
881     return false;
882 
883   const CXXRecordDecl *RD = Dtor->getParent();
884   if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
885     if (II->isStr("shared_ptr"))
886         return true;
887 
888   return false;
889 }
890 
891 /// Returns true if the function in \p CalleeADC may be inlined in general.
892 ///
893 /// This checks static properties of the function, such as its signature and
894 /// CFG, to determine whether the analyzer should ever consider inlining it,
895 /// in any context.
896 bool ExprEngine::mayInlineDecl(AnalysisDeclContext *CalleeADC) const {
897   AnalyzerOptions &Opts = AMgr.getAnalyzerOptions();
898   // FIXME: Do not inline variadic calls.
899   if (CallEvent::isVariadic(CalleeADC->getDecl()))
900     return false;
901 
902   // Check certain C++-related inlining policies.
903   ASTContext &Ctx = CalleeADC->getASTContext();
904   if (Ctx.getLangOpts().CPlusPlus) {
905     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
906       // Conditionally control the inlining of template functions.
907       if (!Opts.MayInlineTemplateFunctions)
908         if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
909           return false;
910 
911       // Conditionally control the inlining of C++ standard library functions.
912       if (!Opts.MayInlineCXXStandardLibrary)
913         if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
914           if (AnalysisDeclContext::isInStdNamespace(FD))
915             return false;
916 
917       // Conditionally control the inlining of methods on objects that look
918       // like C++ containers.
919       if (!Opts.MayInlineCXXContainerMethods)
920         if (!AMgr.isInCodeFile(FD->getLocation()))
921           if (isContainerMethod(Ctx, FD))
922             return false;
923 
924       // Conditionally control the inlining of the destructor of C++ shared_ptr.
925       // We don't currently do a good job modeling shared_ptr because we can't
926       // see the reference count, so treating as opaque is probably the best
927       // idea.
928       if (!Opts.MayInlineCXXSharedPtrDtor)
929         if (isCXXSharedPtrDtor(FD))
930           return false;
931     }
932   }
933 
934   // It is possible that the CFG cannot be constructed.
935   // Be safe, and check if the CalleeCFG is valid.
936   const CFG *CalleeCFG = CalleeADC->getCFG();
937   if (!CalleeCFG)
938     return false;
939 
940   // Do not inline large functions.
941   if (isHuge(CalleeADC))
942     return false;
943 
944   // It is possible that the live variables analysis cannot be
945   // run.  If so, bail out.
946   if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
947     return false;
948 
949   return true;
950 }
951 
952 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
953                                   const ExplodedNode *Pred,
954                                   const EvalCallOptions &CallOpts) {
955   if (!D)
956     return false;
957 
958   AnalysisManager &AMgr = getAnalysisManager();
959   AnalyzerOptions &Opts = AMgr.options;
960   AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
961   AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
962 
963   // The auto-synthesized bodies are essential to inline as they are
964   // usually small and commonly used. Note: we should do this check early on to
965   // ensure we always inline these calls.
966   if (CalleeADC->isBodyAutosynthesized())
967     return true;
968 
969   if (!AMgr.shouldInlineCall())
970     return false;
971 
972   // Check if this function has been marked as non-inlinable.
973   Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
974   if (MayInline.hasValue()) {
975     if (!MayInline.getValue())
976       return false;
977 
978   } else {
979     // We haven't actually checked the static properties of this function yet.
980     // Do that now, and record our decision in the function summaries.
981     if (mayInlineDecl(CalleeADC)) {
982       Engine.FunctionSummaries->markMayInline(D);
983     } else {
984       Engine.FunctionSummaries->markShouldNotInline(D);
985       return false;
986     }
987   }
988 
989   // Check if we should inline a call based on its kind.
990   // FIXME: this checks both static and dynamic properties of the call, which
991   // means we're redoing a bit of work that could be cached in the function
992   // summary.
993   CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts, CallOpts);
994   if (CIP != CIP_Allowed) {
995     if (CIP == CIP_DisallowedAlways) {
996       assert(!MayInline.hasValue() || MayInline.getValue());
997       Engine.FunctionSummaries->markShouldNotInline(D);
998     }
999     return false;
1000   }
1001 
1002   // Do not inline if recursive or we've reached max stack frame count.
1003   bool IsRecursive = false;
1004   unsigned StackDepth = 0;
1005   examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
1006   if ((StackDepth >= Opts.InlineMaxStackDepth) &&
1007       (!isSmall(CalleeADC) || IsRecursive))
1008     return false;
1009 
1010   // Do not inline large functions too many times.
1011   if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
1012        Opts.MaxTimesInlineLarge) &&
1013       isLarge(CalleeADC)) {
1014     NumReachedInlineCountMax++;
1015     return false;
1016   }
1017 
1018   if (HowToInline == Inline_Minimal && (!isSmall(CalleeADC) || IsRecursive))
1019     return false;
1020 
1021   return true;
1022 }
1023 
1024 static bool isTrivialObjectAssignment(const CallEvent &Call) {
1025   const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
1026   if (!ICall)
1027     return false;
1028 
1029   const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
1030   if (!MD)
1031     return false;
1032   if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
1033     return false;
1034 
1035   return MD->isTrivial();
1036 }
1037 
1038 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
1039                                  const CallEvent &CallTemplate,
1040                                  const EvalCallOptions &CallOpts) {
1041   // Make sure we have the most recent state attached to the call.
1042   ProgramStateRef State = Pred->getState();
1043   CallEventRef<> Call = CallTemplate.cloneWithState(State);
1044 
1045   // Special-case trivial assignment operators.
1046   if (isTrivialObjectAssignment(*Call)) {
1047     performTrivialCopy(Bldr, Pred, *Call);
1048     return;
1049   }
1050 
1051   // Try to inline the call.
1052   // The origin expression here is just used as a kind of checksum;
1053   // this should still be safe even for CallEvents that don't come from exprs.
1054   const Expr *E = Call->getOriginExpr();
1055 
1056   ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
1057   if (InlinedFailedState) {
1058     // If we already tried once and failed, make sure we don't retry later.
1059     State = InlinedFailedState;
1060   } else {
1061     RuntimeDefinition RD = Call->getRuntimeDefinition();
1062     const Decl *D = RD.getDecl();
1063     if (shouldInlineCall(*Call, D, Pred, CallOpts)) {
1064       if (RD.mayHaveOtherDefinitions()) {
1065         AnalyzerOptions &Options = getAnalysisManager().options;
1066 
1067         // Explore with and without inlining the call.
1068         if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
1069           BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
1070           return;
1071         }
1072 
1073         // Don't inline if we're not in any dynamic dispatch mode.
1074         if (Options.getIPAMode() != IPAK_DynamicDispatch) {
1075           conservativeEvalCall(*Call, Bldr, Pred, State);
1076           return;
1077         }
1078       }
1079 
1080       // We are not bifurcating and we do have a Decl, so just inline.
1081       if (inlineCall(*Call, D, Bldr, Pred, State))
1082         return;
1083     }
1084   }
1085 
1086   // If we can't inline it, handle the return value and invalidate the regions.
1087   conservativeEvalCall(*Call, Bldr, Pred, State);
1088 }
1089 
1090 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
1091                                const CallEvent &Call, const Decl *D,
1092                                NodeBuilder &Bldr, ExplodedNode *Pred) {
1093   assert(BifurReg);
1094   BifurReg = BifurReg->StripCasts();
1095 
1096   // Check if we've performed the split already - note, we only want
1097   // to split the path once per memory region.
1098   ProgramStateRef State = Pred->getState();
1099   const unsigned *BState =
1100                         State->get<DynamicDispatchBifurcationMap>(BifurReg);
1101   if (BState) {
1102     // If we are on "inline path", keep inlining if possible.
1103     if (*BState == DynamicDispatchModeInlined)
1104       if (inlineCall(Call, D, Bldr, Pred, State))
1105         return;
1106     // If inline failed, or we are on the path where we assume we
1107     // don't have enough info about the receiver to inline, conjure the
1108     // return value and invalidate the regions.
1109     conservativeEvalCall(Call, Bldr, Pred, State);
1110     return;
1111   }
1112 
1113   // If we got here, this is the first time we process a message to this
1114   // region, so split the path.
1115   ProgramStateRef IState =
1116       State->set<DynamicDispatchBifurcationMap>(BifurReg,
1117                                                DynamicDispatchModeInlined);
1118   inlineCall(Call, D, Bldr, Pred, IState);
1119 
1120   ProgramStateRef NoIState =
1121       State->set<DynamicDispatchBifurcationMap>(BifurReg,
1122                                                DynamicDispatchModeConservative);
1123   conservativeEvalCall(Call, Bldr, Pred, NoIState);
1124 
1125   NumOfDynamicDispatchPathSplits++;
1126 }
1127 
1128 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
1129                                  ExplodedNodeSet &Dst) {
1130   ExplodedNodeSet dstPreVisit;
1131   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
1132 
1133   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
1134 
1135   if (RS->getRetValue()) {
1136     for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
1137                                   ei = dstPreVisit.end(); it != ei; ++it) {
1138       B.generateNode(RS, *it, (*it)->getState());
1139     }
1140   }
1141 }
1142