1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for calls and returns.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PrettyStackTraceLocationContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/Analysis/Analyses/LiveVariables.h"
18 #include "clang/Analysis/ConstructionContext.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/SaveAndRestore.h"
28 
29 using namespace clang;
30 using namespace ento;
31 
32 #define DEBUG_TYPE "ExprEngine"
33 
34 STATISTIC(NumOfDynamicDispatchPathSplits,
35   "The # of times we split the path due to imprecise dynamic dispatch info");
36 
37 STATISTIC(NumInlinedCalls,
38   "The # of times we inlined a call");
39 
40 STATISTIC(NumReachedInlineCountMax,
41   "The # of times we reached inline count maximum");
42 
43 void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE,
44                                   ExplodedNode *Pred) {
45   // Get the entry block in the CFG of the callee.
46   const StackFrameContext *calleeCtx = CE.getCalleeContext();
47   PrettyStackTraceLocationContext CrashInfo(calleeCtx);
48   const CFGBlock *Entry = CE.getEntry();
49 
50   // Validate the CFG.
51   assert(Entry->empty());
52   assert(Entry->succ_size() == 1);
53 
54   // Get the solitary successor.
55   const CFGBlock *Succ = *(Entry->succ_begin());
56 
57   // Construct an edge representing the starting location in the callee.
58   BlockEdge Loc(Entry, Succ, calleeCtx);
59 
60   ProgramStateRef state = Pred->getState();
61 
62   // Construct a new node, notify checkers that analysis of the function has
63   // begun, and add the resultant nodes to the worklist.
64   bool isNew;
65   ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
66   Node->addPredecessor(Pred, G);
67   if (isNew) {
68     ExplodedNodeSet DstBegin;
69     processBeginOfFunction(BC, Node, DstBegin, Loc);
70     Engine.enqueue(DstBegin);
71   }
72 }
73 
74 // Find the last statement on the path to the exploded node and the
75 // corresponding Block.
76 static std::pair<const Stmt*,
77                  const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
78   const Stmt *S = nullptr;
79   const CFGBlock *Blk = nullptr;
80   const StackFrameContext *SF = Node->getStackFrame();
81 
82   // Back up through the ExplodedGraph until we reach a statement node in this
83   // stack frame.
84   while (Node) {
85     const ProgramPoint &PP = Node->getLocation();
86 
87     if (PP.getStackFrame() == SF) {
88       if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
89         S = SP->getStmt();
90         break;
91       } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
92         S = CEE->getCalleeContext()->getCallSite();
93         if (S)
94           break;
95 
96         // If there is no statement, this is an implicitly-generated call.
97         // We'll walk backwards over it and then continue the loop to find
98         // an actual statement.
99         Optional<CallEnter> CE;
100         do {
101           Node = Node->getFirstPred();
102           CE = Node->getLocationAs<CallEnter>();
103         } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
104 
105         // Continue searching the graph.
106       } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
107         Blk = BE->getSrc();
108       }
109     } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
110       // If we reached the CallEnter for this function, it has no statements.
111       if (CE->getCalleeContext() == SF)
112         break;
113     }
114 
115     if (Node->pred_empty())
116       return std::make_pair(nullptr, nullptr);
117 
118     Node = *Node->pred_begin();
119   }
120 
121   return std::make_pair(S, Blk);
122 }
123 
124 /// Adjusts a return value when the called function's return type does not
125 /// match the caller's expression type. This can happen when a dynamic call
126 /// is devirtualized, and the overriding method has a covariant (more specific)
127 /// return type than the parent's method. For C++ objects, this means we need
128 /// to add base casts.
129 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
130                               StoreManager &StoreMgr) {
131   // For now, the only adjustments we handle apply only to locations.
132   if (!isa<Loc>(V))
133     return V;
134 
135   // If the types already match, don't do any unnecessary work.
136   ExpectedTy = ExpectedTy.getCanonicalType();
137   ActualTy = ActualTy.getCanonicalType();
138   if (ExpectedTy == ActualTy)
139     return V;
140 
141   // No adjustment is needed between Objective-C pointer types.
142   if (ExpectedTy->isObjCObjectPointerType() &&
143       ActualTy->isObjCObjectPointerType())
144     return V;
145 
146   // C++ object pointers may need "derived-to-base" casts.
147   const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
148   const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
149   if (ExpectedClass && ActualClass) {
150     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
151                        /*DetectVirtual=*/false);
152     if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
153         !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
154       return StoreMgr.evalDerivedToBase(V, Paths.front());
155     }
156   }
157 
158   // Unfortunately, Objective-C does not enforce that overridden methods have
159   // covariant return types, so we can't assert that that never happens.
160   // Be safe and return UnknownVal().
161   return UnknownVal();
162 }
163 
164 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
165                                            ExplodedNode *Pred,
166                                            ExplodedNodeSet &Dst) {
167   // Find the last statement in the function and the corresponding basic block.
168   const Stmt *LastSt = nullptr;
169   const CFGBlock *Blk = nullptr;
170   std::tie(LastSt, Blk) = getLastStmt(Pred);
171   if (!Blk || !LastSt) {
172     Dst.Add(Pred);
173     return;
174   }
175 
176   // Here, we destroy the current location context. We use the current
177   // function's entire body as a diagnostic statement, with which the program
178   // point will be associated. However, we only want to use LastStmt as a
179   // reference for what to clean up if it's a ReturnStmt; otherwise, everything
180   // is dead.
181   SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
182   const LocationContext *LCtx = Pred->getLocationContext();
183   removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
184              LCtx->getAnalysisDeclContext()->getBody(),
185              ProgramPoint::PostStmtPurgeDeadSymbolsKind);
186 }
187 
188 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
189     const StackFrameContext *calleeCtx) {
190   const Decl *RuntimeCallee = calleeCtx->getDecl();
191   const Decl *StaticDecl = Call->getDecl();
192   assert(RuntimeCallee);
193   if (!StaticDecl)
194     return true;
195   return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
196 }
197 
198 /// The call exit is simulated with a sequence of nodes, which occur between
199 /// CallExitBegin and CallExitEnd. The following operations occur between the
200 /// two program points:
201 /// 1. CallExitBegin (triggers the start of call exit sequence)
202 /// 2. Bind the return value
203 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
204 /// 4. CallExitEnd (switch to the caller context)
205 /// 5. PostStmt<CallExpr>
206 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
207   // Step 1 CEBNode was generated before the call.
208   PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
209   const StackFrameContext *calleeCtx = CEBNode->getStackFrame();
210 
211   // The parent context might not be a stack frame, so make sure we
212   // look up the first enclosing stack frame.
213   const StackFrameContext *callerCtx =
214     calleeCtx->getParent()->getStackFrame();
215 
216   const Stmt *CE = calleeCtx->getCallSite();
217   ProgramStateRef state = CEBNode->getState();
218   // Find the last statement in the function and the corresponding basic block.
219   const Stmt *LastSt = nullptr;
220   const CFGBlock *Blk = nullptr;
221   std::tie(LastSt, Blk) = getLastStmt(CEBNode);
222 
223   // Generate a CallEvent /before/ cleaning the state, so that we can get the
224   // correct value for 'this' (if necessary).
225   CallEventManager &CEMgr = getStateManager().getCallEventManager();
226   CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
227 
228   // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
229 
230   // If this variable is set to 'true' the analyzer will evaluate the call
231   // statement we are about to exit again, instead of continuing the execution
232   // from the statement after the call. This is useful for non-POD type array
233   // construction where the CXXConstructExpr is referenced only once in the CFG,
234   // but we want to evaluate it as many times as many elements the array has.
235   bool ShouldRepeatCall = false;
236 
237   // If the callee returns an expression, bind its value to CallExpr.
238   if (CE) {
239     if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
240       const LocationContext *LCtx = CEBNode->getLocationContext();
241       SVal V = state->getSVal(RS, LCtx);
242 
243       // Ensure that the return type matches the type of the returned Expr.
244       if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
245         QualType ReturnedTy =
246           CallEvent::getDeclaredResultType(calleeCtx->getDecl());
247         if (!ReturnedTy.isNull()) {
248           if (const Expr *Ex = dyn_cast<Expr>(CE)) {
249             V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
250                                   getStoreManager());
251           }
252         }
253       }
254 
255       state = state->BindExpr(CE, callerCtx, V);
256     }
257 
258     // Bind the constructed object value to CXXConstructExpr.
259     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
260       loc::MemRegionVal This =
261         svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
262       SVal ThisV = state->getSVal(This);
263       ThisV = state->getSVal(ThisV.castAs<Loc>());
264       state = state->BindExpr(CCE, callerCtx, ThisV);
265 
266       ShouldRepeatCall = shouldRepeatCtorCall(state, CCE, callerCtx);
267 
268       if (!ShouldRepeatCall) {
269         if (getIndexOfElementToConstruct(state, CCE, callerCtx))
270           state = removeIndexOfElementToConstruct(state, CCE, callerCtx);
271 
272         if (getPendingInitLoop(state, CCE, callerCtx))
273           state = removePendingInitLoop(state, CCE, callerCtx);
274       }
275     }
276 
277     if (const auto *CNE = dyn_cast<CXXNewExpr>(CE)) {
278       // We are currently evaluating a CXXNewAllocator CFGElement. It takes a
279       // while to reach the actual CXXNewExpr element from here, so keep the
280       // region for later use.
281       // Additionally cast the return value of the inlined operator new
282       // (which is of type 'void *') to the correct object type.
283       SVal AllocV = state->getSVal(CNE, callerCtx);
284       AllocV = svalBuilder.evalCast(
285           AllocV, CNE->getType(),
286           getContext().getPointerType(getContext().VoidTy));
287 
288       state = addObjectUnderConstruction(state, CNE, calleeCtx->getParent(),
289                                          AllocV);
290     }
291   }
292 
293   // Step 3: BindedRetNode -> CleanedNodes
294   // If we can find a statement and a block in the inlined function, run remove
295   // dead bindings before returning from the call. This is important to ensure
296   // that we report the issues such as leaks in the stack contexts in which
297   // they occurred.
298   ExplodedNodeSet CleanedNodes;
299   if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
300     static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
301     PostStmt Loc(LastSt, calleeCtx, &retValBind);
302     bool isNew;
303     ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
304     BindedRetNode->addPredecessor(CEBNode, G);
305     if (!isNew)
306       return;
307 
308     NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
309     currBldrCtx = &Ctx;
310     // Here, we call the Symbol Reaper with 0 statement and callee location
311     // context, telling it to clean up everything in the callee's context
312     // (and its children). We use the callee's function body as a diagnostic
313     // statement, with which the program point will be associated.
314     removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
315                calleeCtx->getAnalysisDeclContext()->getBody(),
316                ProgramPoint::PostStmtPurgeDeadSymbolsKind);
317     currBldrCtx = nullptr;
318   } else {
319     CleanedNodes.Add(CEBNode);
320   }
321 
322   for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
323                                  E = CleanedNodes.end(); I != E; ++I) {
324 
325     // Step 4: Generate the CallExit and leave the callee's context.
326     // CleanedNodes -> CEENode
327     CallExitEnd Loc(calleeCtx, callerCtx);
328     bool isNew;
329     ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
330 
331     ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
332     CEENode->addPredecessor(*I, G);
333     if (!isNew)
334       return;
335 
336     // Step 5: Perform the post-condition check of the CallExpr and enqueue the
337     // result onto the work list.
338     // CEENode -> Dst -> WorkList
339     NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
340     SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
341         &Ctx);
342     SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
343 
344     CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
345 
346     ExplodedNodeSet DstPostCall;
347     if (llvm::isa_and_nonnull<CXXNewExpr>(CE)) {
348       ExplodedNodeSet DstPostPostCallCallback;
349       getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
350                                                  CEENode, *UpdatedCall, *this,
351                                                  /*wasInlined=*/true);
352       for (ExplodedNode *I : DstPostPostCallCallback) {
353         getCheckerManager().runCheckersForNewAllocator(
354             cast<CXXAllocatorCall>(*UpdatedCall), DstPostCall, I, *this,
355             /*wasInlined=*/true);
356       }
357     } else {
358       getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
359                                                  *UpdatedCall, *this,
360                                                  /*wasInlined=*/true);
361     }
362     ExplodedNodeSet Dst;
363     if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
364       getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
365                                                         *this,
366                                                         /*wasInlined=*/true);
367     } else if (CE &&
368                !(isa<CXXNewExpr>(CE) && // Called when visiting CXXNewExpr.
369                  AMgr.getAnalyzerOptions().MayInlineCXXAllocator)) {
370       getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
371                                                  *this, /*wasInlined=*/true);
372     } else {
373       Dst.insert(DstPostCall);
374     }
375 
376     // Enqueue the next element in the block.
377     for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
378          PSI != PSE; ++PSI) {
379       unsigned Idx = calleeCtx->getIndex() + (ShouldRepeatCall ? 0 : 1);
380 
381       Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(), Idx);
382     }
383   }
384 }
385 
386 bool ExprEngine::isSmall(AnalysisDeclContext *ADC) const {
387   // When there are no branches in the function, it means that there's no
388   // exponential complexity introduced by inlining such function.
389   // Such functions also don't trigger various fundamental problems
390   // with our inlining mechanism, such as the problem of
391   // inlined defensive checks. Hence isLinear().
392   const CFG *Cfg = ADC->getCFG();
393   return Cfg->isLinear() || Cfg->size() <= AMgr.options.AlwaysInlineSize;
394 }
395 
396 bool ExprEngine::isLarge(AnalysisDeclContext *ADC) const {
397   const CFG *Cfg = ADC->getCFG();
398   return Cfg->size() >= AMgr.options.MinCFGSizeTreatFunctionsAsLarge;
399 }
400 
401 bool ExprEngine::isHuge(AnalysisDeclContext *ADC) const {
402   const CFG *Cfg = ADC->getCFG();
403   return Cfg->getNumBlockIDs() > AMgr.options.MaxInlinableSize;
404 }
405 
406 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
407                                bool &IsRecursive, unsigned &StackDepth) {
408   IsRecursive = false;
409   StackDepth = 0;
410 
411   while (LCtx) {
412     if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
413       const Decl *DI = SFC->getDecl();
414 
415       // Mark recursive (and mutually recursive) functions and always count
416       // them when measuring the stack depth.
417       if (DI == D) {
418         IsRecursive = true;
419         ++StackDepth;
420         LCtx = LCtx->getParent();
421         continue;
422       }
423 
424       // Do not count the small functions when determining the stack depth.
425       AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
426       if (!isSmall(CalleeADC))
427         ++StackDepth;
428     }
429     LCtx = LCtx->getParent();
430   }
431 }
432 
433 // The GDM component containing the dynamic dispatch bifurcation info. When
434 // the exact type of the receiver is not known, we want to explore both paths -
435 // one on which we do inline it and the other one on which we don't. This is
436 // done to ensure we do not drop coverage.
437 // This is the map from the receiver region to a bool, specifying either we
438 // consider this region's information precise or not along the given path.
439 namespace {
440   enum DynamicDispatchMode {
441     DynamicDispatchModeInlined = 1,
442     DynamicDispatchModeConservative
443   };
444 } // end anonymous namespace
445 
446 REGISTER_MAP_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
447                                const MemRegion *, unsigned)
448 REGISTER_TRAIT_WITH_PROGRAMSTATE(CTUDispatchBifurcation, bool)
449 
450 void ExprEngine::ctuBifurcate(const CallEvent &Call, const Decl *D,
451                               NodeBuilder &Bldr, ExplodedNode *Pred,
452                               ProgramStateRef State) {
453   ProgramStateRef ConservativeEvalState = nullptr;
454   if (Call.isForeign() && !isSecondPhaseCTU()) {
455     const auto IK = AMgr.options.getCTUPhase1Inlining();
456     const bool DoInline = IK == CTUPhase1InliningKind::All ||
457                           (IK == CTUPhase1InliningKind::Small &&
458                            isSmall(AMgr.getAnalysisDeclContext(D)));
459     if (DoInline) {
460       inlineCall(Engine.getWorkList(), Call, D, Bldr, Pred, State);
461       return;
462     }
463     const bool BState = State->get<CTUDispatchBifurcation>();
464     if (!BState) { // This is the first time we see this foreign function.
465       // Enqueue it to be analyzed in the second (ctu) phase.
466       inlineCall(Engine.getCTUWorkList(), Call, D, Bldr, Pred, State);
467       // Conservatively evaluate in the first phase.
468       ConservativeEvalState = State->set<CTUDispatchBifurcation>(true);
469       conservativeEvalCall(Call, Bldr, Pred, ConservativeEvalState);
470     } else {
471       conservativeEvalCall(Call, Bldr, Pred, State);
472     }
473     return;
474   }
475   inlineCall(Engine.getWorkList(), Call, D, Bldr, Pred, State);
476 }
477 
478 void ExprEngine::inlineCall(WorkList *WList, const CallEvent &Call,
479                             const Decl *D, NodeBuilder &Bldr,
480                             ExplodedNode *Pred, ProgramStateRef State) {
481   assert(D);
482 
483   const LocationContext *CurLC = Pred->getLocationContext();
484   const StackFrameContext *CallerSFC = CurLC->getStackFrame();
485   const LocationContext *ParentOfCallee = CallerSFC;
486   if (Call.getKind() == CE_Block &&
487       !cast<BlockCall>(Call).isConversionFromLambda()) {
488     const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
489     assert(BR && "If we have the block definition we should have its region");
490     AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
491     ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
492                                                          cast<BlockDecl>(D),
493                                                          BR);
494   }
495 
496   // This may be NULL, but that's fine.
497   const Expr *CallE = Call.getOriginExpr();
498 
499   // Construct a new stack frame for the callee.
500   AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
501   const StackFrameContext *CalleeSFC =
502       CalleeADC->getStackFrame(ParentOfCallee, CallE, currBldrCtx->getBlock(),
503                                currBldrCtx->blockCount(), currStmtIdx);
504 
505   CallEnter Loc(CallE, CalleeSFC, CurLC);
506 
507   // Construct a new state which contains the mapping from actual to
508   // formal arguments.
509   State = State->enterStackFrame(Call, CalleeSFC);
510 
511   bool isNew;
512   if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
513     N->addPredecessor(Pred, G);
514     if (isNew)
515       WList->enqueue(N);
516   }
517 
518   // If we decided to inline the call, the successor has been manually
519   // added onto the work list so remove it from the node builder.
520   Bldr.takeNodes(Pred);
521 
522   NumInlinedCalls++;
523   Engine.FunctionSummaries->bumpNumTimesInlined(D);
524 
525   // Do not mark as visited in the 2nd run (CTUWList), so the function will
526   // be visited as top-level, this way we won't loose reports in non-ctu
527   // mode. Considering the case when a function in a foreign TU calls back
528   // into the main TU.
529   // Note, during the 1st run, it doesn't matter if we mark the foreign
530   // functions as visited (or not) because they can never appear as a top level
531   // function in the main TU.
532   if (!isSecondPhaseCTU())
533     // Mark the decl as visited.
534     if (VisitedCallees)
535       VisitedCallees->insert(D);
536 }
537 
538 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
539                                             const Stmt *CallE) {
540   const void *ReplayState = State->get<ReplayWithoutInlining>();
541   if (!ReplayState)
542     return nullptr;
543 
544   assert(ReplayState == CallE && "Backtracked to the wrong call.");
545   (void)CallE;
546 
547   return State->remove<ReplayWithoutInlining>();
548 }
549 
550 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
551                                ExplodedNodeSet &dst) {
552   // Perform the previsit of the CallExpr.
553   ExplodedNodeSet dstPreVisit;
554   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
555 
556   // Get the call in its initial state. We use this as a template to perform
557   // all the checks.
558   CallEventManager &CEMgr = getStateManager().getCallEventManager();
559   CallEventRef<> CallTemplate
560     = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
561 
562   // Evaluate the function call.  We try each of the checkers
563   // to see if the can evaluate the function call.
564   ExplodedNodeSet dstCallEvaluated;
565   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
566        I != E; ++I) {
567     evalCall(dstCallEvaluated, *I, *CallTemplate);
568   }
569 
570   // Finally, perform the post-condition check of the CallExpr and store
571   // the created nodes in 'Dst'.
572   // Note that if the call was inlined, dstCallEvaluated will be empty.
573   // The post-CallExpr check will occur in processCallExit.
574   getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
575                                              *this);
576 }
577 
578 ProgramStateRef ExprEngine::finishArgumentConstruction(ProgramStateRef State,
579                                                        const CallEvent &Call) {
580   const Expr *E = Call.getOriginExpr();
581   // FIXME: Constructors to placement arguments of operator new
582   // are not supported yet.
583   if (!E || isa<CXXNewExpr>(E))
584     return State;
585 
586   const LocationContext *LC = Call.getLocationContext();
587   for (unsigned CallI = 0, CallN = Call.getNumArgs(); CallI != CallN; ++CallI) {
588     unsigned I = Call.getASTArgumentIndex(CallI);
589     if (Optional<SVal> V =
590             getObjectUnderConstruction(State, {E, I}, LC)) {
591       SVal VV = *V;
592       (void)VV;
593       assert(cast<VarRegion>(VV.castAs<loc::MemRegionVal>().getRegion())
594                  ->getStackFrame()->getParent()
595                  ->getStackFrame() == LC->getStackFrame());
596       State = finishObjectConstruction(State, {E, I}, LC);
597     }
598   }
599 
600   return State;
601 }
602 
603 void ExprEngine::finishArgumentConstruction(ExplodedNodeSet &Dst,
604                                             ExplodedNode *Pred,
605                                             const CallEvent &Call) {
606   ProgramStateRef State = Pred->getState();
607   ProgramStateRef CleanedState = finishArgumentConstruction(State, Call);
608   if (CleanedState == State) {
609     Dst.insert(Pred);
610     return;
611   }
612 
613   const Expr *E = Call.getOriginExpr();
614   const LocationContext *LC = Call.getLocationContext();
615   NodeBuilder B(Pred, Dst, *currBldrCtx);
616   static SimpleProgramPointTag Tag("ExprEngine",
617                                    "Finish argument construction");
618   PreStmt PP(E, LC, &Tag);
619   B.generateNode(PP, CleanedState, Pred);
620 }
621 
622 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
623                           const CallEvent &Call) {
624   // WARNING: At this time, the state attached to 'Call' may be older than the
625   // state in 'Pred'. This is a minor optimization since CheckerManager will
626   // use an updated CallEvent instance when calling checkers, but if 'Call' is
627   // ever used directly in this function all callers should be updated to pass
628   // the most recent state. (It is probably not worth doing the work here since
629   // for some callers this will not be necessary.)
630 
631   // Run any pre-call checks using the generic call interface.
632   ExplodedNodeSet dstPreVisit;
633   getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred,
634                                             Call, *this);
635 
636   // Actually evaluate the function call.  We try each of the checkers
637   // to see if the can evaluate the function call, and get a callback at
638   // defaultEvalCall if all of them fail.
639   ExplodedNodeSet dstCallEvaluated;
640   getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
641                                              Call, *this, EvalCallOptions());
642 
643   // If there were other constructors called for object-type arguments
644   // of this call, clean them up.
645   ExplodedNodeSet dstArgumentCleanup;
646   for (ExplodedNode *I : dstCallEvaluated)
647     finishArgumentConstruction(dstArgumentCleanup, I, Call);
648 
649   ExplodedNodeSet dstPostCall;
650   getCheckerManager().runCheckersForPostCall(dstPostCall, dstArgumentCleanup,
651                                              Call, *this);
652 
653   // Escaping symbols conjured during invalidating the regions above.
654   // Note that, for inlined calls the nodes were put back into the worklist,
655   // so we can assume that every node belongs to a conservative call at this
656   // point.
657 
658   // Run pointerEscape callback with the newly conjured symbols.
659   SmallVector<std::pair<SVal, SVal>, 8> Escaped;
660   for (ExplodedNode *I : dstPostCall) {
661     NodeBuilder B(I, Dst, *currBldrCtx);
662     ProgramStateRef State = I->getState();
663     Escaped.clear();
664     {
665       unsigned Arg = -1;
666       for (const ParmVarDecl *PVD : Call.parameters()) {
667         ++Arg;
668         QualType ParamTy = PVD->getType();
669         if (ParamTy.isNull() ||
670             (!ParamTy->isPointerType() && !ParamTy->isReferenceType()))
671           continue;
672         QualType Pointee = ParamTy->getPointeeType();
673         if (Pointee.isConstQualified() || Pointee->isVoidType())
674           continue;
675         if (const MemRegion *MR = Call.getArgSVal(Arg).getAsRegion())
676           Escaped.emplace_back(loc::MemRegionVal(MR), State->getSVal(MR, Pointee));
677       }
678     }
679 
680     State = processPointerEscapedOnBind(State, Escaped, I->getLocationContext(),
681                                         PSK_EscapeOutParameters, &Call);
682 
683     if (State == I->getState())
684       Dst.insert(I);
685     else
686       B.generateNode(I->getLocation(), State, I);
687   }
688 }
689 
690 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
691                                             const LocationContext *LCtx,
692                                             ProgramStateRef State) {
693   const Expr *E = Call.getOriginExpr();
694   if (!E)
695     return State;
696 
697   // Some method families have known return values.
698   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
699     switch (Msg->getMethodFamily()) {
700     default:
701       break;
702     case OMF_autorelease:
703     case OMF_retain:
704     case OMF_self: {
705       // These methods return their receivers.
706       return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
707     }
708     }
709   } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
710     SVal ThisV = C->getCXXThisVal();
711     ThisV = State->getSVal(ThisV.castAs<Loc>());
712     return State->BindExpr(E, LCtx, ThisV);
713   }
714 
715   SVal R;
716   QualType ResultTy = Call.getResultType();
717   unsigned Count = currBldrCtx->blockCount();
718   if (auto RTC = getCurrentCFGElement().getAs<CFGCXXRecordTypedCall>()) {
719     // Conjure a temporary if the function returns an object by value.
720     SVal Target;
721     assert(RTC->getStmt() == Call.getOriginExpr());
722     EvalCallOptions CallOpts; // FIXME: We won't really need those.
723     std::tie(State, Target) =
724         handleConstructionContext(Call.getOriginExpr(), State, LCtx,
725                                   RTC->getConstructionContext(), CallOpts);
726     const MemRegion *TargetR = Target.getAsRegion();
727     assert(TargetR);
728     // Invalidate the region so that it didn't look uninitialized. If this is
729     // a field or element constructor, we do not want to invalidate
730     // the whole structure. Pointer escape is meaningless because
731     // the structure is a product of conservative evaluation
732     // and therefore contains nothing interesting at this point.
733     RegionAndSymbolInvalidationTraits ITraits;
734     ITraits.setTrait(TargetR,
735         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
736     State = State->invalidateRegions(TargetR, E, Count, LCtx,
737                                      /* CausesPointerEscape=*/false, nullptr,
738                                      &Call, &ITraits);
739 
740     R = State->getSVal(Target.castAs<Loc>(), E->getType());
741   } else {
742     // Conjure a symbol if the return value is unknown.
743 
744     // See if we need to conjure a heap pointer instead of
745     // a regular unknown pointer.
746     const auto *CNE = dyn_cast<CXXNewExpr>(E);
747     if (CNE && CNE->getOperatorNew()->isReplaceableGlobalAllocationFunction()) {
748       R = svalBuilder.getConjuredHeapSymbolVal(E, LCtx, Count);
749       const MemRegion *MR = R.getAsRegion()->StripCasts();
750 
751       // Store the extent of the allocated object(s).
752       SVal ElementCount;
753       if (const Expr *SizeExpr = CNE->getArraySize().value_or(nullptr)) {
754         ElementCount = State->getSVal(SizeExpr, LCtx);
755       } else {
756         ElementCount = svalBuilder.makeIntVal(1, /*IsUnsigned=*/true);
757       }
758 
759       SVal ElementSize = getElementExtent(CNE->getAllocatedType(), svalBuilder);
760 
761       SVal Size =
762           svalBuilder.evalBinOp(State, BO_Mul, ElementCount, ElementSize,
763                                 svalBuilder.getArrayIndexType());
764 
765       State = setDynamicExtent(State, MR, Size.castAs<DefinedOrUnknownSVal>(),
766                                svalBuilder);
767     } else {
768       R = svalBuilder.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count);
769     }
770   }
771   return State->BindExpr(E, LCtx, R);
772 }
773 
774 // Conservatively evaluate call by invalidating regions and binding
775 // a conjured return value.
776 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
777                                       ExplodedNode *Pred, ProgramStateRef State) {
778   State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
779   State = bindReturnValue(Call, Pred->getLocationContext(), State);
780 
781   // And make the result node.
782   Bldr.generateNode(Call.getProgramPoint(), State, Pred);
783 }
784 
785 ExprEngine::CallInlinePolicy
786 ExprEngine::mayInlineCallKind(const CallEvent &Call, const ExplodedNode *Pred,
787                               AnalyzerOptions &Opts,
788                               const EvalCallOptions &CallOpts) {
789   const LocationContext *CurLC = Pred->getLocationContext();
790   const StackFrameContext *CallerSFC = CurLC->getStackFrame();
791   switch (Call.getKind()) {
792   case CE_Function:
793   case CE_Block:
794     break;
795   case CE_CXXMember:
796   case CE_CXXMemberOperator:
797     if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
798       return CIP_DisallowedAlways;
799     break;
800   case CE_CXXConstructor: {
801     if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
802       return CIP_DisallowedAlways;
803 
804     const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
805 
806     const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
807 
808     auto CCE = getCurrentCFGElement().getAs<CFGConstructor>();
809     const ConstructionContext *CC = CCE ? CCE->getConstructionContext()
810                                         : nullptr;
811 
812     if (llvm::isa_and_nonnull<NewAllocatedObjectConstructionContext>(CC) &&
813         !Opts.MayInlineCXXAllocator)
814       return CIP_DisallowedOnce;
815 
816     // FIXME: We don't handle constructors or destructors for arrays properly.
817     // Even once we do, we still need to be careful about implicitly-generated
818     // initializers for array fields in default move/copy constructors.
819     // We still allow construction into ElementRegion targets when they don't
820     // represent array elements.
821     if (CallOpts.IsArrayCtorOrDtor) {
822       if (!shouldInlineArrayConstruction(Pred->getState(), CtorExpr, CurLC))
823         return CIP_DisallowedOnce;
824     }
825 
826     // Inlining constructors requires including initializers in the CFG.
827     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
828     assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
829     (void)ADC;
830 
831     // If the destructor is trivial, it's always safe to inline the constructor.
832     if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
833       break;
834 
835     // For other types, only inline constructors if destructor inlining is
836     // also enabled.
837     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
838       return CIP_DisallowedAlways;
839 
840     if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete) {
841       // If we don't handle temporary destructors, we shouldn't inline
842       // their constructors.
843       if (CallOpts.IsTemporaryCtorOrDtor &&
844           !Opts.ShouldIncludeTemporaryDtorsInCFG)
845         return CIP_DisallowedOnce;
846 
847       // If we did not find the correct this-region, it would be pointless
848       // to inline the constructor. Instead we will simply invalidate
849       // the fake temporary target.
850       if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
851         return CIP_DisallowedOnce;
852 
853       // If the temporary is lifetime-extended by binding it to a reference-type
854       // field within an aggregate, automatic destructors don't work properly.
855       if (CallOpts.IsTemporaryLifetimeExtendedViaAggregate)
856         return CIP_DisallowedOnce;
857     }
858 
859     break;
860   }
861   case CE_CXXInheritedConstructor: {
862     // This doesn't really increase the cost of inlining ever, because
863     // the stack frame of the inherited constructor is trivial.
864     return CIP_Allowed;
865   }
866   case CE_CXXDestructor: {
867     if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
868       return CIP_DisallowedAlways;
869 
870     // Inlining destructors requires building the CFG correctly.
871     const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
872     assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
873     (void)ADC;
874 
875     // FIXME: We don't handle destructors for arrays properly.
876     if (CallOpts.IsArrayCtorOrDtor)
877       return CIP_DisallowedOnce;
878 
879     // Allow disabling temporary destructor inlining with a separate option.
880     if (CallOpts.IsTemporaryCtorOrDtor &&
881         !Opts.MayInlineCXXTemporaryDtors)
882       return CIP_DisallowedOnce;
883 
884     // If we did not find the correct this-region, it would be pointless
885     // to inline the destructor. Instead we will simply invalidate
886     // the fake temporary target.
887     if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
888       return CIP_DisallowedOnce;
889     break;
890   }
891   case CE_CXXDeallocator:
892     LLVM_FALLTHROUGH;
893   case CE_CXXAllocator:
894     if (Opts.MayInlineCXXAllocator)
895       break;
896     // Do not inline allocators until we model deallocators.
897     // This is unfortunate, but basically necessary for smart pointers and such.
898     return CIP_DisallowedAlways;
899   case CE_ObjCMessage:
900     if (!Opts.MayInlineObjCMethod)
901       return CIP_DisallowedAlways;
902     if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
903           Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
904       return CIP_DisallowedAlways;
905     break;
906   }
907 
908   return CIP_Allowed;
909 }
910 
911 /// Returns true if the given C++ class contains a member with the given name.
912 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
913                       StringRef Name) {
914   const IdentifierInfo &II = Ctx.Idents.get(Name);
915   return RD->hasMemberName(Ctx.DeclarationNames.getIdentifier(&II));
916 }
917 
918 /// Returns true if the given C++ class is a container or iterator.
919 ///
920 /// Our heuristic for this is whether it contains a method named 'begin()' or a
921 /// nested type named 'iterator' or 'iterator_category'.
922 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
923   return hasMember(Ctx, RD, "begin") ||
924          hasMember(Ctx, RD, "iterator") ||
925          hasMember(Ctx, RD, "iterator_category");
926 }
927 
928 /// Returns true if the given function refers to a method of a C++ container
929 /// or iterator.
930 ///
931 /// We generally do a poor job modeling most containers right now, and might
932 /// prefer not to inline their methods.
933 static bool isContainerMethod(const ASTContext &Ctx,
934                               const FunctionDecl *FD) {
935   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
936     return isContainerClass(Ctx, MD->getParent());
937   return false;
938 }
939 
940 /// Returns true if the given function is the destructor of a class named
941 /// "shared_ptr".
942 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
943   const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
944   if (!Dtor)
945     return false;
946 
947   const CXXRecordDecl *RD = Dtor->getParent();
948   if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
949     if (II->isStr("shared_ptr"))
950         return true;
951 
952   return false;
953 }
954 
955 /// Returns true if the function in \p CalleeADC may be inlined in general.
956 ///
957 /// This checks static properties of the function, such as its signature and
958 /// CFG, to determine whether the analyzer should ever consider inlining it,
959 /// in any context.
960 bool ExprEngine::mayInlineDecl(AnalysisDeclContext *CalleeADC) const {
961   AnalyzerOptions &Opts = AMgr.getAnalyzerOptions();
962   // FIXME: Do not inline variadic calls.
963   if (CallEvent::isVariadic(CalleeADC->getDecl()))
964     return false;
965 
966   // Check certain C++-related inlining policies.
967   ASTContext &Ctx = CalleeADC->getASTContext();
968   if (Ctx.getLangOpts().CPlusPlus) {
969     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
970       // Conditionally control the inlining of template functions.
971       if (!Opts.MayInlineTemplateFunctions)
972         if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
973           return false;
974 
975       // Conditionally control the inlining of C++ standard library functions.
976       if (!Opts.MayInlineCXXStandardLibrary)
977         if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
978           if (AnalysisDeclContext::isInStdNamespace(FD))
979             return false;
980 
981       // Conditionally control the inlining of methods on objects that look
982       // like C++ containers.
983       if (!Opts.MayInlineCXXContainerMethods)
984         if (!AMgr.isInCodeFile(FD->getLocation()))
985           if (isContainerMethod(Ctx, FD))
986             return false;
987 
988       // Conditionally control the inlining of the destructor of C++ shared_ptr.
989       // We don't currently do a good job modeling shared_ptr because we can't
990       // see the reference count, so treating as opaque is probably the best
991       // idea.
992       if (!Opts.MayInlineCXXSharedPtrDtor)
993         if (isCXXSharedPtrDtor(FD))
994           return false;
995     }
996   }
997 
998   // It is possible that the CFG cannot be constructed.
999   // Be safe, and check if the CalleeCFG is valid.
1000   const CFG *CalleeCFG = CalleeADC->getCFG();
1001   if (!CalleeCFG)
1002     return false;
1003 
1004   // Do not inline large functions.
1005   if (isHuge(CalleeADC))
1006     return false;
1007 
1008   // It is possible that the live variables analysis cannot be
1009   // run.  If so, bail out.
1010   if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
1011     return false;
1012 
1013   return true;
1014 }
1015 
1016 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
1017                                   const ExplodedNode *Pred,
1018                                   const EvalCallOptions &CallOpts) {
1019   if (!D)
1020     return false;
1021 
1022   AnalysisManager &AMgr = getAnalysisManager();
1023   AnalyzerOptions &Opts = AMgr.options;
1024   AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
1025   AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
1026 
1027   // The auto-synthesized bodies are essential to inline as they are
1028   // usually small and commonly used. Note: we should do this check early on to
1029   // ensure we always inline these calls.
1030   if (CalleeADC->isBodyAutosynthesized())
1031     return true;
1032 
1033   if (!AMgr.shouldInlineCall())
1034     return false;
1035 
1036   // Check if this function has been marked as non-inlinable.
1037   Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
1038   if (MayInline) {
1039     if (!MayInline.value())
1040       return false;
1041 
1042   } else {
1043     // We haven't actually checked the static properties of this function yet.
1044     // Do that now, and record our decision in the function summaries.
1045     if (mayInlineDecl(CalleeADC)) {
1046       Engine.FunctionSummaries->markMayInline(D);
1047     } else {
1048       Engine.FunctionSummaries->markShouldNotInline(D);
1049       return false;
1050     }
1051   }
1052 
1053   // Check if we should inline a call based on its kind.
1054   // FIXME: this checks both static and dynamic properties of the call, which
1055   // means we're redoing a bit of work that could be cached in the function
1056   // summary.
1057   CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts, CallOpts);
1058   if (CIP != CIP_Allowed) {
1059     if (CIP == CIP_DisallowedAlways) {
1060       assert(!MayInline || *MayInline);
1061       Engine.FunctionSummaries->markShouldNotInline(D);
1062     }
1063     return false;
1064   }
1065 
1066   // Do not inline if recursive or we've reached max stack frame count.
1067   bool IsRecursive = false;
1068   unsigned StackDepth = 0;
1069   examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
1070   if ((StackDepth >= Opts.InlineMaxStackDepth) &&
1071       (!isSmall(CalleeADC) || IsRecursive))
1072     return false;
1073 
1074   // Do not inline large functions too many times.
1075   if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
1076        Opts.MaxTimesInlineLarge) &&
1077       isLarge(CalleeADC)) {
1078     NumReachedInlineCountMax++;
1079     return false;
1080   }
1081 
1082   if (HowToInline == Inline_Minimal && (!isSmall(CalleeADC) || IsRecursive))
1083     return false;
1084 
1085   return true;
1086 }
1087 
1088 bool ExprEngine::shouldInlineArrayConstruction(const ProgramStateRef State,
1089                                                const CXXConstructExpr *CE,
1090                                                const LocationContext *LCtx) {
1091   if (!CE)
1092     return false;
1093 
1094   auto Type = CE->getType();
1095 
1096   // FIXME: Handle other arrays types.
1097   if (const auto *CAT = dyn_cast<ConstantArrayType>(Type)) {
1098     unsigned Size = getContext().getConstantArrayElementCount(CAT);
1099 
1100     return Size <= AMgr.options.maxBlockVisitOnPath;
1101   }
1102 
1103   // Check if we're inside an ArrayInitLoopExpr, and it's sufficiently small.
1104   if (auto Size = getPendingInitLoop(State, CE, LCtx))
1105     return *Size <= AMgr.options.maxBlockVisitOnPath;
1106 
1107   return false;
1108 }
1109 
1110 bool ExprEngine::shouldRepeatCtorCall(ProgramStateRef State,
1111                                       const CXXConstructExpr *E,
1112                                       const LocationContext *LCtx) {
1113 
1114   if (!E)
1115     return false;
1116 
1117   auto Ty = E->getType();
1118 
1119   // FIXME: Handle non constant array types
1120   if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) {
1121     unsigned Size = getContext().getConstantArrayElementCount(CAT);
1122     return Size > getIndexOfElementToConstruct(State, E, LCtx);
1123   }
1124 
1125   if (auto Size = getPendingInitLoop(State, E, LCtx))
1126     return Size > getIndexOfElementToConstruct(State, E, LCtx);
1127 
1128   return false;
1129 }
1130 
1131 static bool isTrivialObjectAssignment(const CallEvent &Call) {
1132   const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
1133   if (!ICall)
1134     return false;
1135 
1136   const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
1137   if (!MD)
1138     return false;
1139   if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
1140     return false;
1141 
1142   return MD->isTrivial();
1143 }
1144 
1145 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
1146                                  const CallEvent &CallTemplate,
1147                                  const EvalCallOptions &CallOpts) {
1148   // Make sure we have the most recent state attached to the call.
1149   ProgramStateRef State = Pred->getState();
1150   CallEventRef<> Call = CallTemplate.cloneWithState(State);
1151 
1152   // Special-case trivial assignment operators.
1153   if (isTrivialObjectAssignment(*Call)) {
1154     performTrivialCopy(Bldr, Pred, *Call);
1155     return;
1156   }
1157 
1158   // Try to inline the call.
1159   // The origin expression here is just used as a kind of checksum;
1160   // this should still be safe even for CallEvents that don't come from exprs.
1161   const Expr *E = Call->getOriginExpr();
1162 
1163   ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
1164   if (InlinedFailedState) {
1165     // If we already tried once and failed, make sure we don't retry later.
1166     State = InlinedFailedState;
1167   } else {
1168     RuntimeDefinition RD = Call->getRuntimeDefinition();
1169     Call->setForeign(RD.isForeign());
1170     const Decl *D = RD.getDecl();
1171     if (shouldInlineCall(*Call, D, Pred, CallOpts)) {
1172       if (RD.mayHaveOtherDefinitions()) {
1173         AnalyzerOptions &Options = getAnalysisManager().options;
1174 
1175         // Explore with and without inlining the call.
1176         if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
1177           BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
1178           return;
1179         }
1180 
1181         // Don't inline if we're not in any dynamic dispatch mode.
1182         if (Options.getIPAMode() != IPAK_DynamicDispatch) {
1183           conservativeEvalCall(*Call, Bldr, Pred, State);
1184           return;
1185         }
1186       }
1187       ctuBifurcate(*Call, D, Bldr, Pred, State);
1188       return;
1189     }
1190   }
1191 
1192   // If we can't inline it, handle the return value and invalidate the regions.
1193   conservativeEvalCall(*Call, Bldr, Pred, State);
1194 }
1195 
1196 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
1197                                const CallEvent &Call, const Decl *D,
1198                                NodeBuilder &Bldr, ExplodedNode *Pred) {
1199   assert(BifurReg);
1200   BifurReg = BifurReg->StripCasts();
1201 
1202   // Check if we've performed the split already - note, we only want
1203   // to split the path once per memory region.
1204   ProgramStateRef State = Pred->getState();
1205   const unsigned *BState =
1206                         State->get<DynamicDispatchBifurcationMap>(BifurReg);
1207   if (BState) {
1208     // If we are on "inline path", keep inlining if possible.
1209     if (*BState == DynamicDispatchModeInlined)
1210       ctuBifurcate(Call, D, Bldr, Pred, State);
1211     // If inline failed, or we are on the path where we assume we
1212     // don't have enough info about the receiver to inline, conjure the
1213     // return value and invalidate the regions.
1214     conservativeEvalCall(Call, Bldr, Pred, State);
1215     return;
1216   }
1217 
1218   // If we got here, this is the first time we process a message to this
1219   // region, so split the path.
1220   ProgramStateRef IState =
1221       State->set<DynamicDispatchBifurcationMap>(BifurReg,
1222                                                DynamicDispatchModeInlined);
1223   ctuBifurcate(Call, D, Bldr, Pred, IState);
1224 
1225   ProgramStateRef NoIState =
1226       State->set<DynamicDispatchBifurcationMap>(BifurReg,
1227                                                DynamicDispatchModeConservative);
1228   conservativeEvalCall(Call, Bldr, Pred, NoIState);
1229 
1230   NumOfDynamicDispatchPathSplits++;
1231 }
1232 
1233 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
1234                                  ExplodedNodeSet &Dst) {
1235   ExplodedNodeSet dstPreVisit;
1236   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
1237 
1238   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
1239 
1240   if (RS->getRetValue()) {
1241     for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
1242                                   ei = dstPreVisit.end(); it != ei; ++it) {
1243       B.generateNode(RS, *it, (*it)->getState());
1244     }
1245   }
1246 }
1247