10b57cec5SDimitry Andric // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric //  This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
140b57cec5SDimitry Andric #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
155ffd83dbSDimitry Andric #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
160b57cec5SDimitry Andric #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
170b57cec5SDimitry Andric #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
18bdd1243dSDimitry Andric #include <optional>
190b57cec5SDimitry Andric 
200b57cec5SDimitry Andric using namespace clang;
210b57cec5SDimitry Andric using namespace ento;
220b57cec5SDimitry Andric 
230b57cec5SDimitry Andric namespace {
240b57cec5SDimitry Andric class SimpleSValBuilder : public SValBuilder {
250eae32dcSDimitry Andric 
2681ad6265SDimitry Andric   // Query the constraint manager whether the SVal has only one possible
2781ad6265SDimitry Andric   // (integer) value. If that is the case, the value is returned. Otherwise,
2881ad6265SDimitry Andric   // returns NULL.
2981ad6265SDimitry Andric   // This is an implementation detail. Checkers should use `getKnownValue()`
3081ad6265SDimitry Andric   // instead.
3181ad6265SDimitry Andric   const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V);
3281ad6265SDimitry Andric 
330eae32dcSDimitry Andric   // With one `simplifySValOnce` call, a compound symbols might collapse to
340eae32dcSDimitry Andric   // simpler symbol tree that is still possible to further simplify. Thus, we
350eae32dcSDimitry Andric   // do the simplification on a new symbol tree until we reach the simplest
360eae32dcSDimitry Andric   // form, i.e. the fixpoint.
370eae32dcSDimitry Andric   // Consider the following symbol `(b * b) * b * b` which has this tree:
380eae32dcSDimitry Andric   //       *
390eae32dcSDimitry Andric   //      / \
400eae32dcSDimitry Andric   //     *   b
410eae32dcSDimitry Andric   //    /  \
420eae32dcSDimitry Andric   //   /    b
430eae32dcSDimitry Andric   // (b * b)
440eae32dcSDimitry Andric   // Now, if the `b * b == 1` new constraint is added then during the first
450eae32dcSDimitry Andric   // iteration we have the following transformations:
460eae32dcSDimitry Andric   //       *                  *
470eae32dcSDimitry Andric   //      / \                / \
480eae32dcSDimitry Andric   //     *   b     -->      b   b
490eae32dcSDimitry Andric   //    /  \
500eae32dcSDimitry Andric   //   /    b
510eae32dcSDimitry Andric   //  1
520eae32dcSDimitry Andric   // We need another iteration to reach the final result `1`.
530eae32dcSDimitry Andric   SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val);
540eae32dcSDimitry Andric 
550eae32dcSDimitry Andric   // Recursively descends into symbolic expressions and replaces symbols
5681ad6265SDimitry Andric   // with their known values (in the sense of the getConstValue() method).
570eae32dcSDimitry Andric   // We traverse the symbol tree and query the constraint values for the
580eae32dcSDimitry Andric   // sub-trees and if a value is a constant we do the constant folding.
590eae32dcSDimitry Andric   SVal simplifySValOnce(ProgramStateRef State, SVal V);
600eae32dcSDimitry Andric 
610b57cec5SDimitry Andric public:
620b57cec5SDimitry Andric   SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
630b57cec5SDimitry Andric                     ProgramStateManager &stateMgr)
640b57cec5SDimitry Andric       : SValBuilder(alloc, context, stateMgr) {}
650b57cec5SDimitry Andric   ~SimpleSValBuilder() override {}
660b57cec5SDimitry Andric 
670b57cec5SDimitry Andric   SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
680b57cec5SDimitry Andric                    NonLoc lhs, NonLoc rhs, QualType resultTy) override;
690b57cec5SDimitry Andric   SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
700b57cec5SDimitry Andric                    Loc lhs, Loc rhs, QualType resultTy) override;
710b57cec5SDimitry Andric   SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
720b57cec5SDimitry Andric                    Loc lhs, NonLoc rhs, QualType resultTy) override;
730b57cec5SDimitry Andric 
7481ad6265SDimitry Andric   /// Evaluates a given SVal by recursively evaluating and
7581ad6265SDimitry Andric   /// simplifying the children SVals. If the SVal has only one possible
760b57cec5SDimitry Andric   /// (integer) value, that value is returned. Otherwise, returns NULL.
770b57cec5SDimitry Andric   const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric   SVal simplifySVal(ProgramStateRef State, SVal V) override;
800b57cec5SDimitry Andric 
810b57cec5SDimitry Andric   SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
820b57cec5SDimitry Andric                      const llvm::APSInt &RHS, QualType resultTy);
830b57cec5SDimitry Andric };
840b57cec5SDimitry Andric } // end anonymous namespace
850b57cec5SDimitry Andric 
860b57cec5SDimitry Andric SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
870b57cec5SDimitry Andric                                            ASTContext &context,
880b57cec5SDimitry Andric                                            ProgramStateManager &stateMgr) {
890b57cec5SDimitry Andric   return new SimpleSValBuilder(alloc, context, stateMgr);
900b57cec5SDimitry Andric }
910b57cec5SDimitry Andric 
9281ad6265SDimitry Andric // Checks if the negation the value and flipping sign preserve
9381ad6265SDimitry Andric // the semantics on the operation in the resultType
9481ad6265SDimitry Andric static bool isNegationValuePreserving(const llvm::APSInt &Value,
9581ad6265SDimitry Andric                                       APSIntType ResultType) {
9681ad6265SDimitry Andric   const unsigned ValueBits = Value.getSignificantBits();
9781ad6265SDimitry Andric   if (ValueBits == ResultType.getBitWidth()) {
9881ad6265SDimitry Andric     // The value is the lowest negative value that is representable
9981ad6265SDimitry Andric     // in signed integer with bitWith of result type. The
10081ad6265SDimitry Andric     // negation is representable if resultType is unsigned.
10181ad6265SDimitry Andric     return ResultType.isUnsigned();
1020b57cec5SDimitry Andric   }
1030b57cec5SDimitry Andric 
10481ad6265SDimitry Andric   // If resultType bitWith is higher that number of bits required
10581ad6265SDimitry Andric   // to represent RHS, the sign flip produce same value.
10681ad6265SDimitry Andric   return ValueBits < ResultType.getBitWidth();
1070b57cec5SDimitry Andric }
1080b57cec5SDimitry Andric 
1090b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1100b57cec5SDimitry Andric // Transfer function for binary operators.
1110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1120b57cec5SDimitry Andric 
1130b57cec5SDimitry Andric SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
1140b57cec5SDimitry Andric                                     BinaryOperator::Opcode op,
1150b57cec5SDimitry Andric                                     const llvm::APSInt &RHS,
1160b57cec5SDimitry Andric                                     QualType resultTy) {
1170b57cec5SDimitry Andric   bool isIdempotent = false;
1180b57cec5SDimitry Andric 
1190b57cec5SDimitry Andric   // Check for a few special cases with known reductions first.
1200b57cec5SDimitry Andric   switch (op) {
1210b57cec5SDimitry Andric   default:
1220b57cec5SDimitry Andric     // We can't reduce this case; just treat it normally.
1230b57cec5SDimitry Andric     break;
1240b57cec5SDimitry Andric   case BO_Mul:
1250b57cec5SDimitry Andric     // a*0 and a*1
1260b57cec5SDimitry Andric     if (RHS == 0)
1270b57cec5SDimitry Andric       return makeIntVal(0, resultTy);
1280b57cec5SDimitry Andric     else if (RHS == 1)
1290b57cec5SDimitry Andric       isIdempotent = true;
1300b57cec5SDimitry Andric     break;
1310b57cec5SDimitry Andric   case BO_Div:
1320b57cec5SDimitry Andric     // a/0 and a/1
1330b57cec5SDimitry Andric     if (RHS == 0)
1340b57cec5SDimitry Andric       // This is also handled elsewhere.
1350b57cec5SDimitry Andric       return UndefinedVal();
1360b57cec5SDimitry Andric     else if (RHS == 1)
1370b57cec5SDimitry Andric       isIdempotent = true;
1380b57cec5SDimitry Andric     break;
1390b57cec5SDimitry Andric   case BO_Rem:
1400b57cec5SDimitry Andric     // a%0 and a%1
1410b57cec5SDimitry Andric     if (RHS == 0)
1420b57cec5SDimitry Andric       // This is also handled elsewhere.
1430b57cec5SDimitry Andric       return UndefinedVal();
1440b57cec5SDimitry Andric     else if (RHS == 1)
1450b57cec5SDimitry Andric       return makeIntVal(0, resultTy);
1460b57cec5SDimitry Andric     break;
1470b57cec5SDimitry Andric   case BO_Add:
1480b57cec5SDimitry Andric   case BO_Sub:
1490b57cec5SDimitry Andric   case BO_Shl:
1500b57cec5SDimitry Andric   case BO_Shr:
1510b57cec5SDimitry Andric   case BO_Xor:
1520b57cec5SDimitry Andric     // a+0, a-0, a<<0, a>>0, a^0
1530b57cec5SDimitry Andric     if (RHS == 0)
1540b57cec5SDimitry Andric       isIdempotent = true;
1550b57cec5SDimitry Andric     break;
1560b57cec5SDimitry Andric   case BO_And:
1570b57cec5SDimitry Andric     // a&0 and a&(~0)
1580b57cec5SDimitry Andric     if (RHS == 0)
1590b57cec5SDimitry Andric       return makeIntVal(0, resultTy);
160349cc55cSDimitry Andric     else if (RHS.isAllOnes())
1610b57cec5SDimitry Andric       isIdempotent = true;
1620b57cec5SDimitry Andric     break;
1630b57cec5SDimitry Andric   case BO_Or:
1640b57cec5SDimitry Andric     // a|0 and a|(~0)
1650b57cec5SDimitry Andric     if (RHS == 0)
1660b57cec5SDimitry Andric       isIdempotent = true;
167349cc55cSDimitry Andric     else if (RHS.isAllOnes()) {
1680b57cec5SDimitry Andric       const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
1690b57cec5SDimitry Andric       return nonloc::ConcreteInt(Result);
1700b57cec5SDimitry Andric     }
1710b57cec5SDimitry Andric     break;
1720b57cec5SDimitry Andric   }
1730b57cec5SDimitry Andric 
1740b57cec5SDimitry Andric   // Idempotent ops (like a*1) can still change the type of an expression.
175fe6060f1SDimitry Andric   // Wrap the LHS up in a NonLoc again and let evalCast do the
1760b57cec5SDimitry Andric   // dirty work.
1770b57cec5SDimitry Andric   if (isIdempotent)
178fe6060f1SDimitry Andric     return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
1790b57cec5SDimitry Andric 
1800b57cec5SDimitry Andric   // If we reach this point, the expression cannot be simplified.
1810b57cec5SDimitry Andric   // Make a SymbolVal for the entire expression, after converting the RHS.
1820b57cec5SDimitry Andric   const llvm::APSInt *ConvertedRHS = &RHS;
1830b57cec5SDimitry Andric   if (BinaryOperator::isComparisonOp(op)) {
1840b57cec5SDimitry Andric     // We're looking for a type big enough to compare the symbolic value
1850b57cec5SDimitry Andric     // with the given constant.
1860b57cec5SDimitry Andric     // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
1870b57cec5SDimitry Andric     ASTContext &Ctx = getContext();
1880b57cec5SDimitry Andric     QualType SymbolType = LHS->getType();
1890b57cec5SDimitry Andric     uint64_t ValWidth = RHS.getBitWidth();
1900b57cec5SDimitry Andric     uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
1910b57cec5SDimitry Andric 
1920b57cec5SDimitry Andric     if (ValWidth < TypeWidth) {
1930b57cec5SDimitry Andric       // If the value is too small, extend it.
1940b57cec5SDimitry Andric       ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
1950b57cec5SDimitry Andric     } else if (ValWidth == TypeWidth) {
1960b57cec5SDimitry Andric       // If the value is signed but the symbol is unsigned, do the comparison
1970b57cec5SDimitry Andric       // in unsigned space. [C99 6.3.1.8]
1980b57cec5SDimitry Andric       // (For the opposite case, the value is already unsigned.)
1990b57cec5SDimitry Andric       if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
2000b57cec5SDimitry Andric         ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
2010b57cec5SDimitry Andric     }
20281ad6265SDimitry Andric   } else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) {
20381ad6265SDimitry Andric     // Change a+(-N) into a-N, and a-(-N) into a+N
20481ad6265SDimitry Andric     // Adjust addition/subtraction of negative value, to
20581ad6265SDimitry Andric     // subtraction/addition of the negated value.
20681ad6265SDimitry Andric     APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy);
20781ad6265SDimitry Andric     if (isNegationValuePreserving(RHS, resultIntTy)) {
20881ad6265SDimitry Andric       ConvertedRHS = &BasicVals.getValue(-resultIntTy.convert(RHS));
20981ad6265SDimitry Andric       op = (op == BO_Add) ? BO_Sub : BO_Add;
21081ad6265SDimitry Andric     } else {
21181ad6265SDimitry Andric       ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
21281ad6265SDimitry Andric     }
2130b57cec5SDimitry Andric   } else
2140b57cec5SDimitry Andric     ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
2150b57cec5SDimitry Andric 
2160b57cec5SDimitry Andric   return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
2170b57cec5SDimitry Andric }
2180b57cec5SDimitry Andric 
2190b57cec5SDimitry Andric // See if Sym is known to be a relation Rel with Bound.
2200b57cec5SDimitry Andric static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
2210b57cec5SDimitry Andric                          llvm::APSInt Bound, ProgramStateRef State) {
2220b57cec5SDimitry Andric   SValBuilder &SVB = State->getStateManager().getSValBuilder();
2230b57cec5SDimitry Andric   SVal Result =
2240b57cec5SDimitry Andric       SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
2250b57cec5SDimitry Andric                       nonloc::ConcreteInt(Bound), SVB.getConditionType());
2260b57cec5SDimitry Andric   if (auto DV = Result.getAs<DefinedSVal>()) {
2270b57cec5SDimitry Andric     return !State->assume(*DV, false);
2280b57cec5SDimitry Andric   }
2290b57cec5SDimitry Andric   return false;
2300b57cec5SDimitry Andric }
2310b57cec5SDimitry Andric 
2320b57cec5SDimitry Andric // See if Sym is known to be within [min/4, max/4], where min and max
2330b57cec5SDimitry Andric // are the bounds of the symbol's integral type. With such symbols,
2340b57cec5SDimitry Andric // some manipulations can be performed without the risk of overflow.
2350b57cec5SDimitry Andric // assume() doesn't cause infinite recursion because we should be dealing
2360b57cec5SDimitry Andric // with simpler symbols on every recursive call.
2370b57cec5SDimitry Andric static bool isWithinConstantOverflowBounds(SymbolRef Sym,
2380b57cec5SDimitry Andric                                            ProgramStateRef State) {
2390b57cec5SDimitry Andric   SValBuilder &SVB = State->getStateManager().getSValBuilder();
2400b57cec5SDimitry Andric   BasicValueFactory &BV = SVB.getBasicValueFactory();
2410b57cec5SDimitry Andric 
2420b57cec5SDimitry Andric   QualType T = Sym->getType();
2430b57cec5SDimitry Andric   assert(T->isSignedIntegerOrEnumerationType() &&
2440b57cec5SDimitry Andric          "This only works with signed integers!");
2450b57cec5SDimitry Andric   APSIntType AT = BV.getAPSIntType(T);
2460b57cec5SDimitry Andric 
2470b57cec5SDimitry Andric   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
2480b57cec5SDimitry Andric   return isInRelation(BO_LE, Sym, Max, State) &&
2490b57cec5SDimitry Andric          isInRelation(BO_GE, Sym, Min, State);
2500b57cec5SDimitry Andric }
2510b57cec5SDimitry Andric 
2520b57cec5SDimitry Andric // Same for the concrete integers: see if I is within [min/4, max/4].
2530b57cec5SDimitry Andric static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
2540b57cec5SDimitry Andric   APSIntType AT(I);
2550b57cec5SDimitry Andric   assert(!AT.isUnsigned() &&
2560b57cec5SDimitry Andric          "This only works with signed integers!");
2570b57cec5SDimitry Andric 
2580b57cec5SDimitry Andric   llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
2590b57cec5SDimitry Andric   return (I <= Max) && (I >= -Max);
2600b57cec5SDimitry Andric }
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric static std::pair<SymbolRef, llvm::APSInt>
2630b57cec5SDimitry Andric decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
2640b57cec5SDimitry Andric   if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
2650b57cec5SDimitry Andric     if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
2660b57cec5SDimitry Andric       return std::make_pair(SymInt->getLHS(),
2670b57cec5SDimitry Andric                             (SymInt->getOpcode() == BO_Add) ?
2680b57cec5SDimitry Andric                             (SymInt->getRHS()) :
2690b57cec5SDimitry Andric                             (-SymInt->getRHS()));
2700b57cec5SDimitry Andric 
2710b57cec5SDimitry Andric   // Fail to decompose: "reduce" the problem to the "$x + 0" case.
2720b57cec5SDimitry Andric   return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
2730b57cec5SDimitry Andric }
2740b57cec5SDimitry Andric 
2750b57cec5SDimitry Andric // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
2760b57cec5SDimitry Andric // same signed integral type and no overflows occur (which should be checked
2770b57cec5SDimitry Andric // by the caller).
2780b57cec5SDimitry Andric static NonLoc doRearrangeUnchecked(ProgramStateRef State,
2790b57cec5SDimitry Andric                                    BinaryOperator::Opcode Op,
2800b57cec5SDimitry Andric                                    SymbolRef LSym, llvm::APSInt LInt,
2810b57cec5SDimitry Andric                                    SymbolRef RSym, llvm::APSInt RInt) {
2820b57cec5SDimitry Andric   SValBuilder &SVB = State->getStateManager().getSValBuilder();
2830b57cec5SDimitry Andric   BasicValueFactory &BV = SVB.getBasicValueFactory();
2840b57cec5SDimitry Andric   SymbolManager &SymMgr = SVB.getSymbolManager();
2850b57cec5SDimitry Andric 
2860b57cec5SDimitry Andric   QualType SymTy = LSym->getType();
2870b57cec5SDimitry Andric   assert(SymTy == RSym->getType() &&
2880b57cec5SDimitry Andric          "Symbols are not of the same type!");
2890b57cec5SDimitry Andric   assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
2900b57cec5SDimitry Andric          "Integers are not of the same type as symbols!");
2910b57cec5SDimitry Andric   assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
2920b57cec5SDimitry Andric          "Integers are not of the same type as symbols!");
2930b57cec5SDimitry Andric 
2940b57cec5SDimitry Andric   QualType ResultTy;
2950b57cec5SDimitry Andric   if (BinaryOperator::isComparisonOp(Op))
2960b57cec5SDimitry Andric     ResultTy = SVB.getConditionType();
2970b57cec5SDimitry Andric   else if (BinaryOperator::isAdditiveOp(Op))
2980b57cec5SDimitry Andric     ResultTy = SymTy;
2990b57cec5SDimitry Andric   else
3000b57cec5SDimitry Andric     llvm_unreachable("Operation not suitable for unchecked rearrangement!");
3010b57cec5SDimitry Andric 
3020b57cec5SDimitry Andric   if (LSym == RSym)
3030b57cec5SDimitry Andric     return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
3040b57cec5SDimitry Andric                            nonloc::ConcreteInt(RInt), ResultTy)
3050b57cec5SDimitry Andric         .castAs<NonLoc>();
3060b57cec5SDimitry Andric 
3070b57cec5SDimitry Andric   SymbolRef ResultSym = nullptr;
3080b57cec5SDimitry Andric   BinaryOperator::Opcode ResultOp;
3090b57cec5SDimitry Andric   llvm::APSInt ResultInt;
3100b57cec5SDimitry Andric   if (BinaryOperator::isComparisonOp(Op)) {
3110b57cec5SDimitry Andric     // Prefer comparing to a non-negative number.
3120b57cec5SDimitry Andric     // FIXME: Maybe it'd be better to have consistency in
3130b57cec5SDimitry Andric     // "$x - $y" vs. "$y - $x" because those are solver's keys.
3140b57cec5SDimitry Andric     if (LInt > RInt) {
3150b57cec5SDimitry Andric       ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
3160b57cec5SDimitry Andric       ResultOp = BinaryOperator::reverseComparisonOp(Op);
3170b57cec5SDimitry Andric       ResultInt = LInt - RInt; // Opposite order!
3180b57cec5SDimitry Andric     } else {
3190b57cec5SDimitry Andric       ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
3200b57cec5SDimitry Andric       ResultOp = Op;
3210b57cec5SDimitry Andric       ResultInt = RInt - LInt; // Opposite order!
3220b57cec5SDimitry Andric     }
3230b57cec5SDimitry Andric   } else {
3240b57cec5SDimitry Andric     ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
3250b57cec5SDimitry Andric     ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
3260b57cec5SDimitry Andric     ResultOp = BO_Add;
3270b57cec5SDimitry Andric     // Bring back the cosmetic difference.
3280b57cec5SDimitry Andric     if (ResultInt < 0) {
3290b57cec5SDimitry Andric       ResultInt = -ResultInt;
3300b57cec5SDimitry Andric       ResultOp = BO_Sub;
3310b57cec5SDimitry Andric     } else if (ResultInt == 0) {
3320b57cec5SDimitry Andric       // Shortcut: Simplify "$x + 0" to "$x".
3330b57cec5SDimitry Andric       return nonloc::SymbolVal(ResultSym);
3340b57cec5SDimitry Andric     }
3350b57cec5SDimitry Andric   }
3360b57cec5SDimitry Andric   const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
3370b57cec5SDimitry Andric   return nonloc::SymbolVal(
3380b57cec5SDimitry Andric       SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
3390b57cec5SDimitry Andric }
3400b57cec5SDimitry Andric 
3410b57cec5SDimitry Andric // Rearrange if symbol type matches the result type and if the operator is a
3420b57cec5SDimitry Andric // comparison operator, both symbol and constant must be within constant
3430b57cec5SDimitry Andric // overflow bounds.
3440b57cec5SDimitry Andric static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
3450b57cec5SDimitry Andric                             SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
3460b57cec5SDimitry Andric   return Sym->getType() == Ty &&
3470b57cec5SDimitry Andric     (!BinaryOperator::isComparisonOp(Op) ||
3480b57cec5SDimitry Andric      (isWithinConstantOverflowBounds(Sym, State) &&
3490b57cec5SDimitry Andric       isWithinConstantOverflowBounds(Int)));
3500b57cec5SDimitry Andric }
3510b57cec5SDimitry Andric 
352bdd1243dSDimitry Andric static std::optional<NonLoc> tryRearrange(ProgramStateRef State,
3530b57cec5SDimitry Andric                                           BinaryOperator::Opcode Op, NonLoc Lhs,
3540b57cec5SDimitry Andric                                           NonLoc Rhs, QualType ResultTy) {
3550b57cec5SDimitry Andric   ProgramStateManager &StateMgr = State->getStateManager();
3560b57cec5SDimitry Andric   SValBuilder &SVB = StateMgr.getSValBuilder();
3570b57cec5SDimitry Andric 
3580b57cec5SDimitry Andric   // We expect everything to be of the same type - this type.
3590b57cec5SDimitry Andric   QualType SingleTy;
3600b57cec5SDimitry Andric 
3610b57cec5SDimitry Andric   // FIXME: After putting complexity threshold to the symbols we can always
3620b57cec5SDimitry Andric   //        rearrange additive operations but rearrange comparisons only if
3630b57cec5SDimitry Andric   //        option is set.
364349cc55cSDimitry Andric   if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
365bdd1243dSDimitry Andric     return std::nullopt;
3660b57cec5SDimitry Andric 
3670b57cec5SDimitry Andric   SymbolRef LSym = Lhs.getAsSymbol();
3680b57cec5SDimitry Andric   if (!LSym)
369bdd1243dSDimitry Andric     return std::nullopt;
3700b57cec5SDimitry Andric 
3710b57cec5SDimitry Andric   if (BinaryOperator::isComparisonOp(Op)) {
3720b57cec5SDimitry Andric     SingleTy = LSym->getType();
3730b57cec5SDimitry Andric     if (ResultTy != SVB.getConditionType())
374bdd1243dSDimitry Andric       return std::nullopt;
3750b57cec5SDimitry Andric     // Initialize SingleTy later with a symbol's type.
3760b57cec5SDimitry Andric   } else if (BinaryOperator::isAdditiveOp(Op)) {
3770b57cec5SDimitry Andric     SingleTy = ResultTy;
3780b57cec5SDimitry Andric     if (LSym->getType() != SingleTy)
379bdd1243dSDimitry Andric       return std::nullopt;
3800b57cec5SDimitry Andric   } else {
3810b57cec5SDimitry Andric     // Don't rearrange other operations.
382bdd1243dSDimitry Andric     return std::nullopt;
3830b57cec5SDimitry Andric   }
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric   assert(!SingleTy.isNull() && "We should have figured out the type by now!");
3860b57cec5SDimitry Andric 
3870b57cec5SDimitry Andric   // Rearrange signed symbolic expressions only
3880b57cec5SDimitry Andric   if (!SingleTy->isSignedIntegerOrEnumerationType())
389bdd1243dSDimitry Andric     return std::nullopt;
3900b57cec5SDimitry Andric 
3910b57cec5SDimitry Andric   SymbolRef RSym = Rhs.getAsSymbol();
3920b57cec5SDimitry Andric   if (!RSym || RSym->getType() != SingleTy)
393bdd1243dSDimitry Andric     return std::nullopt;
3940b57cec5SDimitry Andric 
3950b57cec5SDimitry Andric   BasicValueFactory &BV = State->getBasicVals();
3960b57cec5SDimitry Andric   llvm::APSInt LInt, RInt;
3970b57cec5SDimitry Andric   std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
3980b57cec5SDimitry Andric   std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
3990b57cec5SDimitry Andric   if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
4000b57cec5SDimitry Andric       !shouldRearrange(State, Op, RSym, RInt, SingleTy))
401bdd1243dSDimitry Andric     return std::nullopt;
4020b57cec5SDimitry Andric 
4030b57cec5SDimitry Andric   // We know that no overflows can occur anymore.
4040b57cec5SDimitry Andric   return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
4050b57cec5SDimitry Andric }
4060b57cec5SDimitry Andric 
4070b57cec5SDimitry Andric SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
4080b57cec5SDimitry Andric                                   BinaryOperator::Opcode op,
4090b57cec5SDimitry Andric                                   NonLoc lhs, NonLoc rhs,
4100b57cec5SDimitry Andric                                   QualType resultTy)  {
4110b57cec5SDimitry Andric   NonLoc InputLHS = lhs;
4120b57cec5SDimitry Andric   NonLoc InputRHS = rhs;
4130b57cec5SDimitry Andric 
4144824e7fdSDimitry Andric   // Constraints may have changed since the creation of a bound SVal. Check if
4154824e7fdSDimitry Andric   // the values can be simplified based on those new constraints.
4164824e7fdSDimitry Andric   SVal simplifiedLhs = simplifySVal(state, lhs);
4174824e7fdSDimitry Andric   SVal simplifiedRhs = simplifySVal(state, rhs);
4184824e7fdSDimitry Andric   if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>())
4194824e7fdSDimitry Andric     lhs = *simplifiedLhsAsNonLoc;
4204824e7fdSDimitry Andric   if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>())
4214824e7fdSDimitry Andric     rhs = *simplifiedRhsAsNonLoc;
4224824e7fdSDimitry Andric 
4230b57cec5SDimitry Andric   // Handle trivial case where left-side and right-side are the same.
4240b57cec5SDimitry Andric   if (lhs == rhs)
4250b57cec5SDimitry Andric     switch (op) {
4260b57cec5SDimitry Andric       default:
4270b57cec5SDimitry Andric         break;
4280b57cec5SDimitry Andric       case BO_EQ:
4290b57cec5SDimitry Andric       case BO_LE:
4300b57cec5SDimitry Andric       case BO_GE:
4310b57cec5SDimitry Andric         return makeTruthVal(true, resultTy);
4320b57cec5SDimitry Andric       case BO_LT:
4330b57cec5SDimitry Andric       case BO_GT:
4340b57cec5SDimitry Andric       case BO_NE:
4350b57cec5SDimitry Andric         return makeTruthVal(false, resultTy);
4360b57cec5SDimitry Andric       case BO_Xor:
4370b57cec5SDimitry Andric       case BO_Sub:
4380b57cec5SDimitry Andric         if (resultTy->isIntegralOrEnumerationType())
4390b57cec5SDimitry Andric           return makeIntVal(0, resultTy);
440fe6060f1SDimitry Andric         return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
441fe6060f1SDimitry Andric                         QualType{});
4420b57cec5SDimitry Andric       case BO_Or:
4430b57cec5SDimitry Andric       case BO_And:
444fe6060f1SDimitry Andric         return evalCast(lhs, resultTy, QualType{});
4450b57cec5SDimitry Andric     }
4460b57cec5SDimitry Andric 
44704eeddc0SDimitry Andric   while (true) {
4480b57cec5SDimitry Andric     switch (lhs.getSubKind()) {
4490b57cec5SDimitry Andric     default:
4500b57cec5SDimitry Andric       return makeSymExprValNN(op, lhs, rhs, resultTy);
4510b57cec5SDimitry Andric     case nonloc::PointerToMemberKind: {
4520b57cec5SDimitry Andric       assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
4530b57cec5SDimitry Andric              "Both SVals should have pointer-to-member-type");
4540b57cec5SDimitry Andric       auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
4550b57cec5SDimitry Andric            RPTM = rhs.castAs<nonloc::PointerToMember>();
4560b57cec5SDimitry Andric       auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
4570b57cec5SDimitry Andric       switch (op) {
4580b57cec5SDimitry Andric         case BO_EQ:
4590b57cec5SDimitry Andric           return makeTruthVal(LPTMD == RPTMD, resultTy);
4600b57cec5SDimitry Andric         case BO_NE:
4610b57cec5SDimitry Andric           return makeTruthVal(LPTMD != RPTMD, resultTy);
4620b57cec5SDimitry Andric         default:
4630b57cec5SDimitry Andric           return UnknownVal();
4640b57cec5SDimitry Andric       }
4650b57cec5SDimitry Andric     }
4660b57cec5SDimitry Andric     case nonloc::LocAsIntegerKind: {
4670b57cec5SDimitry Andric       Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
4680b57cec5SDimitry Andric       switch (rhs.getSubKind()) {
4690b57cec5SDimitry Andric         case nonloc::LocAsIntegerKind:
4700b57cec5SDimitry Andric           // FIXME: at the moment the implementation
4710b57cec5SDimitry Andric           // of modeling "pointers as integers" is not complete.
4720b57cec5SDimitry Andric           if (!BinaryOperator::isComparisonOp(op))
4730b57cec5SDimitry Andric             return UnknownVal();
4740b57cec5SDimitry Andric           return evalBinOpLL(state, op, lhsL,
4750b57cec5SDimitry Andric                              rhs.castAs<nonloc::LocAsInteger>().getLoc(),
4760b57cec5SDimitry Andric                              resultTy);
4770b57cec5SDimitry Andric         case nonloc::ConcreteIntKind: {
4780b57cec5SDimitry Andric           // FIXME: at the moment the implementation
4790b57cec5SDimitry Andric           // of modeling "pointers as integers" is not complete.
4800b57cec5SDimitry Andric           if (!BinaryOperator::isComparisonOp(op))
4810b57cec5SDimitry Andric             return UnknownVal();
4820b57cec5SDimitry Andric           // Transform the integer into a location and compare.
4830b57cec5SDimitry Andric           // FIXME: This only makes sense for comparisons. If we want to, say,
4840b57cec5SDimitry Andric           // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
4850b57cec5SDimitry Andric           // then pack it back into a LocAsInteger.
4860b57cec5SDimitry Andric           llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
4870b57cec5SDimitry Andric           // If the region has a symbolic base, pay attention to the type; it
4880b57cec5SDimitry Andric           // might be coming from a non-default address space. For non-symbolic
4890b57cec5SDimitry Andric           // regions it doesn't matter that much because such comparisons would
4900b57cec5SDimitry Andric           // most likely evaluate to concrete false anyway. FIXME: We might
4910b57cec5SDimitry Andric           // still need to handle the non-comparison case.
4920b57cec5SDimitry Andric           if (SymbolRef lSym = lhs.getAsLocSymbol(true))
4930b57cec5SDimitry Andric             BasicVals.getAPSIntType(lSym->getType()).apply(i);
4940b57cec5SDimitry Andric           else
4950b57cec5SDimitry Andric             BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
4960b57cec5SDimitry Andric           return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
4970b57cec5SDimitry Andric         }
4980b57cec5SDimitry Andric         default:
4990b57cec5SDimitry Andric           switch (op) {
5000b57cec5SDimitry Andric             case BO_EQ:
5010b57cec5SDimitry Andric               return makeTruthVal(false, resultTy);
5020b57cec5SDimitry Andric             case BO_NE:
5030b57cec5SDimitry Andric               return makeTruthVal(true, resultTy);
5040b57cec5SDimitry Andric             default:
5050b57cec5SDimitry Andric               // This case also handles pointer arithmetic.
5060b57cec5SDimitry Andric               return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
5070b57cec5SDimitry Andric           }
5080b57cec5SDimitry Andric       }
5090b57cec5SDimitry Andric     }
5100b57cec5SDimitry Andric     case nonloc::ConcreteIntKind: {
5110b57cec5SDimitry Andric       llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
5120b57cec5SDimitry Andric 
5130b57cec5SDimitry Andric       // If we're dealing with two known constants, just perform the operation.
51481ad6265SDimitry Andric       if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) {
5150b57cec5SDimitry Andric         llvm::APSInt RHSValue = *KnownRHSValue;
5160b57cec5SDimitry Andric         if (BinaryOperator::isComparisonOp(op)) {
5170b57cec5SDimitry Andric           // We're looking for a type big enough to compare the two values.
5180b57cec5SDimitry Andric           // FIXME: This is not correct. char + short will result in a promotion
5190b57cec5SDimitry Andric           // to int. Unfortunately we have lost types by this point.
5200b57cec5SDimitry Andric           APSIntType CompareType = std::max(APSIntType(LHSValue),
5210b57cec5SDimitry Andric                                             APSIntType(RHSValue));
5220b57cec5SDimitry Andric           CompareType.apply(LHSValue);
5230b57cec5SDimitry Andric           CompareType.apply(RHSValue);
5240b57cec5SDimitry Andric         } else if (!BinaryOperator::isShiftOp(op)) {
5250b57cec5SDimitry Andric           APSIntType IntType = BasicVals.getAPSIntType(resultTy);
5260b57cec5SDimitry Andric           IntType.apply(LHSValue);
5270b57cec5SDimitry Andric           IntType.apply(RHSValue);
5280b57cec5SDimitry Andric         }
5290b57cec5SDimitry Andric 
5300b57cec5SDimitry Andric         const llvm::APSInt *Result =
5310b57cec5SDimitry Andric           BasicVals.evalAPSInt(op, LHSValue, RHSValue);
5320b57cec5SDimitry Andric         if (!Result)
5330b57cec5SDimitry Andric           return UndefinedVal();
5340b57cec5SDimitry Andric 
5350b57cec5SDimitry Andric         return nonloc::ConcreteInt(*Result);
5360b57cec5SDimitry Andric       }
5370b57cec5SDimitry Andric 
5380b57cec5SDimitry Andric       // Swap the left and right sides and flip the operator if doing so
5390b57cec5SDimitry Andric       // allows us to better reason about the expression (this is a form
5400b57cec5SDimitry Andric       // of expression canonicalization).
5410b57cec5SDimitry Andric       // While we're at it, catch some special cases for non-commutative ops.
5420b57cec5SDimitry Andric       switch (op) {
5430b57cec5SDimitry Andric       case BO_LT:
5440b57cec5SDimitry Andric       case BO_GT:
5450b57cec5SDimitry Andric       case BO_LE:
5460b57cec5SDimitry Andric       case BO_GE:
5470b57cec5SDimitry Andric         op = BinaryOperator::reverseComparisonOp(op);
548bdd1243dSDimitry Andric         [[fallthrough]];
5490b57cec5SDimitry Andric       case BO_EQ:
5500b57cec5SDimitry Andric       case BO_NE:
5510b57cec5SDimitry Andric       case BO_Add:
5520b57cec5SDimitry Andric       case BO_Mul:
5530b57cec5SDimitry Andric       case BO_And:
5540b57cec5SDimitry Andric       case BO_Xor:
5550b57cec5SDimitry Andric       case BO_Or:
5560b57cec5SDimitry Andric         std::swap(lhs, rhs);
5570b57cec5SDimitry Andric         continue;
5580b57cec5SDimitry Andric       case BO_Shr:
5590b57cec5SDimitry Andric         // (~0)>>a
560349cc55cSDimitry Andric         if (LHSValue.isAllOnes() && LHSValue.isSigned())
561fe6060f1SDimitry Andric           return evalCast(lhs, resultTy, QualType{});
562bdd1243dSDimitry Andric         [[fallthrough]];
5630b57cec5SDimitry Andric       case BO_Shl:
5640b57cec5SDimitry Andric         // 0<<a and 0>>a
5650b57cec5SDimitry Andric         if (LHSValue == 0)
566fe6060f1SDimitry Andric           return evalCast(lhs, resultTy, QualType{});
5670b57cec5SDimitry Andric         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
568fe6060f1SDimitry Andric       case BO_Div:
569fe6060f1SDimitry Andric         // 0 / x == 0
5705ffd83dbSDimitry Andric       case BO_Rem:
5715ffd83dbSDimitry Andric         // 0 % x == 0
5725ffd83dbSDimitry Andric         if (LHSValue == 0)
5735ffd83dbSDimitry Andric           return makeZeroVal(resultTy);
574bdd1243dSDimitry Andric         [[fallthrough]];
5750b57cec5SDimitry Andric       default:
5760b57cec5SDimitry Andric         return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
5770b57cec5SDimitry Andric       }
5780b57cec5SDimitry Andric     }
5790b57cec5SDimitry Andric     case nonloc::SymbolValKind: {
5800b57cec5SDimitry Andric       // We only handle LHS as simple symbols or SymIntExprs.
5810b57cec5SDimitry Andric       SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
5820b57cec5SDimitry Andric 
5830b57cec5SDimitry Andric       // LHS is a symbolic expression.
5840b57cec5SDimitry Andric       if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
5850b57cec5SDimitry Andric 
5860b57cec5SDimitry Andric         // Is this a logical not? (!x is represented as x == 0.)
5870b57cec5SDimitry Andric         if (op == BO_EQ && rhs.isZeroConstant()) {
5880b57cec5SDimitry Andric           // We know how to negate certain expressions. Simplify them here.
5890b57cec5SDimitry Andric 
5900b57cec5SDimitry Andric           BinaryOperator::Opcode opc = symIntExpr->getOpcode();
5910b57cec5SDimitry Andric           switch (opc) {
5920b57cec5SDimitry Andric           default:
5930b57cec5SDimitry Andric             // We don't know how to negate this operation.
5940b57cec5SDimitry Andric             // Just handle it as if it were a normal comparison to 0.
5950b57cec5SDimitry Andric             break;
5960b57cec5SDimitry Andric           case BO_LAnd:
5970b57cec5SDimitry Andric           case BO_LOr:
5980b57cec5SDimitry Andric             llvm_unreachable("Logical operators handled by branching logic.");
5990b57cec5SDimitry Andric           case BO_Assign:
6000b57cec5SDimitry Andric           case BO_MulAssign:
6010b57cec5SDimitry Andric           case BO_DivAssign:
6020b57cec5SDimitry Andric           case BO_RemAssign:
6030b57cec5SDimitry Andric           case BO_AddAssign:
6040b57cec5SDimitry Andric           case BO_SubAssign:
6050b57cec5SDimitry Andric           case BO_ShlAssign:
6060b57cec5SDimitry Andric           case BO_ShrAssign:
6070b57cec5SDimitry Andric           case BO_AndAssign:
6080b57cec5SDimitry Andric           case BO_XorAssign:
6090b57cec5SDimitry Andric           case BO_OrAssign:
6100b57cec5SDimitry Andric           case BO_Comma:
6110b57cec5SDimitry Andric             llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
6120b57cec5SDimitry Andric           case BO_PtrMemD:
6130b57cec5SDimitry Andric           case BO_PtrMemI:
6140b57cec5SDimitry Andric             llvm_unreachable("Pointer arithmetic not handled here.");
6150b57cec5SDimitry Andric           case BO_LT:
6160b57cec5SDimitry Andric           case BO_GT:
6170b57cec5SDimitry Andric           case BO_LE:
6180b57cec5SDimitry Andric           case BO_GE:
6190b57cec5SDimitry Andric           case BO_EQ:
6200b57cec5SDimitry Andric           case BO_NE:
6210b57cec5SDimitry Andric             assert(resultTy->isBooleanType() ||
6220b57cec5SDimitry Andric                    resultTy == getConditionType());
6230b57cec5SDimitry Andric             assert(symIntExpr->getType()->isBooleanType() ||
6240b57cec5SDimitry Andric                    getContext().hasSameUnqualifiedType(symIntExpr->getType(),
6250b57cec5SDimitry Andric                                                        getConditionType()));
6260b57cec5SDimitry Andric             // Negate the comparison and make a value.
6270b57cec5SDimitry Andric             opc = BinaryOperator::negateComparisonOp(opc);
6280b57cec5SDimitry Andric             return makeNonLoc(symIntExpr->getLHS(), opc,
6290b57cec5SDimitry Andric                 symIntExpr->getRHS(), resultTy);
6300b57cec5SDimitry Andric           }
6310b57cec5SDimitry Andric         }
6320b57cec5SDimitry Andric 
6330b57cec5SDimitry Andric         // For now, only handle expressions whose RHS is a constant.
63481ad6265SDimitry Andric         if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) {
6350b57cec5SDimitry Andric           // If both the LHS and the current expression are additive,
6360b57cec5SDimitry Andric           // fold their constants and try again.
6370b57cec5SDimitry Andric           if (BinaryOperator::isAdditiveOp(op)) {
6380b57cec5SDimitry Andric             BinaryOperator::Opcode lop = symIntExpr->getOpcode();
6390b57cec5SDimitry Andric             if (BinaryOperator::isAdditiveOp(lop)) {
6400b57cec5SDimitry Andric               // Convert the two constants to a common type, then combine them.
6410b57cec5SDimitry Andric 
6420b57cec5SDimitry Andric               // resultTy may not be the best type to convert to, but it's
6430b57cec5SDimitry Andric               // probably the best choice in expressions with mixed type
6440b57cec5SDimitry Andric               // (such as x+1U+2LL). The rules for implicit conversions should
6450b57cec5SDimitry Andric               // choose a reasonable type to preserve the expression, and will
6460b57cec5SDimitry Andric               // at least match how the value is going to be used.
6470b57cec5SDimitry Andric               APSIntType IntType = BasicVals.getAPSIntType(resultTy);
6480b57cec5SDimitry Andric               const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
6490b57cec5SDimitry Andric               const llvm::APSInt &second = IntType.convert(*RHSValue);
6500b57cec5SDimitry Andric 
65181ad6265SDimitry Andric               // If the op and lop agrees, then we just need to
65281ad6265SDimitry Andric               // sum the constants. Otherwise, we change to operation
65381ad6265SDimitry Andric               // type if substraction would produce negative value
65481ad6265SDimitry Andric               // (and cause overflow for unsigned integers),
65581ad6265SDimitry Andric               // as consequence x+1U-10 produces x-9U, instead
65681ad6265SDimitry Andric               // of x+4294967287U, that would be produced without this
65781ad6265SDimitry Andric               // additional check.
6580b57cec5SDimitry Andric               const llvm::APSInt *newRHS;
65981ad6265SDimitry Andric               if (lop == op) {
6600b57cec5SDimitry Andric                 newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
66181ad6265SDimitry Andric               } else if (first >= second) {
6620b57cec5SDimitry Andric                 newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
66381ad6265SDimitry Andric                 op = lop;
66481ad6265SDimitry Andric               } else {
66581ad6265SDimitry Andric                 newRHS = BasicVals.evalAPSInt(BO_Sub, second, first);
66681ad6265SDimitry Andric               }
6670b57cec5SDimitry Andric 
6680b57cec5SDimitry Andric               assert(newRHS && "Invalid operation despite common type!");
6690b57cec5SDimitry Andric               rhs = nonloc::ConcreteInt(*newRHS);
6700b57cec5SDimitry Andric               lhs = nonloc::SymbolVal(symIntExpr->getLHS());
6710b57cec5SDimitry Andric               continue;
6720b57cec5SDimitry Andric             }
6730b57cec5SDimitry Andric           }
6740b57cec5SDimitry Andric 
6750b57cec5SDimitry Andric           // Otherwise, make a SymIntExpr out of the expression.
6760b57cec5SDimitry Andric           return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
6770b57cec5SDimitry Andric         }
6780b57cec5SDimitry Andric       }
6790b57cec5SDimitry Andric 
6800b57cec5SDimitry Andric       // Is the RHS a constant?
68181ad6265SDimitry Andric       if (const llvm::APSInt *RHSValue = getConstValue(state, rhs))
6820b57cec5SDimitry Andric         return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
6830b57cec5SDimitry Andric 
684bdd1243dSDimitry Andric       if (std::optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
6850b57cec5SDimitry Andric         return *V;
6860b57cec5SDimitry Andric 
6870b57cec5SDimitry Andric       // Give up -- this is not a symbolic expression we can handle.
6880b57cec5SDimitry Andric       return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
6890b57cec5SDimitry Andric     }
6900b57cec5SDimitry Andric     }
6910b57cec5SDimitry Andric   }
6920b57cec5SDimitry Andric }
6930b57cec5SDimitry Andric 
6940b57cec5SDimitry Andric static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
6950b57cec5SDimitry Andric                                             const FieldRegion *RightFR,
6960b57cec5SDimitry Andric                                             BinaryOperator::Opcode op,
6970b57cec5SDimitry Andric                                             QualType resultTy,
6980b57cec5SDimitry Andric                                             SimpleSValBuilder &SVB) {
6990b57cec5SDimitry Andric   // Only comparisons are meaningful here!
7000b57cec5SDimitry Andric   if (!BinaryOperator::isComparisonOp(op))
7010b57cec5SDimitry Andric     return UnknownVal();
7020b57cec5SDimitry Andric 
7030b57cec5SDimitry Andric   // Next, see if the two FRs have the same super-region.
7040b57cec5SDimitry Andric   // FIXME: This doesn't handle casts yet, and simply stripping the casts
7050b57cec5SDimitry Andric   // doesn't help.
7060b57cec5SDimitry Andric   if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
7070b57cec5SDimitry Andric     return UnknownVal();
7080b57cec5SDimitry Andric 
7090b57cec5SDimitry Andric   const FieldDecl *LeftFD = LeftFR->getDecl();
7100b57cec5SDimitry Andric   const FieldDecl *RightFD = RightFR->getDecl();
7110b57cec5SDimitry Andric   const RecordDecl *RD = LeftFD->getParent();
7120b57cec5SDimitry Andric 
7130b57cec5SDimitry Andric   // Make sure the two FRs are from the same kind of record. Just in case!
7140b57cec5SDimitry Andric   // FIXME: This is probably where inheritance would be a problem.
7150b57cec5SDimitry Andric   if (RD != RightFD->getParent())
7160b57cec5SDimitry Andric     return UnknownVal();
7170b57cec5SDimitry Andric 
7180b57cec5SDimitry Andric   // We know for sure that the two fields are not the same, since that
7190b57cec5SDimitry Andric   // would have given us the same SVal.
7200b57cec5SDimitry Andric   if (op == BO_EQ)
7210b57cec5SDimitry Andric     return SVB.makeTruthVal(false, resultTy);
7220b57cec5SDimitry Andric   if (op == BO_NE)
7230b57cec5SDimitry Andric     return SVB.makeTruthVal(true, resultTy);
7240b57cec5SDimitry Andric 
7250b57cec5SDimitry Andric   // Iterate through the fields and see which one comes first.
7260b57cec5SDimitry Andric   // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
7270b57cec5SDimitry Andric   // members and the units in which bit-fields reside have addresses that
7280b57cec5SDimitry Andric   // increase in the order in which they are declared."
7290b57cec5SDimitry Andric   bool leftFirst = (op == BO_LT || op == BO_LE);
7300b57cec5SDimitry Andric   for (const auto *I : RD->fields()) {
7310b57cec5SDimitry Andric     if (I == LeftFD)
7320b57cec5SDimitry Andric       return SVB.makeTruthVal(leftFirst, resultTy);
7330b57cec5SDimitry Andric     if (I == RightFD)
7340b57cec5SDimitry Andric       return SVB.makeTruthVal(!leftFirst, resultTy);
7350b57cec5SDimitry Andric   }
7360b57cec5SDimitry Andric 
7370b57cec5SDimitry Andric   llvm_unreachable("Fields not found in parent record's definition");
7380b57cec5SDimitry Andric }
7390b57cec5SDimitry Andric 
74081ad6265SDimitry Andric // This is used in debug builds only for now because some downstream users
74181ad6265SDimitry Andric // may hit this assert in their subsequent merges.
74281ad6265SDimitry Andric // There are still places in the analyzer where equal bitwidth Locs
74381ad6265SDimitry Andric // are compared, and need to be found and corrected. Recent previous fixes have
74481ad6265SDimitry Andric // addressed the known problems of making NULLs with specific bitwidths
74581ad6265SDimitry Andric // for Loc comparisons along with deprecation of APIs for the same purpose.
74681ad6265SDimitry Andric //
74781ad6265SDimitry Andric static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc,
74881ad6265SDimitry Andric                                  Loc LhsLoc) {
74981ad6265SDimitry Andric   // Implements a "best effort" check for RhsLoc and LhsLoc bit widths
75081ad6265SDimitry Andric   ASTContext &Ctx = State->getStateManager().getContext();
75181ad6265SDimitry Andric   uint64_t RhsBitwidth =
75281ad6265SDimitry Andric       RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx));
75381ad6265SDimitry Andric   uint64_t LhsBitwidth =
75481ad6265SDimitry Andric       LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx));
75581ad6265SDimitry Andric   if (RhsBitwidth && LhsBitwidth &&
75681ad6265SDimitry Andric       (LhsLoc.getSubKind() == RhsLoc.getSubKind())) {
75781ad6265SDimitry Andric     assert(RhsBitwidth == LhsBitwidth &&
75881ad6265SDimitry Andric            "RhsLoc and LhsLoc bitwidth must be same!");
75981ad6265SDimitry Andric   }
76081ad6265SDimitry Andric }
76181ad6265SDimitry Andric 
7620b57cec5SDimitry Andric // FIXME: all this logic will change if/when we have MemRegion::getLocation().
7630b57cec5SDimitry Andric SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
7640b57cec5SDimitry Andric                                   BinaryOperator::Opcode op,
7650b57cec5SDimitry Andric                                   Loc lhs, Loc rhs,
7660b57cec5SDimitry Andric                                   QualType resultTy) {
76781ad6265SDimitry Andric 
76881ad6265SDimitry Andric   // Assert that bitwidth of lhs and rhs are the same.
76981ad6265SDimitry Andric   // This can happen if two different address spaces are used,
77081ad6265SDimitry Andric   // and the bitwidths of the address spaces are different.
77181ad6265SDimitry Andric   // See LIT case clang/test/Analysis/cstring-checker-addressspace.c
77281ad6265SDimitry Andric   // FIXME: See comment above in the function assertEqualBitWidths
77381ad6265SDimitry Andric   assertEqualBitWidths(state, rhs, lhs);
77481ad6265SDimitry Andric 
7750b57cec5SDimitry Andric   // Only comparisons and subtractions are valid operations on two pointers.
7760b57cec5SDimitry Andric   // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
7770b57cec5SDimitry Andric   // However, if a pointer is casted to an integer, evalBinOpNN may end up
7780b57cec5SDimitry Andric   // calling this function with another operation (PR7527). We don't attempt to
7790b57cec5SDimitry Andric   // model this for now, but it could be useful, particularly when the
7800b57cec5SDimitry Andric   // "location" is actually an integer value that's been passed through a void*.
7810b57cec5SDimitry Andric   if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
7820b57cec5SDimitry Andric     return UnknownVal();
7830b57cec5SDimitry Andric 
7840b57cec5SDimitry Andric   // Special cases for when both sides are identical.
7850b57cec5SDimitry Andric   if (lhs == rhs) {
7860b57cec5SDimitry Andric     switch (op) {
7870b57cec5SDimitry Andric     default:
7880b57cec5SDimitry Andric       llvm_unreachable("Unimplemented operation for two identical values");
7890b57cec5SDimitry Andric     case BO_Sub:
7900b57cec5SDimitry Andric       return makeZeroVal(resultTy);
7910b57cec5SDimitry Andric     case BO_EQ:
7920b57cec5SDimitry Andric     case BO_LE:
7930b57cec5SDimitry Andric     case BO_GE:
7940b57cec5SDimitry Andric       return makeTruthVal(true, resultTy);
7950b57cec5SDimitry Andric     case BO_NE:
7960b57cec5SDimitry Andric     case BO_LT:
7970b57cec5SDimitry Andric     case BO_GT:
7980b57cec5SDimitry Andric       return makeTruthVal(false, resultTy);
7990b57cec5SDimitry Andric     }
8000b57cec5SDimitry Andric   }
8010b57cec5SDimitry Andric 
8020b57cec5SDimitry Andric   switch (lhs.getSubKind()) {
8030b57cec5SDimitry Andric   default:
8040b57cec5SDimitry Andric     llvm_unreachable("Ordering not implemented for this Loc.");
8050b57cec5SDimitry Andric 
8060b57cec5SDimitry Andric   case loc::GotoLabelKind:
8070b57cec5SDimitry Andric     // The only thing we know about labels is that they're non-null.
8080b57cec5SDimitry Andric     if (rhs.isZeroConstant()) {
8090b57cec5SDimitry Andric       switch (op) {
8100b57cec5SDimitry Andric       default:
8110b57cec5SDimitry Andric         break;
8120b57cec5SDimitry Andric       case BO_Sub:
813fe6060f1SDimitry Andric         return evalCast(lhs, resultTy, QualType{});
8140b57cec5SDimitry Andric       case BO_EQ:
8150b57cec5SDimitry Andric       case BO_LE:
8160b57cec5SDimitry Andric       case BO_LT:
8170b57cec5SDimitry Andric         return makeTruthVal(false, resultTy);
8180b57cec5SDimitry Andric       case BO_NE:
8190b57cec5SDimitry Andric       case BO_GT:
8200b57cec5SDimitry Andric       case BO_GE:
8210b57cec5SDimitry Andric         return makeTruthVal(true, resultTy);
8220b57cec5SDimitry Andric       }
8230b57cec5SDimitry Andric     }
8240b57cec5SDimitry Andric     // There may be two labels for the same location, and a function region may
8250b57cec5SDimitry Andric     // have the same address as a label at the start of the function (depending
8260b57cec5SDimitry Andric     // on the ABI).
8270b57cec5SDimitry Andric     // FIXME: we can probably do a comparison against other MemRegions, though.
8280b57cec5SDimitry Andric     // FIXME: is there a way to tell if two labels refer to the same location?
8290b57cec5SDimitry Andric     return UnknownVal();
8300b57cec5SDimitry Andric 
8310b57cec5SDimitry Andric   case loc::ConcreteIntKind: {
83281ad6265SDimitry Andric     auto L = lhs.castAs<loc::ConcreteInt>();
83381ad6265SDimitry Andric 
8340b57cec5SDimitry Andric     // If one of the operands is a symbol and the other is a constant,
8350b57cec5SDimitry Andric     // build an expression for use by the constraint manager.
8360b57cec5SDimitry Andric     if (SymbolRef rSym = rhs.getAsLocSymbol()) {
8370b57cec5SDimitry Andric       // We can only build expressions with symbols on the left,
8380b57cec5SDimitry Andric       // so we need a reversible operator.
8390b57cec5SDimitry Andric       if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
8400b57cec5SDimitry Andric         return UnknownVal();
8410b57cec5SDimitry Andric 
8420b57cec5SDimitry Andric       op = BinaryOperator::reverseComparisonOp(op);
84381ad6265SDimitry Andric       return makeNonLoc(rSym, op, L.getValue(), resultTy);
8440b57cec5SDimitry Andric     }
8450b57cec5SDimitry Andric 
8460b57cec5SDimitry Andric     // If both operands are constants, just perform the operation.
847bdd1243dSDimitry Andric     if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
84881ad6265SDimitry Andric       assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub);
8490b57cec5SDimitry Andric 
85081ad6265SDimitry Andric       if (const auto *ResultInt =
85181ad6265SDimitry Andric               BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue()))
85281ad6265SDimitry Andric         return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{});
8530b57cec5SDimitry Andric       return UnknownVal();
8540b57cec5SDimitry Andric     }
8550b57cec5SDimitry Andric 
8560b57cec5SDimitry Andric     // Special case comparisons against NULL.
8570b57cec5SDimitry Andric     // This must come after the test if the RHS is a symbol, which is used to
8580b57cec5SDimitry Andric     // build constraints. The address of any non-symbolic region is guaranteed
8590b57cec5SDimitry Andric     // to be non-NULL, as is any label.
86081ad6265SDimitry Andric     assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs)));
8610b57cec5SDimitry Andric     if (lhs.isZeroConstant()) {
8620b57cec5SDimitry Andric       switch (op) {
8630b57cec5SDimitry Andric       default:
8640b57cec5SDimitry Andric         break;
8650b57cec5SDimitry Andric       case BO_EQ:
8660b57cec5SDimitry Andric       case BO_GT:
8670b57cec5SDimitry Andric       case BO_GE:
8680b57cec5SDimitry Andric         return makeTruthVal(false, resultTy);
8690b57cec5SDimitry Andric       case BO_NE:
8700b57cec5SDimitry Andric       case BO_LT:
8710b57cec5SDimitry Andric       case BO_LE:
8720b57cec5SDimitry Andric         return makeTruthVal(true, resultTy);
8730b57cec5SDimitry Andric       }
8740b57cec5SDimitry Andric     }
8750b57cec5SDimitry Andric 
8760b57cec5SDimitry Andric     // Comparing an arbitrary integer to a region or label address is
8770b57cec5SDimitry Andric     // completely unknowable.
8780b57cec5SDimitry Andric     return UnknownVal();
8790b57cec5SDimitry Andric   }
8800b57cec5SDimitry Andric   case loc::MemRegionValKind: {
881bdd1243dSDimitry Andric     if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
8820b57cec5SDimitry Andric       // If one of the operands is a symbol and the other is a constant,
8830b57cec5SDimitry Andric       // build an expression for use by the constraint manager.
8840b57cec5SDimitry Andric       if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
8850b57cec5SDimitry Andric         if (BinaryOperator::isComparisonOp(op))
8860b57cec5SDimitry Andric           return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
8870b57cec5SDimitry Andric         return UnknownVal();
8880b57cec5SDimitry Andric       }
8890b57cec5SDimitry Andric       // Special case comparisons to NULL.
8900b57cec5SDimitry Andric       // This must come after the test if the LHS is a symbol, which is used to
8910b57cec5SDimitry Andric       // build constraints. The address of any non-symbolic region is guaranteed
8920b57cec5SDimitry Andric       // to be non-NULL.
8930b57cec5SDimitry Andric       if (rInt->isZeroConstant()) {
8940b57cec5SDimitry Andric         if (op == BO_Sub)
895fe6060f1SDimitry Andric           return evalCast(lhs, resultTy, QualType{});
8960b57cec5SDimitry Andric 
8970b57cec5SDimitry Andric         if (BinaryOperator::isComparisonOp(op)) {
8980b57cec5SDimitry Andric           QualType boolType = getContext().BoolTy;
899fe6060f1SDimitry Andric           NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
9000b57cec5SDimitry Andric           NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
9010b57cec5SDimitry Andric           return evalBinOpNN(state, op, l, r, resultTy);
9020b57cec5SDimitry Andric         }
9030b57cec5SDimitry Andric       }
9040b57cec5SDimitry Andric 
9050b57cec5SDimitry Andric       // Comparing a region to an arbitrary integer is completely unknowable.
9060b57cec5SDimitry Andric       return UnknownVal();
9070b57cec5SDimitry Andric     }
9080b57cec5SDimitry Andric 
9090b57cec5SDimitry Andric     // Get both values as regions, if possible.
9100b57cec5SDimitry Andric     const MemRegion *LeftMR = lhs.getAsRegion();
9110b57cec5SDimitry Andric     assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
9120b57cec5SDimitry Andric 
9130b57cec5SDimitry Andric     const MemRegion *RightMR = rhs.getAsRegion();
9140b57cec5SDimitry Andric     if (!RightMR)
9150b57cec5SDimitry Andric       // The RHS is probably a label, which in theory could address a region.
9160b57cec5SDimitry Andric       // FIXME: we can probably make a more useful statement about non-code
9170b57cec5SDimitry Andric       // regions, though.
9180b57cec5SDimitry Andric       return UnknownVal();
9190b57cec5SDimitry Andric 
9200b57cec5SDimitry Andric     const MemRegion *LeftBase = LeftMR->getBaseRegion();
9210b57cec5SDimitry Andric     const MemRegion *RightBase = RightMR->getBaseRegion();
9220b57cec5SDimitry Andric     const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
9230b57cec5SDimitry Andric     const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
9240b57cec5SDimitry Andric     const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric     // If the two regions are from different known memory spaces they cannot be
9270b57cec5SDimitry Andric     // equal. Also, assume that no symbolic region (whose memory space is
9280b57cec5SDimitry Andric     // unknown) is on the stack.
9290b57cec5SDimitry Andric     if (LeftMS != RightMS &&
9300b57cec5SDimitry Andric         ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
9310b57cec5SDimitry Andric          (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
9320b57cec5SDimitry Andric       switch (op) {
9330b57cec5SDimitry Andric       default:
9340b57cec5SDimitry Andric         return UnknownVal();
9350b57cec5SDimitry Andric       case BO_EQ:
9360b57cec5SDimitry Andric         return makeTruthVal(false, resultTy);
9370b57cec5SDimitry Andric       case BO_NE:
9380b57cec5SDimitry Andric         return makeTruthVal(true, resultTy);
9390b57cec5SDimitry Andric       }
9400b57cec5SDimitry Andric     }
9410b57cec5SDimitry Andric 
9420b57cec5SDimitry Andric     // If both values wrap regions, see if they're from different base regions.
9430b57cec5SDimitry Andric     // Note, heap base symbolic regions are assumed to not alias with
9440b57cec5SDimitry Andric     // each other; for example, we assume that malloc returns different address
9450b57cec5SDimitry Andric     // on each invocation.
9460b57cec5SDimitry Andric     // FIXME: ObjC object pointers always reside on the heap, but currently
9470b57cec5SDimitry Andric     // we treat their memory space as unknown, because symbolic pointers
9480b57cec5SDimitry Andric     // to ObjC objects may alias. There should be a way to construct
9490b57cec5SDimitry Andric     // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
9500b57cec5SDimitry Andric     // guesses memory space for ObjC object pointers manually instead of
9510b57cec5SDimitry Andric     // relying on us.
9520b57cec5SDimitry Andric     if (LeftBase != RightBase &&
9530b57cec5SDimitry Andric         ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
9540b57cec5SDimitry Andric          (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
9550b57cec5SDimitry Andric       switch (op) {
9560b57cec5SDimitry Andric       default:
9570b57cec5SDimitry Andric         return UnknownVal();
9580b57cec5SDimitry Andric       case BO_EQ:
9590b57cec5SDimitry Andric         return makeTruthVal(false, resultTy);
9600b57cec5SDimitry Andric       case BO_NE:
9610b57cec5SDimitry Andric         return makeTruthVal(true, resultTy);
9620b57cec5SDimitry Andric       }
9630b57cec5SDimitry Andric     }
9640b57cec5SDimitry Andric 
9650b57cec5SDimitry Andric     // Handle special cases for when both regions are element regions.
9660b57cec5SDimitry Andric     const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
9670b57cec5SDimitry Andric     const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
9680b57cec5SDimitry Andric     if (RightER && LeftER) {
9690b57cec5SDimitry Andric       // Next, see if the two ERs have the same super-region and matching types.
9700b57cec5SDimitry Andric       // FIXME: This should do something useful even if the types don't match,
9710b57cec5SDimitry Andric       // though if both indexes are constant the RegionRawOffset path will
9720b57cec5SDimitry Andric       // give the correct answer.
9730b57cec5SDimitry Andric       if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
9740b57cec5SDimitry Andric           LeftER->getElementType() == RightER->getElementType()) {
9750b57cec5SDimitry Andric         // Get the left index and cast it to the correct type.
9760b57cec5SDimitry Andric         // If the index is unknown or undefined, bail out here.
9770b57cec5SDimitry Andric         SVal LeftIndexVal = LeftER->getIndex();
978bdd1243dSDimitry Andric         std::optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
9790b57cec5SDimitry Andric         if (!LeftIndex)
9800b57cec5SDimitry Andric           return UnknownVal();
981fe6060f1SDimitry Andric         LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
9820b57cec5SDimitry Andric         LeftIndex = LeftIndexVal.getAs<NonLoc>();
9830b57cec5SDimitry Andric         if (!LeftIndex)
9840b57cec5SDimitry Andric           return UnknownVal();
9850b57cec5SDimitry Andric 
9860b57cec5SDimitry Andric         // Do the same for the right index.
9870b57cec5SDimitry Andric         SVal RightIndexVal = RightER->getIndex();
988bdd1243dSDimitry Andric         std::optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
9890b57cec5SDimitry Andric         if (!RightIndex)
9900b57cec5SDimitry Andric           return UnknownVal();
991fe6060f1SDimitry Andric         RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
9920b57cec5SDimitry Andric         RightIndex = RightIndexVal.getAs<NonLoc>();
9930b57cec5SDimitry Andric         if (!RightIndex)
9940b57cec5SDimitry Andric           return UnknownVal();
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric         // Actually perform the operation.
9970b57cec5SDimitry Andric         // evalBinOpNN expects the two indexes to already be the right type.
9980b57cec5SDimitry Andric         return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
9990b57cec5SDimitry Andric       }
10000b57cec5SDimitry Andric     }
10010b57cec5SDimitry Andric 
10020b57cec5SDimitry Andric     // Special handling of the FieldRegions, even with symbolic offsets.
10030b57cec5SDimitry Andric     const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
10040b57cec5SDimitry Andric     const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
10050b57cec5SDimitry Andric     if (RightFR && LeftFR) {
10060b57cec5SDimitry Andric       SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
10070b57cec5SDimitry Andric                                                *this);
10080b57cec5SDimitry Andric       if (!R.isUnknown())
10090b57cec5SDimitry Andric         return R;
10100b57cec5SDimitry Andric     }
10110b57cec5SDimitry Andric 
10120b57cec5SDimitry Andric     // Compare the regions using the raw offsets.
10130b57cec5SDimitry Andric     RegionOffset LeftOffset = LeftMR->getAsOffset();
10140b57cec5SDimitry Andric     RegionOffset RightOffset = RightMR->getAsOffset();
10150b57cec5SDimitry Andric 
10160b57cec5SDimitry Andric     if (LeftOffset.getRegion() != nullptr &&
10170b57cec5SDimitry Andric         LeftOffset.getRegion() == RightOffset.getRegion() &&
10180b57cec5SDimitry Andric         !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
10190b57cec5SDimitry Andric       int64_t left = LeftOffset.getOffset();
10200b57cec5SDimitry Andric       int64_t right = RightOffset.getOffset();
10210b57cec5SDimitry Andric 
10220b57cec5SDimitry Andric       switch (op) {
10230b57cec5SDimitry Andric         default:
10240b57cec5SDimitry Andric           return UnknownVal();
10250b57cec5SDimitry Andric         case BO_LT:
10260b57cec5SDimitry Andric           return makeTruthVal(left < right, resultTy);
10270b57cec5SDimitry Andric         case BO_GT:
10280b57cec5SDimitry Andric           return makeTruthVal(left > right, resultTy);
10290b57cec5SDimitry Andric         case BO_LE:
10300b57cec5SDimitry Andric           return makeTruthVal(left <= right, resultTy);
10310b57cec5SDimitry Andric         case BO_GE:
10320b57cec5SDimitry Andric           return makeTruthVal(left >= right, resultTy);
10330b57cec5SDimitry Andric         case BO_EQ:
10340b57cec5SDimitry Andric           return makeTruthVal(left == right, resultTy);
10350b57cec5SDimitry Andric         case BO_NE:
10360b57cec5SDimitry Andric           return makeTruthVal(left != right, resultTy);
10370b57cec5SDimitry Andric       }
10380b57cec5SDimitry Andric     }
10390b57cec5SDimitry Andric 
10400b57cec5SDimitry Andric     // At this point we're not going to get a good answer, but we can try
10410b57cec5SDimitry Andric     // conjuring an expression instead.
10420b57cec5SDimitry Andric     SymbolRef LHSSym = lhs.getAsLocSymbol();
10430b57cec5SDimitry Andric     SymbolRef RHSSym = rhs.getAsLocSymbol();
10440b57cec5SDimitry Andric     if (LHSSym && RHSSym)
10450b57cec5SDimitry Andric       return makeNonLoc(LHSSym, op, RHSSym, resultTy);
10460b57cec5SDimitry Andric 
10470b57cec5SDimitry Andric     // If we get here, we have no way of comparing the regions.
10480b57cec5SDimitry Andric     return UnknownVal();
10490b57cec5SDimitry Andric   }
10500b57cec5SDimitry Andric   }
10510b57cec5SDimitry Andric }
10520b57cec5SDimitry Andric 
10530b57cec5SDimitry Andric SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
1054e8d8bef9SDimitry Andric                                     BinaryOperator::Opcode op, Loc lhs,
1055e8d8bef9SDimitry Andric                                     NonLoc rhs, QualType resultTy) {
10560b57cec5SDimitry Andric   if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
10570b57cec5SDimitry Andric     if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
10580b57cec5SDimitry Andric       if (PTMSV->isNullMemberPointer())
10590b57cec5SDimitry Andric         return UndefinedVal();
1060e8d8bef9SDimitry Andric 
1061e8d8bef9SDimitry Andric       auto getFieldLValue = [&](const auto *FD) -> SVal {
10620b57cec5SDimitry Andric         SVal Result = lhs;
10630b57cec5SDimitry Andric 
10640b57cec5SDimitry Andric         for (const auto &I : *PTMSV)
10650b57cec5SDimitry Andric           Result = StateMgr.getStoreManager().evalDerivedToBase(
10660b57cec5SDimitry Andric               Result, I->getType(), I->isVirtual());
1067e8d8bef9SDimitry Andric 
10680b57cec5SDimitry Andric         return state->getLValue(FD, Result);
1069e8d8bef9SDimitry Andric       };
1070e8d8bef9SDimitry Andric 
1071e8d8bef9SDimitry Andric       if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
1072e8d8bef9SDimitry Andric         return getFieldLValue(FD);
1073e8d8bef9SDimitry Andric       }
1074e8d8bef9SDimitry Andric       if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
1075e8d8bef9SDimitry Andric         return getFieldLValue(FD);
10760b57cec5SDimitry Andric       }
10770b57cec5SDimitry Andric     }
10780b57cec5SDimitry Andric 
10790b57cec5SDimitry Andric     return rhs;
10800b57cec5SDimitry Andric   }
10810b57cec5SDimitry Andric 
10820b57cec5SDimitry Andric   assert(!BinaryOperator::isComparisonOp(op) &&
10830b57cec5SDimitry Andric          "arguments to comparison ops must be of the same type");
10840b57cec5SDimitry Andric 
10850b57cec5SDimitry Andric   // Special case: rhs is a zero constant.
10860b57cec5SDimitry Andric   if (rhs.isZeroConstant())
10870b57cec5SDimitry Andric     return lhs;
10880b57cec5SDimitry Andric 
10890b57cec5SDimitry Andric   // Perserve the null pointer so that it can be found by the DerefChecker.
10900b57cec5SDimitry Andric   if (lhs.isZeroConstant())
10910b57cec5SDimitry Andric     return lhs;
10920b57cec5SDimitry Andric 
10930b57cec5SDimitry Andric   // We are dealing with pointer arithmetic.
10940b57cec5SDimitry Andric 
10950b57cec5SDimitry Andric   // Handle pointer arithmetic on constant values.
1096bdd1243dSDimitry Andric   if (std::optional<nonloc::ConcreteInt> rhsInt =
1097bdd1243dSDimitry Andric           rhs.getAs<nonloc::ConcreteInt>()) {
1098bdd1243dSDimitry Andric     if (std::optional<loc::ConcreteInt> lhsInt =
1099bdd1243dSDimitry Andric             lhs.getAs<loc::ConcreteInt>()) {
11000b57cec5SDimitry Andric       const llvm::APSInt &leftI = lhsInt->getValue();
11010b57cec5SDimitry Andric       assert(leftI.isUnsigned());
11020b57cec5SDimitry Andric       llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
11030b57cec5SDimitry Andric 
11040b57cec5SDimitry Andric       // Convert the bitwidth of rightI.  This should deal with overflow
11050b57cec5SDimitry Andric       // since we are dealing with concrete values.
11060b57cec5SDimitry Andric       rightI = rightI.extOrTrunc(leftI.getBitWidth());
11070b57cec5SDimitry Andric 
11080b57cec5SDimitry Andric       // Offset the increment by the pointer size.
11090b57cec5SDimitry Andric       llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
11100b57cec5SDimitry Andric       QualType pointeeType = resultTy->getPointeeType();
11110b57cec5SDimitry Andric       Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
11120b57cec5SDimitry Andric       rightI *= Multiplicand;
11130b57cec5SDimitry Andric 
11140b57cec5SDimitry Andric       // Compute the adjusted pointer.
11150b57cec5SDimitry Andric       switch (op) {
11160b57cec5SDimitry Andric         case BO_Add:
11170b57cec5SDimitry Andric           rightI = leftI + rightI;
11180b57cec5SDimitry Andric           break;
11190b57cec5SDimitry Andric         case BO_Sub:
11200b57cec5SDimitry Andric           rightI = leftI - rightI;
11210b57cec5SDimitry Andric           break;
11220b57cec5SDimitry Andric         default:
11230b57cec5SDimitry Andric           llvm_unreachable("Invalid pointer arithmetic operation");
11240b57cec5SDimitry Andric       }
11250b57cec5SDimitry Andric       return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
11260b57cec5SDimitry Andric     }
11270b57cec5SDimitry Andric   }
11280b57cec5SDimitry Andric 
11290b57cec5SDimitry Andric   // Handle cases where 'lhs' is a region.
11300b57cec5SDimitry Andric   if (const MemRegion *region = lhs.getAsRegion()) {
11310b57cec5SDimitry Andric     rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
11320b57cec5SDimitry Andric     SVal index = UnknownVal();
11330b57cec5SDimitry Andric     const SubRegion *superR = nullptr;
11340b57cec5SDimitry Andric     // We need to know the type of the pointer in order to add an integer to it.
11350b57cec5SDimitry Andric     // Depending on the type, different amount of bytes is added.
11360b57cec5SDimitry Andric     QualType elementType;
11370b57cec5SDimitry Andric 
11380b57cec5SDimitry Andric     if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
11390b57cec5SDimitry Andric       assert(op == BO_Add || op == BO_Sub);
11400b57cec5SDimitry Andric       index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
11410b57cec5SDimitry Andric                           getArrayIndexType());
11420b57cec5SDimitry Andric       superR = cast<SubRegion>(elemReg->getSuperRegion());
11430b57cec5SDimitry Andric       elementType = elemReg->getElementType();
11440b57cec5SDimitry Andric     }
11450b57cec5SDimitry Andric     else if (isa<SubRegion>(region)) {
11460b57cec5SDimitry Andric       assert(op == BO_Add || op == BO_Sub);
11470b57cec5SDimitry Andric       index = (op == BO_Add) ? rhs : evalMinus(rhs);
11480b57cec5SDimitry Andric       superR = cast<SubRegion>(region);
11490b57cec5SDimitry Andric       // TODO: Is this actually reliable? Maybe improving our MemRegion
11500b57cec5SDimitry Andric       // hierarchy to provide typed regions for all non-void pointers would be
11510b57cec5SDimitry Andric       // better. For instance, we cannot extend this towards LocAsInteger
11520b57cec5SDimitry Andric       // operations, where result type of the expression is integer.
11530b57cec5SDimitry Andric       if (resultTy->isAnyPointerType())
11540b57cec5SDimitry Andric         elementType = resultTy->getPointeeType();
11550b57cec5SDimitry Andric     }
11560b57cec5SDimitry Andric 
11570b57cec5SDimitry Andric     // Represent arithmetic on void pointers as arithmetic on char pointers.
11580b57cec5SDimitry Andric     // It is fine when a TypedValueRegion of char value type represents
11590b57cec5SDimitry Andric     // a void pointer. Note that arithmetic on void pointers is a GCC extension.
11600b57cec5SDimitry Andric     if (elementType->isVoidType())
11610b57cec5SDimitry Andric       elementType = getContext().CharTy;
11620b57cec5SDimitry Andric 
1163bdd1243dSDimitry Andric     if (std::optional<NonLoc> indexV = index.getAs<NonLoc>()) {
11640b57cec5SDimitry Andric       return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
11650b57cec5SDimitry Andric                                                        superR, getContext()));
11660b57cec5SDimitry Andric     }
11670b57cec5SDimitry Andric   }
11680b57cec5SDimitry Andric   return UnknownVal();
11690b57cec5SDimitry Andric }
11700b57cec5SDimitry Andric 
117181ad6265SDimitry Andric const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state,
11720b57cec5SDimitry Andric                                                      SVal V) {
11730b57cec5SDimitry Andric   if (V.isUnknownOrUndef())
11740b57cec5SDimitry Andric     return nullptr;
11750b57cec5SDimitry Andric 
1176bdd1243dSDimitry Andric   if (std::optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
11770b57cec5SDimitry Andric     return &X->getValue();
11780b57cec5SDimitry Andric 
1179bdd1243dSDimitry Andric   if (std::optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
11800b57cec5SDimitry Andric     return &X->getValue();
11810b57cec5SDimitry Andric 
11820b57cec5SDimitry Andric   if (SymbolRef Sym = V.getAsSymbol())
11830b57cec5SDimitry Andric     return state->getConstraintManager().getSymVal(state, Sym);
11840b57cec5SDimitry Andric 
11850b57cec5SDimitry Andric   return nullptr;
11860b57cec5SDimitry Andric }
11870b57cec5SDimitry Andric 
118881ad6265SDimitry Andric const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
118981ad6265SDimitry Andric                                                      SVal V) {
119081ad6265SDimitry Andric   return getConstValue(state, simplifySVal(state, V));
119181ad6265SDimitry Andric }
119281ad6265SDimitry Andric 
11930eae32dcSDimitry Andric SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) {
11940eae32dcSDimitry Andric   SVal SimplifiedVal = simplifySValOnce(State, Val);
11950eae32dcSDimitry Andric   while (SimplifiedVal != Val) {
11960eae32dcSDimitry Andric     Val = SimplifiedVal;
11970eae32dcSDimitry Andric     SimplifiedVal = simplifySValOnce(State, Val);
11980eae32dcSDimitry Andric   }
11990eae32dcSDimitry Andric   return SimplifiedVal;
12000eae32dcSDimitry Andric }
12010eae32dcSDimitry Andric 
12020b57cec5SDimitry Andric SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
12030eae32dcSDimitry Andric   return simplifyUntilFixpoint(State, V);
12040eae32dcSDimitry Andric }
12050eae32dcSDimitry Andric 
12060eae32dcSDimitry Andric SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) {
12070b57cec5SDimitry Andric   // For now, this function tries to constant-fold symbols inside a
12080b57cec5SDimitry Andric   // nonloc::SymbolVal, and does nothing else. More simplifications should
12090b57cec5SDimitry Andric   // be possible, such as constant-folding an index in an ElementRegion.
12100b57cec5SDimitry Andric 
12110b57cec5SDimitry Andric   class Simplifier : public FullSValVisitor<Simplifier, SVal> {
12120b57cec5SDimitry Andric     ProgramStateRef State;
12130b57cec5SDimitry Andric     SValBuilder &SVB;
12140b57cec5SDimitry Andric 
12150b57cec5SDimitry Andric     // Cache results for the lifetime of the Simplifier. Results change every
12160b57cec5SDimitry Andric     // time new constraints are added to the program state, which is the whole
12170b57cec5SDimitry Andric     // point of simplifying, and for that very reason it's pointless to maintain
12180b57cec5SDimitry Andric     // the same cache for the duration of the whole analysis.
12190b57cec5SDimitry Andric     llvm::DenseMap<SymbolRef, SVal> Cached;
12200b57cec5SDimitry Andric 
12210b57cec5SDimitry Andric     static bool isUnchanged(SymbolRef Sym, SVal Val) {
12220b57cec5SDimitry Andric       return Sym == Val.getAsSymbol();
12230b57cec5SDimitry Andric     }
12240b57cec5SDimitry Andric 
12250b57cec5SDimitry Andric     SVal cache(SymbolRef Sym, SVal V) {
12260b57cec5SDimitry Andric       Cached[Sym] = V;
12270b57cec5SDimitry Andric       return V;
12280b57cec5SDimitry Andric     }
12290b57cec5SDimitry Andric 
12300b57cec5SDimitry Andric     SVal skip(SymbolRef Sym) {
12310b57cec5SDimitry Andric       return cache(Sym, SVB.makeSymbolVal(Sym));
12320b57cec5SDimitry Andric     }
12330b57cec5SDimitry Andric 
12344824e7fdSDimitry Andric     // Return the known const value for the Sym if available, or return Undef
12354824e7fdSDimitry Andric     // otherwise.
12364824e7fdSDimitry Andric     SVal getConst(SymbolRef Sym) {
12374824e7fdSDimitry Andric       const llvm::APSInt *Const =
12384824e7fdSDimitry Andric           State->getConstraintManager().getSymVal(State, Sym);
12394824e7fdSDimitry Andric       if (Const)
12404824e7fdSDimitry Andric         return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)
12414824e7fdSDimitry Andric                                               : (SVal)SVB.makeIntVal(*Const);
12424824e7fdSDimitry Andric       return UndefinedVal();
12434824e7fdSDimitry Andric     }
12444824e7fdSDimitry Andric 
12454824e7fdSDimitry Andric     SVal getConstOrVisit(SymbolRef Sym) {
12464824e7fdSDimitry Andric       const SVal Ret = getConst(Sym);
12474824e7fdSDimitry Andric       if (Ret.isUndef())
12484824e7fdSDimitry Andric         return Visit(Sym);
12494824e7fdSDimitry Andric       return Ret;
12504824e7fdSDimitry Andric     }
12514824e7fdSDimitry Andric 
12520b57cec5SDimitry Andric   public:
12530b57cec5SDimitry Andric     Simplifier(ProgramStateRef State)
12540b57cec5SDimitry Andric         : State(State), SVB(State->getStateManager().getSValBuilder()) {}
12550b57cec5SDimitry Andric 
12560b57cec5SDimitry Andric     SVal VisitSymbolData(const SymbolData *S) {
12570b57cec5SDimitry Andric       // No cache here.
12580b57cec5SDimitry Andric       if (const llvm::APSInt *I =
125981ad6265SDimitry Andric               State->getConstraintManager().getSymVal(State, S))
12600b57cec5SDimitry Andric         return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
12610b57cec5SDimitry Andric                                             : (SVal)SVB.makeIntVal(*I);
12620b57cec5SDimitry Andric       return SVB.makeSymbolVal(S);
12630b57cec5SDimitry Andric     }
12640b57cec5SDimitry Andric 
12650b57cec5SDimitry Andric     SVal VisitSymIntExpr(const SymIntExpr *S) {
12660b57cec5SDimitry Andric       auto I = Cached.find(S);
12670b57cec5SDimitry Andric       if (I != Cached.end())
12680b57cec5SDimitry Andric         return I->second;
12690b57cec5SDimitry Andric 
12704824e7fdSDimitry Andric       SVal LHS = getConstOrVisit(S->getLHS());
12710b57cec5SDimitry Andric       if (isUnchanged(S->getLHS(), LHS))
12720b57cec5SDimitry Andric         return skip(S);
12730b57cec5SDimitry Andric 
12740b57cec5SDimitry Andric       SVal RHS;
12750b57cec5SDimitry Andric       // By looking at the APSInt in the right-hand side of S, we cannot
12760b57cec5SDimitry Andric       // figure out if it should be treated as a Loc or as a NonLoc.
12770b57cec5SDimitry Andric       // So make our guess by recalling that we cannot multiply pointers
12780b57cec5SDimitry Andric       // or compare a pointer to an integer.
12790b57cec5SDimitry Andric       if (Loc::isLocType(S->getLHS()->getType()) &&
12800b57cec5SDimitry Andric           BinaryOperator::isComparisonOp(S->getOpcode())) {
12810b57cec5SDimitry Andric         // The usual conversion of $sym to &SymRegion{$sym}, as they have
12820b57cec5SDimitry Andric         // the same meaning for Loc-type symbols, but the latter form
12830b57cec5SDimitry Andric         // is preferred in SVal computations for being Loc itself.
12840b57cec5SDimitry Andric         if (SymbolRef Sym = LHS.getAsSymbol()) {
12850b57cec5SDimitry Andric           assert(Loc::isLocType(Sym->getType()));
12860b57cec5SDimitry Andric           LHS = SVB.makeLoc(Sym);
12870b57cec5SDimitry Andric         }
12880b57cec5SDimitry Andric         RHS = SVB.makeIntLocVal(S->getRHS());
12890b57cec5SDimitry Andric       } else {
12900b57cec5SDimitry Andric         RHS = SVB.makeIntVal(S->getRHS());
12910b57cec5SDimitry Andric       }
12920b57cec5SDimitry Andric 
12930b57cec5SDimitry Andric       return cache(
12940b57cec5SDimitry Andric           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
12950b57cec5SDimitry Andric     }
12960b57cec5SDimitry Andric 
12974824e7fdSDimitry Andric     SVal VisitIntSymExpr(const IntSymExpr *S) {
12984824e7fdSDimitry Andric       auto I = Cached.find(S);
12994824e7fdSDimitry Andric       if (I != Cached.end())
13004824e7fdSDimitry Andric         return I->second;
13014824e7fdSDimitry Andric 
13024824e7fdSDimitry Andric       SVal RHS = getConstOrVisit(S->getRHS());
13034824e7fdSDimitry Andric       if (isUnchanged(S->getRHS(), RHS))
13044824e7fdSDimitry Andric         return skip(S);
13054824e7fdSDimitry Andric 
13064824e7fdSDimitry Andric       SVal LHS = SVB.makeIntVal(S->getLHS());
13074824e7fdSDimitry Andric       return cache(
13084824e7fdSDimitry Andric           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
13094824e7fdSDimitry Andric     }
13104824e7fdSDimitry Andric 
13110b57cec5SDimitry Andric     SVal VisitSymSymExpr(const SymSymExpr *S) {
13120b57cec5SDimitry Andric       auto I = Cached.find(S);
13130b57cec5SDimitry Andric       if (I != Cached.end())
13140b57cec5SDimitry Andric         return I->second;
13150b57cec5SDimitry Andric 
13160b57cec5SDimitry Andric       // For now don't try to simplify mixed Loc/NonLoc expressions
13170b57cec5SDimitry Andric       // because they often appear from LocAsInteger operations
13180b57cec5SDimitry Andric       // and we don't know how to combine a LocAsInteger
13190b57cec5SDimitry Andric       // with a concrete value.
13200b57cec5SDimitry Andric       if (Loc::isLocType(S->getLHS()->getType()) !=
13210b57cec5SDimitry Andric           Loc::isLocType(S->getRHS()->getType()))
13220b57cec5SDimitry Andric         return skip(S);
13230b57cec5SDimitry Andric 
13244824e7fdSDimitry Andric       SVal LHS = getConstOrVisit(S->getLHS());
13254824e7fdSDimitry Andric       SVal RHS = getConstOrVisit(S->getRHS());
13264824e7fdSDimitry Andric 
13270b57cec5SDimitry Andric       if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
13280b57cec5SDimitry Andric         return skip(S);
13290b57cec5SDimitry Andric 
13300b57cec5SDimitry Andric       return cache(
13310b57cec5SDimitry Andric           S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
13320b57cec5SDimitry Andric     }
13330b57cec5SDimitry Andric 
133481ad6265SDimitry Andric     SVal VisitSymbolCast(const SymbolCast *S) {
133581ad6265SDimitry Andric       auto I = Cached.find(S);
133681ad6265SDimitry Andric       if (I != Cached.end())
133781ad6265SDimitry Andric         return I->second;
133881ad6265SDimitry Andric       const SymExpr *OpSym = S->getOperand();
133981ad6265SDimitry Andric       SVal OpVal = getConstOrVisit(OpSym);
134081ad6265SDimitry Andric       if (isUnchanged(OpSym, OpVal))
134181ad6265SDimitry Andric         return skip(S);
134281ad6265SDimitry Andric 
134381ad6265SDimitry Andric       return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType()));
134481ad6265SDimitry Andric     }
134581ad6265SDimitry Andric 
134681ad6265SDimitry Andric     SVal VisitUnarySymExpr(const UnarySymExpr *S) {
134781ad6265SDimitry Andric       auto I = Cached.find(S);
134881ad6265SDimitry Andric       if (I != Cached.end())
134981ad6265SDimitry Andric         return I->second;
135081ad6265SDimitry Andric       SVal Op = getConstOrVisit(S->getOperand());
135181ad6265SDimitry Andric       if (isUnchanged(S->getOperand(), Op))
135281ad6265SDimitry Andric         return skip(S);
135381ad6265SDimitry Andric 
135481ad6265SDimitry Andric       return cache(
135581ad6265SDimitry Andric           S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType()));
135681ad6265SDimitry Andric     }
135781ad6265SDimitry Andric 
13580b57cec5SDimitry Andric     SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
13590b57cec5SDimitry Andric 
13600b57cec5SDimitry Andric     SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
13610b57cec5SDimitry Andric 
13620b57cec5SDimitry Andric     SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
13630b57cec5SDimitry Andric       // Simplification is much more costly than computing complexity.
13640b57cec5SDimitry Andric       // For high complexity, it may be not worth it.
13650b57cec5SDimitry Andric       return Visit(V.getSymbol());
13660b57cec5SDimitry Andric     }
13670b57cec5SDimitry Andric 
13680b57cec5SDimitry Andric     SVal VisitSVal(SVal V) { return V; }
13690b57cec5SDimitry Andric   };
13700b57cec5SDimitry Andric 
13710b57cec5SDimitry Andric   SVal SimplifiedV = Simplifier(State).Visit(V);
13720b57cec5SDimitry Andric   return SimplifiedV;
13730b57cec5SDimitry Andric }
1374