1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstdint>
38 
39 using namespace clang;
40 using namespace ento;
41 
42 StoreManager::StoreManager(ProgramStateManager &stateMgr)
43     : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44       MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45 
46 StoreRef StoreManager::enterStackFrame(Store OldStore,
47                                        const CallEvent &Call,
48                                        const StackFrameContext *LCtx) {
49   StoreRef Store = StoreRef(OldStore, *this);
50 
51   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
52   Call.getInitialStackFrameContents(LCtx, InitialBindings);
53 
54   for (const auto &I : InitialBindings)
55     Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56 
57   return Store;
58 }
59 
60 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
61                                                      QualType EleTy,
62                                                      uint64_t index) {
63   NonLoc idx = svalBuilder.makeArrayIndex(index);
64   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65 }
66 
67 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
68                                                         QualType T) {
69   NonLoc idx = svalBuilder.makeZeroArrayIndex();
70   assert(!T.isNull());
71   return MRMgr.getElementRegion(T, idx, R, Ctx);
72 }
73 
74 Optional<const MemRegion *> StoreManager::castRegion(const MemRegion *R,
75                                                      QualType CastToTy) {
76   ASTContext &Ctx = StateMgr.getContext();
77 
78   // Handle casts to Objective-C objects.
79   if (CastToTy->isObjCObjectPointerType())
80     return R->StripCasts();
81 
82   if (CastToTy->isBlockPointerType()) {
83     // FIXME: We may need different solutions, depending on the symbol
84     // involved.  Blocks can be casted to/from 'id', as they can be treated
85     // as Objective-C objects.  This could possibly be handled by enhancing
86     // our reasoning of downcasts of symbolic objects.
87     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
88       return R;
89 
90     // We don't know what to make of it.  Return a NULL region, which
91     // will be interpreted as UnknownVal.
92     return None;
93   }
94 
95   // Now assume we are casting from pointer to pointer. Other cases should
96   // already be handled.
97   QualType PointeeTy = CastToTy->getPointeeType();
98   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
99 
100   // Handle casts to void*.  We just pass the region through.
101   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
102     return R;
103 
104   // Handle casts from compatible types.
105   if (R->isBoundable())
106     if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
107       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
108       if (CanonPointeeTy == ObjTy)
109         return R;
110     }
111 
112   // Process region cast according to the kind of the region being cast.
113   switch (R->getKind()) {
114     case MemRegion::CXXThisRegionKind:
115     case MemRegion::CodeSpaceRegionKind:
116     case MemRegion::StackLocalsSpaceRegionKind:
117     case MemRegion::StackArgumentsSpaceRegionKind:
118     case MemRegion::HeapSpaceRegionKind:
119     case MemRegion::UnknownSpaceRegionKind:
120     case MemRegion::StaticGlobalSpaceRegionKind:
121     case MemRegion::GlobalInternalSpaceRegionKind:
122     case MemRegion::GlobalSystemSpaceRegionKind:
123     case MemRegion::GlobalImmutableSpaceRegionKind: {
124       llvm_unreachable("Invalid region cast");
125     }
126 
127     case MemRegion::FunctionCodeRegionKind:
128     case MemRegion::BlockCodeRegionKind:
129     case MemRegion::BlockDataRegionKind:
130     case MemRegion::StringRegionKind:
131       // FIXME: Need to handle arbitrary downcasts.
132     case MemRegion::SymbolicRegionKind:
133     case MemRegion::AllocaRegionKind:
134     case MemRegion::CompoundLiteralRegionKind:
135     case MemRegion::FieldRegionKind:
136     case MemRegion::ObjCIvarRegionKind:
137     case MemRegion::ObjCStringRegionKind:
138     case MemRegion::NonParamVarRegionKind:
139     case MemRegion::ParamVarRegionKind:
140     case MemRegion::CXXTempObjectRegionKind:
141     case MemRegion::CXXBaseObjectRegionKind:
142     case MemRegion::CXXDerivedObjectRegionKind:
143       return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
144 
145     case MemRegion::ElementRegionKind: {
146       // If we are casting from an ElementRegion to another type, the
147       // algorithm is as follows:
148       //
149       // (1) Compute the "raw offset" of the ElementRegion from the
150       //     base region.  This is done by calling 'getAsRawOffset()'.
151       //
152       // (2a) If we get a 'RegionRawOffset' after calling
153       //      'getAsRawOffset()', determine if the absolute offset
154       //      can be exactly divided into chunks of the size of the
155       //      casted-pointee type.  If so, create a new ElementRegion with
156       //      the pointee-cast type as the new ElementType and the index
157       //      being the offset divded by the chunk size.  If not, create
158       //      a new ElementRegion at offset 0 off the raw offset region.
159       //
160       // (2b) If we don't a get a 'RegionRawOffset' after calling
161       //      'getAsRawOffset()', it means that we are at offset 0.
162       //
163       // FIXME: Handle symbolic raw offsets.
164 
165       const ElementRegion *elementR = cast<ElementRegion>(R);
166       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
167       const MemRegion *baseR = rawOff.getRegion();
168 
169       // If we cannot compute a raw offset, throw up our hands and return
170       // a NULL MemRegion*.
171       if (!baseR)
172         return None;
173 
174       CharUnits off = rawOff.getOffset();
175 
176       if (off.isZero()) {
177         // Edge case: we are at 0 bytes off the beginning of baseR.  We
178         // check to see if type we are casting to is the same as the base
179         // region.  If so, just return the base region.
180         if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
181           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
182           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
183           if (CanonPointeeTy == ObjTy)
184             return baseR;
185         }
186 
187         // Otherwise, create a new ElementRegion at offset 0.
188         return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
189       }
190 
191       // We have a non-zero offset from the base region.  We want to determine
192       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
193       // we create an ElementRegion whose index is that value.  Otherwise, we
194       // create two ElementRegions, one that reflects a raw offset and the other
195       // that reflects the cast.
196 
197       // Compute the index for the new ElementRegion.
198       int64_t newIndex = 0;
199       const MemRegion *newSuperR = nullptr;
200 
201       // We can only compute sizeof(PointeeTy) if it is a complete type.
202       if (!PointeeTy->isIncompleteType()) {
203         // Compute the size in **bytes**.
204         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
205         if (!pointeeTySize.isZero()) {
206           // Is the offset a multiple of the size?  If so, we can layer the
207           // ElementRegion (with elementType == PointeeTy) directly on top of
208           // the base region.
209           if (off % pointeeTySize == 0) {
210             newIndex = off / pointeeTySize;
211             newSuperR = baseR;
212           }
213         }
214       }
215 
216       if (!newSuperR) {
217         // Create an intermediate ElementRegion to represent the raw byte.
218         // This will be the super region of the final ElementRegion.
219         newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
220                                       off.getQuantity());
221       }
222 
223       return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
224     }
225   }
226 
227   llvm_unreachable("unreachable");
228 }
229 
230 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
231   const MemRegion *MR = V.getAsRegion();
232   if (!MR)
233     return true;
234 
235   const auto *TVR = dyn_cast<TypedValueRegion>(MR);
236   if (!TVR)
237     return true;
238 
239   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
240   if (!RD)
241     return true;
242 
243   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
244   if (!Expected)
245     Expected = Ty->getAsCXXRecordDecl();
246 
247   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
248 }
249 
250 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
251   // Sanity check to avoid doing the wrong thing in the face of
252   // reinterpret_cast.
253   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
254     return UnknownVal();
255 
256   // Walk through the cast path to create nested CXXBaseRegions.
257   SVal Result = Derived;
258   for (CastExpr::path_const_iterator I = Cast->path_begin(),
259                                      E = Cast->path_end();
260        I != E; ++I) {
261     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
262   }
263   return Result;
264 }
265 
266 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
267   // Walk through the path to create nested CXXBaseRegions.
268   SVal Result = Derived;
269   for (const auto &I : Path)
270     Result = evalDerivedToBase(Result, I.Base->getType(),
271                                I.Base->isVirtual());
272   return Result;
273 }
274 
275 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
276                                      bool IsVirtual) {
277   const MemRegion *DerivedReg = Derived.getAsRegion();
278   if (!DerivedReg)
279     return Derived;
280 
281   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
282   if (!BaseDecl)
283     BaseDecl = BaseType->getAsCXXRecordDecl();
284   assert(BaseDecl && "not a C++ object?");
285 
286   if (const auto *AlreadyDerivedReg =
287           dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
288     if (const auto *SR =
289             dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
290       if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
291         return loc::MemRegionVal(SR);
292 
293     DerivedReg = AlreadyDerivedReg->getSuperRegion();
294   }
295 
296   const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
297       BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
298 
299   return loc::MemRegionVal(BaseReg);
300 }
301 
302 /// Returns the static type of the given region, if it represents a C++ class
303 /// object.
304 ///
305 /// This handles both fully-typed regions, where the dynamic type is known, and
306 /// symbolic regions, where the dynamic type is merely bounded (and even then,
307 /// only ostensibly!), but does not take advantage of any dynamic type info.
308 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
309   if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
310     return TVR->getValueType()->getAsCXXRecordDecl();
311   if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
312     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
313   return nullptr;
314 }
315 
316 SVal StoreManager::attemptDownCast(SVal Base, QualType TargetType,
317                                    bool &Failed) {
318   Failed = false;
319 
320   const MemRegion *MR = Base.getAsRegion();
321   if (!MR)
322     return UnknownVal();
323 
324   // Assume the derived class is a pointer or a reference to a CXX record.
325   TargetType = TargetType->getPointeeType();
326   assert(!TargetType.isNull());
327   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
328   if (!TargetClass && !TargetType->isVoidType())
329     return UnknownVal();
330 
331   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
332   // derived to base).
333   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
334     // If found the derived class, the cast succeeds.
335     if (MRClass == TargetClass)
336       return loc::MemRegionVal(MR);
337 
338     // We skip over incomplete types. They must be the result of an earlier
339     // reinterpret_cast, as one can only dynamic_cast between types in the same
340     // class hierarchy.
341     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
342       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
343       // only happen when multiple or virtual inheritance is involved.
344       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
345                          /*DetectVirtual=*/false);
346       if (MRClass->isDerivedFrom(TargetClass, Paths))
347         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
348     }
349 
350     if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
351       // Drill down the chain to get the derived classes.
352       MR = BaseR->getSuperRegion();
353       continue;
354     }
355 
356     // If this is a cast to void*, return the region.
357     if (TargetType->isVoidType())
358       return loc::MemRegionVal(MR);
359 
360     // Strange use of reinterpret_cast can give us paths we don't reason
361     // about well, by putting in ElementRegions where we'd expect
362     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
363     // derived class has a zero offset from the base class), then it's safe
364     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
365     // catch it. In the interest of performance, the analyzer will silently
366     // do the wrong thing in the invalid case (because offsets for subregions
367     // will be wrong).
368     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
369     if (Uncasted == MR) {
370       // We reached the bottom of the hierarchy and did not find the derived
371       // class. We must be casting the base to derived, so the cast should
372       // fail.
373       break;
374     }
375 
376     MR = Uncasted;
377   }
378 
379   // If we're casting a symbolic base pointer to a derived class, use
380   // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
381   // unrelated type, it must be a weird reinterpret_cast and we have to
382   // be fine with ElementRegion. TODO: Should we instead make
383   // Derived{TargetClass, Element{SourceClass, SR}}?
384   if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
385     QualType T = SR->getSymbol()->getType();
386     const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
387     if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
388       return loc::MemRegionVal(
389           MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
390     return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
391   }
392 
393   // We failed if the region we ended up with has perfect type info.
394   Failed = isa<TypedValueRegion>(MR);
395   return UnknownVal();
396 }
397 
398 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
399   if (Base.isUnknownOrUndef())
400     return Base;
401 
402   Loc BaseL = Base.castAs<Loc>();
403   const SubRegion* BaseR = nullptr;
404 
405   switch (BaseL.getSubKind()) {
406   case loc::MemRegionValKind:
407     BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
408     break;
409 
410   case loc::GotoLabelKind:
411     // These are anormal cases. Flag an undefined value.
412     return UndefinedVal();
413 
414   case loc::ConcreteIntKind:
415     // While these seem funny, this can happen through casts.
416     // FIXME: What we should return is the field offset, not base. For example,
417     //  add the field offset to the integer value.  That way things
418     //  like this work properly:  &(((struct foo *) 0xa)->f)
419     //  However, that's not easy to fix without reducing our abilities
420     //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
421     //  is a null dereference even though we're dereferencing offset of f
422     //  rather than null. Coming up with an approach that computes offsets
423     //  over null pointers properly while still being able to catch null
424     //  dereferences might be worth it.
425     return Base;
426 
427   default:
428     llvm_unreachable("Unhandled Base.");
429   }
430 
431   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
432   // of FieldDecl.
433   if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
434     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
435 
436   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
437 }
438 
439 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
440   return getLValueFieldOrIvar(decl, base);
441 }
442 
443 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
444                                     SVal Base) {
445   // If the base is an unknown or undefined value, just return it back.
446   // FIXME: For absolute pointer addresses, we just return that value back as
447   //  well, although in reality we should return the offset added to that
448   //  value. See also the similar FIXME in getLValueFieldOrIvar().
449   if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
450     return Base;
451 
452   if (Base.getAs<loc::GotoLabel>())
453     return UnknownVal();
454 
455   const SubRegion *BaseRegion =
456       Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
457 
458   // Pointer of any type can be cast and used as array base.
459   const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
460 
461   // Convert the offset to the appropriate size and signedness.
462   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
463 
464   if (!ElemR) {
465     // If the base region is not an ElementRegion, create one.
466     // This can happen in the following example:
467     //
468     //   char *p = __builtin_alloc(10);
469     //   p[1] = 8;
470     //
471     //  Observe that 'p' binds to an AllocaRegion.
472     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
473                                                     BaseRegion, Ctx));
474   }
475 
476   SVal BaseIdx = ElemR->getIndex();
477 
478   if (!BaseIdx.getAs<nonloc::ConcreteInt>())
479     return UnknownVal();
480 
481   const llvm::APSInt &BaseIdxI =
482       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
483 
484   // Only allow non-integer offsets if the base region has no offset itself.
485   // FIXME: This is a somewhat arbitrary restriction. We should be using
486   // SValBuilder here to add the two offsets without checking their types.
487   if (!Offset.getAs<nonloc::ConcreteInt>()) {
488     if (isa<ElementRegion>(BaseRegion->StripCasts()))
489       return UnknownVal();
490 
491     return loc::MemRegionVal(MRMgr.getElementRegion(
492         elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
493   }
494 
495   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
496   assert(BaseIdxI.isSigned());
497 
498   // Compute the new index.
499   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
500                                                                     OffI));
501 
502   // Construct the new ElementRegion.
503   const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
504   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
505                                                   Ctx));
506 }
507 
508 StoreManager::BindingsHandler::~BindingsHandler() = default;
509 
510 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
511                                                     Store store,
512                                                     const MemRegion* R,
513                                                     SVal val) {
514   SymbolRef SymV = val.getAsLocSymbol();
515   if (!SymV || SymV != Sym)
516     return true;
517 
518   if (Binding) {
519     First = false;
520     return false;
521   }
522   else
523     Binding = R;
524 
525   return true;
526 }
527