1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/TableGen/Error.h"
38 #include "llvm/TableGen/Record.h"
39 #include "llvm/TableGen/SetTheory.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cctype>
43 #include <cstddef>
44 #include <cstdint>
45 #include <deque>
46 #include <map>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62   if (!Assertion) {
63     if (CurrentRecord)
64       PrintFatalError(CurrentRecord->getLoc(), Str);
65     else
66       PrintFatalError(Str);
67   }
68 }
69 
70 enum ClassKind {
71   ClassNone,
72   ClassI,     // generic integer instruction, e.g., "i8" suffix
73   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74   ClassW,     // width-specific instruction, e.g., "8" suffix
75   ClassB,     // bitcast arguments with enum argument to specify type
76   ClassL,     // Logical instructions which are op instructions
77               // but we need to not emit any suffix for in our
78               // tests.
79   ClassNoTest // Instructions which we do not test since they are
80               // not TRUE instructions.
81 };
82 
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins.  These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
87 
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
89 
90 enum EltType {
91   Int8,
92   Int16,
93   Int32,
94   Int64,
95   Poly8,
96   Poly16,
97   Poly64,
98   Poly128,
99   Float16,
100   Float32,
101   Float64
102 };
103 
104 } // end namespace NeonTypeFlags
105 
106 class NeonEmitter;
107 
108 //===----------------------------------------------------------------------===//
109 // TypeSpec
110 //===----------------------------------------------------------------------===//
111 
112 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
113 /// for strong typing purposes.
114 ///
115 /// A TypeSpec can be used to create a type.
116 class TypeSpec : public std::string {
117 public:
118   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
119     std::vector<TypeSpec> Ret;
120     TypeSpec Acc;
121     for (char I : Str.str()) {
122       if (islower(I)) {
123         Acc.push_back(I);
124         Ret.push_back(TypeSpec(Acc));
125         Acc.clear();
126       } else {
127         Acc.push_back(I);
128       }
129     }
130     return Ret;
131   }
132 };
133 
134 //===----------------------------------------------------------------------===//
135 // Type
136 //===----------------------------------------------------------------------===//
137 
138 /// A Type. Not much more to say here.
139 class Type {
140 private:
141   TypeSpec TS;
142 
143   enum TypeKind {
144     Void,
145     Float,
146     SInt,
147     UInt,
148     Poly,
149   };
150   TypeKind Kind;
151   bool Immediate, Constant, Pointer;
152   // ScalarForMangling and NoManglingQ are really not suited to live here as
153   // they are not related to the type. But they live in the TypeSpec (not the
154   // prototype), so this is really the only place to store them.
155   bool ScalarForMangling, NoManglingQ;
156   unsigned Bitwidth, ElementBitwidth, NumVectors;
157 
158 public:
159   Type()
160       : Kind(Void), Immediate(false), Constant(false),
161         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
162         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
163 
164   Type(TypeSpec TS, StringRef CharMods)
165       : TS(std::move(TS)), Kind(Void), Immediate(false),
166         Constant(false), Pointer(false), ScalarForMangling(false),
167         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
168     applyModifiers(CharMods);
169   }
170 
171   /// Returns a type representing "void".
172   static Type getVoid() { return Type(); }
173 
174   bool operator==(const Type &Other) const { return str() == Other.str(); }
175   bool operator!=(const Type &Other) const { return !operator==(Other); }
176 
177   //
178   // Query functions
179   //
180   bool isScalarForMangling() const { return ScalarForMangling; }
181   bool noManglingQ() const { return NoManglingQ; }
182 
183   bool isPointer() const { return Pointer; }
184   bool isValue() const { return !isVoid() && !isPointer(); }
185   bool isScalar() const { return isValue() && NumVectors == 0; }
186   bool isVector() const { return isValue() && NumVectors > 0; }
187   bool isConstPointer() const { return Constant; }
188   bool isFloating() const { return Kind == Float; }
189   bool isInteger() const { return Kind == SInt || Kind == UInt; }
190   bool isPoly() const { return Kind == Poly; }
191   bool isSigned() const { return Kind == SInt; }
192   bool isImmediate() const { return Immediate; }
193   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
194   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
195   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
196   bool isChar() const { return ElementBitwidth == 8; }
197   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
198   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
199   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
200   bool isVoid() const { return Kind == Void; }
201   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
202   unsigned getSizeInBits() const { return Bitwidth; }
203   unsigned getElementSizeInBits() const { return ElementBitwidth; }
204   unsigned getNumVectors() const { return NumVectors; }
205 
206   //
207   // Mutator functions
208   //
209   void makeUnsigned() {
210     assert(!isVoid() && "not a potentially signed type");
211     Kind = UInt;
212   }
213   void makeSigned() {
214     assert(!isVoid() && "not a potentially signed type");
215     Kind = SInt;
216   }
217 
218   void makeInteger(unsigned ElemWidth, bool Sign) {
219     assert(!isVoid() && "converting void to int probably not useful");
220     Kind = Sign ? SInt : UInt;
221     Immediate = false;
222     ElementBitwidth = ElemWidth;
223   }
224 
225   void makeImmediate(unsigned ElemWidth) {
226     Kind = SInt;
227     Immediate = true;
228     ElementBitwidth = ElemWidth;
229   }
230 
231   void makeScalar() {
232     Bitwidth = ElementBitwidth;
233     NumVectors = 0;
234   }
235 
236   void makeOneVector() {
237     assert(isVector());
238     NumVectors = 1;
239   }
240 
241   void doubleLanes() {
242     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
243     Bitwidth = 128;
244   }
245 
246   void halveLanes() {
247     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
248     Bitwidth = 64;
249   }
250 
251   /// Return the C string representation of a type, which is the typename
252   /// defined in stdint.h or arm_neon.h.
253   std::string str() const;
254 
255   /// Return the string representation of a type, which is an encoded
256   /// string for passing to the BUILTIN() macro in Builtins.def.
257   std::string builtin_str() const;
258 
259   /// Return the value in NeonTypeFlags for this type.
260   unsigned getNeonEnum() const;
261 
262   /// Parse a type from a stdint.h or arm_neon.h typedef name,
263   /// for example uint32x2_t or int64_t.
264   static Type fromTypedefName(StringRef Name);
265 
266 private:
267   /// Creates the type based on the typespec string in TS.
268   /// Sets "Quad" to true if the "Q" or "H" modifiers were
269   /// seen. This is needed by applyModifier as some modifiers
270   /// only take effect if the type size was changed by "Q" or "H".
271   void applyTypespec(bool &Quad);
272   /// Applies prototype modifiers to the type.
273   void applyModifiers(StringRef Mods);
274 };
275 
276 //===----------------------------------------------------------------------===//
277 // Variable
278 //===----------------------------------------------------------------------===//
279 
280 /// A variable is a simple class that just has a type and a name.
281 class Variable {
282   Type T;
283   std::string N;
284 
285 public:
286   Variable() : T(Type::getVoid()), N("") {}
287   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
288 
289   Type getType() const { return T; }
290   std::string getName() const { return "__" + N; }
291 };
292 
293 //===----------------------------------------------------------------------===//
294 // Intrinsic
295 //===----------------------------------------------------------------------===//
296 
297 /// The main grunt class. This represents an instantiation of an intrinsic with
298 /// a particular typespec and prototype.
299 class Intrinsic {
300   friend class DagEmitter;
301 
302   /// The Record this intrinsic was created from.
303   Record *R;
304   /// The unmangled name.
305   std::string Name;
306   /// The input and output typespecs. InTS == OutTS except when
307   /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
308   TypeSpec OutTS, InTS;
309   /// The base class kind. Most intrinsics use ClassS, which has full type
310   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
311   /// signedness (i32), while some (ClassB) have no type at all, only a width
312   /// (32).
313   ClassKind CK;
314   /// The list of DAGs for the body. May be empty, in which case we should
315   /// emit a builtin call.
316   ListInit *Body;
317   /// The architectural #ifdef guard.
318   std::string Guard;
319   /// Set if the Unavailable bit is 1. This means we don't generate a body,
320   /// just an "unavailable" attribute on a declaration.
321   bool IsUnavailable;
322   /// Is this intrinsic safe for big-endian? or does it need its arguments
323   /// reversing?
324   bool BigEndianSafe;
325 
326   /// The types of return value [0] and parameters [1..].
327   std::vector<Type> Types;
328   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
329   int PolymorphicKeyType;
330   /// The local variables defined.
331   std::map<std::string, Variable> Variables;
332   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
333   bool NeededEarly;
334   /// UseMacro - set if we should implement using a macro or unset for a
335   ///            function.
336   bool UseMacro;
337   /// The set of intrinsics that this intrinsic uses/requires.
338   std::set<Intrinsic *> Dependencies;
339   /// The "base type", which is Type('d', OutTS). InBaseType is only
340   /// different if CartesianProductOfTypes = 1 (for vreinterpret).
341   Type BaseType, InBaseType;
342   /// The return variable.
343   Variable RetVar;
344   /// A postfix to apply to every variable. Defaults to "".
345   std::string VariablePostfix;
346 
347   NeonEmitter &Emitter;
348   std::stringstream OS;
349 
350   bool isBigEndianSafe() const {
351     if (BigEndianSafe)
352       return true;
353 
354     for (const auto &T : Types){
355       if (T.isVector() && T.getNumElements() > 1)
356         return false;
357     }
358     return true;
359   }
360 
361 public:
362   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
363             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
364             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
365       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
366         Guard(Guard.str()), IsUnavailable(IsUnavailable),
367         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
368         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
369         Emitter(Emitter) {
370     // Modify the TypeSpec per-argument to get a concrete Type, and create
371     // known variables for each.
372     // Types[0] is the return value.
373     unsigned Pos = 0;
374     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
375     StringRef Mods = getNextModifiers(Proto, Pos);
376     while (!Mods.empty()) {
377       Types.emplace_back(InTS, Mods);
378       if (Mods.find("!") != StringRef::npos)
379         PolymorphicKeyType = Types.size() - 1;
380 
381       Mods = getNextModifiers(Proto, Pos);
382     }
383 
384     for (auto Type : Types) {
385       // If this builtin takes an immediate argument, we need to #define it rather
386       // than use a standard declaration, so that SemaChecking can range check
387       // the immediate passed by the user.
388 
389       // Pointer arguments need to use macros to avoid hiding aligned attributes
390       // from the pointer type.
391 
392       // It is not permitted to pass or return an __fp16 by value, so intrinsics
393       // taking a scalar float16_t must be implemented as macros.
394       if (Type.isImmediate() || Type.isPointer() ||
395           (Type.isScalar() && Type.isHalf()))
396         UseMacro = true;
397     }
398   }
399 
400   /// Get the Record that this intrinsic is based off.
401   Record *getRecord() const { return R; }
402   /// Get the set of Intrinsics that this intrinsic calls.
403   /// this is the set of immediate dependencies, NOT the
404   /// transitive closure.
405   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
406   /// Get the architectural guard string (#ifdef).
407   std::string getGuard() const { return Guard; }
408   /// Get the non-mangled name.
409   std::string getName() const { return Name; }
410 
411   /// Return true if the intrinsic takes an immediate operand.
412   bool hasImmediate() const {
413     return std::any_of(Types.begin(), Types.end(),
414                        [](const Type &T) { return T.isImmediate(); });
415   }
416 
417   /// Return the parameter index of the immediate operand.
418   unsigned getImmediateIdx() const {
419     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
420       if (Types[Idx].isImmediate())
421         return Idx - 1;
422     llvm_unreachable("Intrinsic has no immediate");
423   }
424 
425 
426   unsigned getNumParams() const { return Types.size() - 1; }
427   Type getReturnType() const { return Types[0]; }
428   Type getParamType(unsigned I) const { return Types[I + 1]; }
429   Type getBaseType() const { return BaseType; }
430   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
431 
432   /// Return true if the prototype has a scalar argument.
433   bool protoHasScalar() const;
434 
435   /// Return the index that parameter PIndex will sit at
436   /// in a generated function call. This is often just PIndex,
437   /// but may not be as things such as multiple-vector operands
438   /// and sret parameters need to be taken into accont.
439   unsigned getGeneratedParamIdx(unsigned PIndex) {
440     unsigned Idx = 0;
441     if (getReturnType().getNumVectors() > 1)
442       // Multiple vectors are passed as sret.
443       ++Idx;
444 
445     for (unsigned I = 0; I < PIndex; ++I)
446       Idx += std::max(1U, getParamType(I).getNumVectors());
447 
448     return Idx;
449   }
450 
451   bool hasBody() const { return Body && !Body->getValues().empty(); }
452 
453   void setNeededEarly() { NeededEarly = true; }
454 
455   bool operator<(const Intrinsic &Other) const {
456     // Sort lexicographically on a two-tuple (Guard, Name)
457     if (Guard != Other.Guard)
458       return Guard < Other.Guard;
459     return Name < Other.Name;
460   }
461 
462   ClassKind getClassKind(bool UseClassBIfScalar = false) {
463     if (UseClassBIfScalar && !protoHasScalar())
464       return ClassB;
465     return CK;
466   }
467 
468   /// Return the name, mangled with type information.
469   /// If ForceClassS is true, use ClassS (u32/s32) instead
470   /// of the intrinsic's own type class.
471   std::string getMangledName(bool ForceClassS = false) const;
472   /// Return the type code for a builtin function call.
473   std::string getInstTypeCode(Type T, ClassKind CK) const;
474   /// Return the type string for a BUILTIN() macro in Builtins.def.
475   std::string getBuiltinTypeStr();
476 
477   /// Generate the intrinsic, returning code.
478   std::string generate();
479   /// Perform type checking and populate the dependency graph, but
480   /// don't generate code yet.
481   void indexBody();
482 
483 private:
484   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
485 
486   std::string mangleName(std::string Name, ClassKind CK) const;
487 
488   void initVariables();
489   std::string replaceParamsIn(std::string S);
490 
491   void emitBodyAsBuiltinCall();
492 
493   void generateImpl(bool ReverseArguments,
494                     StringRef NamePrefix, StringRef CallPrefix);
495   void emitReturn();
496   void emitBody(StringRef CallPrefix);
497   void emitShadowedArgs();
498   void emitArgumentReversal();
499   void emitReturnReversal();
500   void emitReverseVariable(Variable &Dest, Variable &Src);
501   void emitNewLine();
502   void emitClosingBrace();
503   void emitOpeningBrace();
504   void emitPrototype(StringRef NamePrefix);
505 
506   class DagEmitter {
507     Intrinsic &Intr;
508     StringRef CallPrefix;
509 
510   public:
511     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
512       Intr(Intr), CallPrefix(CallPrefix) {
513     }
514     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
515     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
516     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
517     std::pair<Type, std::string> emitDagDup(DagInit *DI);
518     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
519     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
520     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
521     std::pair<Type, std::string> emitDagCall(DagInit *DI);
522     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
523     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
524     std::pair<Type, std::string> emitDagOp(DagInit *DI);
525     std::pair<Type, std::string> emitDag(DagInit *DI);
526   };
527 };
528 
529 //===----------------------------------------------------------------------===//
530 // NeonEmitter
531 //===----------------------------------------------------------------------===//
532 
533 class NeonEmitter {
534   RecordKeeper &Records;
535   DenseMap<Record *, ClassKind> ClassMap;
536   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
537   unsigned UniqueNumber;
538 
539   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
540   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
541   void genOverloadTypeCheckCode(raw_ostream &OS,
542                                 SmallVectorImpl<Intrinsic *> &Defs);
543   void genIntrinsicRangeCheckCode(raw_ostream &OS,
544                                   SmallVectorImpl<Intrinsic *> &Defs);
545 
546 public:
547   /// Called by Intrinsic - this attempts to get an intrinsic that takes
548   /// the given types as arguments.
549   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types);
550 
551   /// Called by Intrinsic - returns a globally-unique number.
552   unsigned getUniqueNumber() { return UniqueNumber++; }
553 
554   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
555     Record *SI = R.getClass("SInst");
556     Record *II = R.getClass("IInst");
557     Record *WI = R.getClass("WInst");
558     Record *SOpI = R.getClass("SOpInst");
559     Record *IOpI = R.getClass("IOpInst");
560     Record *WOpI = R.getClass("WOpInst");
561     Record *LOpI = R.getClass("LOpInst");
562     Record *NoTestOpI = R.getClass("NoTestOpInst");
563 
564     ClassMap[SI] = ClassS;
565     ClassMap[II] = ClassI;
566     ClassMap[WI] = ClassW;
567     ClassMap[SOpI] = ClassS;
568     ClassMap[IOpI] = ClassI;
569     ClassMap[WOpI] = ClassW;
570     ClassMap[LOpI] = ClassL;
571     ClassMap[NoTestOpI] = ClassNoTest;
572   }
573 
574   // run - Emit arm_neon.h.inc
575   void run(raw_ostream &o);
576 
577   // runFP16 - Emit arm_fp16.h.inc
578   void runFP16(raw_ostream &o);
579 
580   // runHeader - Emit all the __builtin prototypes used in arm_neon.h
581 	// and arm_fp16.h
582   void runHeader(raw_ostream &o);
583 
584   // runTests - Emit tests for all the Neon intrinsics.
585   void runTests(raw_ostream &o);
586 };
587 
588 } // end anonymous namespace
589 
590 //===----------------------------------------------------------------------===//
591 // Type implementation
592 //===----------------------------------------------------------------------===//
593 
594 std::string Type::str() const {
595   if (isVoid())
596     return "void";
597   std::string S;
598 
599   if (isInteger() && !isSigned())
600     S += "u";
601 
602   if (isPoly())
603     S += "poly";
604   else if (isFloating())
605     S += "float";
606   else
607     S += "int";
608 
609   S += utostr(ElementBitwidth);
610   if (isVector())
611     S += "x" + utostr(getNumElements());
612   if (NumVectors > 1)
613     S += "x" + utostr(NumVectors);
614   S += "_t";
615 
616   if (Constant)
617     S += " const";
618   if (Pointer)
619     S += " *";
620 
621   return S;
622 }
623 
624 std::string Type::builtin_str() const {
625   std::string S;
626   if (isVoid())
627     return "v";
628 
629   if (isPointer()) {
630     // All pointers are void pointers.
631     S = "v";
632     if (isConstPointer())
633       S += "C";
634     S += "*";
635     return S;
636   } else if (isInteger())
637     switch (ElementBitwidth) {
638     case 8: S += "c"; break;
639     case 16: S += "s"; break;
640     case 32: S += "i"; break;
641     case 64: S += "Wi"; break;
642     case 128: S += "LLLi"; break;
643     default: llvm_unreachable("Unhandled case!");
644     }
645   else
646     switch (ElementBitwidth) {
647     case 16: S += "h"; break;
648     case 32: S += "f"; break;
649     case 64: S += "d"; break;
650     default: llvm_unreachable("Unhandled case!");
651     }
652 
653   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
654   if (isChar() && !isPointer() && isSigned())
655     // Make chars explicitly signed.
656     S = "S" + S;
657   else if (isInteger() && !isSigned())
658     S = "U" + S;
659 
660   // Constant indices are "int", but have the "constant expression" modifier.
661   if (isImmediate()) {
662     assert(isInteger() && isSigned());
663     S = "I" + S;
664   }
665 
666   if (isScalar())
667     return S;
668 
669   std::string Ret;
670   for (unsigned I = 0; I < NumVectors; ++I)
671     Ret += "V" + utostr(getNumElements()) + S;
672 
673   return Ret;
674 }
675 
676 unsigned Type::getNeonEnum() const {
677   unsigned Addend;
678   switch (ElementBitwidth) {
679   case 8: Addend = 0; break;
680   case 16: Addend = 1; break;
681   case 32: Addend = 2; break;
682   case 64: Addend = 3; break;
683   case 128: Addend = 4; break;
684   default: llvm_unreachable("Unhandled element bitwidth!");
685   }
686 
687   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
688   if (isPoly()) {
689     // Adjustment needed because Poly32 doesn't exist.
690     if (Addend >= 2)
691       --Addend;
692     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
693   }
694   if (isFloating()) {
695     assert(Addend != 0 && "Float8 doesn't exist!");
696     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
697   }
698 
699   if (Bitwidth == 128)
700     Base |= (unsigned)NeonTypeFlags::QuadFlag;
701   if (isInteger() && !isSigned())
702     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
703 
704   return Base;
705 }
706 
707 Type Type::fromTypedefName(StringRef Name) {
708   Type T;
709   T.Kind = SInt;
710 
711   if (Name.front() == 'u') {
712     T.Kind = UInt;
713     Name = Name.drop_front();
714   }
715 
716   if (Name.startswith("float")) {
717     T.Kind = Float;
718     Name = Name.drop_front(5);
719   } else if (Name.startswith("poly")) {
720     T.Kind = Poly;
721     Name = Name.drop_front(4);
722   } else {
723     assert(Name.startswith("int"));
724     Name = Name.drop_front(3);
725   }
726 
727   unsigned I = 0;
728   for (I = 0; I < Name.size(); ++I) {
729     if (!isdigit(Name[I]))
730       break;
731   }
732   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
733   Name = Name.drop_front(I);
734 
735   T.Bitwidth = T.ElementBitwidth;
736   T.NumVectors = 1;
737 
738   if (Name.front() == 'x') {
739     Name = Name.drop_front();
740     unsigned I = 0;
741     for (I = 0; I < Name.size(); ++I) {
742       if (!isdigit(Name[I]))
743         break;
744     }
745     unsigned NumLanes;
746     Name.substr(0, I).getAsInteger(10, NumLanes);
747     Name = Name.drop_front(I);
748     T.Bitwidth = T.ElementBitwidth * NumLanes;
749   } else {
750     // Was scalar.
751     T.NumVectors = 0;
752   }
753   if (Name.front() == 'x') {
754     Name = Name.drop_front();
755     unsigned I = 0;
756     for (I = 0; I < Name.size(); ++I) {
757       if (!isdigit(Name[I]))
758         break;
759     }
760     Name.substr(0, I).getAsInteger(10, T.NumVectors);
761     Name = Name.drop_front(I);
762   }
763 
764   assert(Name.startswith("_t") && "Malformed typedef!");
765   return T;
766 }
767 
768 void Type::applyTypespec(bool &Quad) {
769   std::string S = TS;
770   ScalarForMangling = false;
771   Kind = SInt;
772   ElementBitwidth = ~0U;
773   NumVectors = 1;
774 
775   for (char I : S) {
776     switch (I) {
777     case 'S':
778       ScalarForMangling = true;
779       break;
780     case 'H':
781       NoManglingQ = true;
782       Quad = true;
783       break;
784     case 'Q':
785       Quad = true;
786       break;
787     case 'P':
788       Kind = Poly;
789       break;
790     case 'U':
791       Kind = UInt;
792       break;
793     case 'c':
794       ElementBitwidth = 8;
795       break;
796     case 'h':
797       Kind = Float;
798       LLVM_FALLTHROUGH;
799     case 's':
800       ElementBitwidth = 16;
801       break;
802     case 'f':
803       Kind = Float;
804       LLVM_FALLTHROUGH;
805     case 'i':
806       ElementBitwidth = 32;
807       break;
808     case 'd':
809       Kind = Float;
810       LLVM_FALLTHROUGH;
811     case 'l':
812       ElementBitwidth = 64;
813       break;
814     case 'k':
815       ElementBitwidth = 128;
816       // Poly doesn't have a 128x1 type.
817       if (isPoly())
818         NumVectors = 0;
819       break;
820     default:
821       llvm_unreachable("Unhandled type code!");
822     }
823   }
824   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
825 
826   Bitwidth = Quad ? 128 : 64;
827 }
828 
829 void Type::applyModifiers(StringRef Mods) {
830   bool AppliedQuad = false;
831   applyTypespec(AppliedQuad);
832 
833   for (char Mod : Mods) {
834     switch (Mod) {
835     case '.':
836       break;
837     case 'v':
838       Kind = Void;
839       break;
840     case 'S':
841       Kind = SInt;
842       break;
843     case 'U':
844       Kind = UInt;
845       break;
846     case 'F':
847       Kind = Float;
848       break;
849     case 'P':
850       Kind = Poly;
851       break;
852     case '>':
853       assert(ElementBitwidth < 128);
854       ElementBitwidth *= 2;
855       break;
856     case '<':
857       assert(ElementBitwidth > 8);
858       ElementBitwidth /= 2;
859       break;
860     case '1':
861       NumVectors = 0;
862       break;
863     case '2':
864       NumVectors = 2;
865       break;
866     case '3':
867       NumVectors = 3;
868       break;
869     case '4':
870       NumVectors = 4;
871       break;
872     case '*':
873       Pointer = true;
874       break;
875     case 'c':
876       Constant = true;
877       break;
878     case 'Q':
879       Bitwidth = 128;
880       break;
881     case 'q':
882       Bitwidth = 64;
883       break;
884     case 'I':
885       Kind = SInt;
886       ElementBitwidth = Bitwidth = 32;
887       NumVectors = 0;
888       Immediate = true;
889       break;
890     case 'p':
891       if (isPoly())
892         Kind = UInt;
893       break;
894     case '!':
895       // Key type, handled elsewhere.
896       break;
897     default:
898       llvm_unreachable("Unhandled character!");
899     }
900   }
901 }
902 
903 //===----------------------------------------------------------------------===//
904 // Intrinsic implementation
905 //===----------------------------------------------------------------------===//
906 
907 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
908   if (Proto.size() == Pos)
909     return StringRef();
910   else if (Proto[Pos] != '(')
911     return Proto.substr(Pos++, 1);
912 
913   size_t Start = Pos + 1;
914   size_t End = Proto.find(')', Start);
915   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
916   Pos = End + 1;
917   return Proto.slice(Start, End);
918 }
919 
920 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
921   char typeCode = '\0';
922   bool printNumber = true;
923 
924   if (CK == ClassB)
925     return "";
926 
927   if (T.isPoly())
928     typeCode = 'p';
929   else if (T.isInteger())
930     typeCode = T.isSigned() ? 's' : 'u';
931   else
932     typeCode = 'f';
933 
934   if (CK == ClassI) {
935     switch (typeCode) {
936     default:
937       break;
938     case 's':
939     case 'u':
940     case 'p':
941       typeCode = 'i';
942       break;
943     }
944   }
945   if (CK == ClassB) {
946     typeCode = '\0';
947   }
948 
949   std::string S;
950   if (typeCode != '\0')
951     S.push_back(typeCode);
952   if (printNumber)
953     S += utostr(T.getElementSizeInBits());
954 
955   return S;
956 }
957 
958 std::string Intrinsic::getBuiltinTypeStr() {
959   ClassKind LocalCK = getClassKind(true);
960   std::string S;
961 
962   Type RetT = getReturnType();
963   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
964       !RetT.isFloating())
965     RetT.makeInteger(RetT.getElementSizeInBits(), false);
966 
967   // Since the return value must be one type, return a vector type of the
968   // appropriate width which we will bitcast.  An exception is made for
969   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
970   // fashion, storing them to a pointer arg.
971   if (RetT.getNumVectors() > 1) {
972     S += "vv*"; // void result with void* first argument
973   } else {
974     if (RetT.isPoly())
975       RetT.makeInteger(RetT.getElementSizeInBits(), false);
976     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
977       RetT.makeSigned();
978 
979     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
980       // Cast to vector of 8-bit elements.
981       RetT.makeInteger(8, true);
982 
983     S += RetT.builtin_str();
984   }
985 
986   for (unsigned I = 0; I < getNumParams(); ++I) {
987     Type T = getParamType(I);
988     if (T.isPoly())
989       T.makeInteger(T.getElementSizeInBits(), false);
990 
991     if (LocalCK == ClassB && !T.isScalar())
992       T.makeInteger(8, true);
993     // Halves always get converted to 8-bit elements.
994     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
995       T.makeInteger(8, true);
996 
997     if (LocalCK == ClassI && T.isInteger())
998       T.makeSigned();
999 
1000     if (hasImmediate() && getImmediateIdx() == I)
1001       T.makeImmediate(32);
1002 
1003     S += T.builtin_str();
1004   }
1005 
1006   // Extra constant integer to hold type class enum for this function, e.g. s8
1007   if (LocalCK == ClassB)
1008     S += "i";
1009 
1010   return S;
1011 }
1012 
1013 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1014   // Check if the prototype has a scalar operand with the type of the vector
1015   // elements.  If not, bitcasting the args will take care of arg checking.
1016   // The actual signedness etc. will be taken care of with special enums.
1017   ClassKind LocalCK = CK;
1018   if (!protoHasScalar())
1019     LocalCK = ClassB;
1020 
1021   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1022 }
1023 
1024 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1025   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1026   std::string S = Name;
1027 
1028   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1029       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32")
1030     return Name;
1031 
1032   if (!typeCode.empty()) {
1033     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1034     if (Name.size() >= 3 && isdigit(Name.back()) &&
1035         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1036       S.insert(S.length() - 3, "_" + typeCode);
1037     else
1038       S += "_" + typeCode;
1039   }
1040 
1041   if (BaseType != InBaseType) {
1042     // A reinterpret - out the input base type at the end.
1043     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1044   }
1045 
1046   if (LocalCK == ClassB)
1047     S += "_v";
1048 
1049   // Insert a 'q' before the first '_' character so that it ends up before
1050   // _lane or _n on vector-scalar operations.
1051   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1052     size_t Pos = S.find('_');
1053     S.insert(Pos, "q");
1054   }
1055 
1056   char Suffix = '\0';
1057   if (BaseType.isScalarForMangling()) {
1058     switch (BaseType.getElementSizeInBits()) {
1059     case 8: Suffix = 'b'; break;
1060     case 16: Suffix = 'h'; break;
1061     case 32: Suffix = 's'; break;
1062     case 64: Suffix = 'd'; break;
1063     default: llvm_unreachable("Bad suffix!");
1064     }
1065   }
1066   if (Suffix != '\0') {
1067     size_t Pos = S.find('_');
1068     S.insert(Pos, &Suffix, 1);
1069   }
1070 
1071   return S;
1072 }
1073 
1074 std::string Intrinsic::replaceParamsIn(std::string S) {
1075   while (S.find('$') != std::string::npos) {
1076     size_t Pos = S.find('$');
1077     size_t End = Pos + 1;
1078     while (isalpha(S[End]))
1079       ++End;
1080 
1081     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1082     assert_with_loc(Variables.find(VarName) != Variables.end(),
1083                     "Variable not defined!");
1084     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1085   }
1086 
1087   return S;
1088 }
1089 
1090 void Intrinsic::initVariables() {
1091   Variables.clear();
1092 
1093   // Modify the TypeSpec per-argument to get a concrete Type, and create
1094   // known variables for each.
1095   for (unsigned I = 1; I < Types.size(); ++I) {
1096     char NameC = '0' + (I - 1);
1097     std::string Name = "p";
1098     Name.push_back(NameC);
1099 
1100     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1101   }
1102   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1103 }
1104 
1105 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1106   if (UseMacro)
1107     OS << "#define ";
1108   else
1109     OS << "__ai " << Types[0].str() << " ";
1110 
1111   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1112 
1113   for (unsigned I = 0; I < getNumParams(); ++I) {
1114     if (I != 0)
1115       OS << ", ";
1116 
1117     char NameC = '0' + I;
1118     std::string Name = "p";
1119     Name.push_back(NameC);
1120     assert(Variables.find(Name) != Variables.end());
1121     Variable &V = Variables[Name];
1122 
1123     if (!UseMacro)
1124       OS << V.getType().str() << " ";
1125     OS << V.getName();
1126   }
1127 
1128   OS << ")";
1129 }
1130 
1131 void Intrinsic::emitOpeningBrace() {
1132   if (UseMacro)
1133     OS << " __extension__ ({";
1134   else
1135     OS << " {";
1136   emitNewLine();
1137 }
1138 
1139 void Intrinsic::emitClosingBrace() {
1140   if (UseMacro)
1141     OS << "})";
1142   else
1143     OS << "}";
1144 }
1145 
1146 void Intrinsic::emitNewLine() {
1147   if (UseMacro)
1148     OS << " \\\n";
1149   else
1150     OS << "\n";
1151 }
1152 
1153 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1154   if (Dest.getType().getNumVectors() > 1) {
1155     emitNewLine();
1156 
1157     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1158       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1159          << "__builtin_shufflevector("
1160          << Src.getName() << ".val[" << K << "], "
1161          << Src.getName() << ".val[" << K << "]";
1162       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1163         OS << ", " << J;
1164       OS << ");";
1165       emitNewLine();
1166     }
1167   } else {
1168     OS << "  " << Dest.getName()
1169        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1170     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1171       OS << ", " << J;
1172     OS << ");";
1173     emitNewLine();
1174   }
1175 }
1176 
1177 void Intrinsic::emitArgumentReversal() {
1178   if (isBigEndianSafe())
1179     return;
1180 
1181   // Reverse all vector arguments.
1182   for (unsigned I = 0; I < getNumParams(); ++I) {
1183     std::string Name = "p" + utostr(I);
1184     std::string NewName = "rev" + utostr(I);
1185 
1186     Variable &V = Variables[Name];
1187     Variable NewV(V.getType(), NewName + VariablePostfix);
1188 
1189     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1190       continue;
1191 
1192     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1193     emitReverseVariable(NewV, V);
1194     V = NewV;
1195   }
1196 }
1197 
1198 void Intrinsic::emitReturnReversal() {
1199   if (isBigEndianSafe())
1200     return;
1201   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1202       getReturnType().getNumElements() == 1)
1203     return;
1204   emitReverseVariable(RetVar, RetVar);
1205 }
1206 
1207 void Intrinsic::emitShadowedArgs() {
1208   // Macro arguments are not type-checked like inline function arguments,
1209   // so assign them to local temporaries to get the right type checking.
1210   if (!UseMacro)
1211     return;
1212 
1213   for (unsigned I = 0; I < getNumParams(); ++I) {
1214     // Do not create a temporary for an immediate argument.
1215     // That would defeat the whole point of using a macro!
1216     if (getParamType(I).isImmediate())
1217       continue;
1218     // Do not create a temporary for pointer arguments. The input
1219     // pointer may have an alignment hint.
1220     if (getParamType(I).isPointer())
1221       continue;
1222 
1223     std::string Name = "p" + utostr(I);
1224 
1225     assert(Variables.find(Name) != Variables.end());
1226     Variable &V = Variables[Name];
1227 
1228     std::string NewName = "s" + utostr(I);
1229     Variable V2(V.getType(), NewName + VariablePostfix);
1230 
1231     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1232        << V.getName() << ";";
1233     emitNewLine();
1234 
1235     V = V2;
1236   }
1237 }
1238 
1239 bool Intrinsic::protoHasScalar() const {
1240   return std::any_of(Types.begin(), Types.end(), [](const Type &T) {
1241     return T.isScalar() && !T.isImmediate();
1242   });
1243 }
1244 
1245 void Intrinsic::emitBodyAsBuiltinCall() {
1246   std::string S;
1247 
1248   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1249   // sret-like argument.
1250   bool SRet = getReturnType().getNumVectors() >= 2;
1251 
1252   StringRef N = Name;
1253   ClassKind LocalCK = CK;
1254   if (!protoHasScalar())
1255     LocalCK = ClassB;
1256 
1257   if (!getReturnType().isVoid() && !SRet)
1258     S += "(" + RetVar.getType().str() + ") ";
1259 
1260   S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1261 
1262   if (SRet)
1263     S += "&" + RetVar.getName() + ", ";
1264 
1265   for (unsigned I = 0; I < getNumParams(); ++I) {
1266     Variable &V = Variables["p" + utostr(I)];
1267     Type T = V.getType();
1268 
1269     // Handle multiple-vector values specially, emitting each subvector as an
1270     // argument to the builtin.
1271     if (T.getNumVectors() > 1) {
1272       // Check if an explicit cast is needed.
1273       std::string Cast;
1274       if (LocalCK == ClassB) {
1275         Type T2 = T;
1276         T2.makeOneVector();
1277         T2.makeInteger(8, /*Signed=*/true);
1278         Cast = "(" + T2.str() + ")";
1279       }
1280 
1281       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1282         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1283       continue;
1284     }
1285 
1286     std::string Arg = V.getName();
1287     Type CastToType = T;
1288 
1289     // Check if an explicit cast is needed.
1290     if (CastToType.isVector() &&
1291         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1292       CastToType.makeInteger(8, true);
1293       Arg = "(" + CastToType.str() + ")" + Arg;
1294     } else if (CastToType.isVector() && LocalCK == ClassI) {
1295       if (CastToType.isInteger())
1296         CastToType.makeSigned();
1297       Arg = "(" + CastToType.str() + ")" + Arg;
1298     }
1299 
1300     S += Arg + ", ";
1301   }
1302 
1303   // Extra constant integer to hold type class enum for this function, e.g. s8
1304   if (getClassKind(true) == ClassB) {
1305     S += utostr(getPolymorphicKeyType().getNeonEnum());
1306   } else {
1307     // Remove extraneous ", ".
1308     S.pop_back();
1309     S.pop_back();
1310   }
1311   S += ");";
1312 
1313   std::string RetExpr;
1314   if (!SRet && !RetVar.getType().isVoid())
1315     RetExpr = RetVar.getName() + " = ";
1316 
1317   OS << "  " << RetExpr << S;
1318   emitNewLine();
1319 }
1320 
1321 void Intrinsic::emitBody(StringRef CallPrefix) {
1322   std::vector<std::string> Lines;
1323 
1324   assert(RetVar.getType() == Types[0]);
1325   // Create a return variable, if we're not void.
1326   if (!RetVar.getType().isVoid()) {
1327     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1328     emitNewLine();
1329   }
1330 
1331   if (!Body || Body->getValues().empty()) {
1332     // Nothing specific to output - must output a builtin.
1333     emitBodyAsBuiltinCall();
1334     return;
1335   }
1336 
1337   // We have a list of "things to output". The last should be returned.
1338   for (auto *I : Body->getValues()) {
1339     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1340       Lines.push_back(replaceParamsIn(SI->getAsString()));
1341     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1342       DagEmitter DE(*this, CallPrefix);
1343       Lines.push_back(DE.emitDag(DI).second + ";");
1344     }
1345   }
1346 
1347   assert(!Lines.empty() && "Empty def?");
1348   if (!RetVar.getType().isVoid())
1349     Lines.back().insert(0, RetVar.getName() + " = ");
1350 
1351   for (auto &L : Lines) {
1352     OS << "  " << L;
1353     emitNewLine();
1354   }
1355 }
1356 
1357 void Intrinsic::emitReturn() {
1358   if (RetVar.getType().isVoid())
1359     return;
1360   if (UseMacro)
1361     OS << "  " << RetVar.getName() << ";";
1362   else
1363     OS << "  return " << RetVar.getName() << ";";
1364   emitNewLine();
1365 }
1366 
1367 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1368   // At this point we should only be seeing a def.
1369   DefInit *DefI = cast<DefInit>(DI->getOperator());
1370   std::string Op = DefI->getAsString();
1371 
1372   if (Op == "cast" || Op == "bitcast")
1373     return emitDagCast(DI, Op == "bitcast");
1374   if (Op == "shuffle")
1375     return emitDagShuffle(DI);
1376   if (Op == "dup")
1377     return emitDagDup(DI);
1378   if (Op == "dup_typed")
1379     return emitDagDupTyped(DI);
1380   if (Op == "splat")
1381     return emitDagSplat(DI);
1382   if (Op == "save_temp")
1383     return emitDagSaveTemp(DI);
1384   if (Op == "op")
1385     return emitDagOp(DI);
1386   if (Op == "call")
1387     return emitDagCall(DI);
1388   if (Op == "name_replace")
1389     return emitDagNameReplace(DI);
1390   if (Op == "literal")
1391     return emitDagLiteral(DI);
1392   assert_with_loc(false, "Unknown operation!");
1393   return std::make_pair(Type::getVoid(), "");
1394 }
1395 
1396 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1397   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1398   if (DI->getNumArgs() == 2) {
1399     // Unary op.
1400     std::pair<Type, std::string> R =
1401         emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1402     return std::make_pair(R.first, Op + R.second);
1403   } else {
1404     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1405     std::pair<Type, std::string> R1 =
1406         emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1407     std::pair<Type, std::string> R2 =
1408         emitDagArg(DI->getArg(2), DI->getArgNameStr(2));
1409     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1410     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1411   }
1412 }
1413 
1414 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1415   std::vector<Type> Types;
1416   std::vector<std::string> Values;
1417   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1418     std::pair<Type, std::string> R =
1419         emitDagArg(DI->getArg(I + 1), DI->getArgNameStr(I + 1));
1420     Types.push_back(R.first);
1421     Values.push_back(R.second);
1422   }
1423 
1424   // Look up the called intrinsic.
1425   std::string N;
1426   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1427     N = SI->getAsUnquotedString();
1428   else
1429     N = emitDagArg(DI->getArg(0), "").second;
1430   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types);
1431 
1432   // Make sure the callee is known as an early def.
1433   Callee.setNeededEarly();
1434   Intr.Dependencies.insert(&Callee);
1435 
1436   // Now create the call itself.
1437   std::string S = "";
1438   if (!Callee.isBigEndianSafe())
1439     S += CallPrefix.str();
1440   S += Callee.getMangledName(true) + "(";
1441   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1442     if (I != 0)
1443       S += ", ";
1444     S += Values[I];
1445   }
1446   S += ")";
1447 
1448   return std::make_pair(Callee.getReturnType(), S);
1449 }
1450 
1451 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1452                                                                 bool IsBitCast){
1453   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1454   std::pair<Type, std::string> R = emitDagArg(
1455       DI->getArg(DI->getNumArgs() - 1),
1456       DI->getArgNameStr(DI->getNumArgs() - 1));
1457   Type castToType = R.first;
1458   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1459 
1460     // MOD can take several forms:
1461     //   1. $X - take the type of parameter / variable X.
1462     //   2. The value "R" - take the type of the return type.
1463     //   3. a type string
1464     //   4. The value "U" or "S" to switch the signedness.
1465     //   5. The value "H" or "D" to half or double the bitwidth.
1466     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1467     if (!DI->getArgNameStr(ArgIdx).empty()) {
1468       assert_with_loc(Intr.Variables.find(DI->getArgNameStr(ArgIdx)) !=
1469                       Intr.Variables.end(),
1470                       "Variable not found");
1471       castToType = Intr.Variables[DI->getArgNameStr(ArgIdx)].getType();
1472     } else {
1473       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1474       assert_with_loc(SI, "Expected string type or $Name for cast type");
1475 
1476       if (SI->getAsUnquotedString() == "R") {
1477         castToType = Intr.getReturnType();
1478       } else if (SI->getAsUnquotedString() == "U") {
1479         castToType.makeUnsigned();
1480       } else if (SI->getAsUnquotedString() == "S") {
1481         castToType.makeSigned();
1482       } else if (SI->getAsUnquotedString() == "H") {
1483         castToType.halveLanes();
1484       } else if (SI->getAsUnquotedString() == "D") {
1485         castToType.doubleLanes();
1486       } else if (SI->getAsUnquotedString() == "8") {
1487         castToType.makeInteger(8, true);
1488       } else {
1489         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1490         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1491       }
1492     }
1493   }
1494 
1495   std::string S;
1496   if (IsBitCast) {
1497     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1498     // a temporary.
1499     std::string N = "reint";
1500     unsigned I = 0;
1501     while (Intr.Variables.find(N) != Intr.Variables.end())
1502       N = "reint" + utostr(++I);
1503     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1504 
1505     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1506             << R.second << ";";
1507     Intr.emitNewLine();
1508 
1509     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1510   } else {
1511     // Emit a normal (static) cast.
1512     S = "(" + castToType.str() + ")(" + R.second + ")";
1513   }
1514 
1515   return std::make_pair(castToType, S);
1516 }
1517 
1518 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1519   // See the documentation in arm_neon.td for a description of these operators.
1520   class LowHalf : public SetTheory::Operator {
1521   public:
1522     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1523                ArrayRef<SMLoc> Loc) override {
1524       SetTheory::RecSet Elts2;
1525       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1526       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1527     }
1528   };
1529 
1530   class HighHalf : public SetTheory::Operator {
1531   public:
1532     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1533                ArrayRef<SMLoc> Loc) override {
1534       SetTheory::RecSet Elts2;
1535       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1536       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1537     }
1538   };
1539 
1540   class Rev : public SetTheory::Operator {
1541     unsigned ElementSize;
1542 
1543   public:
1544     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1545 
1546     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1547                ArrayRef<SMLoc> Loc) override {
1548       SetTheory::RecSet Elts2;
1549       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1550 
1551       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1552       VectorSize /= ElementSize;
1553 
1554       std::vector<Record *> Revved;
1555       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1556         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1557           Revved.push_back(Elts2[VI + LI]);
1558         }
1559       }
1560 
1561       Elts.insert(Revved.begin(), Revved.end());
1562     }
1563   };
1564 
1565   class MaskExpander : public SetTheory::Expander {
1566     unsigned N;
1567 
1568   public:
1569     MaskExpander(unsigned N) : N(N) {}
1570 
1571     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1572       unsigned Addend = 0;
1573       if (R->getName() == "mask0")
1574         Addend = 0;
1575       else if (R->getName() == "mask1")
1576         Addend = N;
1577       else
1578         return;
1579       for (unsigned I = 0; I < N; ++I)
1580         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1581     }
1582   };
1583 
1584   // (shuffle arg1, arg2, sequence)
1585   std::pair<Type, std::string> Arg1 =
1586       emitDagArg(DI->getArg(0), DI->getArgNameStr(0));
1587   std::pair<Type, std::string> Arg2 =
1588       emitDagArg(DI->getArg(1), DI->getArgNameStr(1));
1589   assert_with_loc(Arg1.first == Arg2.first,
1590                   "Different types in arguments to shuffle!");
1591 
1592   SetTheory ST;
1593   SetTheory::RecSet Elts;
1594   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1595   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1596   ST.addOperator("rev",
1597                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1598   ST.addExpander("MaskExpand",
1599                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1600   ST.evaluate(DI->getArg(2), Elts, None);
1601 
1602   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1603   for (auto &E : Elts) {
1604     StringRef Name = E->getName();
1605     assert_with_loc(Name.startswith("sv"),
1606                     "Incorrect element kind in shuffle mask!");
1607     S += ", " + Name.drop_front(2).str();
1608   }
1609   S += ")";
1610 
1611   // Recalculate the return type - the shuffle may have halved or doubled it.
1612   Type T(Arg1.first);
1613   if (Elts.size() > T.getNumElements()) {
1614     assert_with_loc(
1615         Elts.size() == T.getNumElements() * 2,
1616         "Can only double or half the number of elements in a shuffle!");
1617     T.doubleLanes();
1618   } else if (Elts.size() < T.getNumElements()) {
1619     assert_with_loc(
1620         Elts.size() == T.getNumElements() / 2,
1621         "Can only double or half the number of elements in a shuffle!");
1622     T.halveLanes();
1623   }
1624 
1625   return std::make_pair(T, S);
1626 }
1627 
1628 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1629   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1630   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1631                                               DI->getArgNameStr(0));
1632   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1633 
1634   Type T = Intr.getBaseType();
1635   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1636   std::string S = "(" + T.str() + ") {";
1637   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1638     if (I != 0)
1639       S += ", ";
1640     S += A.second;
1641   }
1642   S += "}";
1643 
1644   return std::make_pair(T, S);
1645 }
1646 
1647 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1648   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1649   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1650                                               DI->getArgNameStr(0));
1651   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
1652                                               DI->getArgNameStr(1));
1653   assert_with_loc(B.first.isScalar(),
1654                   "dup_typed() requires a scalar as the second argument");
1655 
1656   Type T = A.first;
1657   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1658   std::string S = "(" + T.str() + ") {";
1659   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1660     if (I != 0)
1661       S += ", ";
1662     S += B.second;
1663   }
1664   S += "}";
1665 
1666   return std::make_pair(T, S);
1667 }
1668 
1669 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1670   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1671   std::pair<Type, std::string> A = emitDagArg(DI->getArg(0),
1672                                               DI->getArgNameStr(0));
1673   std::pair<Type, std::string> B = emitDagArg(DI->getArg(1),
1674                                               DI->getArgNameStr(1));
1675 
1676   assert_with_loc(B.first.isScalar(),
1677                   "splat() requires a scalar int as the second argument");
1678 
1679   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1680   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1681     S += ", " + B.second;
1682   }
1683   S += ")";
1684 
1685   return std::make_pair(Intr.getBaseType(), S);
1686 }
1687 
1688 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1689   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1690   std::pair<Type, std::string> A = emitDagArg(DI->getArg(1),
1691                                               DI->getArgNameStr(1));
1692 
1693   assert_with_loc(!A.first.isVoid(),
1694                   "Argument to save_temp() must have non-void type!");
1695 
1696   std::string N = DI->getArgNameStr(0);
1697   assert_with_loc(!N.empty(),
1698                   "save_temp() expects a name as the first argument");
1699 
1700   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1701                   "Variable already defined!");
1702   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1703 
1704   std::string S =
1705       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1706 
1707   return std::make_pair(Type::getVoid(), S);
1708 }
1709 
1710 std::pair<Type, std::string>
1711 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1712   std::string S = Intr.Name;
1713 
1714   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1715   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1716   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1717 
1718   size_t Idx = S.find(ToReplace);
1719 
1720   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1721   S.replace(Idx, ToReplace.size(), ReplaceWith);
1722 
1723   return std::make_pair(Type::getVoid(), S);
1724 }
1725 
1726 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1727   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1728   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1729   return std::make_pair(Type::fromTypedefName(Ty), Value);
1730 }
1731 
1732 std::pair<Type, std::string>
1733 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1734   if (!ArgName.empty()) {
1735     assert_with_loc(!Arg->isComplete(),
1736                     "Arguments must either be DAGs or names, not both!");
1737     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1738                     "Variable not defined!");
1739     Variable &V = Intr.Variables[ArgName];
1740     return std::make_pair(V.getType(), V.getName());
1741   }
1742 
1743   assert(Arg && "Neither ArgName nor Arg?!");
1744   DagInit *DI = dyn_cast<DagInit>(Arg);
1745   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1746 
1747   return emitDag(DI);
1748 }
1749 
1750 std::string Intrinsic::generate() {
1751   // Avoid duplicated code for big and little endian
1752   if (isBigEndianSafe()) {
1753     generateImpl(false, "", "");
1754     return OS.str();
1755   }
1756   // Little endian intrinsics are simple and don't require any argument
1757   // swapping.
1758   OS << "#ifdef __LITTLE_ENDIAN__\n";
1759 
1760   generateImpl(false, "", "");
1761 
1762   OS << "#else\n";
1763 
1764   // Big endian intrinsics are more complex. The user intended these
1765   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1766   // but we load as-if (V)LD1. So we should swap all arguments and
1767   // swap the return value too.
1768   //
1769   // If we call sub-intrinsics, we should call a version that does
1770   // not re-swap the arguments!
1771   generateImpl(true, "", "__noswap_");
1772 
1773   // If we're needed early, create a non-swapping variant for
1774   // big-endian.
1775   if (NeededEarly) {
1776     generateImpl(false, "__noswap_", "__noswap_");
1777   }
1778   OS << "#endif\n\n";
1779 
1780   return OS.str();
1781 }
1782 
1783 void Intrinsic::generateImpl(bool ReverseArguments,
1784                              StringRef NamePrefix, StringRef CallPrefix) {
1785   CurrentRecord = R;
1786 
1787   // If we call a macro, our local variables may be corrupted due to
1788   // lack of proper lexical scoping. So, add a globally unique postfix
1789   // to every variable.
1790   //
1791   // indexBody() should have set up the Dependencies set by now.
1792   for (auto *I : Dependencies)
1793     if (I->UseMacro) {
1794       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1795       break;
1796     }
1797 
1798   initVariables();
1799 
1800   emitPrototype(NamePrefix);
1801 
1802   if (IsUnavailable) {
1803     OS << " __attribute__((unavailable));";
1804   } else {
1805     emitOpeningBrace();
1806     emitShadowedArgs();
1807     if (ReverseArguments)
1808       emitArgumentReversal();
1809     emitBody(CallPrefix);
1810     if (ReverseArguments)
1811       emitReturnReversal();
1812     emitReturn();
1813     emitClosingBrace();
1814   }
1815   OS << "\n";
1816 
1817   CurrentRecord = nullptr;
1818 }
1819 
1820 void Intrinsic::indexBody() {
1821   CurrentRecord = R;
1822 
1823   initVariables();
1824   emitBody("");
1825   OS.str("");
1826 
1827   CurrentRecord = nullptr;
1828 }
1829 
1830 //===----------------------------------------------------------------------===//
1831 // NeonEmitter implementation
1832 //===----------------------------------------------------------------------===//
1833 
1834 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1835   // First, look up the name in the intrinsic map.
1836   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1837                   ("Intrinsic '" + Name + "' not found!").str());
1838   auto &V = IntrinsicMap.find(Name.str())->second;
1839   std::vector<Intrinsic *> GoodVec;
1840 
1841   // Create a string to print if we end up failing.
1842   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1843   for (unsigned I = 0; I < Types.size(); ++I) {
1844     if (I != 0)
1845       ErrMsg += ", ";
1846     ErrMsg += Types[I].str();
1847   }
1848   ErrMsg += ")'\n";
1849   ErrMsg += "Available overloads:\n";
1850 
1851   // Now, look through each intrinsic implementation and see if the types are
1852   // compatible.
1853   for (auto &I : V) {
1854     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1855     ErrMsg += "(";
1856     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1857       if (A != 0)
1858         ErrMsg += ", ";
1859       ErrMsg += I.getParamType(A).str();
1860     }
1861     ErrMsg += ")\n";
1862 
1863     if (I.getNumParams() != Types.size())
1864       continue;
1865 
1866     bool Good = true;
1867     for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1868       if (I.getParamType(Arg) != Types[Arg]) {
1869         Good = false;
1870         break;
1871       }
1872     }
1873     if (Good)
1874       GoodVec.push_back(&I);
1875   }
1876 
1877   assert_with_loc(!GoodVec.empty(),
1878                   "No compatible intrinsic found - " + ErrMsg);
1879   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1880 
1881   return *GoodVec.front();
1882 }
1883 
1884 void NeonEmitter::createIntrinsic(Record *R,
1885                                   SmallVectorImpl<Intrinsic *> &Out) {
1886   std::string Name = R->getValueAsString("Name");
1887   std::string Proto = R->getValueAsString("Prototype");
1888   std::string Types = R->getValueAsString("Types");
1889   Record *OperationRec = R->getValueAsDef("Operation");
1890   bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1891   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1892   std::string Guard = R->getValueAsString("ArchGuard");
1893   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1894 
1895   // Set the global current record. This allows assert_with_loc to produce
1896   // decent location information even when highly nested.
1897   CurrentRecord = R;
1898 
1899   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1900 
1901   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1902 
1903   ClassKind CK = ClassNone;
1904   if (R->getSuperClasses().size() >= 2)
1905     CK = ClassMap[R->getSuperClasses()[1].first];
1906 
1907   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1908   for (auto TS : TypeSpecs) {
1909     if (CartesianProductOfTypes) {
1910       Type DefaultT(TS, ".");
1911       for (auto SrcTS : TypeSpecs) {
1912         Type DefaultSrcT(SrcTS, ".");
1913         if (TS == SrcTS ||
1914             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1915           continue;
1916         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1917       }
1918     } else {
1919       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1920     }
1921   }
1922 
1923   llvm::sort(NewTypeSpecs);
1924   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1925 		     NewTypeSpecs.end());
1926   auto &Entry = IntrinsicMap[Name];
1927 
1928   for (auto &I : NewTypeSpecs) {
1929     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1930                        Guard, IsUnavailable, BigEndianSafe);
1931     Out.push_back(&Entry.back());
1932   }
1933 
1934   CurrentRecord = nullptr;
1935 }
1936 
1937 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1938 /// declaration of builtins, checking for unique builtin declarations.
1939 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1940                                  SmallVectorImpl<Intrinsic *> &Defs) {
1941   OS << "#ifdef GET_NEON_BUILTINS\n";
1942 
1943   // We only want to emit a builtin once, and we want to emit them in
1944   // alphabetical order, so use a std::set.
1945   std::set<std::string> Builtins;
1946 
1947   for (auto *Def : Defs) {
1948     if (Def->hasBody())
1949       continue;
1950 
1951     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
1952 
1953     S += Def->getBuiltinTypeStr();
1954     S += "\", \"n\")";
1955 
1956     Builtins.insert(S);
1957   }
1958 
1959   for (auto &S : Builtins)
1960     OS << S << "\n";
1961   OS << "#endif\n\n";
1962 }
1963 
1964 /// Generate the ARM and AArch64 overloaded type checking code for
1965 /// SemaChecking.cpp, checking for unique builtin declarations.
1966 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
1967                                            SmallVectorImpl<Intrinsic *> &Defs) {
1968   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
1969 
1970   // We record each overload check line before emitting because subsequent Inst
1971   // definitions may extend the number of permitted types (i.e. augment the
1972   // Mask). Use std::map to avoid sorting the table by hash number.
1973   struct OverloadInfo {
1974     uint64_t Mask;
1975     int PtrArgNum;
1976     bool HasConstPtr;
1977     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
1978   };
1979   std::map<std::string, OverloadInfo> OverloadMap;
1980 
1981   for (auto *Def : Defs) {
1982     // If the def has a body (that is, it has Operation DAGs), it won't call
1983     // __builtin_neon_* so we don't need to generate a definition for it.
1984     if (Def->hasBody())
1985       continue;
1986     // Functions which have a scalar argument cannot be overloaded, no need to
1987     // check them if we are emitting the type checking code.
1988     if (Def->protoHasScalar())
1989       continue;
1990 
1991     uint64_t Mask = 0ULL;
1992     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
1993 
1994     // Check if the function has a pointer or const pointer argument.
1995     int PtrArgNum = -1;
1996     bool HasConstPtr = false;
1997     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
1998       const auto &Type = Def->getParamType(I);
1999       if (Type.isPointer()) {
2000         PtrArgNum = I;
2001         HasConstPtr = Type.isConstPointer();
2002       }
2003     }
2004 
2005     // For sret builtins, adjust the pointer argument index.
2006     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2007       PtrArgNum += 1;
2008 
2009     std::string Name = Def->getName();
2010     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2011     // and vst1_lane intrinsics.  Using a pointer to the vector element
2012     // type with one of those operations causes codegen to select an aligned
2013     // load/store instruction.  If you want an unaligned operation,
2014     // the pointer argument needs to have less alignment than element type,
2015     // so just accept any pointer type.
2016     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2017       PtrArgNum = -1;
2018       HasConstPtr = false;
2019     }
2020 
2021     if (Mask) {
2022       std::string Name = Def->getMangledName();
2023       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2024       OverloadInfo &OI = OverloadMap[Name];
2025       OI.Mask |= Mask;
2026       OI.PtrArgNum |= PtrArgNum;
2027       OI.HasConstPtr = HasConstPtr;
2028     }
2029   }
2030 
2031   for (auto &I : OverloadMap) {
2032     OverloadInfo &OI = I.second;
2033 
2034     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2035     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2036     if (OI.PtrArgNum >= 0)
2037       OS << "; PtrArgNum = " << OI.PtrArgNum;
2038     if (OI.HasConstPtr)
2039       OS << "; HasConstPtr = true";
2040     OS << "; break;\n";
2041   }
2042   OS << "#endif\n\n";
2043 }
2044 
2045 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2046                                         SmallVectorImpl<Intrinsic *> &Defs) {
2047   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2048 
2049   std::set<std::string> Emitted;
2050 
2051   for (auto *Def : Defs) {
2052     if (Def->hasBody())
2053       continue;
2054     // Functions which do not have an immediate do not need to have range
2055     // checking code emitted.
2056     if (!Def->hasImmediate())
2057       continue;
2058     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2059       continue;
2060 
2061     std::string LowerBound, UpperBound;
2062 
2063     Record *R = Def->getRecord();
2064     if (R->getValueAsBit("isVCVT_N")) {
2065       // VCVT between floating- and fixed-point values takes an immediate
2066       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2067       LowerBound = "1";
2068 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2069 		  Def->getName().find('h') != std::string::npos)
2070 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2071 		UpperBound = "15";
2072 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2073         UpperBound = "31";
2074 	  else
2075         UpperBound = "63";
2076     } else if (R->getValueAsBit("isScalarShift")) {
2077       // Right shifts have an 'r' in the name, left shifts do not. Convert
2078       // instructions have the same bounds and right shifts.
2079       if (Def->getName().find('r') != std::string::npos ||
2080           Def->getName().find("cvt") != std::string::npos)
2081         LowerBound = "1";
2082 
2083       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2084     } else if (R->getValueAsBit("isShift")) {
2085       // Builtins which are overloaded by type will need to have their upper
2086       // bound computed at Sema time based on the type constant.
2087 
2088       // Right shifts have an 'r' in the name, left shifts do not.
2089       if (Def->getName().find('r') != std::string::npos)
2090         LowerBound = "1";
2091       UpperBound = "RFT(TV, true)";
2092     } else if (Def->getClassKind(true) == ClassB) {
2093       // ClassB intrinsics have a type (and hence lane number) that is only
2094       // known at runtime.
2095       if (R->getValueAsBit("isLaneQ"))
2096         UpperBound = "RFT(TV, false, true)";
2097       else
2098         UpperBound = "RFT(TV, false, false)";
2099     } else {
2100       // The immediate generally refers to a lane in the preceding argument.
2101       assert(Def->getImmediateIdx() > 0);
2102       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2103       UpperBound = utostr(T.getNumElements() - 1);
2104     }
2105 
2106     // Calculate the index of the immediate that should be range checked.
2107     unsigned Idx = Def->getNumParams();
2108     if (Def->hasImmediate())
2109       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2110 
2111     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2112        << "i = " << Idx << ";";
2113     if (!LowerBound.empty())
2114       OS << " l = " << LowerBound << ";";
2115     if (!UpperBound.empty())
2116       OS << " u = " << UpperBound << ";";
2117     OS << " break;\n";
2118 
2119     Emitted.insert(Def->getMangledName());
2120   }
2121 
2122   OS << "#endif\n\n";
2123 }
2124 
2125 /// runHeader - Emit a file with sections defining:
2126 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2127 /// 2. the SemaChecking code for the type overload checking.
2128 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2129 void NeonEmitter::runHeader(raw_ostream &OS) {
2130   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2131 
2132   SmallVector<Intrinsic *, 128> Defs;
2133   for (auto *R : RV)
2134     createIntrinsic(R, Defs);
2135 
2136   // Generate shared BuiltinsXXX.def
2137   genBuiltinsDef(OS, Defs);
2138 
2139   // Generate ARM overloaded type checking code for SemaChecking.cpp
2140   genOverloadTypeCheckCode(OS, Defs);
2141 
2142   // Generate ARM range checking code for shift/lane immediates.
2143   genIntrinsicRangeCheckCode(OS, Defs);
2144 }
2145 
2146 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2147 /// is comprised of type definitions and function declarations.
2148 void NeonEmitter::run(raw_ostream &OS) {
2149   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2150         "------------------------------"
2151         "---===\n"
2152         " *\n"
2153         " * Permission is hereby granted, free of charge, to any person "
2154         "obtaining "
2155         "a copy\n"
2156         " * of this software and associated documentation files (the "
2157         "\"Software\"),"
2158         " to deal\n"
2159         " * in the Software without restriction, including without limitation "
2160         "the "
2161         "rights\n"
2162         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2163         "and/or sell\n"
2164         " * copies of the Software, and to permit persons to whom the Software "
2165         "is\n"
2166         " * furnished to do so, subject to the following conditions:\n"
2167         " *\n"
2168         " * The above copyright notice and this permission notice shall be "
2169         "included in\n"
2170         " * all copies or substantial portions of the Software.\n"
2171         " *\n"
2172         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2173         "EXPRESS OR\n"
2174         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2175         "MERCHANTABILITY,\n"
2176         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2177         "SHALL THE\n"
2178         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2179         "OTHER\n"
2180         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2181         "ARISING FROM,\n"
2182         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2183         "DEALINGS IN\n"
2184         " * THE SOFTWARE.\n"
2185         " *\n"
2186         " *===-----------------------------------------------------------------"
2187         "---"
2188         "---===\n"
2189         " */\n\n";
2190 
2191   OS << "#ifndef __ARM_NEON_H\n";
2192   OS << "#define __ARM_NEON_H\n\n";
2193 
2194   OS << "#if !defined(__ARM_NEON)\n";
2195   OS << "#error \"NEON support not enabled\"\n";
2196   OS << "#endif\n\n";
2197 
2198   OS << "#include <stdint.h>\n\n";
2199 
2200   // Emit NEON-specific scalar typedefs.
2201   OS << "typedef float float32_t;\n";
2202   OS << "typedef __fp16 float16_t;\n";
2203 
2204   OS << "#ifdef __aarch64__\n";
2205   OS << "typedef double float64_t;\n";
2206   OS << "#endif\n\n";
2207 
2208   // For now, signedness of polynomial types depends on target
2209   OS << "#ifdef __aarch64__\n";
2210   OS << "typedef uint8_t poly8_t;\n";
2211   OS << "typedef uint16_t poly16_t;\n";
2212   OS << "typedef uint64_t poly64_t;\n";
2213   OS << "typedef __uint128_t poly128_t;\n";
2214   OS << "#else\n";
2215   OS << "typedef int8_t poly8_t;\n";
2216   OS << "typedef int16_t poly16_t;\n";
2217   OS << "#endif\n";
2218 
2219   // Emit Neon vector typedefs.
2220   std::string TypedefTypes(
2221       "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2222   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2223 
2224   // Emit vector typedefs.
2225   bool InIfdef = false;
2226   for (auto &TS : TDTypeVec) {
2227     bool IsA64 = false;
2228     Type T(TS, ".");
2229     if (T.isDouble() || (T.isPoly() && T.getElementSizeInBits() == 64))
2230       IsA64 = true;
2231 
2232     if (InIfdef && !IsA64) {
2233       OS << "#endif\n";
2234       InIfdef = false;
2235     }
2236     if (!InIfdef && IsA64) {
2237       OS << "#ifdef __aarch64__\n";
2238       InIfdef = true;
2239     }
2240 
2241     if (T.isPoly())
2242       OS << "typedef __attribute__((neon_polyvector_type(";
2243     else
2244       OS << "typedef __attribute__((neon_vector_type(";
2245 
2246     Type T2 = T;
2247     T2.makeScalar();
2248     OS << T.getNumElements() << "))) ";
2249     OS << T2.str();
2250     OS << " " << T.str() << ";\n";
2251   }
2252   if (InIfdef)
2253     OS << "#endif\n";
2254   OS << "\n";
2255 
2256   // Emit struct typedefs.
2257   InIfdef = false;
2258   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2259     for (auto &TS : TDTypeVec) {
2260       bool IsA64 = false;
2261       Type T(TS, ".");
2262       if (T.isDouble() || (T.isPoly() && T.getElementSizeInBits() == 64))
2263         IsA64 = true;
2264 
2265       if (InIfdef && !IsA64) {
2266         OS << "#endif\n";
2267         InIfdef = false;
2268       }
2269       if (!InIfdef && IsA64) {
2270         OS << "#ifdef __aarch64__\n";
2271         InIfdef = true;
2272       }
2273 
2274       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2275       Type VT(TS, Mods);
2276       OS << "typedef struct " << VT.str() << " {\n";
2277       OS << "  " << T.str() << " val";
2278       OS << "[" << NumMembers << "]";
2279       OS << ";\n} ";
2280       OS << VT.str() << ";\n";
2281       OS << "\n";
2282     }
2283   }
2284   if (InIfdef)
2285     OS << "#endif\n";
2286   OS << "\n";
2287 
2288   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2289         "__nodebug__))\n\n";
2290 
2291   SmallVector<Intrinsic *, 128> Defs;
2292   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2293   for (auto *R : RV)
2294     createIntrinsic(R, Defs);
2295 
2296   for (auto *I : Defs)
2297     I->indexBody();
2298 
2299   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2300 
2301   // Only emit a def when its requirements have been met.
2302   // FIXME: This loop could be made faster, but it's fast enough for now.
2303   bool MadeProgress = true;
2304   std::string InGuard;
2305   while (!Defs.empty() && MadeProgress) {
2306     MadeProgress = false;
2307 
2308     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2309          I != Defs.end(); /*No step*/) {
2310       bool DependenciesSatisfied = true;
2311       for (auto *II : (*I)->getDependencies()) {
2312         if (llvm::is_contained(Defs, II))
2313           DependenciesSatisfied = false;
2314       }
2315       if (!DependenciesSatisfied) {
2316         // Try the next one.
2317         ++I;
2318         continue;
2319       }
2320 
2321       // Emit #endif/#if pair if needed.
2322       if ((*I)->getGuard() != InGuard) {
2323         if (!InGuard.empty())
2324           OS << "#endif\n";
2325         InGuard = (*I)->getGuard();
2326         if (!InGuard.empty())
2327           OS << "#if " << InGuard << "\n";
2328       }
2329 
2330       // Actually generate the intrinsic code.
2331       OS << (*I)->generate();
2332 
2333       MadeProgress = true;
2334       I = Defs.erase(I);
2335     }
2336   }
2337   assert(Defs.empty() && "Some requirements were not satisfied!");
2338   if (!InGuard.empty())
2339     OS << "#endif\n";
2340 
2341   OS << "\n";
2342   OS << "#undef __ai\n\n";
2343   OS << "#endif /* __ARM_NEON_H */\n";
2344 }
2345 
2346 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2347 /// is comprised of type definitions and function declarations.
2348 void NeonEmitter::runFP16(raw_ostream &OS) {
2349   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2350         "------------------------------"
2351         "---===\n"
2352         " *\n"
2353         " * Permission is hereby granted, free of charge, to any person "
2354         "obtaining a copy\n"
2355         " * of this software and associated documentation files (the "
2356 				"\"Software\"), to deal\n"
2357         " * in the Software without restriction, including without limitation "
2358 				"the rights\n"
2359         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2360 				"and/or sell\n"
2361         " * copies of the Software, and to permit persons to whom the Software "
2362 				"is\n"
2363         " * furnished to do so, subject to the following conditions:\n"
2364         " *\n"
2365         " * The above copyright notice and this permission notice shall be "
2366         "included in\n"
2367         " * all copies or substantial portions of the Software.\n"
2368         " *\n"
2369         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2370         "EXPRESS OR\n"
2371         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2372         "MERCHANTABILITY,\n"
2373         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2374         "SHALL THE\n"
2375         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2376         "OTHER\n"
2377         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2378         "ARISING FROM,\n"
2379         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2380         "DEALINGS IN\n"
2381         " * THE SOFTWARE.\n"
2382         " *\n"
2383         " *===-----------------------------------------------------------------"
2384         "---"
2385         "---===\n"
2386         " */\n\n";
2387 
2388   OS << "#ifndef __ARM_FP16_H\n";
2389   OS << "#define __ARM_FP16_H\n\n";
2390 
2391   OS << "#include <stdint.h>\n\n";
2392 
2393   OS << "typedef __fp16 float16_t;\n";
2394 
2395   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2396         "__nodebug__))\n\n";
2397 
2398   SmallVector<Intrinsic *, 128> Defs;
2399   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2400   for (auto *R : RV)
2401     createIntrinsic(R, Defs);
2402 
2403   for (auto *I : Defs)
2404     I->indexBody();
2405 
2406   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2407 
2408   // Only emit a def when its requirements have been met.
2409   // FIXME: This loop could be made faster, but it's fast enough for now.
2410   bool MadeProgress = true;
2411   std::string InGuard;
2412   while (!Defs.empty() && MadeProgress) {
2413     MadeProgress = false;
2414 
2415     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2416          I != Defs.end(); /*No step*/) {
2417       bool DependenciesSatisfied = true;
2418       for (auto *II : (*I)->getDependencies()) {
2419         if (llvm::is_contained(Defs, II))
2420           DependenciesSatisfied = false;
2421       }
2422       if (!DependenciesSatisfied) {
2423         // Try the next one.
2424         ++I;
2425         continue;
2426       }
2427 
2428       // Emit #endif/#if pair if needed.
2429       if ((*I)->getGuard() != InGuard) {
2430         if (!InGuard.empty())
2431           OS << "#endif\n";
2432         InGuard = (*I)->getGuard();
2433         if (!InGuard.empty())
2434           OS << "#if " << InGuard << "\n";
2435       }
2436 
2437       // Actually generate the intrinsic code.
2438       OS << (*I)->generate();
2439 
2440       MadeProgress = true;
2441       I = Defs.erase(I);
2442     }
2443   }
2444   assert(Defs.empty() && "Some requirements were not satisfied!");
2445   if (!InGuard.empty())
2446     OS << "#endif\n";
2447 
2448   OS << "\n";
2449   OS << "#undef __ai\n\n";
2450   OS << "#endif /* __ARM_FP16_H */\n";
2451 }
2452 
2453 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2454   NeonEmitter(Records).run(OS);
2455 }
2456 
2457 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2458   NeonEmitter(Records).runFP16(OS);
2459 }
2460 
2461 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2462   NeonEmitter(Records).runHeader(OS);
2463 }
2464 
2465 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2466   llvm_unreachable("Neon test generation no longer implemented!");
2467 }
2468