1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TableGen/Error.h"
39 #include "llvm/TableGen/Record.h"
40 #include "llvm/TableGen/SetTheory.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cctype>
44 #include <cstddef>
45 #include <cstdint>
46 #include <deque>
47 #include <map>
48 #include <set>
49 #include <sstream>
50 #include <string>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 namespace {
57 
58 // While globals are generally bad, this one allows us to perform assertions
59 // liberally and somehow still trace them back to the def they indirectly
60 // came from.
61 static Record *CurrentRecord = nullptr;
62 static void assert_with_loc(bool Assertion, const std::string &Str) {
63   if (!Assertion) {
64     if (CurrentRecord)
65       PrintFatalError(CurrentRecord->getLoc(), Str);
66     else
67       PrintFatalError(Str);
68   }
69 }
70 
71 enum ClassKind {
72   ClassNone,
73   ClassI,     // generic integer instruction, e.g., "i8" suffix
74   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
75   ClassW,     // width-specific instruction, e.g., "8" suffix
76   ClassB,     // bitcast arguments with enum argument to specify type
77   ClassL,     // Logical instructions which are op instructions
78               // but we need to not emit any suffix for in our
79               // tests.
80   ClassNoTest // Instructions which we do not test since they are
81               // not TRUE instructions.
82 };
83 
84 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
85 /// builtins.  These must be kept in sync with the flags in
86 /// include/clang/Basic/TargetBuiltins.h.
87 namespace NeonTypeFlags {
88 
89 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
90 
91 enum EltType {
92   Int8,
93   Int16,
94   Int32,
95   Int64,
96   Poly8,
97   Poly16,
98   Poly64,
99   Poly128,
100   Float16,
101   Float32,
102   Float64,
103   BFloat16
104 };
105 
106 } // end namespace NeonTypeFlags
107 
108 class NeonEmitter;
109 
110 //===----------------------------------------------------------------------===//
111 // TypeSpec
112 //===----------------------------------------------------------------------===//
113 
114 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
115 /// for strong typing purposes.
116 ///
117 /// A TypeSpec can be used to create a type.
118 class TypeSpec : public std::string {
119 public:
120   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
121     std::vector<TypeSpec> Ret;
122     TypeSpec Acc;
123     for (char I : Str.str()) {
124       if (islower(I)) {
125         Acc.push_back(I);
126         Ret.push_back(TypeSpec(Acc));
127         Acc.clear();
128       } else {
129         Acc.push_back(I);
130       }
131     }
132     return Ret;
133   }
134 };
135 
136 //===----------------------------------------------------------------------===//
137 // Type
138 //===----------------------------------------------------------------------===//
139 
140 /// A Type. Not much more to say here.
141 class Type {
142 private:
143   TypeSpec TS;
144 
145   enum TypeKind {
146     Void,
147     Float,
148     SInt,
149     UInt,
150     Poly,
151     BFloat16,
152   };
153   TypeKind Kind;
154   bool Immediate, Constant, Pointer;
155   // ScalarForMangling and NoManglingQ are really not suited to live here as
156   // they are not related to the type. But they live in the TypeSpec (not the
157   // prototype), so this is really the only place to store them.
158   bool ScalarForMangling, NoManglingQ;
159   unsigned Bitwidth, ElementBitwidth, NumVectors;
160 
161 public:
162   Type()
163       : Kind(Void), Immediate(false), Constant(false),
164         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
165         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
166 
167   Type(TypeSpec TS, StringRef CharMods)
168       : TS(std::move(TS)), Kind(Void), Immediate(false),
169         Constant(false), Pointer(false), ScalarForMangling(false),
170         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
171     applyModifiers(CharMods);
172   }
173 
174   /// Returns a type representing "void".
175   static Type getVoid() { return Type(); }
176 
177   bool operator==(const Type &Other) const { return str() == Other.str(); }
178   bool operator!=(const Type &Other) const { return !operator==(Other); }
179 
180   //
181   // Query functions
182   //
183   bool isScalarForMangling() const { return ScalarForMangling; }
184   bool noManglingQ() const { return NoManglingQ; }
185 
186   bool isPointer() const { return Pointer; }
187   bool isValue() const { return !isVoid() && !isPointer(); }
188   bool isScalar() const { return isValue() && NumVectors == 0; }
189   bool isVector() const { return isValue() && NumVectors > 0; }
190   bool isConstPointer() const { return Constant; }
191   bool isFloating() const { return Kind == Float; }
192   bool isInteger() const { return Kind == SInt || Kind == UInt; }
193   bool isPoly() const { return Kind == Poly; }
194   bool isSigned() const { return Kind == SInt; }
195   bool isImmediate() const { return Immediate; }
196   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
197   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
198   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
199   bool isChar() const { return ElementBitwidth == 8; }
200   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
201   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
202   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
203   bool isVoid() const { return Kind == Void; }
204   bool isBFloat16() const { return Kind == BFloat16; }
205   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
206   unsigned getSizeInBits() const { return Bitwidth; }
207   unsigned getElementSizeInBits() const { return ElementBitwidth; }
208   unsigned getNumVectors() const { return NumVectors; }
209 
210   //
211   // Mutator functions
212   //
213   void makeUnsigned() {
214     assert(!isVoid() && "not a potentially signed type");
215     Kind = UInt;
216   }
217   void makeSigned() {
218     assert(!isVoid() && "not a potentially signed type");
219     Kind = SInt;
220   }
221 
222   void makeInteger(unsigned ElemWidth, bool Sign) {
223     assert(!isVoid() && "converting void to int probably not useful");
224     Kind = Sign ? SInt : UInt;
225     Immediate = false;
226     ElementBitwidth = ElemWidth;
227   }
228 
229   void makeImmediate(unsigned ElemWidth) {
230     Kind = SInt;
231     Immediate = true;
232     ElementBitwidth = ElemWidth;
233   }
234 
235   void makeScalar() {
236     Bitwidth = ElementBitwidth;
237     NumVectors = 0;
238   }
239 
240   void makeOneVector() {
241     assert(isVector());
242     NumVectors = 1;
243   }
244 
245   void make32BitElement() {
246     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
247     ElementBitwidth = 32;
248   }
249 
250   void doubleLanes() {
251     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
252     Bitwidth = 128;
253   }
254 
255   void halveLanes() {
256     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
257     Bitwidth = 64;
258   }
259 
260   /// Return the C string representation of a type, which is the typename
261   /// defined in stdint.h or arm_neon.h.
262   std::string str() const;
263 
264   /// Return the string representation of a type, which is an encoded
265   /// string for passing to the BUILTIN() macro in Builtins.def.
266   std::string builtin_str() const;
267 
268   /// Return the value in NeonTypeFlags for this type.
269   unsigned getNeonEnum() const;
270 
271   /// Parse a type from a stdint.h or arm_neon.h typedef name,
272   /// for example uint32x2_t or int64_t.
273   static Type fromTypedefName(StringRef Name);
274 
275 private:
276   /// Creates the type based on the typespec string in TS.
277   /// Sets "Quad" to true if the "Q" or "H" modifiers were
278   /// seen. This is needed by applyModifier as some modifiers
279   /// only take effect if the type size was changed by "Q" or "H".
280   void applyTypespec(bool &Quad);
281   /// Applies prototype modifiers to the type.
282   void applyModifiers(StringRef Mods);
283 };
284 
285 //===----------------------------------------------------------------------===//
286 // Variable
287 //===----------------------------------------------------------------------===//
288 
289 /// A variable is a simple class that just has a type and a name.
290 class Variable {
291   Type T;
292   std::string N;
293 
294 public:
295   Variable() : T(Type::getVoid()) {}
296   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
297 
298   Type getType() const { return T; }
299   std::string getName() const { return "__" + N; }
300 };
301 
302 //===----------------------------------------------------------------------===//
303 // Intrinsic
304 //===----------------------------------------------------------------------===//
305 
306 /// The main grunt class. This represents an instantiation of an intrinsic with
307 /// a particular typespec and prototype.
308 class Intrinsic {
309   /// The Record this intrinsic was created from.
310   Record *R;
311   /// The unmangled name.
312   std::string Name;
313   /// The input and output typespecs. InTS == OutTS except when
314   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
315   TypeSpec OutTS, InTS;
316   /// The base class kind. Most intrinsics use ClassS, which has full type
317   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
318   /// signedness (i32), while some (ClassB) have no type at all, only a width
319   /// (32).
320   ClassKind CK;
321   /// The list of DAGs for the body. May be empty, in which case we should
322   /// emit a builtin call.
323   ListInit *Body;
324   /// The architectural #ifdef guard.
325   std::string Guard;
326   /// Set if the Unavailable bit is 1. This means we don't generate a body,
327   /// just an "unavailable" attribute on a declaration.
328   bool IsUnavailable;
329   /// Is this intrinsic safe for big-endian? or does it need its arguments
330   /// reversing?
331   bool BigEndianSafe;
332 
333   /// The types of return value [0] and parameters [1..].
334   std::vector<Type> Types;
335   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
336   int PolymorphicKeyType;
337   /// The local variables defined.
338   std::map<std::string, Variable> Variables;
339   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
340   bool NeededEarly;
341   /// UseMacro - set if we should implement using a macro or unset for a
342   ///            function.
343   bool UseMacro;
344   /// The set of intrinsics that this intrinsic uses/requires.
345   std::set<Intrinsic *> Dependencies;
346   /// The "base type", which is Type('d', OutTS). InBaseType is only
347   /// different if CartesianProductWith is non-empty (for vreinterpret).
348   Type BaseType, InBaseType;
349   /// The return variable.
350   Variable RetVar;
351   /// A postfix to apply to every variable. Defaults to "".
352   std::string VariablePostfix;
353 
354   NeonEmitter &Emitter;
355   std::stringstream OS;
356 
357   bool isBigEndianSafe() const {
358     if (BigEndianSafe)
359       return true;
360 
361     for (const auto &T : Types){
362       if (T.isVector() && T.getNumElements() > 1)
363         return false;
364     }
365     return true;
366   }
367 
368 public:
369   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
370             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
371             StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
372       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
373         Guard(Guard.str()), IsUnavailable(IsUnavailable),
374         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
375         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
376         Emitter(Emitter) {
377     // Modify the TypeSpec per-argument to get a concrete Type, and create
378     // known variables for each.
379     // Types[0] is the return value.
380     unsigned Pos = 0;
381     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
382     StringRef Mods = getNextModifiers(Proto, Pos);
383     while (!Mods.empty()) {
384       Types.emplace_back(InTS, Mods);
385       if (Mods.contains('!'))
386         PolymorphicKeyType = Types.size() - 1;
387 
388       Mods = getNextModifiers(Proto, Pos);
389     }
390 
391     for (auto Type : Types) {
392       // If this builtin takes an immediate argument, we need to #define it rather
393       // than use a standard declaration, so that SemaChecking can range check
394       // the immediate passed by the user.
395 
396       // Pointer arguments need to use macros to avoid hiding aligned attributes
397       // from the pointer type.
398 
399       // It is not permitted to pass or return an __fp16 by value, so intrinsics
400       // taking a scalar float16_t must be implemented as macros.
401       if (Type.isImmediate() || Type.isPointer() ||
402           (Type.isScalar() && Type.isHalf()))
403         UseMacro = true;
404     }
405   }
406 
407   /// Get the Record that this intrinsic is based off.
408   Record *getRecord() const { return R; }
409   /// Get the set of Intrinsics that this intrinsic calls.
410   /// this is the set of immediate dependencies, NOT the
411   /// transitive closure.
412   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
413   /// Get the architectural guard string (#ifdef).
414   std::string getGuard() const { return Guard; }
415   /// Get the non-mangled name.
416   std::string getName() const { return Name; }
417 
418   /// Return true if the intrinsic takes an immediate operand.
419   bool hasImmediate() const {
420     return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
421   }
422 
423   /// Return the parameter index of the immediate operand.
424   unsigned getImmediateIdx() const {
425     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
426       if (Types[Idx].isImmediate())
427         return Idx - 1;
428     llvm_unreachable("Intrinsic has no immediate");
429   }
430 
431 
432   unsigned getNumParams() const { return Types.size() - 1; }
433   Type getReturnType() const { return Types[0]; }
434   Type getParamType(unsigned I) const { return Types[I + 1]; }
435   Type getBaseType() const { return BaseType; }
436   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
437 
438   /// Return true if the prototype has a scalar argument.
439   bool protoHasScalar() const;
440 
441   /// Return the index that parameter PIndex will sit at
442   /// in a generated function call. This is often just PIndex,
443   /// but may not be as things such as multiple-vector operands
444   /// and sret parameters need to be taken into accont.
445   unsigned getGeneratedParamIdx(unsigned PIndex) {
446     unsigned Idx = 0;
447     if (getReturnType().getNumVectors() > 1)
448       // Multiple vectors are passed as sret.
449       ++Idx;
450 
451     for (unsigned I = 0; I < PIndex; ++I)
452       Idx += std::max(1U, getParamType(I).getNumVectors());
453 
454     return Idx;
455   }
456 
457   bool hasBody() const { return Body && !Body->getValues().empty(); }
458 
459   void setNeededEarly() { NeededEarly = true; }
460 
461   bool operator<(const Intrinsic &Other) const {
462     // Sort lexicographically on a two-tuple (Guard, Name)
463     if (Guard != Other.Guard)
464       return Guard < Other.Guard;
465     return Name < Other.Name;
466   }
467 
468   ClassKind getClassKind(bool UseClassBIfScalar = false) {
469     if (UseClassBIfScalar && !protoHasScalar())
470       return ClassB;
471     return CK;
472   }
473 
474   /// Return the name, mangled with type information.
475   /// If ForceClassS is true, use ClassS (u32/s32) instead
476   /// of the intrinsic's own type class.
477   std::string getMangledName(bool ForceClassS = false) const;
478   /// Return the type code for a builtin function call.
479   std::string getInstTypeCode(Type T, ClassKind CK) const;
480   /// Return the type string for a BUILTIN() macro in Builtins.def.
481   std::string getBuiltinTypeStr();
482 
483   /// Generate the intrinsic, returning code.
484   std::string generate();
485   /// Perform type checking and populate the dependency graph, but
486   /// don't generate code yet.
487   void indexBody();
488 
489 private:
490   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
491 
492   std::string mangleName(std::string Name, ClassKind CK) const;
493 
494   void initVariables();
495   std::string replaceParamsIn(std::string S);
496 
497   void emitBodyAsBuiltinCall();
498 
499   void generateImpl(bool ReverseArguments,
500                     StringRef NamePrefix, StringRef CallPrefix);
501   void emitReturn();
502   void emitBody(StringRef CallPrefix);
503   void emitShadowedArgs();
504   void emitArgumentReversal();
505   void emitReturnVarDecl();
506   void emitReturnReversal();
507   void emitReverseVariable(Variable &Dest, Variable &Src);
508   void emitNewLine();
509   void emitClosingBrace();
510   void emitOpeningBrace();
511   void emitPrototype(StringRef NamePrefix);
512 
513   class DagEmitter {
514     Intrinsic &Intr;
515     StringRef CallPrefix;
516 
517   public:
518     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
519       Intr(Intr), CallPrefix(CallPrefix) {
520     }
521     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
522     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
523     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
524     std::pair<Type, std::string> emitDagDup(DagInit *DI);
525     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
526     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
527     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
528     std::pair<Type, std::string> emitDagCall(DagInit *DI,
529                                              bool MatchMangledName);
530     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
531     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
532     std::pair<Type, std::string> emitDagOp(DagInit *DI);
533     std::pair<Type, std::string> emitDag(DagInit *DI);
534   };
535 };
536 
537 //===----------------------------------------------------------------------===//
538 // NeonEmitter
539 //===----------------------------------------------------------------------===//
540 
541 class NeonEmitter {
542   RecordKeeper &Records;
543   DenseMap<Record *, ClassKind> ClassMap;
544   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
545   unsigned UniqueNumber;
546 
547   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
548   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
549   void genOverloadTypeCheckCode(raw_ostream &OS,
550                                 SmallVectorImpl<Intrinsic *> &Defs);
551   void genIntrinsicRangeCheckCode(raw_ostream &OS,
552                                   SmallVectorImpl<Intrinsic *> &Defs);
553 
554 public:
555   /// Called by Intrinsic - this attempts to get an intrinsic that takes
556   /// the given types as arguments.
557   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
558                           Optional<std::string> MangledName);
559 
560   /// Called by Intrinsic - returns a globally-unique number.
561   unsigned getUniqueNumber() { return UniqueNumber++; }
562 
563   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
564     Record *SI = R.getClass("SInst");
565     Record *II = R.getClass("IInst");
566     Record *WI = R.getClass("WInst");
567     Record *SOpI = R.getClass("SOpInst");
568     Record *IOpI = R.getClass("IOpInst");
569     Record *WOpI = R.getClass("WOpInst");
570     Record *LOpI = R.getClass("LOpInst");
571     Record *NoTestOpI = R.getClass("NoTestOpInst");
572 
573     ClassMap[SI] = ClassS;
574     ClassMap[II] = ClassI;
575     ClassMap[WI] = ClassW;
576     ClassMap[SOpI] = ClassS;
577     ClassMap[IOpI] = ClassI;
578     ClassMap[WOpI] = ClassW;
579     ClassMap[LOpI] = ClassL;
580     ClassMap[NoTestOpI] = ClassNoTest;
581   }
582 
583   // Emit arm_neon.h.inc
584   void run(raw_ostream &o);
585 
586   // Emit arm_fp16.h.inc
587   void runFP16(raw_ostream &o);
588 
589   // Emit arm_bf16.h.inc
590   void runBF16(raw_ostream &o);
591 
592   // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
593   // arm_bf16.h
594   void runHeader(raw_ostream &o);
595 };
596 
597 } // end anonymous namespace
598 
599 //===----------------------------------------------------------------------===//
600 // Type implementation
601 //===----------------------------------------------------------------------===//
602 
603 std::string Type::str() const {
604   if (isVoid())
605     return "void";
606   std::string S;
607 
608   if (isInteger() && !isSigned())
609     S += "u";
610 
611   if (isPoly())
612     S += "poly";
613   else if (isFloating())
614     S += "float";
615   else if (isBFloat16())
616     S += "bfloat";
617   else
618     S += "int";
619 
620   S += utostr(ElementBitwidth);
621   if (isVector())
622     S += "x" + utostr(getNumElements());
623   if (NumVectors > 1)
624     S += "x" + utostr(NumVectors);
625   S += "_t";
626 
627   if (Constant)
628     S += " const";
629   if (Pointer)
630     S += " *";
631 
632   return S;
633 }
634 
635 std::string Type::builtin_str() const {
636   std::string S;
637   if (isVoid())
638     return "v";
639 
640   if (isPointer()) {
641     // All pointers are void pointers.
642     S = "v";
643     if (isConstPointer())
644       S += "C";
645     S += "*";
646     return S;
647   } else if (isInteger())
648     switch (ElementBitwidth) {
649     case 8: S += "c"; break;
650     case 16: S += "s"; break;
651     case 32: S += "i"; break;
652     case 64: S += "Wi"; break;
653     case 128: S += "LLLi"; break;
654     default: llvm_unreachable("Unhandled case!");
655     }
656   else if (isBFloat16()) {
657     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
658     S += "y";
659   } else
660     switch (ElementBitwidth) {
661     case 16: S += "h"; break;
662     case 32: S += "f"; break;
663     case 64: S += "d"; break;
664     default: llvm_unreachable("Unhandled case!");
665     }
666 
667   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
668   if (isChar() && !isPointer() && isSigned())
669     // Make chars explicitly signed.
670     S = "S" + S;
671   else if (isInteger() && !isSigned())
672     S = "U" + S;
673 
674   // Constant indices are "int", but have the "constant expression" modifier.
675   if (isImmediate()) {
676     assert(isInteger() && isSigned());
677     S = "I" + S;
678   }
679 
680   if (isScalar())
681     return S;
682 
683   std::string Ret;
684   for (unsigned I = 0; I < NumVectors; ++I)
685     Ret += "V" + utostr(getNumElements()) + S;
686 
687   return Ret;
688 }
689 
690 unsigned Type::getNeonEnum() const {
691   unsigned Addend;
692   switch (ElementBitwidth) {
693   case 8: Addend = 0; break;
694   case 16: Addend = 1; break;
695   case 32: Addend = 2; break;
696   case 64: Addend = 3; break;
697   case 128: Addend = 4; break;
698   default: llvm_unreachable("Unhandled element bitwidth!");
699   }
700 
701   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
702   if (isPoly()) {
703     // Adjustment needed because Poly32 doesn't exist.
704     if (Addend >= 2)
705       --Addend;
706     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
707   }
708   if (isFloating()) {
709     assert(Addend != 0 && "Float8 doesn't exist!");
710     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
711   }
712 
713   if (isBFloat16()) {
714     assert(Addend == 1 && "BFloat16 is only 16 bit");
715     Base = (unsigned)NeonTypeFlags::BFloat16;
716   }
717 
718   if (Bitwidth == 128)
719     Base |= (unsigned)NeonTypeFlags::QuadFlag;
720   if (isInteger() && !isSigned())
721     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
722 
723   return Base;
724 }
725 
726 Type Type::fromTypedefName(StringRef Name) {
727   Type T;
728   T.Kind = SInt;
729 
730   if (Name.front() == 'u') {
731     T.Kind = UInt;
732     Name = Name.drop_front();
733   }
734 
735   if (Name.startswith("float")) {
736     T.Kind = Float;
737     Name = Name.drop_front(5);
738   } else if (Name.startswith("poly")) {
739     T.Kind = Poly;
740     Name = Name.drop_front(4);
741   } else if (Name.startswith("bfloat")) {
742     T.Kind = BFloat16;
743     Name = Name.drop_front(6);
744   } else {
745     assert(Name.startswith("int"));
746     Name = Name.drop_front(3);
747   }
748 
749   unsigned I = 0;
750   for (I = 0; I < Name.size(); ++I) {
751     if (!isdigit(Name[I]))
752       break;
753   }
754   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
755   Name = Name.drop_front(I);
756 
757   T.Bitwidth = T.ElementBitwidth;
758   T.NumVectors = 1;
759 
760   if (Name.front() == 'x') {
761     Name = Name.drop_front();
762     unsigned I = 0;
763     for (I = 0; I < Name.size(); ++I) {
764       if (!isdigit(Name[I]))
765         break;
766     }
767     unsigned NumLanes;
768     Name.substr(0, I).getAsInteger(10, NumLanes);
769     Name = Name.drop_front(I);
770     T.Bitwidth = T.ElementBitwidth * NumLanes;
771   } else {
772     // Was scalar.
773     T.NumVectors = 0;
774   }
775   if (Name.front() == 'x') {
776     Name = Name.drop_front();
777     unsigned I = 0;
778     for (I = 0; I < Name.size(); ++I) {
779       if (!isdigit(Name[I]))
780         break;
781     }
782     Name.substr(0, I).getAsInteger(10, T.NumVectors);
783     Name = Name.drop_front(I);
784   }
785 
786   assert(Name.startswith("_t") && "Malformed typedef!");
787   return T;
788 }
789 
790 void Type::applyTypespec(bool &Quad) {
791   std::string S = TS;
792   ScalarForMangling = false;
793   Kind = SInt;
794   ElementBitwidth = ~0U;
795   NumVectors = 1;
796 
797   for (char I : S) {
798     switch (I) {
799     case 'S':
800       ScalarForMangling = true;
801       break;
802     case 'H':
803       NoManglingQ = true;
804       Quad = true;
805       break;
806     case 'Q':
807       Quad = true;
808       break;
809     case 'P':
810       Kind = Poly;
811       break;
812     case 'U':
813       Kind = UInt;
814       break;
815     case 'c':
816       ElementBitwidth = 8;
817       break;
818     case 'h':
819       Kind = Float;
820       LLVM_FALLTHROUGH;
821     case 's':
822       ElementBitwidth = 16;
823       break;
824     case 'f':
825       Kind = Float;
826       LLVM_FALLTHROUGH;
827     case 'i':
828       ElementBitwidth = 32;
829       break;
830     case 'd':
831       Kind = Float;
832       LLVM_FALLTHROUGH;
833     case 'l':
834       ElementBitwidth = 64;
835       break;
836     case 'k':
837       ElementBitwidth = 128;
838       // Poly doesn't have a 128x1 type.
839       if (isPoly())
840         NumVectors = 0;
841       break;
842     case 'b':
843       Kind = BFloat16;
844       ElementBitwidth = 16;
845       break;
846     default:
847       llvm_unreachable("Unhandled type code!");
848     }
849   }
850   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
851 
852   Bitwidth = Quad ? 128 : 64;
853 }
854 
855 void Type::applyModifiers(StringRef Mods) {
856   bool AppliedQuad = false;
857   applyTypespec(AppliedQuad);
858 
859   for (char Mod : Mods) {
860     switch (Mod) {
861     case '.':
862       break;
863     case 'v':
864       Kind = Void;
865       break;
866     case 'S':
867       Kind = SInt;
868       break;
869     case 'U':
870       Kind = UInt;
871       break;
872     case 'B':
873       Kind = BFloat16;
874       ElementBitwidth = 16;
875       break;
876     case 'F':
877       Kind = Float;
878       break;
879     case 'P':
880       Kind = Poly;
881       break;
882     case '>':
883       assert(ElementBitwidth < 128);
884       ElementBitwidth *= 2;
885       break;
886     case '<':
887       assert(ElementBitwidth > 8);
888       ElementBitwidth /= 2;
889       break;
890     case '1':
891       NumVectors = 0;
892       break;
893     case '2':
894       NumVectors = 2;
895       break;
896     case '3':
897       NumVectors = 3;
898       break;
899     case '4':
900       NumVectors = 4;
901       break;
902     case '*':
903       Pointer = true;
904       break;
905     case 'c':
906       Constant = true;
907       break;
908     case 'Q':
909       Bitwidth = 128;
910       break;
911     case 'q':
912       Bitwidth = 64;
913       break;
914     case 'I':
915       Kind = SInt;
916       ElementBitwidth = Bitwidth = 32;
917       NumVectors = 0;
918       Immediate = true;
919       break;
920     case 'p':
921       if (isPoly())
922         Kind = UInt;
923       break;
924     case '!':
925       // Key type, handled elsewhere.
926       break;
927     default:
928       llvm_unreachable("Unhandled character!");
929     }
930   }
931 }
932 
933 //===----------------------------------------------------------------------===//
934 // Intrinsic implementation
935 //===----------------------------------------------------------------------===//
936 
937 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
938   if (Proto.size() == Pos)
939     return StringRef();
940   else if (Proto[Pos] != '(')
941     return Proto.substr(Pos++, 1);
942 
943   size_t Start = Pos + 1;
944   size_t End = Proto.find(')', Start);
945   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
946   Pos = End + 1;
947   return Proto.slice(Start, End);
948 }
949 
950 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
951   char typeCode = '\0';
952   bool printNumber = true;
953 
954   if (CK == ClassB)
955     return "";
956 
957   if (T.isBFloat16())
958     return "bf16";
959 
960   if (T.isPoly())
961     typeCode = 'p';
962   else if (T.isInteger())
963     typeCode = T.isSigned() ? 's' : 'u';
964   else
965     typeCode = 'f';
966 
967   if (CK == ClassI) {
968     switch (typeCode) {
969     default:
970       break;
971     case 's':
972     case 'u':
973     case 'p':
974       typeCode = 'i';
975       break;
976     }
977   }
978   if (CK == ClassB) {
979     typeCode = '\0';
980   }
981 
982   std::string S;
983   if (typeCode != '\0')
984     S.push_back(typeCode);
985   if (printNumber)
986     S += utostr(T.getElementSizeInBits());
987 
988   return S;
989 }
990 
991 std::string Intrinsic::getBuiltinTypeStr() {
992   ClassKind LocalCK = getClassKind(true);
993   std::string S;
994 
995   Type RetT = getReturnType();
996   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
997       !RetT.isFloating() && !RetT.isBFloat16())
998     RetT.makeInteger(RetT.getElementSizeInBits(), false);
999 
1000   // Since the return value must be one type, return a vector type of the
1001   // appropriate width which we will bitcast.  An exception is made for
1002   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1003   // fashion, storing them to a pointer arg.
1004   if (RetT.getNumVectors() > 1) {
1005     S += "vv*"; // void result with void* first argument
1006   } else {
1007     if (RetT.isPoly())
1008       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1009     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1010       RetT.makeSigned();
1011 
1012     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1013       // Cast to vector of 8-bit elements.
1014       RetT.makeInteger(8, true);
1015 
1016     S += RetT.builtin_str();
1017   }
1018 
1019   for (unsigned I = 0; I < getNumParams(); ++I) {
1020     Type T = getParamType(I);
1021     if (T.isPoly())
1022       T.makeInteger(T.getElementSizeInBits(), false);
1023 
1024     if (LocalCK == ClassB && !T.isScalar())
1025       T.makeInteger(8, true);
1026     // Halves always get converted to 8-bit elements.
1027     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1028       T.makeInteger(8, true);
1029 
1030     if (LocalCK == ClassI && T.isInteger())
1031       T.makeSigned();
1032 
1033     if (hasImmediate() && getImmediateIdx() == I)
1034       T.makeImmediate(32);
1035 
1036     S += T.builtin_str();
1037   }
1038 
1039   // Extra constant integer to hold type class enum for this function, e.g. s8
1040   if (LocalCK == ClassB)
1041     S += "i";
1042 
1043   return S;
1044 }
1045 
1046 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1047   // Check if the prototype has a scalar operand with the type of the vector
1048   // elements.  If not, bitcasting the args will take care of arg checking.
1049   // The actual signedness etc. will be taken care of with special enums.
1050   ClassKind LocalCK = CK;
1051   if (!protoHasScalar())
1052     LocalCK = ClassB;
1053 
1054   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1055 }
1056 
1057 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1058   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1059   std::string S = Name;
1060 
1061   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1062       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1063       Name == "vcvt_f32_bf16")
1064     return Name;
1065 
1066   if (!typeCode.empty()) {
1067     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1068     if (Name.size() >= 3 && isdigit(Name.back()) &&
1069         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1070       S.insert(S.length() - 3, "_" + typeCode);
1071     else
1072       S += "_" + typeCode;
1073   }
1074 
1075   if (BaseType != InBaseType) {
1076     // A reinterpret - out the input base type at the end.
1077     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1078   }
1079 
1080   if (LocalCK == ClassB)
1081     S += "_v";
1082 
1083   // Insert a 'q' before the first '_' character so that it ends up before
1084   // _lane or _n on vector-scalar operations.
1085   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1086     size_t Pos = S.find('_');
1087     S.insert(Pos, "q");
1088   }
1089 
1090   char Suffix = '\0';
1091   if (BaseType.isScalarForMangling()) {
1092     switch (BaseType.getElementSizeInBits()) {
1093     case 8: Suffix = 'b'; break;
1094     case 16: Suffix = 'h'; break;
1095     case 32: Suffix = 's'; break;
1096     case 64: Suffix = 'd'; break;
1097     default: llvm_unreachable("Bad suffix!");
1098     }
1099   }
1100   if (Suffix != '\0') {
1101     size_t Pos = S.find('_');
1102     S.insert(Pos, &Suffix, 1);
1103   }
1104 
1105   return S;
1106 }
1107 
1108 std::string Intrinsic::replaceParamsIn(std::string S) {
1109   while (S.find('$') != std::string::npos) {
1110     size_t Pos = S.find('$');
1111     size_t End = Pos + 1;
1112     while (isalpha(S[End]))
1113       ++End;
1114 
1115     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1116     assert_with_loc(Variables.find(VarName) != Variables.end(),
1117                     "Variable not defined!");
1118     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1119   }
1120 
1121   return S;
1122 }
1123 
1124 void Intrinsic::initVariables() {
1125   Variables.clear();
1126 
1127   // Modify the TypeSpec per-argument to get a concrete Type, and create
1128   // known variables for each.
1129   for (unsigned I = 1; I < Types.size(); ++I) {
1130     char NameC = '0' + (I - 1);
1131     std::string Name = "p";
1132     Name.push_back(NameC);
1133 
1134     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1135   }
1136   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1137 }
1138 
1139 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1140   if (UseMacro)
1141     OS << "#define ";
1142   else
1143     OS << "__ai " << Types[0].str() << " ";
1144 
1145   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1146 
1147   for (unsigned I = 0; I < getNumParams(); ++I) {
1148     if (I != 0)
1149       OS << ", ";
1150 
1151     char NameC = '0' + I;
1152     std::string Name = "p";
1153     Name.push_back(NameC);
1154     assert(Variables.find(Name) != Variables.end());
1155     Variable &V = Variables[Name];
1156 
1157     if (!UseMacro)
1158       OS << V.getType().str() << " ";
1159     OS << V.getName();
1160   }
1161 
1162   OS << ")";
1163 }
1164 
1165 void Intrinsic::emitOpeningBrace() {
1166   if (UseMacro)
1167     OS << " __extension__ ({";
1168   else
1169     OS << " {";
1170   emitNewLine();
1171 }
1172 
1173 void Intrinsic::emitClosingBrace() {
1174   if (UseMacro)
1175     OS << "})";
1176   else
1177     OS << "}";
1178 }
1179 
1180 void Intrinsic::emitNewLine() {
1181   if (UseMacro)
1182     OS << " \\\n";
1183   else
1184     OS << "\n";
1185 }
1186 
1187 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1188   if (Dest.getType().getNumVectors() > 1) {
1189     emitNewLine();
1190 
1191     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1192       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1193          << "__builtin_shufflevector("
1194          << Src.getName() << ".val[" << K << "], "
1195          << Src.getName() << ".val[" << K << "]";
1196       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1197         OS << ", " << J;
1198       OS << ");";
1199       emitNewLine();
1200     }
1201   } else {
1202     OS << "  " << Dest.getName()
1203        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1204     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1205       OS << ", " << J;
1206     OS << ");";
1207     emitNewLine();
1208   }
1209 }
1210 
1211 void Intrinsic::emitArgumentReversal() {
1212   if (isBigEndianSafe())
1213     return;
1214 
1215   // Reverse all vector arguments.
1216   for (unsigned I = 0; I < getNumParams(); ++I) {
1217     std::string Name = "p" + utostr(I);
1218     std::string NewName = "rev" + utostr(I);
1219 
1220     Variable &V = Variables[Name];
1221     Variable NewV(V.getType(), NewName + VariablePostfix);
1222 
1223     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1224       continue;
1225 
1226     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1227     emitReverseVariable(NewV, V);
1228     V = NewV;
1229   }
1230 }
1231 
1232 void Intrinsic::emitReturnVarDecl() {
1233   assert(RetVar.getType() == Types[0]);
1234   // Create a return variable, if we're not void.
1235   if (!RetVar.getType().isVoid()) {
1236     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1237     emitNewLine();
1238   }
1239 }
1240 
1241 void Intrinsic::emitReturnReversal() {
1242   if (isBigEndianSafe())
1243     return;
1244   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1245       getReturnType().getNumElements() == 1)
1246     return;
1247   emitReverseVariable(RetVar, RetVar);
1248 }
1249 
1250 void Intrinsic::emitShadowedArgs() {
1251   // Macro arguments are not type-checked like inline function arguments,
1252   // so assign them to local temporaries to get the right type checking.
1253   if (!UseMacro)
1254     return;
1255 
1256   for (unsigned I = 0; I < getNumParams(); ++I) {
1257     // Do not create a temporary for an immediate argument.
1258     // That would defeat the whole point of using a macro!
1259     if (getParamType(I).isImmediate())
1260       continue;
1261     // Do not create a temporary for pointer arguments. The input
1262     // pointer may have an alignment hint.
1263     if (getParamType(I).isPointer())
1264       continue;
1265 
1266     std::string Name = "p" + utostr(I);
1267 
1268     assert(Variables.find(Name) != Variables.end());
1269     Variable &V = Variables[Name];
1270 
1271     std::string NewName = "s" + utostr(I);
1272     Variable V2(V.getType(), NewName + VariablePostfix);
1273 
1274     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1275        << V.getName() << ";";
1276     emitNewLine();
1277 
1278     V = V2;
1279   }
1280 }
1281 
1282 bool Intrinsic::protoHasScalar() const {
1283   return llvm::any_of(
1284       Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1285 }
1286 
1287 void Intrinsic::emitBodyAsBuiltinCall() {
1288   std::string S;
1289 
1290   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1291   // sret-like argument.
1292   bool SRet = getReturnType().getNumVectors() >= 2;
1293 
1294   StringRef N = Name;
1295   ClassKind LocalCK = CK;
1296   if (!protoHasScalar())
1297     LocalCK = ClassB;
1298 
1299   if (!getReturnType().isVoid() && !SRet)
1300     S += "(" + RetVar.getType().str() + ") ";
1301 
1302   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1303 
1304   if (SRet)
1305     S += "&" + RetVar.getName() + ", ";
1306 
1307   for (unsigned I = 0; I < getNumParams(); ++I) {
1308     Variable &V = Variables["p" + utostr(I)];
1309     Type T = V.getType();
1310 
1311     // Handle multiple-vector values specially, emitting each subvector as an
1312     // argument to the builtin.
1313     if (T.getNumVectors() > 1) {
1314       // Check if an explicit cast is needed.
1315       std::string Cast;
1316       if (LocalCK == ClassB) {
1317         Type T2 = T;
1318         T2.makeOneVector();
1319         T2.makeInteger(8, /*Sign=*/true);
1320         Cast = "(" + T2.str() + ")";
1321       }
1322 
1323       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1324         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1325       continue;
1326     }
1327 
1328     std::string Arg = V.getName();
1329     Type CastToType = T;
1330 
1331     // Check if an explicit cast is needed.
1332     if (CastToType.isVector() &&
1333         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1334       CastToType.makeInteger(8, true);
1335       Arg = "(" + CastToType.str() + ")" + Arg;
1336     } else if (CastToType.isVector() && LocalCK == ClassI) {
1337       if (CastToType.isInteger())
1338         CastToType.makeSigned();
1339       Arg = "(" + CastToType.str() + ")" + Arg;
1340     }
1341 
1342     S += Arg + ", ";
1343   }
1344 
1345   // Extra constant integer to hold type class enum for this function, e.g. s8
1346   if (getClassKind(true) == ClassB) {
1347     S += utostr(getPolymorphicKeyType().getNeonEnum());
1348   } else {
1349     // Remove extraneous ", ".
1350     S.pop_back();
1351     S.pop_back();
1352   }
1353   S += ");";
1354 
1355   std::string RetExpr;
1356   if (!SRet && !RetVar.getType().isVoid())
1357     RetExpr = RetVar.getName() + " = ";
1358 
1359   OS << "  " << RetExpr << S;
1360   emitNewLine();
1361 }
1362 
1363 void Intrinsic::emitBody(StringRef CallPrefix) {
1364   std::vector<std::string> Lines;
1365 
1366   if (!Body || Body->getValues().empty()) {
1367     // Nothing specific to output - must output a builtin.
1368     emitBodyAsBuiltinCall();
1369     return;
1370   }
1371 
1372   // We have a list of "things to output". The last should be returned.
1373   for (auto *I : Body->getValues()) {
1374     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1375       Lines.push_back(replaceParamsIn(SI->getAsString()));
1376     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1377       DagEmitter DE(*this, CallPrefix);
1378       Lines.push_back(DE.emitDag(DI).second + ";");
1379     }
1380   }
1381 
1382   assert(!Lines.empty() && "Empty def?");
1383   if (!RetVar.getType().isVoid())
1384     Lines.back().insert(0, RetVar.getName() + " = ");
1385 
1386   for (auto &L : Lines) {
1387     OS << "  " << L;
1388     emitNewLine();
1389   }
1390 }
1391 
1392 void Intrinsic::emitReturn() {
1393   if (RetVar.getType().isVoid())
1394     return;
1395   if (UseMacro)
1396     OS << "  " << RetVar.getName() << ";";
1397   else
1398     OS << "  return " << RetVar.getName() << ";";
1399   emitNewLine();
1400 }
1401 
1402 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1403   // At this point we should only be seeing a def.
1404   DefInit *DefI = cast<DefInit>(DI->getOperator());
1405   std::string Op = DefI->getAsString();
1406 
1407   if (Op == "cast" || Op == "bitcast")
1408     return emitDagCast(DI, Op == "bitcast");
1409   if (Op == "shuffle")
1410     return emitDagShuffle(DI);
1411   if (Op == "dup")
1412     return emitDagDup(DI);
1413   if (Op == "dup_typed")
1414     return emitDagDupTyped(DI);
1415   if (Op == "splat")
1416     return emitDagSplat(DI);
1417   if (Op == "save_temp")
1418     return emitDagSaveTemp(DI);
1419   if (Op == "op")
1420     return emitDagOp(DI);
1421   if (Op == "call" || Op == "call_mangled")
1422     return emitDagCall(DI, Op == "call_mangled");
1423   if (Op == "name_replace")
1424     return emitDagNameReplace(DI);
1425   if (Op == "literal")
1426     return emitDagLiteral(DI);
1427   assert_with_loc(false, "Unknown operation!");
1428   return std::make_pair(Type::getVoid(), "");
1429 }
1430 
1431 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1432   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1433   if (DI->getNumArgs() == 2) {
1434     // Unary op.
1435     std::pair<Type, std::string> R =
1436         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1437     return std::make_pair(R.first, Op + R.second);
1438   } else {
1439     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1440     std::pair<Type, std::string> R1 =
1441         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1442     std::pair<Type, std::string> R2 =
1443         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1444     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1445     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1446   }
1447 }
1448 
1449 std::pair<Type, std::string>
1450 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1451   std::vector<Type> Types;
1452   std::vector<std::string> Values;
1453   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1454     std::pair<Type, std::string> R =
1455         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1456     Types.push_back(R.first);
1457     Values.push_back(R.second);
1458   }
1459 
1460   // Look up the called intrinsic.
1461   std::string N;
1462   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1463     N = SI->getAsUnquotedString();
1464   else
1465     N = emitDagArg(DI->getArg(0), "").second;
1466   Optional<std::string> MangledName;
1467   if (MatchMangledName) {
1468     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1469       N += "q";
1470     MangledName = Intr.mangleName(N, ClassS);
1471   }
1472   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1473 
1474   // Make sure the callee is known as an early def.
1475   Callee.setNeededEarly();
1476   Intr.Dependencies.insert(&Callee);
1477 
1478   // Now create the call itself.
1479   std::string S;
1480   if (!Callee.isBigEndianSafe())
1481     S += CallPrefix.str();
1482   S += Callee.getMangledName(true) + "(";
1483   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1484     if (I != 0)
1485       S += ", ";
1486     S += Values[I];
1487   }
1488   S += ")";
1489 
1490   return std::make_pair(Callee.getReturnType(), S);
1491 }
1492 
1493 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1494                                                                 bool IsBitCast){
1495   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1496   std::pair<Type, std::string> R =
1497       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1498                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1499   Type castToType = R.first;
1500   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1501 
1502     // MOD can take several forms:
1503     //   1. $X - take the type of parameter / variable X.
1504     //   2. The value "R" - take the type of the return type.
1505     //   3. a type string
1506     //   4. The value "U" or "S" to switch the signedness.
1507     //   5. The value "H" or "D" to half or double the bitwidth.
1508     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1509     if (!DI->getArgNameStr(ArgIdx).empty()) {
1510       assert_with_loc(Intr.Variables.find(std::string(
1511                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1512                       "Variable not found");
1513       castToType =
1514           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1515     } else {
1516       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1517       assert_with_loc(SI, "Expected string type or $Name for cast type");
1518 
1519       if (SI->getAsUnquotedString() == "R") {
1520         castToType = Intr.getReturnType();
1521       } else if (SI->getAsUnquotedString() == "U") {
1522         castToType.makeUnsigned();
1523       } else if (SI->getAsUnquotedString() == "S") {
1524         castToType.makeSigned();
1525       } else if (SI->getAsUnquotedString() == "H") {
1526         castToType.halveLanes();
1527       } else if (SI->getAsUnquotedString() == "D") {
1528         castToType.doubleLanes();
1529       } else if (SI->getAsUnquotedString() == "8") {
1530         castToType.makeInteger(8, true);
1531       } else if (SI->getAsUnquotedString() == "32") {
1532         castToType.make32BitElement();
1533       } else {
1534         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1535         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1536       }
1537     }
1538   }
1539 
1540   std::string S;
1541   if (IsBitCast) {
1542     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1543     // a temporary.
1544     std::string N = "reint";
1545     unsigned I = 0;
1546     while (Intr.Variables.find(N) != Intr.Variables.end())
1547       N = "reint" + utostr(++I);
1548     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1549 
1550     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1551             << R.second << ";";
1552     Intr.emitNewLine();
1553 
1554     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1555   } else {
1556     // Emit a normal (static) cast.
1557     S = "(" + castToType.str() + ")(" + R.second + ")";
1558   }
1559 
1560   return std::make_pair(castToType, S);
1561 }
1562 
1563 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1564   // See the documentation in arm_neon.td for a description of these operators.
1565   class LowHalf : public SetTheory::Operator {
1566   public:
1567     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1568                ArrayRef<SMLoc> Loc) override {
1569       SetTheory::RecSet Elts2;
1570       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1571       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1572     }
1573   };
1574 
1575   class HighHalf : public SetTheory::Operator {
1576   public:
1577     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1578                ArrayRef<SMLoc> Loc) override {
1579       SetTheory::RecSet Elts2;
1580       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1581       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1582     }
1583   };
1584 
1585   class Rev : public SetTheory::Operator {
1586     unsigned ElementSize;
1587 
1588   public:
1589     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1590 
1591     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1592                ArrayRef<SMLoc> Loc) override {
1593       SetTheory::RecSet Elts2;
1594       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1595 
1596       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1597       VectorSize /= ElementSize;
1598 
1599       std::vector<Record *> Revved;
1600       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1601         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1602           Revved.push_back(Elts2[VI + LI]);
1603         }
1604       }
1605 
1606       Elts.insert(Revved.begin(), Revved.end());
1607     }
1608   };
1609 
1610   class MaskExpander : public SetTheory::Expander {
1611     unsigned N;
1612 
1613   public:
1614     MaskExpander(unsigned N) : N(N) {}
1615 
1616     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1617       unsigned Addend = 0;
1618       if (R->getName() == "mask0")
1619         Addend = 0;
1620       else if (R->getName() == "mask1")
1621         Addend = N;
1622       else
1623         return;
1624       for (unsigned I = 0; I < N; ++I)
1625         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1626     }
1627   };
1628 
1629   // (shuffle arg1, arg2, sequence)
1630   std::pair<Type, std::string> Arg1 =
1631       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1632   std::pair<Type, std::string> Arg2 =
1633       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1634   assert_with_loc(Arg1.first == Arg2.first,
1635                   "Different types in arguments to shuffle!");
1636 
1637   SetTheory ST;
1638   SetTheory::RecSet Elts;
1639   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1640   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1641   ST.addOperator("rev",
1642                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1643   ST.addExpander("MaskExpand",
1644                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1645   ST.evaluate(DI->getArg(2), Elts, None);
1646 
1647   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1648   for (auto &E : Elts) {
1649     StringRef Name = E->getName();
1650     assert_with_loc(Name.startswith("sv"),
1651                     "Incorrect element kind in shuffle mask!");
1652     S += ", " + Name.drop_front(2).str();
1653   }
1654   S += ")";
1655 
1656   // Recalculate the return type - the shuffle may have halved or doubled it.
1657   Type T(Arg1.first);
1658   if (Elts.size() > T.getNumElements()) {
1659     assert_with_loc(
1660         Elts.size() == T.getNumElements() * 2,
1661         "Can only double or half the number of elements in a shuffle!");
1662     T.doubleLanes();
1663   } else if (Elts.size() < T.getNumElements()) {
1664     assert_with_loc(
1665         Elts.size() == T.getNumElements() / 2,
1666         "Can only double or half the number of elements in a shuffle!");
1667     T.halveLanes();
1668   }
1669 
1670   return std::make_pair(T, S);
1671 }
1672 
1673 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1674   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1675   std::pair<Type, std::string> A =
1676       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1677   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1678 
1679   Type T = Intr.getBaseType();
1680   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1681   std::string S = "(" + T.str() + ") {";
1682   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1683     if (I != 0)
1684       S += ", ";
1685     S += A.second;
1686   }
1687   S += "}";
1688 
1689   return std::make_pair(T, S);
1690 }
1691 
1692 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1693   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1694   std::pair<Type, std::string> B =
1695       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1696   assert_with_loc(B.first.isScalar(),
1697                   "dup_typed() requires a scalar as the second argument");
1698   Type T;
1699   // If the type argument is a constant string, construct the type directly.
1700   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1701     T = Type::fromTypedefName(SI->getAsUnquotedString());
1702     assert_with_loc(!T.isVoid(), "Unknown typedef");
1703   } else
1704     T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1705 
1706   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1707   std::string S = "(" + T.str() + ") {";
1708   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1709     if (I != 0)
1710       S += ", ";
1711     S += B.second;
1712   }
1713   S += "}";
1714 
1715   return std::make_pair(T, S);
1716 }
1717 
1718 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1719   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1720   std::pair<Type, std::string> A =
1721       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1722   std::pair<Type, std::string> B =
1723       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1724 
1725   assert_with_loc(B.first.isScalar(),
1726                   "splat() requires a scalar int as the second argument");
1727 
1728   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1729   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1730     S += ", " + B.second;
1731   }
1732   S += ")";
1733 
1734   return std::make_pair(Intr.getBaseType(), S);
1735 }
1736 
1737 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1738   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1739   std::pair<Type, std::string> A =
1740       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1741 
1742   assert_with_loc(!A.first.isVoid(),
1743                   "Argument to save_temp() must have non-void type!");
1744 
1745   std::string N = std::string(DI->getArgNameStr(0));
1746   assert_with_loc(!N.empty(),
1747                   "save_temp() expects a name as the first argument");
1748 
1749   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1750                   "Variable already defined!");
1751   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1752 
1753   std::string S =
1754       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1755 
1756   return std::make_pair(Type::getVoid(), S);
1757 }
1758 
1759 std::pair<Type, std::string>
1760 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1761   std::string S = Intr.Name;
1762 
1763   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1764   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1765   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1766 
1767   size_t Idx = S.find(ToReplace);
1768 
1769   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1770   S.replace(Idx, ToReplace.size(), ReplaceWith);
1771 
1772   return std::make_pair(Type::getVoid(), S);
1773 }
1774 
1775 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1776   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1777   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1778   return std::make_pair(Type::fromTypedefName(Ty), Value);
1779 }
1780 
1781 std::pair<Type, std::string>
1782 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1783   if (!ArgName.empty()) {
1784     assert_with_loc(!Arg->isComplete(),
1785                     "Arguments must either be DAGs or names, not both!");
1786     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1787                     "Variable not defined!");
1788     Variable &V = Intr.Variables[ArgName];
1789     return std::make_pair(V.getType(), V.getName());
1790   }
1791 
1792   assert(Arg && "Neither ArgName nor Arg?!");
1793   DagInit *DI = dyn_cast<DagInit>(Arg);
1794   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1795 
1796   return emitDag(DI);
1797 }
1798 
1799 std::string Intrinsic::generate() {
1800   // Avoid duplicated code for big and little endian
1801   if (isBigEndianSafe()) {
1802     generateImpl(false, "", "");
1803     return OS.str();
1804   }
1805   // Little endian intrinsics are simple and don't require any argument
1806   // swapping.
1807   OS << "#ifdef __LITTLE_ENDIAN__\n";
1808 
1809   generateImpl(false, "", "");
1810 
1811   OS << "#else\n";
1812 
1813   // Big endian intrinsics are more complex. The user intended these
1814   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1815   // but we load as-if (V)LD1. So we should swap all arguments and
1816   // swap the return value too.
1817   //
1818   // If we call sub-intrinsics, we should call a version that does
1819   // not re-swap the arguments!
1820   generateImpl(true, "", "__noswap_");
1821 
1822   // If we're needed early, create a non-swapping variant for
1823   // big-endian.
1824   if (NeededEarly) {
1825     generateImpl(false, "__noswap_", "__noswap_");
1826   }
1827   OS << "#endif\n\n";
1828 
1829   return OS.str();
1830 }
1831 
1832 void Intrinsic::generateImpl(bool ReverseArguments,
1833                              StringRef NamePrefix, StringRef CallPrefix) {
1834   CurrentRecord = R;
1835 
1836   // If we call a macro, our local variables may be corrupted due to
1837   // lack of proper lexical scoping. So, add a globally unique postfix
1838   // to every variable.
1839   //
1840   // indexBody() should have set up the Dependencies set by now.
1841   for (auto *I : Dependencies)
1842     if (I->UseMacro) {
1843       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1844       break;
1845     }
1846 
1847   initVariables();
1848 
1849   emitPrototype(NamePrefix);
1850 
1851   if (IsUnavailable) {
1852     OS << " __attribute__((unavailable));";
1853   } else {
1854     emitOpeningBrace();
1855     // Emit return variable declaration first as to not trigger
1856     // -Wdeclaration-after-statement.
1857     emitReturnVarDecl();
1858     emitShadowedArgs();
1859     if (ReverseArguments)
1860       emitArgumentReversal();
1861     emitBody(CallPrefix);
1862     if (ReverseArguments)
1863       emitReturnReversal();
1864     emitReturn();
1865     emitClosingBrace();
1866   }
1867   OS << "\n";
1868 
1869   CurrentRecord = nullptr;
1870 }
1871 
1872 void Intrinsic::indexBody() {
1873   CurrentRecord = R;
1874 
1875   initVariables();
1876   // Emit return variable declaration first as to not trigger
1877   // -Wdeclaration-after-statement.
1878   emitReturnVarDecl();
1879   emitBody("");
1880   OS.str("");
1881 
1882   CurrentRecord = nullptr;
1883 }
1884 
1885 //===----------------------------------------------------------------------===//
1886 // NeonEmitter implementation
1887 //===----------------------------------------------------------------------===//
1888 
1889 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1890                                      Optional<std::string> MangledName) {
1891   // First, look up the name in the intrinsic map.
1892   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1893                   ("Intrinsic '" + Name + "' not found!").str());
1894   auto &V = IntrinsicMap.find(Name.str())->second;
1895   std::vector<Intrinsic *> GoodVec;
1896 
1897   // Create a string to print if we end up failing.
1898   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1899   for (unsigned I = 0; I < Types.size(); ++I) {
1900     if (I != 0)
1901       ErrMsg += ", ";
1902     ErrMsg += Types[I].str();
1903   }
1904   ErrMsg += ")'\n";
1905   ErrMsg += "Available overloads:\n";
1906 
1907   // Now, look through each intrinsic implementation and see if the types are
1908   // compatible.
1909   for (auto &I : V) {
1910     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1911     ErrMsg += "(";
1912     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1913       if (A != 0)
1914         ErrMsg += ", ";
1915       ErrMsg += I.getParamType(A).str();
1916     }
1917     ErrMsg += ")\n";
1918 
1919     if (MangledName && MangledName != I.getMangledName(true))
1920       continue;
1921 
1922     if (I.getNumParams() != Types.size())
1923       continue;
1924 
1925     unsigned ArgNum = 0;
1926     bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1927       return Type == I.getParamType(ArgNum++);
1928     });
1929 
1930     if (MatchingArgumentTypes)
1931       GoodVec.push_back(&I);
1932   }
1933 
1934   assert_with_loc(!GoodVec.empty(),
1935                   "No compatible intrinsic found - " + ErrMsg);
1936   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1937 
1938   return *GoodVec.front();
1939 }
1940 
1941 void NeonEmitter::createIntrinsic(Record *R,
1942                                   SmallVectorImpl<Intrinsic *> &Out) {
1943   std::string Name = std::string(R->getValueAsString("Name"));
1944   std::string Proto = std::string(R->getValueAsString("Prototype"));
1945   std::string Types = std::string(R->getValueAsString("Types"));
1946   Record *OperationRec = R->getValueAsDef("Operation");
1947   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1948   std::string Guard = std::string(R->getValueAsString("ArchGuard"));
1949   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1950   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1951 
1952   // Set the global current record. This allows assert_with_loc to produce
1953   // decent location information even when highly nested.
1954   CurrentRecord = R;
1955 
1956   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1957 
1958   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1959 
1960   ClassKind CK = ClassNone;
1961   if (R->getSuperClasses().size() >= 2)
1962     CK = ClassMap[R->getSuperClasses()[1].first];
1963 
1964   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1965   if (!CartesianProductWith.empty()) {
1966     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1967     for (auto TS : TypeSpecs) {
1968       Type DefaultT(TS, ".");
1969       for (auto SrcTS : ProductTypeSpecs) {
1970         Type DefaultSrcT(SrcTS, ".");
1971         if (TS == SrcTS ||
1972             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1973           continue;
1974         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1975       }
1976     }
1977   } else {
1978     for (auto TS : TypeSpecs) {
1979       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1980     }
1981   }
1982 
1983   llvm::sort(NewTypeSpecs);
1984   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1985 		     NewTypeSpecs.end());
1986   auto &Entry = IntrinsicMap[Name];
1987 
1988   for (auto &I : NewTypeSpecs) {
1989     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
1990                        Guard, IsUnavailable, BigEndianSafe);
1991     Out.push_back(&Entry.back());
1992   }
1993 
1994   CurrentRecord = nullptr;
1995 }
1996 
1997 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1998 /// declaration of builtins, checking for unique builtin declarations.
1999 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2000                                  SmallVectorImpl<Intrinsic *> &Defs) {
2001   OS << "#ifdef GET_NEON_BUILTINS\n";
2002 
2003   // We only want to emit a builtin once, and we want to emit them in
2004   // alphabetical order, so use a std::set.
2005   std::set<std::string> Builtins;
2006 
2007   for (auto *Def : Defs) {
2008     if (Def->hasBody())
2009       continue;
2010 
2011     std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
2012 
2013     S += Def->getBuiltinTypeStr();
2014     S += "\", \"n\")";
2015 
2016     Builtins.insert(S);
2017   }
2018 
2019   for (auto &S : Builtins)
2020     OS << S << "\n";
2021   OS << "#endif\n\n";
2022 }
2023 
2024 /// Generate the ARM and AArch64 overloaded type checking code for
2025 /// SemaChecking.cpp, checking for unique builtin declarations.
2026 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2027                                            SmallVectorImpl<Intrinsic *> &Defs) {
2028   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2029 
2030   // We record each overload check line before emitting because subsequent Inst
2031   // definitions may extend the number of permitted types (i.e. augment the
2032   // Mask). Use std::map to avoid sorting the table by hash number.
2033   struct OverloadInfo {
2034     uint64_t Mask;
2035     int PtrArgNum;
2036     bool HasConstPtr;
2037     OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
2038   };
2039   std::map<std::string, OverloadInfo> OverloadMap;
2040 
2041   for (auto *Def : Defs) {
2042     // If the def has a body (that is, it has Operation DAGs), it won't call
2043     // __builtin_neon_* so we don't need to generate a definition for it.
2044     if (Def->hasBody())
2045       continue;
2046     // Functions which have a scalar argument cannot be overloaded, no need to
2047     // check them if we are emitting the type checking code.
2048     if (Def->protoHasScalar())
2049       continue;
2050 
2051     uint64_t Mask = 0ULL;
2052     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2053 
2054     // Check if the function has a pointer or const pointer argument.
2055     int PtrArgNum = -1;
2056     bool HasConstPtr = false;
2057     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2058       const auto &Type = Def->getParamType(I);
2059       if (Type.isPointer()) {
2060         PtrArgNum = I;
2061         HasConstPtr = Type.isConstPointer();
2062       }
2063     }
2064 
2065     // For sret builtins, adjust the pointer argument index.
2066     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2067       PtrArgNum += 1;
2068 
2069     std::string Name = Def->getName();
2070     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2071     // and vst1_lane intrinsics.  Using a pointer to the vector element
2072     // type with one of those operations causes codegen to select an aligned
2073     // load/store instruction.  If you want an unaligned operation,
2074     // the pointer argument needs to have less alignment than element type,
2075     // so just accept any pointer type.
2076     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2077       PtrArgNum = -1;
2078       HasConstPtr = false;
2079     }
2080 
2081     if (Mask) {
2082       std::string Name = Def->getMangledName();
2083       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2084       OverloadInfo &OI = OverloadMap[Name];
2085       OI.Mask |= Mask;
2086       OI.PtrArgNum |= PtrArgNum;
2087       OI.HasConstPtr = HasConstPtr;
2088     }
2089   }
2090 
2091   for (auto &I : OverloadMap) {
2092     OverloadInfo &OI = I.second;
2093 
2094     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2095     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2096     if (OI.PtrArgNum >= 0)
2097       OS << "; PtrArgNum = " << OI.PtrArgNum;
2098     if (OI.HasConstPtr)
2099       OS << "; HasConstPtr = true";
2100     OS << "; break;\n";
2101   }
2102   OS << "#endif\n\n";
2103 }
2104 
2105 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2106                                         SmallVectorImpl<Intrinsic *> &Defs) {
2107   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2108 
2109   std::set<std::string> Emitted;
2110 
2111   for (auto *Def : Defs) {
2112     if (Def->hasBody())
2113       continue;
2114     // Functions which do not have an immediate do not need to have range
2115     // checking code emitted.
2116     if (!Def->hasImmediate())
2117       continue;
2118     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2119       continue;
2120 
2121     std::string LowerBound, UpperBound;
2122 
2123     Record *R = Def->getRecord();
2124     if (R->getValueAsBit("isVXAR")) {
2125       //VXAR takes an immediate in the range [0, 63]
2126       LowerBound = "0";
2127       UpperBound = "63";
2128     } else if (R->getValueAsBit("isVCVT_N")) {
2129       // VCVT between floating- and fixed-point values takes an immediate
2130       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2131       LowerBound = "1";
2132 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2133 		  Def->getName().find('h') != std::string::npos)
2134 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2135 		UpperBound = "15";
2136 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2137         UpperBound = "31";
2138 	  else
2139         UpperBound = "63";
2140     } else if (R->getValueAsBit("isScalarShift")) {
2141       // Right shifts have an 'r' in the name, left shifts do not. Convert
2142       // instructions have the same bounds and right shifts.
2143       if (Def->getName().find('r') != std::string::npos ||
2144           Def->getName().find("cvt") != std::string::npos)
2145         LowerBound = "1";
2146 
2147       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2148     } else if (R->getValueAsBit("isShift")) {
2149       // Builtins which are overloaded by type will need to have their upper
2150       // bound computed at Sema time based on the type constant.
2151 
2152       // Right shifts have an 'r' in the name, left shifts do not.
2153       if (Def->getName().find('r') != std::string::npos)
2154         LowerBound = "1";
2155       UpperBound = "RFT(TV, true)";
2156     } else if (Def->getClassKind(true) == ClassB) {
2157       // ClassB intrinsics have a type (and hence lane number) that is only
2158       // known at runtime.
2159       if (R->getValueAsBit("isLaneQ"))
2160         UpperBound = "RFT(TV, false, true)";
2161       else
2162         UpperBound = "RFT(TV, false, false)";
2163     } else {
2164       // The immediate generally refers to a lane in the preceding argument.
2165       assert(Def->getImmediateIdx() > 0);
2166       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2167       UpperBound = utostr(T.getNumElements() - 1);
2168     }
2169 
2170     // Calculate the index of the immediate that should be range checked.
2171     unsigned Idx = Def->getNumParams();
2172     if (Def->hasImmediate())
2173       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2174 
2175     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2176        << "i = " << Idx << ";";
2177     if (!LowerBound.empty())
2178       OS << " l = " << LowerBound << ";";
2179     if (!UpperBound.empty())
2180       OS << " u = " << UpperBound << ";";
2181     OS << " break;\n";
2182 
2183     Emitted.insert(Def->getMangledName());
2184   }
2185 
2186   OS << "#endif\n\n";
2187 }
2188 
2189 /// runHeader - Emit a file with sections defining:
2190 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2191 /// 2. the SemaChecking code for the type overload checking.
2192 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2193 void NeonEmitter::runHeader(raw_ostream &OS) {
2194   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2195 
2196   SmallVector<Intrinsic *, 128> Defs;
2197   for (auto *R : RV)
2198     createIntrinsic(R, Defs);
2199 
2200   // Generate shared BuiltinsXXX.def
2201   genBuiltinsDef(OS, Defs);
2202 
2203   // Generate ARM overloaded type checking code for SemaChecking.cpp
2204   genOverloadTypeCheckCode(OS, Defs);
2205 
2206   // Generate ARM range checking code for shift/lane immediates.
2207   genIntrinsicRangeCheckCode(OS, Defs);
2208 }
2209 
2210 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2211   std::string TypedefTypes(types);
2212   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2213 
2214   // Emit vector typedefs.
2215   bool InIfdef = false;
2216   for (auto &TS : TDTypeVec) {
2217     bool IsA64 = false;
2218     Type T(TS, ".");
2219     if (T.isDouble())
2220       IsA64 = true;
2221 
2222     if (InIfdef && !IsA64) {
2223       OS << "#endif\n";
2224       InIfdef = false;
2225     }
2226     if (!InIfdef && IsA64) {
2227       OS << "#ifdef __aarch64__\n";
2228       InIfdef = true;
2229     }
2230 
2231     if (T.isPoly())
2232       OS << "typedef __attribute__((neon_polyvector_type(";
2233     else
2234       OS << "typedef __attribute__((neon_vector_type(";
2235 
2236     Type T2 = T;
2237     T2.makeScalar();
2238     OS << T.getNumElements() << "))) ";
2239     OS << T2.str();
2240     OS << " " << T.str() << ";\n";
2241   }
2242   if (InIfdef)
2243     OS << "#endif\n";
2244   OS << "\n";
2245 
2246   // Emit struct typedefs.
2247   InIfdef = false;
2248   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2249     for (auto &TS : TDTypeVec) {
2250       bool IsA64 = false;
2251       Type T(TS, ".");
2252       if (T.isDouble())
2253         IsA64 = true;
2254 
2255       if (InIfdef && !IsA64) {
2256         OS << "#endif\n";
2257         InIfdef = false;
2258       }
2259       if (!InIfdef && IsA64) {
2260         OS << "#ifdef __aarch64__\n";
2261         InIfdef = true;
2262       }
2263 
2264       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2265       Type VT(TS, Mods);
2266       OS << "typedef struct " << VT.str() << " {\n";
2267       OS << "  " << T.str() << " val";
2268       OS << "[" << NumMembers << "]";
2269       OS << ";\n} ";
2270       OS << VT.str() << ";\n";
2271       OS << "\n";
2272     }
2273   }
2274   if (InIfdef)
2275     OS << "#endif\n";
2276 }
2277 
2278 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2279 /// is comprised of type definitions and function declarations.
2280 void NeonEmitter::run(raw_ostream &OS) {
2281   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2282         "------------------------------"
2283         "---===\n"
2284         " *\n"
2285         " * Permission is hereby granted, free of charge, to any person "
2286         "obtaining "
2287         "a copy\n"
2288         " * of this software and associated documentation files (the "
2289         "\"Software\"),"
2290         " to deal\n"
2291         " * in the Software without restriction, including without limitation "
2292         "the "
2293         "rights\n"
2294         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2295         "and/or sell\n"
2296         " * copies of the Software, and to permit persons to whom the Software "
2297         "is\n"
2298         " * furnished to do so, subject to the following conditions:\n"
2299         " *\n"
2300         " * The above copyright notice and this permission notice shall be "
2301         "included in\n"
2302         " * all copies or substantial portions of the Software.\n"
2303         " *\n"
2304         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2305         "EXPRESS OR\n"
2306         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2307         "MERCHANTABILITY,\n"
2308         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2309         "SHALL THE\n"
2310         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2311         "OTHER\n"
2312         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2313         "ARISING FROM,\n"
2314         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2315         "DEALINGS IN\n"
2316         " * THE SOFTWARE.\n"
2317         " *\n"
2318         " *===-----------------------------------------------------------------"
2319         "---"
2320         "---===\n"
2321         " */\n\n";
2322 
2323   OS << "#ifndef __ARM_NEON_H\n";
2324   OS << "#define __ARM_NEON_H\n\n";
2325 
2326   OS << "#ifndef __ARM_FP\n";
2327   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2328         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2329   OS << "#else\n\n";
2330 
2331   OS << "#if !defined(__ARM_NEON)\n";
2332   OS << "#error \"NEON support not enabled\"\n";
2333   OS << "#else\n\n";
2334 
2335   OS << "#include <stdint.h>\n\n";
2336 
2337   OS << "#ifdef __ARM_FEATURE_BF16\n";
2338   OS << "#include <arm_bf16.h>\n";
2339   OS << "typedef __bf16 bfloat16_t;\n";
2340   OS << "#endif\n\n";
2341 
2342   // Emit NEON-specific scalar typedefs.
2343   OS << "typedef float float32_t;\n";
2344   OS << "typedef __fp16 float16_t;\n";
2345 
2346   OS << "#ifdef __aarch64__\n";
2347   OS << "typedef double float64_t;\n";
2348   OS << "#endif\n\n";
2349 
2350   // For now, signedness of polynomial types depends on target
2351   OS << "#ifdef __aarch64__\n";
2352   OS << "typedef uint8_t poly8_t;\n";
2353   OS << "typedef uint16_t poly16_t;\n";
2354   OS << "typedef uint64_t poly64_t;\n";
2355   OS << "typedef __uint128_t poly128_t;\n";
2356   OS << "#else\n";
2357   OS << "typedef int8_t poly8_t;\n";
2358   OS << "typedef int16_t poly16_t;\n";
2359   OS << "typedef int64_t poly64_t;\n";
2360   OS << "#endif\n";
2361 
2362   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl", OS);
2363 
2364   OS << "#ifdef __ARM_FEATURE_BF16\n";
2365   emitNeonTypeDefs("bQb", OS);
2366   OS << "#endif\n\n";
2367 
2368   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2369         "__nodebug__))\n\n";
2370 
2371   SmallVector<Intrinsic *, 128> Defs;
2372   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2373   for (auto *R : RV)
2374     createIntrinsic(R, Defs);
2375 
2376   for (auto *I : Defs)
2377     I->indexBody();
2378 
2379   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2380 
2381   // Only emit a def when its requirements have been met.
2382   // FIXME: This loop could be made faster, but it's fast enough for now.
2383   bool MadeProgress = true;
2384   std::string InGuard;
2385   while (!Defs.empty() && MadeProgress) {
2386     MadeProgress = false;
2387 
2388     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2389          I != Defs.end(); /*No step*/) {
2390       bool DependenciesSatisfied = true;
2391       for (auto *II : (*I)->getDependencies()) {
2392         if (llvm::is_contained(Defs, II))
2393           DependenciesSatisfied = false;
2394       }
2395       if (!DependenciesSatisfied) {
2396         // Try the next one.
2397         ++I;
2398         continue;
2399       }
2400 
2401       // Emit #endif/#if pair if needed.
2402       if ((*I)->getGuard() != InGuard) {
2403         if (!InGuard.empty())
2404           OS << "#endif\n";
2405         InGuard = (*I)->getGuard();
2406         if (!InGuard.empty())
2407           OS << "#if " << InGuard << "\n";
2408       }
2409 
2410       // Actually generate the intrinsic code.
2411       OS << (*I)->generate();
2412 
2413       MadeProgress = true;
2414       I = Defs.erase(I);
2415     }
2416   }
2417   assert(Defs.empty() && "Some requirements were not satisfied!");
2418   if (!InGuard.empty())
2419     OS << "#endif\n";
2420 
2421   OS << "\n";
2422   OS << "#undef __ai\n\n";
2423   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2424   OS << "#endif /* ifndef __ARM_FP */\n";
2425   OS << "#endif /* __ARM_NEON_H */\n";
2426 }
2427 
2428 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2429 /// is comprised of type definitions and function declarations.
2430 void NeonEmitter::runFP16(raw_ostream &OS) {
2431   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2432         "------------------------------"
2433         "---===\n"
2434         " *\n"
2435         " * Permission is hereby granted, free of charge, to any person "
2436         "obtaining a copy\n"
2437         " * of this software and associated documentation files (the "
2438 				"\"Software\"), to deal\n"
2439         " * in the Software without restriction, including without limitation "
2440 				"the rights\n"
2441         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2442 				"and/or sell\n"
2443         " * copies of the Software, and to permit persons to whom the Software "
2444 				"is\n"
2445         " * furnished to do so, subject to the following conditions:\n"
2446         " *\n"
2447         " * The above copyright notice and this permission notice shall be "
2448         "included in\n"
2449         " * all copies or substantial portions of the Software.\n"
2450         " *\n"
2451         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2452         "EXPRESS OR\n"
2453         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2454         "MERCHANTABILITY,\n"
2455         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2456         "SHALL THE\n"
2457         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2458         "OTHER\n"
2459         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2460         "ARISING FROM,\n"
2461         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2462         "DEALINGS IN\n"
2463         " * THE SOFTWARE.\n"
2464         " *\n"
2465         " *===-----------------------------------------------------------------"
2466         "---"
2467         "---===\n"
2468         " */\n\n";
2469 
2470   OS << "#ifndef __ARM_FP16_H\n";
2471   OS << "#define __ARM_FP16_H\n\n";
2472 
2473   OS << "#include <stdint.h>\n\n";
2474 
2475   OS << "typedef __fp16 float16_t;\n";
2476 
2477   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2478         "__nodebug__))\n\n";
2479 
2480   SmallVector<Intrinsic *, 128> Defs;
2481   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2482   for (auto *R : RV)
2483     createIntrinsic(R, Defs);
2484 
2485   for (auto *I : Defs)
2486     I->indexBody();
2487 
2488   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2489 
2490   // Only emit a def when its requirements have been met.
2491   // FIXME: This loop could be made faster, but it's fast enough for now.
2492   bool MadeProgress = true;
2493   std::string InGuard;
2494   while (!Defs.empty() && MadeProgress) {
2495     MadeProgress = false;
2496 
2497     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2498          I != Defs.end(); /*No step*/) {
2499       bool DependenciesSatisfied = true;
2500       for (auto *II : (*I)->getDependencies()) {
2501         if (llvm::is_contained(Defs, II))
2502           DependenciesSatisfied = false;
2503       }
2504       if (!DependenciesSatisfied) {
2505         // Try the next one.
2506         ++I;
2507         continue;
2508       }
2509 
2510       // Emit #endif/#if pair if needed.
2511       if ((*I)->getGuard() != InGuard) {
2512         if (!InGuard.empty())
2513           OS << "#endif\n";
2514         InGuard = (*I)->getGuard();
2515         if (!InGuard.empty())
2516           OS << "#if " << InGuard << "\n";
2517       }
2518 
2519       // Actually generate the intrinsic code.
2520       OS << (*I)->generate();
2521 
2522       MadeProgress = true;
2523       I = Defs.erase(I);
2524     }
2525   }
2526   assert(Defs.empty() && "Some requirements were not satisfied!");
2527   if (!InGuard.empty())
2528     OS << "#endif\n";
2529 
2530   OS << "\n";
2531   OS << "#undef __ai\n\n";
2532   OS << "#endif /* __ARM_FP16_H */\n";
2533 }
2534 
2535 void NeonEmitter::runBF16(raw_ostream &OS) {
2536   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2537         "-----------------------------------===\n"
2538         " *\n"
2539         " *\n"
2540         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2541         "Exceptions.\n"
2542         " * See https://llvm.org/LICENSE.txt for license information.\n"
2543         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2544         " *\n"
2545         " *===-----------------------------------------------------------------"
2546         "------===\n"
2547         " */\n\n";
2548 
2549   OS << "#ifndef __ARM_BF16_H\n";
2550   OS << "#define __ARM_BF16_H\n\n";
2551 
2552   OS << "typedef __bf16 bfloat16_t;\n";
2553 
2554   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2555         "__nodebug__))\n\n";
2556 
2557   SmallVector<Intrinsic *, 128> Defs;
2558   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2559   for (auto *R : RV)
2560     createIntrinsic(R, Defs);
2561 
2562   for (auto *I : Defs)
2563     I->indexBody();
2564 
2565   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2566 
2567   // Only emit a def when its requirements have been met.
2568   // FIXME: This loop could be made faster, but it's fast enough for now.
2569   bool MadeProgress = true;
2570   std::string InGuard;
2571   while (!Defs.empty() && MadeProgress) {
2572     MadeProgress = false;
2573 
2574     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2575          I != Defs.end(); /*No step*/) {
2576       bool DependenciesSatisfied = true;
2577       for (auto *II : (*I)->getDependencies()) {
2578         if (llvm::is_contained(Defs, II))
2579           DependenciesSatisfied = false;
2580       }
2581       if (!DependenciesSatisfied) {
2582         // Try the next one.
2583         ++I;
2584         continue;
2585       }
2586 
2587       // Emit #endif/#if pair if needed.
2588       if ((*I)->getGuard() != InGuard) {
2589         if (!InGuard.empty())
2590           OS << "#endif\n";
2591         InGuard = (*I)->getGuard();
2592         if (!InGuard.empty())
2593           OS << "#if " << InGuard << "\n";
2594       }
2595 
2596       // Actually generate the intrinsic code.
2597       OS << (*I)->generate();
2598 
2599       MadeProgress = true;
2600       I = Defs.erase(I);
2601     }
2602   }
2603   assert(Defs.empty() && "Some requirements were not satisfied!");
2604   if (!InGuard.empty())
2605     OS << "#endif\n";
2606 
2607   OS << "\n";
2608   OS << "#undef __ai\n\n";
2609 
2610   OS << "#endif\n";
2611 }
2612 
2613 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2614   NeonEmitter(Records).run(OS);
2615 }
2616 
2617 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2618   NeonEmitter(Records).runFP16(OS);
2619 }
2620 
2621 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2622   NeonEmitter(Records).runBF16(OS);
2623 }
2624 
2625 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2626   NeonEmitter(Records).runHeader(OS);
2627 }
2628 
2629 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2630   llvm_unreachable("Neon test generation no longer implemented!");
2631 }
2632