1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend is responsible for emitting arm_neon.h, which includes
10 // a declaration and definition of each function specified by the ARM NEON
11 // compiler interface.  See ARM document DUI0348B.
12 //
13 // Each NEON instruction is implemented in terms of 1 or more functions which
14 // are suffixed with the element type of the input vectors.  Functions may be
15 // implemented in terms of generic vector operations such as +, *, -, etc. or
16 // by calling a __builtin_-prefixed function which will be handled by clang's
17 // CodeGen library.
18 //
19 // Additional validation code can be generated by this file when runHeader() is
20 // called, rather than the normal run() entry point.
21 //
22 // See also the documentation in include/clang/Basic/arm_neon.td.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "TableGenBackends.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/TableGen/Error.h"
37 #include "llvm/TableGen/Record.h"
38 #include "llvm/TableGen/SetTheory.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cctype>
42 #include <cstddef>
43 #include <cstdint>
44 #include <deque>
45 #include <map>
46 #include <optional>
47 #include <set>
48 #include <sstream>
49 #include <string>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 // While globals are generally bad, this one allows us to perform assertions
58 // liberally and somehow still trace them back to the def they indirectly
59 // came from.
60 static Record *CurrentRecord = nullptr;
61 static void assert_with_loc(bool Assertion, const std::string &Str) {
62   if (!Assertion) {
63     if (CurrentRecord)
64       PrintFatalError(CurrentRecord->getLoc(), Str);
65     else
66       PrintFatalError(Str);
67   }
68 }
69 
70 enum ClassKind {
71   ClassNone,
72   ClassI,     // generic integer instruction, e.g., "i8" suffix
73   ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
74   ClassW,     // width-specific instruction, e.g., "8" suffix
75   ClassB,     // bitcast arguments with enum argument to specify type
76   ClassL,     // Logical instructions which are op instructions
77               // but we need to not emit any suffix for in our
78               // tests.
79   ClassNoTest // Instructions which we do not test since they are
80               // not TRUE instructions.
81 };
82 
83 /// NeonTypeFlags - Flags to identify the types for overloaded Neon
84 /// builtins.  These must be kept in sync with the flags in
85 /// include/clang/Basic/TargetBuiltins.h.
86 namespace NeonTypeFlags {
87 
88 enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
89 
90 enum EltType {
91   Int8,
92   Int16,
93   Int32,
94   Int64,
95   Poly8,
96   Poly16,
97   Poly64,
98   Poly128,
99   Float16,
100   Float32,
101   Float64,
102   BFloat16
103 };
104 
105 } // end namespace NeonTypeFlags
106 
107 class NeonEmitter;
108 
109 //===----------------------------------------------------------------------===//
110 // TypeSpec
111 //===----------------------------------------------------------------------===//
112 
113 /// A TypeSpec is just a simple wrapper around a string, but gets its own type
114 /// for strong typing purposes.
115 ///
116 /// A TypeSpec can be used to create a type.
117 class TypeSpec : public std::string {
118 public:
119   static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
120     std::vector<TypeSpec> Ret;
121     TypeSpec Acc;
122     for (char I : Str.str()) {
123       if (islower(I)) {
124         Acc.push_back(I);
125         Ret.push_back(TypeSpec(Acc));
126         Acc.clear();
127       } else {
128         Acc.push_back(I);
129       }
130     }
131     return Ret;
132   }
133 };
134 
135 //===----------------------------------------------------------------------===//
136 // Type
137 //===----------------------------------------------------------------------===//
138 
139 /// A Type. Not much more to say here.
140 class Type {
141 private:
142   TypeSpec TS;
143 
144   enum TypeKind {
145     Void,
146     Float,
147     SInt,
148     UInt,
149     Poly,
150     BFloat16,
151   };
152   TypeKind Kind;
153   bool Immediate, Constant, Pointer;
154   // ScalarForMangling and NoManglingQ are really not suited to live here as
155   // they are not related to the type. But they live in the TypeSpec (not the
156   // prototype), so this is really the only place to store them.
157   bool ScalarForMangling, NoManglingQ;
158   unsigned Bitwidth, ElementBitwidth, NumVectors;
159 
160 public:
161   Type()
162       : Kind(Void), Immediate(false), Constant(false),
163         Pointer(false), ScalarForMangling(false), NoManglingQ(false),
164         Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
165 
166   Type(TypeSpec TS, StringRef CharMods)
167       : TS(std::move(TS)), Kind(Void), Immediate(false),
168         Constant(false), Pointer(false), ScalarForMangling(false),
169         NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
170     applyModifiers(CharMods);
171   }
172 
173   /// Returns a type representing "void".
174   static Type getVoid() { return Type(); }
175 
176   bool operator==(const Type &Other) const { return str() == Other.str(); }
177   bool operator!=(const Type &Other) const { return !operator==(Other); }
178 
179   //
180   // Query functions
181   //
182   bool isScalarForMangling() const { return ScalarForMangling; }
183   bool noManglingQ() const { return NoManglingQ; }
184 
185   bool isPointer() const { return Pointer; }
186   bool isValue() const { return !isVoid() && !isPointer(); }
187   bool isScalar() const { return isValue() && NumVectors == 0; }
188   bool isVector() const { return isValue() && NumVectors > 0; }
189   bool isConstPointer() const { return Constant; }
190   bool isFloating() const { return Kind == Float; }
191   bool isInteger() const { return Kind == SInt || Kind == UInt; }
192   bool isPoly() const { return Kind == Poly; }
193   bool isSigned() const { return Kind == SInt; }
194   bool isImmediate() const { return Immediate; }
195   bool isFloat() const { return isFloating() && ElementBitwidth == 32; }
196   bool isDouble() const { return isFloating() && ElementBitwidth == 64; }
197   bool isHalf() const { return isFloating() && ElementBitwidth == 16; }
198   bool isChar() const { return ElementBitwidth == 8; }
199   bool isShort() const { return isInteger() && ElementBitwidth == 16; }
200   bool isInt() const { return isInteger() && ElementBitwidth == 32; }
201   bool isLong() const { return isInteger() && ElementBitwidth == 64; }
202   bool isVoid() const { return Kind == Void; }
203   bool isBFloat16() const { return Kind == BFloat16; }
204   unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
205   unsigned getSizeInBits() const { return Bitwidth; }
206   unsigned getElementSizeInBits() const { return ElementBitwidth; }
207   unsigned getNumVectors() const { return NumVectors; }
208 
209   //
210   // Mutator functions
211   //
212   void makeUnsigned() {
213     assert(!isVoid() && "not a potentially signed type");
214     Kind = UInt;
215   }
216   void makeSigned() {
217     assert(!isVoid() && "not a potentially signed type");
218     Kind = SInt;
219   }
220 
221   void makeInteger(unsigned ElemWidth, bool Sign) {
222     assert(!isVoid() && "converting void to int probably not useful");
223     Kind = Sign ? SInt : UInt;
224     Immediate = false;
225     ElementBitwidth = ElemWidth;
226   }
227 
228   void makeImmediate(unsigned ElemWidth) {
229     Kind = SInt;
230     Immediate = true;
231     ElementBitwidth = ElemWidth;
232   }
233 
234   void makeScalar() {
235     Bitwidth = ElementBitwidth;
236     NumVectors = 0;
237   }
238 
239   void makeOneVector() {
240     assert(isVector());
241     NumVectors = 1;
242   }
243 
244   void make32BitElement() {
245     assert_with_loc(Bitwidth > 32, "Not enough bits to make it 32!");
246     ElementBitwidth = 32;
247   }
248 
249   void doubleLanes() {
250     assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
251     Bitwidth = 128;
252   }
253 
254   void halveLanes() {
255     assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
256     Bitwidth = 64;
257   }
258 
259   /// Return the C string representation of a type, which is the typename
260   /// defined in stdint.h or arm_neon.h.
261   std::string str() const;
262 
263   /// Return the string representation of a type, which is an encoded
264   /// string for passing to the BUILTIN() macro in Builtins.def.
265   std::string builtin_str() const;
266 
267   /// Return the value in NeonTypeFlags for this type.
268   unsigned getNeonEnum() const;
269 
270   /// Parse a type from a stdint.h or arm_neon.h typedef name,
271   /// for example uint32x2_t or int64_t.
272   static Type fromTypedefName(StringRef Name);
273 
274 private:
275   /// Creates the type based on the typespec string in TS.
276   /// Sets "Quad" to true if the "Q" or "H" modifiers were
277   /// seen. This is needed by applyModifier as some modifiers
278   /// only take effect if the type size was changed by "Q" or "H".
279   void applyTypespec(bool &Quad);
280   /// Applies prototype modifiers to the type.
281   void applyModifiers(StringRef Mods);
282 };
283 
284 //===----------------------------------------------------------------------===//
285 // Variable
286 //===----------------------------------------------------------------------===//
287 
288 /// A variable is a simple class that just has a type and a name.
289 class Variable {
290   Type T;
291   std::string N;
292 
293 public:
294   Variable() : T(Type::getVoid()) {}
295   Variable(Type T, std::string N) : T(std::move(T)), N(std::move(N)) {}
296 
297   Type getType() const { return T; }
298   std::string getName() const { return "__" + N; }
299 };
300 
301 //===----------------------------------------------------------------------===//
302 // Intrinsic
303 //===----------------------------------------------------------------------===//
304 
305 /// The main grunt class. This represents an instantiation of an intrinsic with
306 /// a particular typespec and prototype.
307 class Intrinsic {
308   /// The Record this intrinsic was created from.
309   Record *R;
310   /// The unmangled name.
311   std::string Name;
312   /// The input and output typespecs. InTS == OutTS except when
313   /// CartesianProductWith is non-empty - this is the case for vreinterpret.
314   TypeSpec OutTS, InTS;
315   /// The base class kind. Most intrinsics use ClassS, which has full type
316   /// info for integers (s32/u32). Some use ClassI, which doesn't care about
317   /// signedness (i32), while some (ClassB) have no type at all, only a width
318   /// (32).
319   ClassKind CK;
320   /// The list of DAGs for the body. May be empty, in which case we should
321   /// emit a builtin call.
322   ListInit *Body;
323   /// The architectural ifdef guard.
324   std::string ArchGuard;
325   /// The architectural target() guard.
326   std::string TargetGuard;
327   /// Set if the Unavailable bit is 1. This means we don't generate a body,
328   /// just an "unavailable" attribute on a declaration.
329   bool IsUnavailable;
330   /// Is this intrinsic safe for big-endian? or does it need its arguments
331   /// reversing?
332   bool BigEndianSafe;
333 
334   /// The types of return value [0] and parameters [1..].
335   std::vector<Type> Types;
336   /// The index of the key type passed to CGBuiltin.cpp for polymorphic calls.
337   int PolymorphicKeyType;
338   /// The local variables defined.
339   std::map<std::string, Variable> Variables;
340   /// NeededEarly - set if any other intrinsic depends on this intrinsic.
341   bool NeededEarly;
342   /// UseMacro - set if we should implement using a macro or unset for a
343   ///            function.
344   bool UseMacro;
345   /// The set of intrinsics that this intrinsic uses/requires.
346   std::set<Intrinsic *> Dependencies;
347   /// The "base type", which is Type('d', OutTS). InBaseType is only
348   /// different if CartesianProductWith is non-empty (for vreinterpret).
349   Type BaseType, InBaseType;
350   /// The return variable.
351   Variable RetVar;
352   /// A postfix to apply to every variable. Defaults to "".
353   std::string VariablePostfix;
354 
355   NeonEmitter &Emitter;
356   std::stringstream OS;
357 
358   bool isBigEndianSafe() const {
359     if (BigEndianSafe)
360       return true;
361 
362     for (const auto &T : Types){
363       if (T.isVector() && T.getNumElements() > 1)
364         return false;
365     }
366     return true;
367   }
368 
369 public:
370   Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
371             TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
372             StringRef ArchGuard, StringRef TargetGuard, bool IsUnavailable, bool BigEndianSafe)
373       : R(R), Name(Name.str()), OutTS(OutTS), InTS(InTS), CK(CK), Body(Body),
374         ArchGuard(ArchGuard.str()), TargetGuard(TargetGuard.str()), IsUnavailable(IsUnavailable),
375         BigEndianSafe(BigEndianSafe), PolymorphicKeyType(0), NeededEarly(false),
376         UseMacro(false), BaseType(OutTS, "."), InBaseType(InTS, "."),
377         Emitter(Emitter) {
378     // Modify the TypeSpec per-argument to get a concrete Type, and create
379     // known variables for each.
380     // Types[0] is the return value.
381     unsigned Pos = 0;
382     Types.emplace_back(OutTS, getNextModifiers(Proto, Pos));
383     StringRef Mods = getNextModifiers(Proto, Pos);
384     while (!Mods.empty()) {
385       Types.emplace_back(InTS, Mods);
386       if (Mods.contains('!'))
387         PolymorphicKeyType = Types.size() - 1;
388 
389       Mods = getNextModifiers(Proto, Pos);
390     }
391 
392     for (const auto &Type : Types) {
393       // If this builtin takes an immediate argument, we need to #define it rather
394       // than use a standard declaration, so that SemaChecking can range check
395       // the immediate passed by the user.
396 
397       // Pointer arguments need to use macros to avoid hiding aligned attributes
398       // from the pointer type.
399 
400       // It is not permitted to pass or return an __fp16 by value, so intrinsics
401       // taking a scalar float16_t must be implemented as macros.
402       if (Type.isImmediate() || Type.isPointer() ||
403           (Type.isScalar() && Type.isHalf()))
404         UseMacro = true;
405     }
406   }
407 
408   /// Get the Record that this intrinsic is based off.
409   Record *getRecord() const { return R; }
410   /// Get the set of Intrinsics that this intrinsic calls.
411   /// this is the set of immediate dependencies, NOT the
412   /// transitive closure.
413   const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
414   /// Get the architectural guard string (#ifdef).
415   std::string getArchGuard() const { return ArchGuard; }
416   std::string getTargetGuard() const { return TargetGuard; }
417   /// Get the non-mangled name.
418   std::string getName() const { return Name; }
419 
420   /// Return true if the intrinsic takes an immediate operand.
421   bool hasImmediate() const {
422     return llvm::any_of(Types, [](const Type &T) { return T.isImmediate(); });
423   }
424 
425   /// Return the parameter index of the immediate operand.
426   unsigned getImmediateIdx() const {
427     for (unsigned Idx = 0; Idx < Types.size(); ++Idx)
428       if (Types[Idx].isImmediate())
429         return Idx - 1;
430     llvm_unreachable("Intrinsic has no immediate");
431   }
432 
433 
434   unsigned getNumParams() const { return Types.size() - 1; }
435   Type getReturnType() const { return Types[0]; }
436   Type getParamType(unsigned I) const { return Types[I + 1]; }
437   Type getBaseType() const { return BaseType; }
438   Type getPolymorphicKeyType() const { return Types[PolymorphicKeyType]; }
439 
440   /// Return true if the prototype has a scalar argument.
441   bool protoHasScalar() const;
442 
443   /// Return the index that parameter PIndex will sit at
444   /// in a generated function call. This is often just PIndex,
445   /// but may not be as things such as multiple-vector operands
446   /// and sret parameters need to be taken into account.
447   unsigned getGeneratedParamIdx(unsigned PIndex) {
448     unsigned Idx = 0;
449     if (getReturnType().getNumVectors() > 1)
450       // Multiple vectors are passed as sret.
451       ++Idx;
452 
453     for (unsigned I = 0; I < PIndex; ++I)
454       Idx += std::max(1U, getParamType(I).getNumVectors());
455 
456     return Idx;
457   }
458 
459   bool hasBody() const { return Body && !Body->getValues().empty(); }
460 
461   void setNeededEarly() { NeededEarly = true; }
462 
463   bool operator<(const Intrinsic &Other) const {
464     // Sort lexicographically on a three-tuple (ArchGuard, TargetGuard, Name)
465     if (ArchGuard != Other.ArchGuard)
466       return ArchGuard < Other.ArchGuard;
467     if (TargetGuard != Other.TargetGuard)
468       return TargetGuard < Other.TargetGuard;
469     return Name < Other.Name;
470   }
471 
472   ClassKind getClassKind(bool UseClassBIfScalar = false) {
473     if (UseClassBIfScalar && !protoHasScalar())
474       return ClassB;
475     return CK;
476   }
477 
478   /// Return the name, mangled with type information.
479   /// If ForceClassS is true, use ClassS (u32/s32) instead
480   /// of the intrinsic's own type class.
481   std::string getMangledName(bool ForceClassS = false) const;
482   /// Return the type code for a builtin function call.
483   std::string getInstTypeCode(Type T, ClassKind CK) const;
484   /// Return the type string for a BUILTIN() macro in Builtins.def.
485   std::string getBuiltinTypeStr();
486 
487   /// Generate the intrinsic, returning code.
488   std::string generate();
489   /// Perform type checking and populate the dependency graph, but
490   /// don't generate code yet.
491   void indexBody();
492 
493 private:
494   StringRef getNextModifiers(StringRef Proto, unsigned &Pos) const;
495 
496   std::string mangleName(std::string Name, ClassKind CK) const;
497 
498   void initVariables();
499   std::string replaceParamsIn(std::string S);
500 
501   void emitBodyAsBuiltinCall();
502 
503   void generateImpl(bool ReverseArguments,
504                     StringRef NamePrefix, StringRef CallPrefix);
505   void emitReturn();
506   void emitBody(StringRef CallPrefix);
507   void emitShadowedArgs();
508   void emitArgumentReversal();
509   void emitReturnVarDecl();
510   void emitReturnReversal();
511   void emitReverseVariable(Variable &Dest, Variable &Src);
512   void emitNewLine();
513   void emitClosingBrace();
514   void emitOpeningBrace();
515   void emitPrototype(StringRef NamePrefix);
516 
517   class DagEmitter {
518     Intrinsic &Intr;
519     StringRef CallPrefix;
520 
521   public:
522     DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
523       Intr(Intr), CallPrefix(CallPrefix) {
524     }
525     std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
526     std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
527     std::pair<Type, std::string> emitDagSplat(DagInit *DI);
528     std::pair<Type, std::string> emitDagDup(DagInit *DI);
529     std::pair<Type, std::string> emitDagDupTyped(DagInit *DI);
530     std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
531     std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
532     std::pair<Type, std::string> emitDagCall(DagInit *DI,
533                                              bool MatchMangledName);
534     std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
535     std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
536     std::pair<Type, std::string> emitDagOp(DagInit *DI);
537     std::pair<Type, std::string> emitDag(DagInit *DI);
538   };
539 };
540 
541 //===----------------------------------------------------------------------===//
542 // NeonEmitter
543 //===----------------------------------------------------------------------===//
544 
545 class NeonEmitter {
546   RecordKeeper &Records;
547   DenseMap<Record *, ClassKind> ClassMap;
548   std::map<std::string, std::deque<Intrinsic>> IntrinsicMap;
549   unsigned UniqueNumber;
550 
551   void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
552   void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
553   void genStreamingSVECompatibleList(raw_ostream &OS,
554                                      SmallVectorImpl<Intrinsic *> &Defs);
555   void genOverloadTypeCheckCode(raw_ostream &OS,
556                                 SmallVectorImpl<Intrinsic *> &Defs);
557   void genIntrinsicRangeCheckCode(raw_ostream &OS,
558                                   SmallVectorImpl<Intrinsic *> &Defs);
559 
560 public:
561   /// Called by Intrinsic - this attempts to get an intrinsic that takes
562   /// the given types as arguments.
563   Intrinsic &getIntrinsic(StringRef Name, ArrayRef<Type> Types,
564                           std::optional<std::string> MangledName);
565 
566   /// Called by Intrinsic - returns a globally-unique number.
567   unsigned getUniqueNumber() { return UniqueNumber++; }
568 
569   NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
570     Record *SI = R.getClass("SInst");
571     Record *II = R.getClass("IInst");
572     Record *WI = R.getClass("WInst");
573     Record *SOpI = R.getClass("SOpInst");
574     Record *IOpI = R.getClass("IOpInst");
575     Record *WOpI = R.getClass("WOpInst");
576     Record *LOpI = R.getClass("LOpInst");
577     Record *NoTestOpI = R.getClass("NoTestOpInst");
578 
579     ClassMap[SI] = ClassS;
580     ClassMap[II] = ClassI;
581     ClassMap[WI] = ClassW;
582     ClassMap[SOpI] = ClassS;
583     ClassMap[IOpI] = ClassI;
584     ClassMap[WOpI] = ClassW;
585     ClassMap[LOpI] = ClassL;
586     ClassMap[NoTestOpI] = ClassNoTest;
587   }
588 
589   // Emit arm_neon.h.inc
590   void run(raw_ostream &o);
591 
592   // Emit arm_fp16.h.inc
593   void runFP16(raw_ostream &o);
594 
595   // Emit arm_bf16.h.inc
596   void runBF16(raw_ostream &o);
597 
598   void runVectorTypes(raw_ostream &o);
599 
600   // Emit all the __builtin prototypes used in arm_neon.h, arm_fp16.h and
601   // arm_bf16.h
602   void runHeader(raw_ostream &o);
603 };
604 
605 } // end anonymous namespace
606 
607 //===----------------------------------------------------------------------===//
608 // Type implementation
609 //===----------------------------------------------------------------------===//
610 
611 std::string Type::str() const {
612   if (isVoid())
613     return "void";
614   std::string S;
615 
616   if (isInteger() && !isSigned())
617     S += "u";
618 
619   if (isPoly())
620     S += "poly";
621   else if (isFloating())
622     S += "float";
623   else if (isBFloat16())
624     S += "bfloat";
625   else
626     S += "int";
627 
628   S += utostr(ElementBitwidth);
629   if (isVector())
630     S += "x" + utostr(getNumElements());
631   if (NumVectors > 1)
632     S += "x" + utostr(NumVectors);
633   S += "_t";
634 
635   if (Constant)
636     S += " const";
637   if (Pointer)
638     S += " *";
639 
640   return S;
641 }
642 
643 std::string Type::builtin_str() const {
644   std::string S;
645   if (isVoid())
646     return "v";
647 
648   if (isPointer()) {
649     // All pointers are void pointers.
650     S = "v";
651     if (isConstPointer())
652       S += "C";
653     S += "*";
654     return S;
655   } else if (isInteger())
656     switch (ElementBitwidth) {
657     case 8: S += "c"; break;
658     case 16: S += "s"; break;
659     case 32: S += "i"; break;
660     case 64: S += "Wi"; break;
661     case 128: S += "LLLi"; break;
662     default: llvm_unreachable("Unhandled case!");
663     }
664   else if (isBFloat16()) {
665     assert(ElementBitwidth == 16 && "BFloat16 can only be 16 bits");
666     S += "y";
667   } else
668     switch (ElementBitwidth) {
669     case 16: S += "h"; break;
670     case 32: S += "f"; break;
671     case 64: S += "d"; break;
672     default: llvm_unreachable("Unhandled case!");
673     }
674 
675   // FIXME: NECESSARY???????????????????????????????????????????????????????????????????????
676   if (isChar() && !isPointer() && isSigned())
677     // Make chars explicitly signed.
678     S = "S" + S;
679   else if (isInteger() && !isSigned())
680     S = "U" + S;
681 
682   // Constant indices are "int", but have the "constant expression" modifier.
683   if (isImmediate()) {
684     assert(isInteger() && isSigned());
685     S = "I" + S;
686   }
687 
688   if (isScalar())
689     return S;
690 
691   std::string Ret;
692   for (unsigned I = 0; I < NumVectors; ++I)
693     Ret += "V" + utostr(getNumElements()) + S;
694 
695   return Ret;
696 }
697 
698 unsigned Type::getNeonEnum() const {
699   unsigned Addend;
700   switch (ElementBitwidth) {
701   case 8: Addend = 0; break;
702   case 16: Addend = 1; break;
703   case 32: Addend = 2; break;
704   case 64: Addend = 3; break;
705   case 128: Addend = 4; break;
706   default: llvm_unreachable("Unhandled element bitwidth!");
707   }
708 
709   unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
710   if (isPoly()) {
711     // Adjustment needed because Poly32 doesn't exist.
712     if (Addend >= 2)
713       --Addend;
714     Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
715   }
716   if (isFloating()) {
717     assert(Addend != 0 && "Float8 doesn't exist!");
718     Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
719   }
720 
721   if (isBFloat16()) {
722     assert(Addend == 1 && "BFloat16 is only 16 bit");
723     Base = (unsigned)NeonTypeFlags::BFloat16;
724   }
725 
726   if (Bitwidth == 128)
727     Base |= (unsigned)NeonTypeFlags::QuadFlag;
728   if (isInteger() && !isSigned())
729     Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
730 
731   return Base;
732 }
733 
734 Type Type::fromTypedefName(StringRef Name) {
735   Type T;
736   T.Kind = SInt;
737 
738   if (Name.front() == 'u') {
739     T.Kind = UInt;
740     Name = Name.drop_front();
741   }
742 
743   if (Name.starts_with("float")) {
744     T.Kind = Float;
745     Name = Name.drop_front(5);
746   } else if (Name.starts_with("poly")) {
747     T.Kind = Poly;
748     Name = Name.drop_front(4);
749   } else if (Name.starts_with("bfloat")) {
750     T.Kind = BFloat16;
751     Name = Name.drop_front(6);
752   } else {
753     assert(Name.starts_with("int"));
754     Name = Name.drop_front(3);
755   }
756 
757   unsigned I = 0;
758   for (I = 0; I < Name.size(); ++I) {
759     if (!isdigit(Name[I]))
760       break;
761   }
762   Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
763   Name = Name.drop_front(I);
764 
765   T.Bitwidth = T.ElementBitwidth;
766   T.NumVectors = 1;
767 
768   if (Name.front() == 'x') {
769     Name = Name.drop_front();
770     unsigned I = 0;
771     for (I = 0; I < Name.size(); ++I) {
772       if (!isdigit(Name[I]))
773         break;
774     }
775     unsigned NumLanes;
776     Name.substr(0, I).getAsInteger(10, NumLanes);
777     Name = Name.drop_front(I);
778     T.Bitwidth = T.ElementBitwidth * NumLanes;
779   } else {
780     // Was scalar.
781     T.NumVectors = 0;
782   }
783   if (Name.front() == 'x') {
784     Name = Name.drop_front();
785     unsigned I = 0;
786     for (I = 0; I < Name.size(); ++I) {
787       if (!isdigit(Name[I]))
788         break;
789     }
790     Name.substr(0, I).getAsInteger(10, T.NumVectors);
791     Name = Name.drop_front(I);
792   }
793 
794   assert(Name.starts_with("_t") && "Malformed typedef!");
795   return T;
796 }
797 
798 void Type::applyTypespec(bool &Quad) {
799   std::string S = TS;
800   ScalarForMangling = false;
801   Kind = SInt;
802   ElementBitwidth = ~0U;
803   NumVectors = 1;
804 
805   for (char I : S) {
806     switch (I) {
807     case 'S':
808       ScalarForMangling = true;
809       break;
810     case 'H':
811       NoManglingQ = true;
812       Quad = true;
813       break;
814     case 'Q':
815       Quad = true;
816       break;
817     case 'P':
818       Kind = Poly;
819       break;
820     case 'U':
821       Kind = UInt;
822       break;
823     case 'c':
824       ElementBitwidth = 8;
825       break;
826     case 'h':
827       Kind = Float;
828       [[fallthrough]];
829     case 's':
830       ElementBitwidth = 16;
831       break;
832     case 'f':
833       Kind = Float;
834       [[fallthrough]];
835     case 'i':
836       ElementBitwidth = 32;
837       break;
838     case 'd':
839       Kind = Float;
840       [[fallthrough]];
841     case 'l':
842       ElementBitwidth = 64;
843       break;
844     case 'k':
845       ElementBitwidth = 128;
846       // Poly doesn't have a 128x1 type.
847       if (isPoly())
848         NumVectors = 0;
849       break;
850     case 'b':
851       Kind = BFloat16;
852       ElementBitwidth = 16;
853       break;
854     default:
855       llvm_unreachable("Unhandled type code!");
856     }
857   }
858   assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
859 
860   Bitwidth = Quad ? 128 : 64;
861 }
862 
863 void Type::applyModifiers(StringRef Mods) {
864   bool AppliedQuad = false;
865   applyTypespec(AppliedQuad);
866 
867   for (char Mod : Mods) {
868     switch (Mod) {
869     case '.':
870       break;
871     case 'v':
872       Kind = Void;
873       break;
874     case 'S':
875       Kind = SInt;
876       break;
877     case 'U':
878       Kind = UInt;
879       break;
880     case 'B':
881       Kind = BFloat16;
882       ElementBitwidth = 16;
883       break;
884     case 'F':
885       Kind = Float;
886       break;
887     case 'P':
888       Kind = Poly;
889       break;
890     case '>':
891       assert(ElementBitwidth < 128);
892       ElementBitwidth *= 2;
893       break;
894     case '<':
895       assert(ElementBitwidth > 8);
896       ElementBitwidth /= 2;
897       break;
898     case '1':
899       NumVectors = 0;
900       break;
901     case '2':
902       NumVectors = 2;
903       break;
904     case '3':
905       NumVectors = 3;
906       break;
907     case '4':
908       NumVectors = 4;
909       break;
910     case '*':
911       Pointer = true;
912       break;
913     case 'c':
914       Constant = true;
915       break;
916     case 'Q':
917       Bitwidth = 128;
918       break;
919     case 'q':
920       Bitwidth = 64;
921       break;
922     case 'I':
923       Kind = SInt;
924       ElementBitwidth = Bitwidth = 32;
925       NumVectors = 0;
926       Immediate = true;
927       break;
928     case 'p':
929       if (isPoly())
930         Kind = UInt;
931       break;
932     case '!':
933       // Key type, handled elsewhere.
934       break;
935     default:
936       llvm_unreachable("Unhandled character!");
937     }
938   }
939 }
940 
941 //===----------------------------------------------------------------------===//
942 // Intrinsic implementation
943 //===----------------------------------------------------------------------===//
944 
945 StringRef Intrinsic::getNextModifiers(StringRef Proto, unsigned &Pos) const {
946   if (Proto.size() == Pos)
947     return StringRef();
948   else if (Proto[Pos] != '(')
949     return Proto.substr(Pos++, 1);
950 
951   size_t Start = Pos + 1;
952   size_t End = Proto.find(')', Start);
953   assert_with_loc(End != StringRef::npos, "unmatched modifier group paren");
954   Pos = End + 1;
955   return Proto.slice(Start, End);
956 }
957 
958 std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) const {
959   char typeCode = '\0';
960   bool printNumber = true;
961 
962   if (CK == ClassB && TargetGuard == "")
963     return "";
964 
965   if (T.isBFloat16())
966     return "bf16";
967 
968   if (T.isPoly())
969     typeCode = 'p';
970   else if (T.isInteger())
971     typeCode = T.isSigned() ? 's' : 'u';
972   else
973     typeCode = 'f';
974 
975   if (CK == ClassI) {
976     switch (typeCode) {
977     default:
978       break;
979     case 's':
980     case 'u':
981     case 'p':
982       typeCode = 'i';
983       break;
984     }
985   }
986   if (CK == ClassB && TargetGuard == "") {
987     typeCode = '\0';
988   }
989 
990   std::string S;
991   if (typeCode != '\0')
992     S.push_back(typeCode);
993   if (printNumber)
994     S += utostr(T.getElementSizeInBits());
995 
996   return S;
997 }
998 
999 std::string Intrinsic::getBuiltinTypeStr() {
1000   ClassKind LocalCK = getClassKind(true);
1001   std::string S;
1002 
1003   Type RetT = getReturnType();
1004   if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
1005       !RetT.isFloating() && !RetT.isBFloat16())
1006     RetT.makeInteger(RetT.getElementSizeInBits(), false);
1007 
1008   // Since the return value must be one type, return a vector type of the
1009   // appropriate width which we will bitcast.  An exception is made for
1010   // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
1011   // fashion, storing them to a pointer arg.
1012   if (RetT.getNumVectors() > 1) {
1013     S += "vv*"; // void result with void* first argument
1014   } else {
1015     if (RetT.isPoly())
1016       RetT.makeInteger(RetT.getElementSizeInBits(), false);
1017     if (!RetT.isScalar() && RetT.isInteger() && !RetT.isSigned())
1018       RetT.makeSigned();
1019 
1020     if (LocalCK == ClassB && RetT.isValue() && !RetT.isScalar())
1021       // Cast to vector of 8-bit elements.
1022       RetT.makeInteger(8, true);
1023 
1024     S += RetT.builtin_str();
1025   }
1026 
1027   for (unsigned I = 0; I < getNumParams(); ++I) {
1028     Type T = getParamType(I);
1029     if (T.isPoly())
1030       T.makeInteger(T.getElementSizeInBits(), false);
1031 
1032     if (LocalCK == ClassB && !T.isScalar())
1033       T.makeInteger(8, true);
1034     // Halves always get converted to 8-bit elements.
1035     if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1036       T.makeInteger(8, true);
1037 
1038     if (LocalCK == ClassI && T.isInteger())
1039       T.makeSigned();
1040 
1041     if (hasImmediate() && getImmediateIdx() == I)
1042       T.makeImmediate(32);
1043 
1044     S += T.builtin_str();
1045   }
1046 
1047   // Extra constant integer to hold type class enum for this function, e.g. s8
1048   if (LocalCK == ClassB)
1049     S += "i";
1050 
1051   return S;
1052 }
1053 
1054 std::string Intrinsic::getMangledName(bool ForceClassS) const {
1055   // Check if the prototype has a scalar operand with the type of the vector
1056   // elements.  If not, bitcasting the args will take care of arg checking.
1057   // The actual signedness etc. will be taken care of with special enums.
1058   ClassKind LocalCK = CK;
1059   if (!protoHasScalar())
1060     LocalCK = ClassB;
1061 
1062   return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1063 }
1064 
1065 std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) const {
1066   std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1067   std::string S = Name;
1068 
1069   if (Name == "vcvt_f16_f32" || Name == "vcvt_f32_f16" ||
1070       Name == "vcvt_f32_f64" || Name == "vcvt_f64_f32" ||
1071       Name == "vcvt_f32_bf16")
1072     return Name;
1073 
1074   if (!typeCode.empty()) {
1075     // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1076     if (Name.size() >= 3 && isdigit(Name.back()) &&
1077         Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1078       S.insert(S.length() - 3, "_" + typeCode);
1079     else
1080       S += "_" + typeCode;
1081   }
1082 
1083   if (BaseType != InBaseType) {
1084     // A reinterpret - out the input base type at the end.
1085     S += "_" + getInstTypeCode(InBaseType, LocalCK);
1086   }
1087 
1088   if (LocalCK == ClassB && TargetGuard == "")
1089     S += "_v";
1090 
1091   // Insert a 'q' before the first '_' character so that it ends up before
1092   // _lane or _n on vector-scalar operations.
1093   if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1094     size_t Pos = S.find('_');
1095     S.insert(Pos, "q");
1096   }
1097 
1098   char Suffix = '\0';
1099   if (BaseType.isScalarForMangling()) {
1100     switch (BaseType.getElementSizeInBits()) {
1101     case 8: Suffix = 'b'; break;
1102     case 16: Suffix = 'h'; break;
1103     case 32: Suffix = 's'; break;
1104     case 64: Suffix = 'd'; break;
1105     default: llvm_unreachable("Bad suffix!");
1106     }
1107   }
1108   if (Suffix != '\0') {
1109     size_t Pos = S.find('_');
1110     S.insert(Pos, &Suffix, 1);
1111   }
1112 
1113   return S;
1114 }
1115 
1116 std::string Intrinsic::replaceParamsIn(std::string S) {
1117   while (S.find('$') != std::string::npos) {
1118     size_t Pos = S.find('$');
1119     size_t End = Pos + 1;
1120     while (isalpha(S[End]))
1121       ++End;
1122 
1123     std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1124     assert_with_loc(Variables.find(VarName) != Variables.end(),
1125                     "Variable not defined!");
1126     S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1127   }
1128 
1129   return S;
1130 }
1131 
1132 void Intrinsic::initVariables() {
1133   Variables.clear();
1134 
1135   // Modify the TypeSpec per-argument to get a concrete Type, and create
1136   // known variables for each.
1137   for (unsigned I = 1; I < Types.size(); ++I) {
1138     char NameC = '0' + (I - 1);
1139     std::string Name = "p";
1140     Name.push_back(NameC);
1141 
1142     Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1143   }
1144   RetVar = Variable(Types[0], "ret" + VariablePostfix);
1145 }
1146 
1147 void Intrinsic::emitPrototype(StringRef NamePrefix) {
1148   if (UseMacro) {
1149     OS << "#define ";
1150   } else {
1151     OS << "__ai ";
1152     if (TargetGuard != "")
1153       OS << "__attribute__((target(\"" << TargetGuard << "\"))) ";
1154     OS << Types[0].str() << " ";
1155   }
1156 
1157   OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1158 
1159   for (unsigned I = 0; I < getNumParams(); ++I) {
1160     if (I != 0)
1161       OS << ", ";
1162 
1163     char NameC = '0' + I;
1164     std::string Name = "p";
1165     Name.push_back(NameC);
1166     assert(Variables.find(Name) != Variables.end());
1167     Variable &V = Variables[Name];
1168 
1169     if (!UseMacro)
1170       OS << V.getType().str() << " ";
1171     OS << V.getName();
1172   }
1173 
1174   OS << ")";
1175 }
1176 
1177 void Intrinsic::emitOpeningBrace() {
1178   if (UseMacro)
1179     OS << " __extension__ ({";
1180   else
1181     OS << " {";
1182   emitNewLine();
1183 }
1184 
1185 void Intrinsic::emitClosingBrace() {
1186   if (UseMacro)
1187     OS << "})";
1188   else
1189     OS << "}";
1190 }
1191 
1192 void Intrinsic::emitNewLine() {
1193   if (UseMacro)
1194     OS << " \\\n";
1195   else
1196     OS << "\n";
1197 }
1198 
1199 void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1200   if (Dest.getType().getNumVectors() > 1) {
1201     emitNewLine();
1202 
1203     for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1204       OS << "  " << Dest.getName() << ".val[" << K << "] = "
1205          << "__builtin_shufflevector("
1206          << Src.getName() << ".val[" << K << "], "
1207          << Src.getName() << ".val[" << K << "]";
1208       for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1209         OS << ", " << J;
1210       OS << ");";
1211       emitNewLine();
1212     }
1213   } else {
1214     OS << "  " << Dest.getName()
1215        << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1216     for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1217       OS << ", " << J;
1218     OS << ");";
1219     emitNewLine();
1220   }
1221 }
1222 
1223 void Intrinsic::emitArgumentReversal() {
1224   if (isBigEndianSafe())
1225     return;
1226 
1227   // Reverse all vector arguments.
1228   for (unsigned I = 0; I < getNumParams(); ++I) {
1229     std::string Name = "p" + utostr(I);
1230     std::string NewName = "rev" + utostr(I);
1231 
1232     Variable &V = Variables[Name];
1233     Variable NewV(V.getType(), NewName + VariablePostfix);
1234 
1235     if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1236       continue;
1237 
1238     OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1239     emitReverseVariable(NewV, V);
1240     V = NewV;
1241   }
1242 }
1243 
1244 void Intrinsic::emitReturnVarDecl() {
1245   assert(RetVar.getType() == Types[0]);
1246   // Create a return variable, if we're not void.
1247   if (!RetVar.getType().isVoid()) {
1248     OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1249     emitNewLine();
1250   }
1251 }
1252 
1253 void Intrinsic::emitReturnReversal() {
1254   if (isBigEndianSafe())
1255     return;
1256   if (!getReturnType().isVector() || getReturnType().isVoid() ||
1257       getReturnType().getNumElements() == 1)
1258     return;
1259   emitReverseVariable(RetVar, RetVar);
1260 }
1261 
1262 void Intrinsic::emitShadowedArgs() {
1263   // Macro arguments are not type-checked like inline function arguments,
1264   // so assign them to local temporaries to get the right type checking.
1265   if (!UseMacro)
1266     return;
1267 
1268   for (unsigned I = 0; I < getNumParams(); ++I) {
1269     // Do not create a temporary for an immediate argument.
1270     // That would defeat the whole point of using a macro!
1271     if (getParamType(I).isImmediate())
1272       continue;
1273     // Do not create a temporary for pointer arguments. The input
1274     // pointer may have an alignment hint.
1275     if (getParamType(I).isPointer())
1276       continue;
1277 
1278     std::string Name = "p" + utostr(I);
1279 
1280     assert(Variables.find(Name) != Variables.end());
1281     Variable &V = Variables[Name];
1282 
1283     std::string NewName = "s" + utostr(I);
1284     Variable V2(V.getType(), NewName + VariablePostfix);
1285 
1286     OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1287        << V.getName() << ";";
1288     emitNewLine();
1289 
1290     V = V2;
1291   }
1292 }
1293 
1294 bool Intrinsic::protoHasScalar() const {
1295   return llvm::any_of(
1296       Types, [](const Type &T) { return T.isScalar() && !T.isImmediate(); });
1297 }
1298 
1299 void Intrinsic::emitBodyAsBuiltinCall() {
1300   std::string S;
1301 
1302   // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1303   // sret-like argument.
1304   bool SRet = getReturnType().getNumVectors() >= 2;
1305 
1306   StringRef N = Name;
1307   ClassKind LocalCK = CK;
1308   if (!protoHasScalar())
1309     LocalCK = ClassB;
1310 
1311   if (!getReturnType().isVoid() && !SRet)
1312     S += "(" + RetVar.getType().str() + ") ";
1313 
1314   S += "__builtin_neon_" + mangleName(std::string(N), LocalCK) + "(";
1315 
1316   if (SRet)
1317     S += "&" + RetVar.getName() + ", ";
1318 
1319   for (unsigned I = 0; I < getNumParams(); ++I) {
1320     Variable &V = Variables["p" + utostr(I)];
1321     Type T = V.getType();
1322 
1323     // Handle multiple-vector values specially, emitting each subvector as an
1324     // argument to the builtin.
1325     if (T.getNumVectors() > 1) {
1326       // Check if an explicit cast is needed.
1327       std::string Cast;
1328       if (LocalCK == ClassB) {
1329         Type T2 = T;
1330         T2.makeOneVector();
1331         T2.makeInteger(8, /*Sign=*/true);
1332         Cast = "(" + T2.str() + ")";
1333       }
1334 
1335       for (unsigned J = 0; J < T.getNumVectors(); ++J)
1336         S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1337       continue;
1338     }
1339 
1340     std::string Arg = V.getName();
1341     Type CastToType = T;
1342 
1343     // Check if an explicit cast is needed.
1344     if (CastToType.isVector() &&
1345         (LocalCK == ClassB || (T.isHalf() && !T.isScalarForMangling()))) {
1346       CastToType.makeInteger(8, true);
1347       Arg = "(" + CastToType.str() + ")" + Arg;
1348     } else if (CastToType.isVector() && LocalCK == ClassI) {
1349       if (CastToType.isInteger())
1350         CastToType.makeSigned();
1351       Arg = "(" + CastToType.str() + ")" + Arg;
1352     }
1353 
1354     S += Arg + ", ";
1355   }
1356 
1357   // Extra constant integer to hold type class enum for this function, e.g. s8
1358   if (getClassKind(true) == ClassB) {
1359     S += utostr(getPolymorphicKeyType().getNeonEnum());
1360   } else {
1361     // Remove extraneous ", ".
1362     S.pop_back();
1363     S.pop_back();
1364   }
1365   S += ");";
1366 
1367   std::string RetExpr;
1368   if (!SRet && !RetVar.getType().isVoid())
1369     RetExpr = RetVar.getName() + " = ";
1370 
1371   OS << "  " << RetExpr << S;
1372   emitNewLine();
1373 }
1374 
1375 void Intrinsic::emitBody(StringRef CallPrefix) {
1376   std::vector<std::string> Lines;
1377 
1378   if (!Body || Body->getValues().empty()) {
1379     // Nothing specific to output - must output a builtin.
1380     emitBodyAsBuiltinCall();
1381     return;
1382   }
1383 
1384   // We have a list of "things to output". The last should be returned.
1385   for (auto *I : Body->getValues()) {
1386     if (StringInit *SI = dyn_cast<StringInit>(I)) {
1387       Lines.push_back(replaceParamsIn(SI->getAsString()));
1388     } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1389       DagEmitter DE(*this, CallPrefix);
1390       Lines.push_back(DE.emitDag(DI).second + ";");
1391     }
1392   }
1393 
1394   assert(!Lines.empty() && "Empty def?");
1395   if (!RetVar.getType().isVoid())
1396     Lines.back().insert(0, RetVar.getName() + " = ");
1397 
1398   for (auto &L : Lines) {
1399     OS << "  " << L;
1400     emitNewLine();
1401   }
1402 }
1403 
1404 void Intrinsic::emitReturn() {
1405   if (RetVar.getType().isVoid())
1406     return;
1407   if (UseMacro)
1408     OS << "  " << RetVar.getName() << ";";
1409   else
1410     OS << "  return " << RetVar.getName() << ";";
1411   emitNewLine();
1412 }
1413 
1414 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1415   // At this point we should only be seeing a def.
1416   DefInit *DefI = cast<DefInit>(DI->getOperator());
1417   std::string Op = DefI->getAsString();
1418 
1419   if (Op == "cast" || Op == "bitcast")
1420     return emitDagCast(DI, Op == "bitcast");
1421   if (Op == "shuffle")
1422     return emitDagShuffle(DI);
1423   if (Op == "dup")
1424     return emitDagDup(DI);
1425   if (Op == "dup_typed")
1426     return emitDagDupTyped(DI);
1427   if (Op == "splat")
1428     return emitDagSplat(DI);
1429   if (Op == "save_temp")
1430     return emitDagSaveTemp(DI);
1431   if (Op == "op")
1432     return emitDagOp(DI);
1433   if (Op == "call" || Op == "call_mangled")
1434     return emitDagCall(DI, Op == "call_mangled");
1435   if (Op == "name_replace")
1436     return emitDagNameReplace(DI);
1437   if (Op == "literal")
1438     return emitDagLiteral(DI);
1439   assert_with_loc(false, "Unknown operation!");
1440   return std::make_pair(Type::getVoid(), "");
1441 }
1442 
1443 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1444   std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1445   if (DI->getNumArgs() == 2) {
1446     // Unary op.
1447     std::pair<Type, std::string> R =
1448         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1449     return std::make_pair(R.first, Op + R.second);
1450   } else {
1451     assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1452     std::pair<Type, std::string> R1 =
1453         emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1454     std::pair<Type, std::string> R2 =
1455         emitDagArg(DI->getArg(2), std::string(DI->getArgNameStr(2)));
1456     assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1457     return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1458   }
1459 }
1460 
1461 std::pair<Type, std::string>
1462 Intrinsic::DagEmitter::emitDagCall(DagInit *DI, bool MatchMangledName) {
1463   std::vector<Type> Types;
1464   std::vector<std::string> Values;
1465   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1466     std::pair<Type, std::string> R =
1467         emitDagArg(DI->getArg(I + 1), std::string(DI->getArgNameStr(I + 1)));
1468     Types.push_back(R.first);
1469     Values.push_back(R.second);
1470   }
1471 
1472   // Look up the called intrinsic.
1473   std::string N;
1474   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1475     N = SI->getAsUnquotedString();
1476   else
1477     N = emitDagArg(DI->getArg(0), "").second;
1478   std::optional<std::string> MangledName;
1479   if (MatchMangledName) {
1480     if (Intr.getRecord()->getValueAsBit("isLaneQ"))
1481       N += "q";
1482     MangledName = Intr.mangleName(N, ClassS);
1483   }
1484   Intrinsic &Callee = Intr.Emitter.getIntrinsic(N, Types, MangledName);
1485 
1486   // Make sure the callee is known as an early def.
1487   Callee.setNeededEarly();
1488   Intr.Dependencies.insert(&Callee);
1489 
1490   // Now create the call itself.
1491   std::string S;
1492   if (!Callee.isBigEndianSafe())
1493     S += CallPrefix.str();
1494   S += Callee.getMangledName(true) + "(";
1495   for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1496     if (I != 0)
1497       S += ", ";
1498     S += Values[I];
1499   }
1500   S += ")";
1501 
1502   return std::make_pair(Callee.getReturnType(), S);
1503 }
1504 
1505 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1506                                                                 bool IsBitCast){
1507   // (cast MOD* VAL) -> cast VAL to type given by MOD.
1508   std::pair<Type, std::string> R =
1509       emitDagArg(DI->getArg(DI->getNumArgs() - 1),
1510                  std::string(DI->getArgNameStr(DI->getNumArgs() - 1)));
1511   Type castToType = R.first;
1512   for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1513 
1514     // MOD can take several forms:
1515     //   1. $X - take the type of parameter / variable X.
1516     //   2. The value "R" - take the type of the return type.
1517     //   3. a type string
1518     //   4. The value "U" or "S" to switch the signedness.
1519     //   5. The value "H" or "D" to half or double the bitwidth.
1520     //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1521     if (!DI->getArgNameStr(ArgIdx).empty()) {
1522       assert_with_loc(Intr.Variables.find(std::string(
1523                           DI->getArgNameStr(ArgIdx))) != Intr.Variables.end(),
1524                       "Variable not found");
1525       castToType =
1526           Intr.Variables[std::string(DI->getArgNameStr(ArgIdx))].getType();
1527     } else {
1528       StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1529       assert_with_loc(SI, "Expected string type or $Name for cast type");
1530 
1531       if (SI->getAsUnquotedString() == "R") {
1532         castToType = Intr.getReturnType();
1533       } else if (SI->getAsUnquotedString() == "U") {
1534         castToType.makeUnsigned();
1535       } else if (SI->getAsUnquotedString() == "S") {
1536         castToType.makeSigned();
1537       } else if (SI->getAsUnquotedString() == "H") {
1538         castToType.halveLanes();
1539       } else if (SI->getAsUnquotedString() == "D") {
1540         castToType.doubleLanes();
1541       } else if (SI->getAsUnquotedString() == "8") {
1542         castToType.makeInteger(8, true);
1543       } else if (SI->getAsUnquotedString() == "32") {
1544         castToType.make32BitElement();
1545       } else {
1546         castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1547         assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1548       }
1549     }
1550   }
1551 
1552   std::string S;
1553   if (IsBitCast) {
1554     // Emit a reinterpret cast. The second operand must be an lvalue, so create
1555     // a temporary.
1556     std::string N = "reint";
1557     unsigned I = 0;
1558     while (Intr.Variables.find(N) != Intr.Variables.end())
1559       N = "reint" + utostr(++I);
1560     Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1561 
1562     Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1563             << R.second << ";";
1564     Intr.emitNewLine();
1565 
1566     S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1567   } else {
1568     // Emit a normal (static) cast.
1569     S = "(" + castToType.str() + ")(" + R.second + ")";
1570   }
1571 
1572   return std::make_pair(castToType, S);
1573 }
1574 
1575 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1576   // See the documentation in arm_neon.td for a description of these operators.
1577   class LowHalf : public SetTheory::Operator {
1578   public:
1579     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1580                ArrayRef<SMLoc> Loc) override {
1581       SetTheory::RecSet Elts2;
1582       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1583       Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1584     }
1585   };
1586 
1587   class HighHalf : public SetTheory::Operator {
1588   public:
1589     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1590                ArrayRef<SMLoc> Loc) override {
1591       SetTheory::RecSet Elts2;
1592       ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1593       Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1594     }
1595   };
1596 
1597   class Rev : public SetTheory::Operator {
1598     unsigned ElementSize;
1599 
1600   public:
1601     Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1602 
1603     void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1604                ArrayRef<SMLoc> Loc) override {
1605       SetTheory::RecSet Elts2;
1606       ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1607 
1608       int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1609       VectorSize /= ElementSize;
1610 
1611       std::vector<Record *> Revved;
1612       for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1613         for (int LI = VectorSize - 1; LI >= 0; --LI) {
1614           Revved.push_back(Elts2[VI + LI]);
1615         }
1616       }
1617 
1618       Elts.insert(Revved.begin(), Revved.end());
1619     }
1620   };
1621 
1622   class MaskExpander : public SetTheory::Expander {
1623     unsigned N;
1624 
1625   public:
1626     MaskExpander(unsigned N) : N(N) {}
1627 
1628     void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) override {
1629       unsigned Addend = 0;
1630       if (R->getName() == "mask0")
1631         Addend = 0;
1632       else if (R->getName() == "mask1")
1633         Addend = N;
1634       else
1635         return;
1636       for (unsigned I = 0; I < N; ++I)
1637         Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1638     }
1639   };
1640 
1641   // (shuffle arg1, arg2, sequence)
1642   std::pair<Type, std::string> Arg1 =
1643       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1644   std::pair<Type, std::string> Arg2 =
1645       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1646   assert_with_loc(Arg1.first == Arg2.first,
1647                   "Different types in arguments to shuffle!");
1648 
1649   SetTheory ST;
1650   SetTheory::RecSet Elts;
1651   ST.addOperator("lowhalf", std::make_unique<LowHalf>());
1652   ST.addOperator("highhalf", std::make_unique<HighHalf>());
1653   ST.addOperator("rev",
1654                  std::make_unique<Rev>(Arg1.first.getElementSizeInBits()));
1655   ST.addExpander("MaskExpand",
1656                  std::make_unique<MaskExpander>(Arg1.first.getNumElements()));
1657   ST.evaluate(DI->getArg(2), Elts, std::nullopt);
1658 
1659   std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1660   for (auto &E : Elts) {
1661     StringRef Name = E->getName();
1662     assert_with_loc(Name.starts_with("sv"),
1663                     "Incorrect element kind in shuffle mask!");
1664     S += ", " + Name.drop_front(2).str();
1665   }
1666   S += ")";
1667 
1668   // Recalculate the return type - the shuffle may have halved or doubled it.
1669   Type T(Arg1.first);
1670   if (Elts.size() > T.getNumElements()) {
1671     assert_with_loc(
1672         Elts.size() == T.getNumElements() * 2,
1673         "Can only double or half the number of elements in a shuffle!");
1674     T.doubleLanes();
1675   } else if (Elts.size() < T.getNumElements()) {
1676     assert_with_loc(
1677         Elts.size() == T.getNumElements() / 2,
1678         "Can only double or half the number of elements in a shuffle!");
1679     T.halveLanes();
1680   }
1681 
1682   return std::make_pair(T, S);
1683 }
1684 
1685 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1686   assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1687   std::pair<Type, std::string> A =
1688       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1689   assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1690 
1691   Type T = Intr.getBaseType();
1692   assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1693   std::string S = "(" + T.str() + ") {";
1694   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1695     if (I != 0)
1696       S += ", ";
1697     S += A.second;
1698   }
1699   S += "}";
1700 
1701   return std::make_pair(T, S);
1702 }
1703 
1704 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDupTyped(DagInit *DI) {
1705   assert_with_loc(DI->getNumArgs() == 2, "dup_typed() expects two arguments");
1706   std::pair<Type, std::string> B =
1707       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1708   assert_with_loc(B.first.isScalar(),
1709                   "dup_typed() requires a scalar as the second argument");
1710   Type T;
1711   // If the type argument is a constant string, construct the type directly.
1712   if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0))) {
1713     T = Type::fromTypedefName(SI->getAsUnquotedString());
1714     assert_with_loc(!T.isVoid(), "Unknown typedef");
1715   } else
1716     T = emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0))).first;
1717 
1718   assert_with_loc(T.isVector(), "dup_typed() used but target type is scalar!");
1719   std::string S = "(" + T.str() + ") {";
1720   for (unsigned I = 0; I < T.getNumElements(); ++I) {
1721     if (I != 0)
1722       S += ", ";
1723     S += B.second;
1724   }
1725   S += "}";
1726 
1727   return std::make_pair(T, S);
1728 }
1729 
1730 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1731   assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1732   std::pair<Type, std::string> A =
1733       emitDagArg(DI->getArg(0), std::string(DI->getArgNameStr(0)));
1734   std::pair<Type, std::string> B =
1735       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1736 
1737   assert_with_loc(B.first.isScalar(),
1738                   "splat() requires a scalar int as the second argument");
1739 
1740   std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1741   for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1742     S += ", " + B.second;
1743   }
1744   S += ")";
1745 
1746   return std::make_pair(Intr.getBaseType(), S);
1747 }
1748 
1749 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1750   assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1751   std::pair<Type, std::string> A =
1752       emitDagArg(DI->getArg(1), std::string(DI->getArgNameStr(1)));
1753 
1754   assert_with_loc(!A.first.isVoid(),
1755                   "Argument to save_temp() must have non-void type!");
1756 
1757   std::string N = std::string(DI->getArgNameStr(0));
1758   assert_with_loc(!N.empty(),
1759                   "save_temp() expects a name as the first argument");
1760 
1761   assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1762                   "Variable already defined!");
1763   Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1764 
1765   std::string S =
1766       A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1767 
1768   return std::make_pair(Type::getVoid(), S);
1769 }
1770 
1771 std::pair<Type, std::string>
1772 Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1773   std::string S = Intr.Name;
1774 
1775   assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1776   std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1777   std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1778 
1779   size_t Idx = S.find(ToReplace);
1780 
1781   assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1782   S.replace(Idx, ToReplace.size(), ReplaceWith);
1783 
1784   return std::make_pair(Type::getVoid(), S);
1785 }
1786 
1787 std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1788   std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1789   std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1790   return std::make_pair(Type::fromTypedefName(Ty), Value);
1791 }
1792 
1793 std::pair<Type, std::string>
1794 Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1795   if (!ArgName.empty()) {
1796     assert_with_loc(!Arg->isComplete(),
1797                     "Arguments must either be DAGs or names, not both!");
1798     assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1799                     "Variable not defined!");
1800     Variable &V = Intr.Variables[ArgName];
1801     return std::make_pair(V.getType(), V.getName());
1802   }
1803 
1804   assert(Arg && "Neither ArgName nor Arg?!");
1805   DagInit *DI = dyn_cast<DagInit>(Arg);
1806   assert_with_loc(DI, "Arguments must either be DAGs or names!");
1807 
1808   return emitDag(DI);
1809 }
1810 
1811 std::string Intrinsic::generate() {
1812   // Avoid duplicated code for big and little endian
1813   if (isBigEndianSafe()) {
1814     generateImpl(false, "", "");
1815     return OS.str();
1816   }
1817   // Little endian intrinsics are simple and don't require any argument
1818   // swapping.
1819   OS << "#ifdef __LITTLE_ENDIAN__\n";
1820 
1821   generateImpl(false, "", "");
1822 
1823   OS << "#else\n";
1824 
1825   // Big endian intrinsics are more complex. The user intended these
1826   // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1827   // but we load as-if (V)LD1. So we should swap all arguments and
1828   // swap the return value too.
1829   //
1830   // If we call sub-intrinsics, we should call a version that does
1831   // not re-swap the arguments!
1832   generateImpl(true, "", "__noswap_");
1833 
1834   // If we're needed early, create a non-swapping variant for
1835   // big-endian.
1836   if (NeededEarly) {
1837     generateImpl(false, "__noswap_", "__noswap_");
1838   }
1839   OS << "#endif\n\n";
1840 
1841   return OS.str();
1842 }
1843 
1844 void Intrinsic::generateImpl(bool ReverseArguments,
1845                              StringRef NamePrefix, StringRef CallPrefix) {
1846   CurrentRecord = R;
1847 
1848   // If we call a macro, our local variables may be corrupted due to
1849   // lack of proper lexical scoping. So, add a globally unique postfix
1850   // to every variable.
1851   //
1852   // indexBody() should have set up the Dependencies set by now.
1853   for (auto *I : Dependencies)
1854     if (I->UseMacro) {
1855       VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1856       break;
1857     }
1858 
1859   initVariables();
1860 
1861   emitPrototype(NamePrefix);
1862 
1863   if (IsUnavailable) {
1864     OS << " __attribute__((unavailable));";
1865   } else {
1866     emitOpeningBrace();
1867     // Emit return variable declaration first as to not trigger
1868     // -Wdeclaration-after-statement.
1869     emitReturnVarDecl();
1870     emitShadowedArgs();
1871     if (ReverseArguments)
1872       emitArgumentReversal();
1873     emitBody(CallPrefix);
1874     if (ReverseArguments)
1875       emitReturnReversal();
1876     emitReturn();
1877     emitClosingBrace();
1878   }
1879   OS << "\n";
1880 
1881   CurrentRecord = nullptr;
1882 }
1883 
1884 void Intrinsic::indexBody() {
1885   CurrentRecord = R;
1886 
1887   initVariables();
1888   // Emit return variable declaration first as to not trigger
1889   // -Wdeclaration-after-statement.
1890   emitReturnVarDecl();
1891   emitBody("");
1892   OS.str("");
1893 
1894   CurrentRecord = nullptr;
1895 }
1896 
1897 //===----------------------------------------------------------------------===//
1898 // NeonEmitter implementation
1899 //===----------------------------------------------------------------------===//
1900 
1901 Intrinsic &NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types,
1902                                      std::optional<std::string> MangledName) {
1903   // First, look up the name in the intrinsic map.
1904   assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1905                   ("Intrinsic '" + Name + "' not found!").str());
1906   auto &V = IntrinsicMap.find(Name.str())->second;
1907   std::vector<Intrinsic *> GoodVec;
1908 
1909   // Create a string to print if we end up failing.
1910   std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1911   for (unsigned I = 0; I < Types.size(); ++I) {
1912     if (I != 0)
1913       ErrMsg += ", ";
1914     ErrMsg += Types[I].str();
1915   }
1916   ErrMsg += ")'\n";
1917   ErrMsg += "Available overloads:\n";
1918 
1919   // Now, look through each intrinsic implementation and see if the types are
1920   // compatible.
1921   for (auto &I : V) {
1922     ErrMsg += "  - " + I.getReturnType().str() + " " + I.getMangledName();
1923     ErrMsg += "(";
1924     for (unsigned A = 0; A < I.getNumParams(); ++A) {
1925       if (A != 0)
1926         ErrMsg += ", ";
1927       ErrMsg += I.getParamType(A).str();
1928     }
1929     ErrMsg += ")\n";
1930 
1931     if (MangledName && MangledName != I.getMangledName(true))
1932       continue;
1933 
1934     if (I.getNumParams() != Types.size())
1935       continue;
1936 
1937     unsigned ArgNum = 0;
1938     bool MatchingArgumentTypes = llvm::all_of(Types, [&](const auto &Type) {
1939       return Type == I.getParamType(ArgNum++);
1940     });
1941 
1942     if (MatchingArgumentTypes)
1943       GoodVec.push_back(&I);
1944   }
1945 
1946   assert_with_loc(!GoodVec.empty(),
1947                   "No compatible intrinsic found - " + ErrMsg);
1948   assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1949 
1950   return *GoodVec.front();
1951 }
1952 
1953 void NeonEmitter::createIntrinsic(Record *R,
1954                                   SmallVectorImpl<Intrinsic *> &Out) {
1955   std::string Name = std::string(R->getValueAsString("Name"));
1956   std::string Proto = std::string(R->getValueAsString("Prototype"));
1957   std::string Types = std::string(R->getValueAsString("Types"));
1958   Record *OperationRec = R->getValueAsDef("Operation");
1959   bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1960   std::string ArchGuard = std::string(R->getValueAsString("ArchGuard"));
1961   std::string TargetGuard = std::string(R->getValueAsString("TargetGuard"));
1962   bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1963   std::string CartesianProductWith = std::string(R->getValueAsString("CartesianProductWith"));
1964 
1965   // Set the global current record. This allows assert_with_loc to produce
1966   // decent location information even when highly nested.
1967   CurrentRecord = R;
1968 
1969   ListInit *Body = OperationRec->getValueAsListInit("Ops");
1970 
1971   std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1972 
1973   ClassKind CK = ClassNone;
1974   if (R->getSuperClasses().size() >= 2)
1975     CK = ClassMap[R->getSuperClasses()[1].first];
1976 
1977   std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1978   if (!CartesianProductWith.empty()) {
1979     std::vector<TypeSpec> ProductTypeSpecs = TypeSpec::fromTypeSpecs(CartesianProductWith);
1980     for (auto TS : TypeSpecs) {
1981       Type DefaultT(TS, ".");
1982       for (auto SrcTS : ProductTypeSpecs) {
1983         Type DefaultSrcT(SrcTS, ".");
1984         if (TS == SrcTS ||
1985             DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1986           continue;
1987         NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1988       }
1989     }
1990   } else {
1991     for (auto TS : TypeSpecs) {
1992       NewTypeSpecs.push_back(std::make_pair(TS, TS));
1993     }
1994   }
1995 
1996   llvm::sort(NewTypeSpecs);
1997   NewTypeSpecs.erase(std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end()),
1998 		     NewTypeSpecs.end());
1999   auto &Entry = IntrinsicMap[Name];
2000 
2001   for (auto &I : NewTypeSpecs) {
2002     Entry.emplace_back(R, Name, Proto, I.first, I.second, CK, Body, *this,
2003                        ArchGuard, TargetGuard, IsUnavailable, BigEndianSafe);
2004     Out.push_back(&Entry.back());
2005   }
2006 
2007   CurrentRecord = nullptr;
2008 }
2009 
2010 /// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
2011 /// declaration of builtins, checking for unique builtin declarations.
2012 void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
2013                                  SmallVectorImpl<Intrinsic *> &Defs) {
2014   OS << "#ifdef GET_NEON_BUILTINS\n";
2015 
2016   // We only want to emit a builtin once, and we want to emit them in
2017   // alphabetical order, so use a std::set.
2018   std::set<std::pair<std::string, std::string>> Builtins;
2019 
2020   for (auto *Def : Defs) {
2021     if (Def->hasBody())
2022       continue;
2023 
2024     std::string S = "__builtin_neon_" + Def->getMangledName() + ", \"";
2025     S += Def->getBuiltinTypeStr();
2026     S += "\", \"n\"";
2027 
2028     Builtins.emplace(S, Def->getTargetGuard());
2029   }
2030 
2031   for (auto &S : Builtins) {
2032     if (S.second == "")
2033       OS << "BUILTIN(";
2034     else
2035       OS << "TARGET_BUILTIN(";
2036     OS << S.first;
2037     if (S.second == "")
2038       OS << ")\n";
2039     else
2040       OS << ", \"" << S.second << "\")\n";
2041   }
2042 
2043   OS << "#endif\n\n";
2044 }
2045 
2046 void NeonEmitter::genStreamingSVECompatibleList(
2047     raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs) {
2048   OS << "#ifdef GET_NEON_STREAMING_COMPAT_FLAG\n";
2049 
2050   std::set<std::string> Emitted;
2051   for (auto *Def : Defs) {
2052     // If the def has a body (that is, it has Operation DAGs), it won't call
2053     // __builtin_neon_* so we don't need to generate a definition for it.
2054     if (Def->hasBody())
2055       continue;
2056 
2057     std::string Name = Def->getMangledName();
2058     if (Emitted.find(Name) != Emitted.end())
2059       continue;
2060 
2061     // FIXME: We should make exceptions here for some NEON builtins that are
2062     // permitted in streaming mode.
2063     OS << "case NEON::BI__builtin_neon_" << Name
2064        << ": BuiltinType = ArmNonStreaming; break;\n";
2065     Emitted.insert(Name);
2066   }
2067   OS << "#endif\n\n";
2068 }
2069 
2070 /// Generate the ARM and AArch64 overloaded type checking code for
2071 /// SemaChecking.cpp, checking for unique builtin declarations.
2072 void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
2073                                            SmallVectorImpl<Intrinsic *> &Defs) {
2074   OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
2075 
2076   // We record each overload check line before emitting because subsequent Inst
2077   // definitions may extend the number of permitted types (i.e. augment the
2078   // Mask). Use std::map to avoid sorting the table by hash number.
2079   struct OverloadInfo {
2080     uint64_t Mask = 0ULL;
2081     int PtrArgNum = 0;
2082     bool HasConstPtr = false;
2083     OverloadInfo() = default;
2084   };
2085   std::map<std::string, OverloadInfo> OverloadMap;
2086 
2087   for (auto *Def : Defs) {
2088     // If the def has a body (that is, it has Operation DAGs), it won't call
2089     // __builtin_neon_* so we don't need to generate a definition for it.
2090     if (Def->hasBody())
2091       continue;
2092     // Functions which have a scalar argument cannot be overloaded, no need to
2093     // check them if we are emitting the type checking code.
2094     if (Def->protoHasScalar())
2095       continue;
2096 
2097     uint64_t Mask = 0ULL;
2098     Mask |= 1ULL << Def->getPolymorphicKeyType().getNeonEnum();
2099 
2100     // Check if the function has a pointer or const pointer argument.
2101     int PtrArgNum = -1;
2102     bool HasConstPtr = false;
2103     for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2104       const auto &Type = Def->getParamType(I);
2105       if (Type.isPointer()) {
2106         PtrArgNum = I;
2107         HasConstPtr = Type.isConstPointer();
2108       }
2109     }
2110 
2111     // For sret builtins, adjust the pointer argument index.
2112     if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2113       PtrArgNum += 1;
2114 
2115     std::string Name = Def->getName();
2116     // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2117     // vst1_lane, vldap1_lane, and vstl1_lane intrinsics.  Using a pointer to
2118     // the vector element type with one of those operations causes codegen to
2119     // select an aligned load/store instruction.  If you want an unaligned
2120     // operation, the pointer argument needs to have less alignment than element
2121     // type, so just accept any pointer type.
2122     if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane" ||
2123         Name == "vldap1_lane" || Name == "vstl1_lane") {
2124       PtrArgNum = -1;
2125       HasConstPtr = false;
2126     }
2127 
2128     if (Mask) {
2129       std::string Name = Def->getMangledName();
2130       OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2131       OverloadInfo &OI = OverloadMap[Name];
2132       OI.Mask |= Mask;
2133       OI.PtrArgNum |= PtrArgNum;
2134       OI.HasConstPtr = HasConstPtr;
2135     }
2136   }
2137 
2138   for (auto &I : OverloadMap) {
2139     OverloadInfo &OI = I.second;
2140 
2141     OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2142     OS << "mask = 0x" << Twine::utohexstr(OI.Mask) << "ULL";
2143     if (OI.PtrArgNum >= 0)
2144       OS << "; PtrArgNum = " << OI.PtrArgNum;
2145     if (OI.HasConstPtr)
2146       OS << "; HasConstPtr = true";
2147     OS << "; break;\n";
2148   }
2149   OS << "#endif\n\n";
2150 }
2151 
2152 void NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2153                                         SmallVectorImpl<Intrinsic *> &Defs) {
2154   OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2155 
2156   std::set<std::string> Emitted;
2157 
2158   for (auto *Def : Defs) {
2159     if (Def->hasBody())
2160       continue;
2161     // Functions which do not have an immediate do not need to have range
2162     // checking code emitted.
2163     if (!Def->hasImmediate())
2164       continue;
2165     if (Emitted.find(Def->getMangledName()) != Emitted.end())
2166       continue;
2167 
2168     std::string LowerBound, UpperBound;
2169 
2170     Record *R = Def->getRecord();
2171     if (R->getValueAsBit("isVXAR")) {
2172       //VXAR takes an immediate in the range [0, 63]
2173       LowerBound = "0";
2174       UpperBound = "63";
2175     } else if (R->getValueAsBit("isVCVT_N")) {
2176       // VCVT between floating- and fixed-point values takes an immediate
2177       // in the range [1, 32) for f32 or [1, 64) for f64 or [1, 16) for f16.
2178       LowerBound = "1";
2179 	  if (Def->getBaseType().getElementSizeInBits() == 16 ||
2180 		  Def->getName().find('h') != std::string::npos)
2181 		// VCVTh operating on FP16 intrinsics in range [1, 16)
2182 		UpperBound = "15";
2183 	  else if (Def->getBaseType().getElementSizeInBits() == 32)
2184         UpperBound = "31";
2185 	  else
2186         UpperBound = "63";
2187     } else if (R->getValueAsBit("isScalarShift")) {
2188       // Right shifts have an 'r' in the name, left shifts do not. Convert
2189       // instructions have the same bounds and right shifts.
2190       if (Def->getName().find('r') != std::string::npos ||
2191           Def->getName().find("cvt") != std::string::npos)
2192         LowerBound = "1";
2193 
2194       UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2195     } else if (R->getValueAsBit("isShift")) {
2196       // Builtins which are overloaded by type will need to have their upper
2197       // bound computed at Sema time based on the type constant.
2198 
2199       // Right shifts have an 'r' in the name, left shifts do not.
2200       if (Def->getName().find('r') != std::string::npos)
2201         LowerBound = "1";
2202       UpperBound = "RFT(TV, true)";
2203     } else if (Def->getClassKind(true) == ClassB) {
2204       // ClassB intrinsics have a type (and hence lane number) that is only
2205       // known at runtime.
2206       if (R->getValueAsBit("isLaneQ"))
2207         UpperBound = "RFT(TV, false, true)";
2208       else
2209         UpperBound = "RFT(TV, false, false)";
2210     } else {
2211       // The immediate generally refers to a lane in the preceding argument.
2212       assert(Def->getImmediateIdx() > 0);
2213       Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2214       UpperBound = utostr(T.getNumElements() - 1);
2215     }
2216 
2217     // Calculate the index of the immediate that should be range checked.
2218     unsigned Idx = Def->getNumParams();
2219     if (Def->hasImmediate())
2220       Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2221 
2222     OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2223        << "i = " << Idx << ";";
2224     if (!LowerBound.empty())
2225       OS << " l = " << LowerBound << ";";
2226     if (!UpperBound.empty())
2227       OS << " u = " << UpperBound << ";";
2228     OS << " break;\n";
2229 
2230     Emitted.insert(Def->getMangledName());
2231   }
2232 
2233   OS << "#endif\n\n";
2234 }
2235 
2236 /// runHeader - Emit a file with sections defining:
2237 /// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2238 /// 2. the SemaChecking code for the type overload checking.
2239 /// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2240 void NeonEmitter::runHeader(raw_ostream &OS) {
2241   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2242 
2243   SmallVector<Intrinsic *, 128> Defs;
2244   for (auto *R : RV)
2245     createIntrinsic(R, Defs);
2246 
2247   // Generate shared BuiltinsXXX.def
2248   genBuiltinsDef(OS, Defs);
2249 
2250   // Generate ARM overloaded type checking code for SemaChecking.cpp
2251   genOverloadTypeCheckCode(OS, Defs);
2252 
2253   genStreamingSVECompatibleList(OS, Defs);
2254 
2255   // Generate ARM range checking code for shift/lane immediates.
2256   genIntrinsicRangeCheckCode(OS, Defs);
2257 }
2258 
2259 static void emitNeonTypeDefs(const std::string& types, raw_ostream &OS) {
2260   std::string TypedefTypes(types);
2261   std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2262 
2263   // Emit vector typedefs.
2264   bool InIfdef = false;
2265   for (auto &TS : TDTypeVec) {
2266     bool IsA64 = false;
2267     Type T(TS, ".");
2268     if (T.isDouble())
2269       IsA64 = true;
2270 
2271     if (InIfdef && !IsA64) {
2272       OS << "#endif\n";
2273       InIfdef = false;
2274     }
2275     if (!InIfdef && IsA64) {
2276       OS << "#ifdef __aarch64__\n";
2277       InIfdef = true;
2278     }
2279 
2280     if (T.isPoly())
2281       OS << "typedef __attribute__((neon_polyvector_type(";
2282     else
2283       OS << "typedef __attribute__((neon_vector_type(";
2284 
2285     Type T2 = T;
2286     T2.makeScalar();
2287     OS << T.getNumElements() << "))) ";
2288     OS << T2.str();
2289     OS << " " << T.str() << ";\n";
2290   }
2291   if (InIfdef)
2292     OS << "#endif\n";
2293   OS << "\n";
2294 
2295   // Emit struct typedefs.
2296   InIfdef = false;
2297   for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2298     for (auto &TS : TDTypeVec) {
2299       bool IsA64 = false;
2300       Type T(TS, ".");
2301       if (T.isDouble())
2302         IsA64 = true;
2303 
2304       if (InIfdef && !IsA64) {
2305         OS << "#endif\n";
2306         InIfdef = false;
2307       }
2308       if (!InIfdef && IsA64) {
2309         OS << "#ifdef __aarch64__\n";
2310         InIfdef = true;
2311       }
2312 
2313       const char Mods[] = { static_cast<char>('2' + (NumMembers - 2)), 0};
2314       Type VT(TS, Mods);
2315       OS << "typedef struct " << VT.str() << " {\n";
2316       OS << "  " << T.str() << " val";
2317       OS << "[" << NumMembers << "]";
2318       OS << ";\n} ";
2319       OS << VT.str() << ";\n";
2320       OS << "\n";
2321     }
2322   }
2323   if (InIfdef)
2324     OS << "#endif\n";
2325 }
2326 
2327 /// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2328 /// is comprised of type definitions and function declarations.
2329 void NeonEmitter::run(raw_ostream &OS) {
2330   OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2331         "------------------------------"
2332         "---===\n"
2333         " *\n"
2334         " * Permission is hereby granted, free of charge, to any person "
2335         "obtaining "
2336         "a copy\n"
2337         " * of this software and associated documentation files (the "
2338         "\"Software\"),"
2339         " to deal\n"
2340         " * in the Software without restriction, including without limitation "
2341         "the "
2342         "rights\n"
2343         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2344         "and/or sell\n"
2345         " * copies of the Software, and to permit persons to whom the Software "
2346         "is\n"
2347         " * furnished to do so, subject to the following conditions:\n"
2348         " *\n"
2349         " * The above copyright notice and this permission notice shall be "
2350         "included in\n"
2351         " * all copies or substantial portions of the Software.\n"
2352         " *\n"
2353         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2354         "EXPRESS OR\n"
2355         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2356         "MERCHANTABILITY,\n"
2357         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2358         "SHALL THE\n"
2359         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2360         "OTHER\n"
2361         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2362         "ARISING FROM,\n"
2363         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2364         "DEALINGS IN\n"
2365         " * THE SOFTWARE.\n"
2366         " *\n"
2367         " *===-----------------------------------------------------------------"
2368         "---"
2369         "---===\n"
2370         " */\n\n";
2371 
2372   OS << "#ifndef __ARM_NEON_H\n";
2373   OS << "#define __ARM_NEON_H\n\n";
2374 
2375   OS << "#ifndef __ARM_FP\n";
2376   OS << "#error \"NEON intrinsics not available with the soft-float ABI. "
2377         "Please use -mfloat-abi=softfp or -mfloat-abi=hard\"\n";
2378   OS << "#else\n\n";
2379 
2380   OS << "#if !defined(__ARM_NEON)\n";
2381   OS << "#error \"NEON support not enabled\"\n";
2382   OS << "#else\n\n";
2383 
2384   OS << "#include <stdint.h>\n\n";
2385 
2386   OS << "#include <arm_bf16.h>\n";
2387 
2388   OS << "#include <arm_vector_types.h>\n";
2389 
2390   // For now, signedness of polynomial types depends on target
2391   OS << "#ifdef __aarch64__\n";
2392   OS << "typedef uint8_t poly8_t;\n";
2393   OS << "typedef uint16_t poly16_t;\n";
2394   OS << "typedef uint64_t poly64_t;\n";
2395   OS << "typedef __uint128_t poly128_t;\n";
2396   OS << "#else\n";
2397   OS << "typedef int8_t poly8_t;\n";
2398   OS << "typedef int16_t poly16_t;\n";
2399   OS << "typedef int64_t poly64_t;\n";
2400   OS << "#endif\n";
2401   emitNeonTypeDefs("PcQPcPsQPsPlQPl", OS);
2402 
2403   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2404         "__nodebug__))\n\n";
2405 
2406   SmallVector<Intrinsic *, 128> Defs;
2407   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2408   for (auto *R : RV)
2409     createIntrinsic(R, Defs);
2410 
2411   for (auto *I : Defs)
2412     I->indexBody();
2413 
2414   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2415 
2416   // Only emit a def when its requirements have been met.
2417   // FIXME: This loop could be made faster, but it's fast enough for now.
2418   bool MadeProgress = true;
2419   std::string InGuard;
2420   while (!Defs.empty() && MadeProgress) {
2421     MadeProgress = false;
2422 
2423     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2424          I != Defs.end(); /*No step*/) {
2425       bool DependenciesSatisfied = true;
2426       for (auto *II : (*I)->getDependencies()) {
2427         if (llvm::is_contained(Defs, II))
2428           DependenciesSatisfied = false;
2429       }
2430       if (!DependenciesSatisfied) {
2431         // Try the next one.
2432         ++I;
2433         continue;
2434       }
2435 
2436       // Emit #endif/#if pair if needed.
2437       if ((*I)->getArchGuard() != InGuard) {
2438         if (!InGuard.empty())
2439           OS << "#endif\n";
2440         InGuard = (*I)->getArchGuard();
2441         if (!InGuard.empty())
2442           OS << "#if " << InGuard << "\n";
2443       }
2444 
2445       // Actually generate the intrinsic code.
2446       OS << (*I)->generate();
2447 
2448       MadeProgress = true;
2449       I = Defs.erase(I);
2450     }
2451   }
2452   assert(Defs.empty() && "Some requirements were not satisfied!");
2453   if (!InGuard.empty())
2454     OS << "#endif\n";
2455 
2456   OS << "\n";
2457   OS << "#undef __ai\n\n";
2458   OS << "#endif /* if !defined(__ARM_NEON) */\n";
2459   OS << "#endif /* ifndef __ARM_FP */\n";
2460   OS << "#endif /* __ARM_NEON_H */\n";
2461 }
2462 
2463 /// run - Read the records in arm_fp16.td and output arm_fp16.h.  arm_fp16.h
2464 /// is comprised of type definitions and function declarations.
2465 void NeonEmitter::runFP16(raw_ostream &OS) {
2466   OS << "/*===---- arm_fp16.h - ARM FP16 intrinsics "
2467         "------------------------------"
2468         "---===\n"
2469         " *\n"
2470         " * Permission is hereby granted, free of charge, to any person "
2471         "obtaining a copy\n"
2472         " * of this software and associated documentation files (the "
2473 				"\"Software\"), to deal\n"
2474         " * in the Software without restriction, including without limitation "
2475 				"the rights\n"
2476         " * to use, copy, modify, merge, publish, distribute, sublicense, "
2477 				"and/or sell\n"
2478         " * copies of the Software, and to permit persons to whom the Software "
2479 				"is\n"
2480         " * furnished to do so, subject to the following conditions:\n"
2481         " *\n"
2482         " * The above copyright notice and this permission notice shall be "
2483         "included in\n"
2484         " * all copies or substantial portions of the Software.\n"
2485         " *\n"
2486         " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2487         "EXPRESS OR\n"
2488         " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2489         "MERCHANTABILITY,\n"
2490         " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2491         "SHALL THE\n"
2492         " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2493         "OTHER\n"
2494         " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2495         "ARISING FROM,\n"
2496         " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2497         "DEALINGS IN\n"
2498         " * THE SOFTWARE.\n"
2499         " *\n"
2500         " *===-----------------------------------------------------------------"
2501         "---"
2502         "---===\n"
2503         " */\n\n";
2504 
2505   OS << "#ifndef __ARM_FP16_H\n";
2506   OS << "#define __ARM_FP16_H\n\n";
2507 
2508   OS << "#include <stdint.h>\n\n";
2509 
2510   OS << "typedef __fp16 float16_t;\n";
2511 
2512   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2513         "__nodebug__))\n\n";
2514 
2515   SmallVector<Intrinsic *, 128> Defs;
2516   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2517   for (auto *R : RV)
2518     createIntrinsic(R, Defs);
2519 
2520   for (auto *I : Defs)
2521     I->indexBody();
2522 
2523   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2524 
2525   // Only emit a def when its requirements have been met.
2526   // FIXME: This loop could be made faster, but it's fast enough for now.
2527   bool MadeProgress = true;
2528   std::string InGuard;
2529   while (!Defs.empty() && MadeProgress) {
2530     MadeProgress = false;
2531 
2532     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2533          I != Defs.end(); /*No step*/) {
2534       bool DependenciesSatisfied = true;
2535       for (auto *II : (*I)->getDependencies()) {
2536         if (llvm::is_contained(Defs, II))
2537           DependenciesSatisfied = false;
2538       }
2539       if (!DependenciesSatisfied) {
2540         // Try the next one.
2541         ++I;
2542         continue;
2543       }
2544 
2545       // Emit #endif/#if pair if needed.
2546       if ((*I)->getArchGuard() != InGuard) {
2547         if (!InGuard.empty())
2548           OS << "#endif\n";
2549         InGuard = (*I)->getArchGuard();
2550         if (!InGuard.empty())
2551           OS << "#if " << InGuard << "\n";
2552       }
2553 
2554       // Actually generate the intrinsic code.
2555       OS << (*I)->generate();
2556 
2557       MadeProgress = true;
2558       I = Defs.erase(I);
2559     }
2560   }
2561   assert(Defs.empty() && "Some requirements were not satisfied!");
2562   if (!InGuard.empty())
2563     OS << "#endif\n";
2564 
2565   OS << "\n";
2566   OS << "#undef __ai\n\n";
2567   OS << "#endif /* __ARM_FP16_H */\n";
2568 }
2569 
2570 void NeonEmitter::runVectorTypes(raw_ostream &OS) {
2571   OS << "/*===---- arm_vector_types - ARM vector type "
2572         "------===\n"
2573         " *\n"
2574         " *\n"
2575         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2576         "Exceptions.\n"
2577         " * See https://llvm.org/LICENSE.txt for license information.\n"
2578         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2579         " *\n"
2580         " *===-----------------------------------------------------------------"
2581         "------===\n"
2582         " */\n\n";
2583   OS << "#if !defined(__ARM_NEON_H) && !defined(__ARM_SVE_H)\n";
2584   OS << "#error \"This file should not be used standalone. Please include"
2585         " arm_neon.h or arm_sve.h instead\"\n\n";
2586   OS << "#endif\n";
2587   OS << "#ifndef __ARM_NEON_TYPES_H\n";
2588   OS << "#define __ARM_NEON_TYPES_H\n";
2589   OS << "typedef float float32_t;\n";
2590   OS << "typedef __fp16 float16_t;\n";
2591 
2592   OS << "#ifdef __aarch64__\n";
2593   OS << "typedef double float64_t;\n";
2594   OS << "#endif\n\n";
2595 
2596   emitNeonTypeDefs("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQd", OS);
2597 
2598   emitNeonTypeDefs("bQb", OS);
2599   OS << "#endif // __ARM_NEON_TYPES_H\n";
2600 }
2601 
2602 void NeonEmitter::runBF16(raw_ostream &OS) {
2603   OS << "/*===---- arm_bf16.h - ARM BF16 intrinsics "
2604         "-----------------------------------===\n"
2605         " *\n"
2606         " *\n"
2607         " * Part of the LLVM Project, under the Apache License v2.0 with LLVM "
2608         "Exceptions.\n"
2609         " * See https://llvm.org/LICENSE.txt for license information.\n"
2610         " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
2611         " *\n"
2612         " *===-----------------------------------------------------------------"
2613         "------===\n"
2614         " */\n\n";
2615 
2616   OS << "#ifndef __ARM_BF16_H\n";
2617   OS << "#define __ARM_BF16_H\n\n";
2618 
2619   OS << "typedef __bf16 bfloat16_t;\n";
2620 
2621   OS << "#define __ai static __inline__ __attribute__((__always_inline__, "
2622         "__nodebug__))\n\n";
2623 
2624   SmallVector<Intrinsic *, 128> Defs;
2625   std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2626   for (auto *R : RV)
2627     createIntrinsic(R, Defs);
2628 
2629   for (auto *I : Defs)
2630     I->indexBody();
2631 
2632   llvm::stable_sort(Defs, llvm::deref<std::less<>>());
2633 
2634   // Only emit a def when its requirements have been met.
2635   // FIXME: This loop could be made faster, but it's fast enough for now.
2636   bool MadeProgress = true;
2637   std::string InGuard;
2638   while (!Defs.empty() && MadeProgress) {
2639     MadeProgress = false;
2640 
2641     for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2642          I != Defs.end(); /*No step*/) {
2643       bool DependenciesSatisfied = true;
2644       for (auto *II : (*I)->getDependencies()) {
2645         if (llvm::is_contained(Defs, II))
2646           DependenciesSatisfied = false;
2647       }
2648       if (!DependenciesSatisfied) {
2649         // Try the next one.
2650         ++I;
2651         continue;
2652       }
2653 
2654       // Emit #endif/#if pair if needed.
2655       if ((*I)->getArchGuard() != InGuard) {
2656         if (!InGuard.empty())
2657           OS << "#endif\n";
2658         InGuard = (*I)->getArchGuard();
2659         if (!InGuard.empty())
2660           OS << "#if " << InGuard << "\n";
2661       }
2662 
2663       // Actually generate the intrinsic code.
2664       OS << (*I)->generate();
2665 
2666       MadeProgress = true;
2667       I = Defs.erase(I);
2668     }
2669   }
2670   assert(Defs.empty() && "Some requirements were not satisfied!");
2671   if (!InGuard.empty())
2672     OS << "#endif\n";
2673 
2674   OS << "\n";
2675   OS << "#undef __ai\n\n";
2676 
2677   OS << "#endif\n";
2678 }
2679 
2680 void clang::EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2681   NeonEmitter(Records).run(OS);
2682 }
2683 
2684 void clang::EmitFP16(RecordKeeper &Records, raw_ostream &OS) {
2685   NeonEmitter(Records).runFP16(OS);
2686 }
2687 
2688 void clang::EmitBF16(RecordKeeper &Records, raw_ostream &OS) {
2689   NeonEmitter(Records).runBF16(OS);
2690 }
2691 
2692 void clang::EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2693   NeonEmitter(Records).runHeader(OS);
2694 }
2695 
2696 void clang::EmitVectorTypes(RecordKeeper &Records, raw_ostream &OS) {
2697   NeonEmitter(Records).runVectorTypes(OS);
2698 }
2699 
2700 void clang::EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2701   llvm_unreachable("Neon test generation no longer implemented!");
2702 }
2703