1 //===-- sanitizer_procmaps_mac.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Information about the process mappings (Mac-specific parts).
10 //===----------------------------------------------------------------------===//
11 
12 #include "sanitizer_platform.h"
13 #if SANITIZER_APPLE
14 #include "sanitizer_common.h"
15 #include "sanitizer_placement_new.h"
16 #include "sanitizer_procmaps.h"
17 
18 #include <mach-o/dyld.h>
19 #include <mach-o/loader.h>
20 #include <mach/mach.h>
21 
22 // These are not available in older macOS SDKs.
23 #ifndef CPU_SUBTYPE_X86_64_H
24 #define CPU_SUBTYPE_X86_64_H  ((cpu_subtype_t)8)   /* Haswell */
25 #endif
26 #ifndef CPU_SUBTYPE_ARM_V7S
27 #define CPU_SUBTYPE_ARM_V7S   ((cpu_subtype_t)11)  /* Swift */
28 #endif
29 #ifndef CPU_SUBTYPE_ARM_V7K
30 #define CPU_SUBTYPE_ARM_V7K   ((cpu_subtype_t)12)
31 #endif
32 #ifndef CPU_TYPE_ARM64
33 #define CPU_TYPE_ARM64        (CPU_TYPE_ARM | CPU_ARCH_ABI64)
34 #endif
35 
36 namespace __sanitizer {
37 
38 // Contains information used to iterate through sections.
39 struct MemoryMappedSegmentData {
40   char name[kMaxSegName];
41   uptr nsects;
42   const char *current_load_cmd_addr;
43   u32 lc_type;
44   uptr base_virt_addr;
45   uptr addr_mask;
46 };
47 
48 template <typename Section>
49 static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
50                             bool isWritable) {
51   const Section *sc = (const Section *)data->current_load_cmd_addr;
52   data->current_load_cmd_addr += sizeof(Section);
53 
54   uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
55   uptr sec_end = sec_start + sc->size;
56   module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
57                           sc->sectname);
58 }
59 
60 void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
61   // Don't iterate over sections when the caller hasn't set up the
62   // data pointer, when there are no sections, or when the segment
63   // is executable. Avoid iterating over executable sections because
64   // it will confuse libignore, and because the extra granularity
65   // of information is not needed by any sanitizers.
66   if (!data_ || !data_->nsects || IsExecutable()) {
67     module->addAddressRange(start, end, IsExecutable(), IsWritable(),
68                             data_ ? data_->name : nullptr);
69     return;
70   }
71 
72   do {
73     if (data_->lc_type == LC_SEGMENT) {
74       NextSectionLoad<struct section>(module, data_, IsWritable());
75 #ifdef MH_MAGIC_64
76     } else if (data_->lc_type == LC_SEGMENT_64) {
77       NextSectionLoad<struct section_64>(module, data_, IsWritable());
78 #endif
79     }
80   } while (--data_->nsects);
81 }
82 
83 MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
84   Reset();
85 }
86 
87 MemoryMappingLayout::~MemoryMappingLayout() {
88 }
89 
90 bool MemoryMappingLayout::Error() const {
91   return false;
92 }
93 
94 // More information about Mach-O headers can be found in mach-o/loader.h
95 // Each Mach-O image has a header (mach_header or mach_header_64) starting with
96 // a magic number, and a list of linker load commands directly following the
97 // header.
98 // A load command is at least two 32-bit words: the command type and the
99 // command size in bytes. We're interested only in segment load commands
100 // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
101 // into the task's address space.
102 // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
103 // segment_command_64 correspond to the memory address, memory size and the
104 // file offset of the current memory segment.
105 // Because these fields are taken from the images as is, one needs to add
106 // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
107 
108 void MemoryMappingLayout::Reset() {
109   // Count down from the top.
110   // TODO(glider): as per man 3 dyld, iterating over the headers with
111   // _dyld_image_count is thread-unsafe. We need to register callbacks for
112   // adding and removing images which will invalidate the MemoryMappingLayout
113   // state.
114   data_.current_image = _dyld_image_count();
115   data_.current_load_cmd_count = -1;
116   data_.current_load_cmd_addr = 0;
117   data_.current_magic = 0;
118   data_.current_filetype = 0;
119   data_.current_arch = kModuleArchUnknown;
120   internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
121 }
122 
123 // The dyld load address should be unchanged throughout process execution,
124 // and it is expensive to compute once many libraries have been loaded,
125 // so cache it here and do not reset.
126 static mach_header *dyld_hdr = 0;
127 static const char kDyldPath[] = "/usr/lib/dyld";
128 static const int kDyldImageIdx = -1;
129 
130 // static
131 void MemoryMappingLayout::CacheMemoryMappings() {
132   // No-op on Mac for now.
133 }
134 
135 void MemoryMappingLayout::LoadFromCache() {
136   // No-op on Mac for now.
137 }
138 
139 static bool IsDyldHdr(const mach_header *hdr) {
140   return (hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
141          hdr->filetype == MH_DYLINKER;
142 }
143 
144 // _dyld_get_image_header() and related APIs don't report dyld itself.
145 // We work around this by manually recursing through the memory map
146 // until we hit a Mach header matching dyld instead. These recurse
147 // calls are expensive, but the first memory map generation occurs
148 // early in the process, when dyld is one of the only images loaded,
149 // so it will be hit after only a few iterations.  These assumptions don't hold
150 // on macOS 13+ anymore (dyld itself has moved into the shared cache).
151 static mach_header *GetDyldImageHeaderViaVMRegion() {
152   vm_address_t address = 0;
153 
154   while (true) {
155     vm_size_t size = 0;
156     unsigned depth = 1;
157     struct vm_region_submap_info_64 info;
158     mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
159     kern_return_t err =
160         vm_region_recurse_64(mach_task_self(), &address, &size, &depth,
161                              (vm_region_info_t)&info, &count);
162     if (err != KERN_SUCCESS) return nullptr;
163 
164     if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
165       mach_header *hdr = (mach_header *)address;
166       if (IsDyldHdr(hdr)) {
167         return hdr;
168       }
169     }
170     address += size;
171   }
172 }
173 
174 extern "C" {
175 struct dyld_shared_cache_dylib_text_info {
176   uint64_t version;  // current version 2
177   // following fields all exist in version 1
178   uint64_t loadAddressUnslid;
179   uint64_t textSegmentSize;
180   uuid_t dylibUuid;
181   const char *path;  // pointer invalid at end of iterations
182   // following fields all exist in version 2
183   uint64_t textSegmentOffset;  // offset from start of cache
184 };
185 typedef struct dyld_shared_cache_dylib_text_info
186     dyld_shared_cache_dylib_text_info;
187 
188 extern bool _dyld_get_shared_cache_uuid(uuid_t uuid);
189 extern const void *_dyld_get_shared_cache_range(size_t *length);
190 extern int dyld_shared_cache_iterate_text(
191     const uuid_t cacheUuid,
192     void (^callback)(const dyld_shared_cache_dylib_text_info *info));
193 }  // extern "C"
194 
195 static mach_header *GetDyldImageHeaderViaSharedCache() {
196   uuid_t uuid;
197   bool hasCache = _dyld_get_shared_cache_uuid(uuid);
198   if (!hasCache)
199     return nullptr;
200 
201   size_t cacheLength;
202   __block uptr cacheStart = (uptr)_dyld_get_shared_cache_range(&cacheLength);
203   CHECK(cacheStart && cacheLength);
204 
205   __block mach_header *dyldHdr = nullptr;
206   int res = dyld_shared_cache_iterate_text(
207       uuid, ^(const dyld_shared_cache_dylib_text_info *info) {
208         CHECK_GE(info->version, 2);
209         mach_header *hdr =
210             (mach_header *)(cacheStart + info->textSegmentOffset);
211         if (IsDyldHdr(hdr))
212           dyldHdr = hdr;
213       });
214   CHECK_EQ(res, 0);
215 
216   return dyldHdr;
217 }
218 
219 const mach_header *get_dyld_hdr() {
220   if (!dyld_hdr) {
221     // On macOS 13+, dyld itself has moved into the shared cache.  Looking it up
222     // via vm_region_recurse_64() causes spins/hangs/crashes.
223     if (GetMacosAlignedVersion() >= MacosVersion(13, 0)) {
224       dyld_hdr = GetDyldImageHeaderViaSharedCache();
225       if (!dyld_hdr) {
226         VReport(1,
227                 "Failed to lookup the dyld image header in the shared cache on "
228                 "macOS 13+ (or no shared cache in use).  Falling back to "
229                 "lookup via vm_region_recurse_64().\n");
230         dyld_hdr = GetDyldImageHeaderViaVMRegion();
231       }
232     } else {
233       dyld_hdr = GetDyldImageHeaderViaVMRegion();
234     }
235     CHECK(dyld_hdr);
236   }
237 
238   return dyld_hdr;
239 }
240 
241 // Next and NextSegmentLoad were inspired by base/sysinfo.cc in
242 // Google Perftools, https://github.com/gperftools/gperftools.
243 
244 // NextSegmentLoad scans the current image for the next segment load command
245 // and returns the start and end addresses and file offset of the corresponding
246 // segment.
247 // Note that the segment addresses are not necessarily sorted.
248 template <u32 kLCSegment, typename SegmentCommand>
249 static bool NextSegmentLoad(MemoryMappedSegment *segment,
250                             MemoryMappedSegmentData *seg_data,
251                             MemoryMappingLayoutData *layout_data) {
252   const char *lc = layout_data->current_load_cmd_addr;
253   layout_data->current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
254   if (((const load_command *)lc)->cmd == kLCSegment) {
255     const SegmentCommand* sc = (const SegmentCommand *)lc;
256     uptr base_virt_addr, addr_mask;
257     if (layout_data->current_image == kDyldImageIdx) {
258       base_virt_addr = (uptr)get_dyld_hdr();
259       // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
260       // it contains an absolute address rather than an offset for dyld.
261       // To make matters even more complicated, this absolute address
262       // isn't actually the absolute segment address, but the offset portion
263       // of the address is accurate when combined with the dyld base address,
264       // and the mask will give just this offset.
265       addr_mask = 0xfffff;
266     } else {
267       base_virt_addr =
268           (uptr)_dyld_get_image_vmaddr_slide(layout_data->current_image);
269       addr_mask = ~0;
270     }
271 
272     segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
273     segment->end = segment->start + sc->vmsize;
274     // Most callers don't need section information, so only fill this struct
275     // when required.
276     if (seg_data) {
277       seg_data->nsects = sc->nsects;
278       seg_data->current_load_cmd_addr =
279           (const char *)lc + sizeof(SegmentCommand);
280       seg_data->lc_type = kLCSegment;
281       seg_data->base_virt_addr = base_virt_addr;
282       seg_data->addr_mask = addr_mask;
283       internal_strncpy(seg_data->name, sc->segname,
284                        ARRAY_SIZE(seg_data->name));
285     }
286 
287     // Return the initial protection.
288     segment->protection = sc->initprot;
289     segment->offset = (layout_data->current_filetype ==
290                        /*MH_EXECUTE*/ 0x2)
291                           ? sc->vmaddr
292                           : sc->fileoff;
293     if (segment->filename) {
294       const char *src = (layout_data->current_image == kDyldImageIdx)
295                             ? kDyldPath
296                             : _dyld_get_image_name(layout_data->current_image);
297       internal_strncpy(segment->filename, src, segment->filename_size);
298     }
299     segment->arch = layout_data->current_arch;
300     internal_memcpy(segment->uuid, layout_data->current_uuid, kModuleUUIDSize);
301     return true;
302   }
303   return false;
304 }
305 
306 ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
307   cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
308   switch (cputype) {
309     case CPU_TYPE_I386:
310       return kModuleArchI386;
311     case CPU_TYPE_X86_64:
312       if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
313       if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
314       CHECK(0 && "Invalid subtype of x86_64");
315       return kModuleArchUnknown;
316     case CPU_TYPE_ARM:
317       if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
318       if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
319       if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
320       if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
321       CHECK(0 && "Invalid subtype of ARM");
322       return kModuleArchUnknown;
323     case CPU_TYPE_ARM64:
324       return kModuleArchARM64;
325     default:
326       CHECK(0 && "Invalid CPU type");
327       return kModuleArchUnknown;
328   }
329 }
330 
331 static const load_command *NextCommand(const load_command *lc) {
332   return (const load_command *)((const char *)lc + lc->cmdsize);
333 }
334 
335 static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
336   for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
337     if (lc->cmd != LC_UUID) continue;
338 
339     const uuid_command *uuid_lc = (const uuid_command *)lc;
340     const uint8_t *uuid = &uuid_lc->uuid[0];
341     internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
342     return;
343   }
344 }
345 
346 static bool IsModuleInstrumented(const load_command *first_lc) {
347   for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
348     if (lc->cmd != LC_LOAD_DYLIB) continue;
349 
350     const dylib_command *dylib_lc = (const dylib_command *)lc;
351     uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
352     const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
353     dylib_name = StripModuleName(dylib_name);
354     if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
355       return true;
356     }
357   }
358   return false;
359 }
360 
361 bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
362   for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
363     const mach_header *hdr = (data_.current_image == kDyldImageIdx)
364                                  ? get_dyld_hdr()
365                                  : _dyld_get_image_header(data_.current_image);
366     if (!hdr) continue;
367     if (data_.current_load_cmd_count < 0) {
368       // Set up for this image;
369       data_.current_load_cmd_count = hdr->ncmds;
370       data_.current_magic = hdr->magic;
371       data_.current_filetype = hdr->filetype;
372       data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
373       switch (data_.current_magic) {
374 #ifdef MH_MAGIC_64
375         case MH_MAGIC_64: {
376           data_.current_load_cmd_addr =
377               (const char *)hdr + sizeof(mach_header_64);
378           break;
379         }
380 #endif
381         case MH_MAGIC: {
382           data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
383           break;
384         }
385         default: {
386           continue;
387         }
388       }
389       FindUUID((const load_command *)data_.current_load_cmd_addr,
390                data_.current_uuid);
391       data_.current_instrumented = IsModuleInstrumented(
392           (const load_command *)data_.current_load_cmd_addr);
393     }
394 
395     for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
396       switch (data_.current_magic) {
397         // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
398 #ifdef MH_MAGIC_64
399         case MH_MAGIC_64: {
400           if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
401                   segment, segment->data_, &data_))
402             return true;
403           break;
404         }
405 #endif
406         case MH_MAGIC: {
407           if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
408                   segment, segment->data_, &data_))
409             return true;
410           break;
411         }
412       }
413     }
414     // If we get here, no more load_cmd's in this image talk about
415     // segments.  Go on to the next image.
416   }
417   return false;
418 }
419 
420 void MemoryMappingLayout::DumpListOfModules(
421     InternalMmapVectorNoCtor<LoadedModule> *modules) {
422   Reset();
423   InternalMmapVector<char> module_name(kMaxPathLength);
424   MemoryMappedSegment segment(module_name.data(), module_name.size());
425   MemoryMappedSegmentData data;
426   segment.data_ = &data;
427   while (Next(&segment)) {
428     if (segment.filename[0] == '\0') continue;
429     LoadedModule *cur_module = nullptr;
430     if (!modules->empty() &&
431         0 == internal_strcmp(segment.filename, modules->back().full_name())) {
432       cur_module = &modules->back();
433     } else {
434       modules->push_back(LoadedModule());
435       cur_module = &modules->back();
436       cur_module->set(segment.filename, segment.start, segment.arch,
437                       segment.uuid, data_.current_instrumented);
438     }
439     segment.AddAddressRanges(cur_module);
440   }
441 }
442 
443 }  // namespace __sanitizer
444 
445 #endif  // SANITIZER_APPLE
446