1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23 
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30 
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 //  Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46 
47 // A macro to tell the compiler that this part of the code cannot be reached,
48 // if the compiler supports this feature. Since we're using this in
49 // code that is called when terminating the process, the expansion of the
50 // macro should not terminate the process to avoid infinite recursion.
51 #if defined(__clang__)
52 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
53 #elif defined(__GNUC__) && \
54     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(_MSC_VER)
57 # define BUILTIN_UNREACHABLE() __assume(0)
58 #else
59 # define BUILTIN_UNREACHABLE()
60 #endif
61 
62 namespace __sanitizer {
63 
64 #include "sanitizer_syscall_generic.inc"
65 
66 // --------------------- sanitizer_common.h
67 uptr GetPageSize() {
68   SYSTEM_INFO si;
69   GetSystemInfo(&si);
70   return si.dwPageSize;
71 }
72 
73 uptr GetMmapGranularity() {
74   SYSTEM_INFO si;
75   GetSystemInfo(&si);
76   return si.dwAllocationGranularity;
77 }
78 
79 uptr GetMaxUserVirtualAddress() {
80   SYSTEM_INFO si;
81   GetSystemInfo(&si);
82   return (uptr)si.lpMaximumApplicationAddress;
83 }
84 
85 uptr GetMaxVirtualAddress() {
86   return GetMaxUserVirtualAddress();
87 }
88 
89 bool FileExists(const char *filename) {
90   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
91 }
92 
93 uptr internal_getpid() {
94   return GetProcessId(GetCurrentProcess());
95 }
96 
97 // In contrast to POSIX, on Windows GetCurrentThreadId()
98 // returns a system-unique identifier.
99 tid_t GetTid() {
100   return GetCurrentThreadId();
101 }
102 
103 uptr GetThreadSelf() {
104   return GetTid();
105 }
106 
107 #if !SANITIZER_GO
108 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
109                                 uptr *stack_bottom) {
110   CHECK(stack_top);
111   CHECK(stack_bottom);
112   MEMORY_BASIC_INFORMATION mbi;
113   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
114   // FIXME: is it possible for the stack to not be a single allocation?
115   // Are these values what ASan expects to get (reserved, not committed;
116   // including stack guard page) ?
117   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
118   *stack_bottom = (uptr)mbi.AllocationBase;
119 }
120 #endif  // #if !SANITIZER_GO
121 
122 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
123   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
124   if (rv == 0)
125     ReportMmapFailureAndDie(size, mem_type, "allocate",
126                             GetLastError(), raw_report);
127   return rv;
128 }
129 
130 void UnmapOrDie(void *addr, uptr size) {
131   if (!size || !addr)
132     return;
133 
134   MEMORY_BASIC_INFORMATION mbi;
135   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
136 
137   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
138   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
139   // fails try MEM_DECOMMIT.
140   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
141     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
142       Report("ERROR: %s failed to "
143              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
144              SanitizerToolName, size, size, addr, GetLastError());
145       CHECK("unable to unmap" && 0);
146     }
147   }
148 }
149 
150 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
151                                      const char *mmap_type) {
152   error_t last_error = GetLastError();
153   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
154     return nullptr;
155   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
156 }
157 
158 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
159   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
160   if (rv == 0)
161     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
162   return rv;
163 }
164 
165 // We want to map a chunk of address space aligned to 'alignment'.
166 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
167                                    const char *mem_type) {
168   CHECK(IsPowerOfTwo(size));
169   CHECK(IsPowerOfTwo(alignment));
170 
171   // Windows will align our allocations to at least 64K.
172   alignment = Max(alignment, GetMmapGranularity());
173 
174   uptr mapped_addr =
175       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
176   if (!mapped_addr)
177     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
178 
179   // If we got it right on the first try, return. Otherwise, unmap it and go to
180   // the slow path.
181   if (IsAligned(mapped_addr, alignment))
182     return (void*)mapped_addr;
183   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
184     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
185 
186   // If we didn't get an aligned address, overallocate, find an aligned address,
187   // unmap, and try to allocate at that aligned address.
188   int retries = 0;
189   const int kMaxRetries = 10;
190   for (; retries < kMaxRetries &&
191          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
192        retries++) {
193     // Overallocate size + alignment bytes.
194     mapped_addr =
195         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
196     if (!mapped_addr)
197       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
198 
199     // Find the aligned address.
200     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
201 
202     // Free the overallocation.
203     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
204       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
205 
206     // Attempt to allocate exactly the number of bytes we need at the aligned
207     // address. This may fail for a number of reasons, in which case we continue
208     // the loop.
209     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
210                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
211   }
212 
213   // Fail if we can't make this work quickly.
214   if (retries == kMaxRetries && mapped_addr == 0)
215     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
216 
217   return (void *)mapped_addr;
218 }
219 
220 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
221   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
222   // but on Win64 it does.
223   (void)name;  // unsupported
224 #if !SANITIZER_GO && SANITIZER_WINDOWS64
225   // On asan/Windows64, use MEM_COMMIT would result in error
226   // 1455:ERROR_COMMITMENT_LIMIT.
227   // Asan uses exception handler to commit page on demand.
228   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
229 #else
230   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
231                          PAGE_READWRITE);
232 #endif
233   if (p == 0) {
234     Report("ERROR: %s failed to "
235            "allocate %p (%zd) bytes at %p (error code: %d)\n",
236            SanitizerToolName, size, size, fixed_addr, GetLastError());
237     return false;
238   }
239   return true;
240 }
241 
242 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
243   // FIXME: Windows support large pages too. Might be worth checking
244   return MmapFixedNoReserve(fixed_addr, size, name);
245 }
246 
247 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
248 // 'MmapFixedNoAccess'.
249 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
250   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
251       MEM_COMMIT, PAGE_READWRITE);
252   if (p == 0) {
253     char mem_type[30];
254     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
255                       fixed_addr);
256     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
257   }
258   return p;
259 }
260 
261 // Uses fixed_addr for now.
262 // Will use offset instead once we've implemented this function for real.
263 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
264   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
265 }
266 
267 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
268                                     const char *name) {
269   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
270 }
271 
272 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
273   // Only unmap if it covers the entire range.
274   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
275   // We unmap the whole range, just null out the base.
276   base_ = nullptr;
277   size_ = 0;
278   UnmapOrDie(reinterpret_cast<void*>(addr), size);
279 }
280 
281 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
282   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
283       MEM_COMMIT, PAGE_READWRITE);
284   if (p == 0) {
285     char mem_type[30];
286     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
287                       fixed_addr);
288     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
289   }
290   return p;
291 }
292 
293 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
294   // FIXME: make this really NoReserve?
295   return MmapOrDie(size, mem_type);
296 }
297 
298 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
299   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
300   size_ = size;
301   name_ = name;
302   (void)os_handle_;  // unsupported
303   return reinterpret_cast<uptr>(base_);
304 }
305 
306 
307 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
308   (void)name; // unsupported
309   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
310                            MEM_RESERVE, PAGE_NOACCESS);
311   if (res == 0)
312     Report("WARNING: %s failed to "
313            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
314            SanitizerToolName, size, size, fixed_addr, GetLastError());
315   return res;
316 }
317 
318 void *MmapNoAccess(uptr size) {
319   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
320   if (res == 0)
321     Report("WARNING: %s failed to "
322            "mprotect %p (%zd) bytes (error code: %d)\n",
323            SanitizerToolName, size, size, GetLastError());
324   return res;
325 }
326 
327 bool MprotectNoAccess(uptr addr, uptr size) {
328   DWORD old_protection;
329   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
330 }
331 
332 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
333   // This is almost useless on 32-bits.
334   // FIXME: add madvise-analog when we move to 64-bits.
335 }
336 
337 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
338   // FIXME: probably similar to ReleaseMemoryToOS.
339 }
340 
341 bool DontDumpShadowMemory(uptr addr, uptr length) {
342   // This is almost useless on 32-bits.
343   // FIXME: add madvise-analog when we move to 64-bits.
344   return true;
345 }
346 
347 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
348                               uptr *largest_gap_found,
349                               uptr *max_occupied_addr) {
350   uptr address = 0;
351   while (true) {
352     MEMORY_BASIC_INFORMATION info;
353     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
354       return 0;
355 
356     if (info.State == MEM_FREE) {
357       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
358                                       alignment);
359       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
360         return shadow_address;
361     }
362 
363     // Move to the next region.
364     address = (uptr)info.BaseAddress + info.RegionSize;
365   }
366   return 0;
367 }
368 
369 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
370   MEMORY_BASIC_INFORMATION mbi;
371   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
372   return mbi.Protect == PAGE_NOACCESS &&
373          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
374 }
375 
376 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
377   UNIMPLEMENTED();
378 }
379 
380 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
381   UNIMPLEMENTED();
382 }
383 
384 static const int kMaxEnvNameLength = 128;
385 static const DWORD kMaxEnvValueLength = 32767;
386 
387 namespace {
388 
389 struct EnvVariable {
390   char name[kMaxEnvNameLength];
391   char value[kMaxEnvValueLength];
392 };
393 
394 }  // namespace
395 
396 static const int kEnvVariables = 5;
397 static EnvVariable env_vars[kEnvVariables];
398 static int num_env_vars;
399 
400 const char *GetEnv(const char *name) {
401   // Note: this implementation caches the values of the environment variables
402   // and limits their quantity.
403   for (int i = 0; i < num_env_vars; i++) {
404     if (0 == internal_strcmp(name, env_vars[i].name))
405       return env_vars[i].value;
406   }
407   CHECK_LT(num_env_vars, kEnvVariables);
408   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
409                                      kMaxEnvValueLength);
410   if (rv > 0 && rv < kMaxEnvValueLength) {
411     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
412     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
413     num_env_vars++;
414     return env_vars[num_env_vars - 1].value;
415   }
416   return 0;
417 }
418 
419 const char *GetPwd() {
420   UNIMPLEMENTED();
421 }
422 
423 u32 GetUid() {
424   UNIMPLEMENTED();
425 }
426 
427 namespace {
428 struct ModuleInfo {
429   const char *filepath;
430   uptr base_address;
431   uptr end_address;
432 };
433 
434 #if !SANITIZER_GO
435 int CompareModulesBase(const void *pl, const void *pr) {
436   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
437   if (l->base_address < r->base_address)
438     return -1;
439   return l->base_address > r->base_address;
440 }
441 #endif
442 }  // namespace
443 
444 #if !SANITIZER_GO
445 void DumpProcessMap() {
446   Report("Dumping process modules:\n");
447   ListOfModules modules;
448   modules.init();
449   uptr num_modules = modules.size();
450 
451   InternalMmapVector<ModuleInfo> module_infos(num_modules);
452   for (size_t i = 0; i < num_modules; ++i) {
453     module_infos[i].filepath = modules[i].full_name();
454     module_infos[i].base_address = modules[i].ranges().front()->beg;
455     module_infos[i].end_address = modules[i].ranges().back()->end;
456   }
457   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
458         CompareModulesBase);
459 
460   for (size_t i = 0; i < num_modules; ++i) {
461     const ModuleInfo &mi = module_infos[i];
462     if (mi.end_address != 0) {
463       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
464              mi.filepath[0] ? mi.filepath : "[no name]");
465     } else if (mi.filepath[0]) {
466       Printf("\t??\?-??? %s\n", mi.filepath);
467     } else {
468       Printf("\t???\n");
469     }
470   }
471 }
472 #endif
473 
474 void PrintModuleMap() { }
475 
476 void DisableCoreDumperIfNecessary() {
477   // Do nothing.
478 }
479 
480 void ReExec() {
481   UNIMPLEMENTED();
482 }
483 
484 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
485 
486 bool StackSizeIsUnlimited() {
487   UNIMPLEMENTED();
488 }
489 
490 void SetStackSizeLimitInBytes(uptr limit) {
491   UNIMPLEMENTED();
492 }
493 
494 bool AddressSpaceIsUnlimited() {
495   UNIMPLEMENTED();
496 }
497 
498 void SetAddressSpaceUnlimited() {
499   UNIMPLEMENTED();
500 }
501 
502 bool IsPathSeparator(const char c) {
503   return c == '\\' || c == '/';
504 }
505 
506 static bool IsAlpha(char c) {
507   c = ToLower(c);
508   return c >= 'a' && c <= 'z';
509 }
510 
511 bool IsAbsolutePath(const char *path) {
512   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
513          IsPathSeparator(path[2]);
514 }
515 
516 void SleepForSeconds(int seconds) {
517   Sleep(seconds * 1000);
518 }
519 
520 void SleepForMillis(int millis) {
521   Sleep(millis);
522 }
523 
524 u64 NanoTime() {
525   static LARGE_INTEGER frequency = {};
526   LARGE_INTEGER counter;
527   if (UNLIKELY(frequency.QuadPart == 0)) {
528     QueryPerformanceFrequency(&frequency);
529     CHECK_NE(frequency.QuadPart, 0);
530   }
531   QueryPerformanceCounter(&counter);
532   counter.QuadPart *= 1000ULL * 1000000ULL;
533   counter.QuadPart /= frequency.QuadPart;
534   return counter.QuadPart;
535 }
536 
537 u64 MonotonicNanoTime() { return NanoTime(); }
538 
539 void Abort() {
540   internal__exit(3);
541 }
542 
543 #if !SANITIZER_GO
544 // Read the file to extract the ImageBase field from the PE header. If ASLR is
545 // disabled and this virtual address is available, the loader will typically
546 // load the image at this address. Therefore, we call it the preferred base. Any
547 // addresses in the DWARF typically assume that the object has been loaded at
548 // this address.
549 static uptr GetPreferredBase(const char *modname) {
550   fd_t fd = OpenFile(modname, RdOnly, nullptr);
551   if (fd == kInvalidFd)
552     return 0;
553   FileCloser closer(fd);
554 
555   // Read just the DOS header.
556   IMAGE_DOS_HEADER dos_header;
557   uptr bytes_read;
558   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
559       bytes_read != sizeof(dos_header))
560     return 0;
561 
562   // The file should start with the right signature.
563   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
564     return 0;
565 
566   // The layout at e_lfanew is:
567   // "PE\0\0"
568   // IMAGE_FILE_HEADER
569   // IMAGE_OPTIONAL_HEADER
570   // Seek to e_lfanew and read all that data.
571   char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
572   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
573       INVALID_SET_FILE_POINTER)
574     return 0;
575   if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
576       bytes_read != sizeof(buf))
577     return 0;
578 
579   // Check for "PE\0\0" before the PE header.
580   char *pe_sig = &buf[0];
581   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
582     return 0;
583 
584   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
585   IMAGE_OPTIONAL_HEADER *pe_header =
586       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
587 
588   // Check for more magic in the PE header.
589   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
590     return 0;
591 
592   // Finally, return the ImageBase.
593   return (uptr)pe_header->ImageBase;
594 }
595 
596 void ListOfModules::init() {
597   clearOrInit();
598   HANDLE cur_process = GetCurrentProcess();
599 
600   // Query the list of modules.  Start by assuming there are no more than 256
601   // modules and retry if that's not sufficient.
602   HMODULE *hmodules = 0;
603   uptr modules_buffer_size = sizeof(HMODULE) * 256;
604   DWORD bytes_required;
605   while (!hmodules) {
606     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
607     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
608                              &bytes_required));
609     if (bytes_required > modules_buffer_size) {
610       // Either there turned out to be more than 256 hmodules, or new hmodules
611       // could have loaded since the last try.  Retry.
612       UnmapOrDie(hmodules, modules_buffer_size);
613       hmodules = 0;
614       modules_buffer_size = bytes_required;
615     }
616   }
617 
618   // |num_modules| is the number of modules actually present,
619   size_t num_modules = bytes_required / sizeof(HMODULE);
620   for (size_t i = 0; i < num_modules; ++i) {
621     HMODULE handle = hmodules[i];
622     MODULEINFO mi;
623     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
624       continue;
625 
626     // Get the UTF-16 path and convert to UTF-8.
627     wchar_t modname_utf16[kMaxPathLength];
628     int modname_utf16_len =
629         GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
630     if (modname_utf16_len == 0)
631       modname_utf16[0] = '\0';
632     char module_name[kMaxPathLength];
633     int module_name_len =
634         ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
635                               &module_name[0], kMaxPathLength, NULL, NULL);
636     module_name[module_name_len] = '\0';
637 
638     uptr base_address = (uptr)mi.lpBaseOfDll;
639     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
640 
641     // Adjust the base address of the module so that we get a VA instead of an
642     // RVA when computing the module offset. This helps llvm-symbolizer find the
643     // right DWARF CU. In the common case that the image is loaded at it's
644     // preferred address, we will now print normal virtual addresses.
645     uptr preferred_base = GetPreferredBase(&module_name[0]);
646     uptr adjusted_base = base_address - preferred_base;
647 
648     LoadedModule cur_module;
649     cur_module.set(module_name, adjusted_base);
650     // We add the whole module as one single address range.
651     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
652                                /*writable*/ true);
653     modules_.push_back(cur_module);
654   }
655   UnmapOrDie(hmodules, modules_buffer_size);
656 }
657 
658 void ListOfModules::fallbackInit() { clear(); }
659 
660 // We can't use atexit() directly at __asan_init time as the CRT is not fully
661 // initialized at this point.  Place the functions into a vector and use
662 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
663 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
664 
665 int Atexit(void (*function)(void)) {
666   atexit_functions.push_back(function);
667   return 0;
668 }
669 
670 static int RunAtexit() {
671   TraceLoggingUnregister(g_asan_provider);
672   int ret = 0;
673   for (uptr i = 0; i < atexit_functions.size(); ++i) {
674     ret |= atexit(atexit_functions[i]);
675   }
676   return ret;
677 }
678 
679 #pragma section(".CRT$XID", long, read)
680 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
681 #endif
682 
683 // ------------------ sanitizer_libc.h
684 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
685   // FIXME: Use the wide variants to handle Unicode filenames.
686   fd_t res;
687   if (mode == RdOnly) {
688     res = CreateFileA(filename, GENERIC_READ,
689                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
690                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
691   } else if (mode == WrOnly) {
692     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
693                       FILE_ATTRIBUTE_NORMAL, nullptr);
694   } else {
695     UNIMPLEMENTED();
696   }
697   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
698   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
699   if (res == kInvalidFd && last_error)
700     *last_error = GetLastError();
701   return res;
702 }
703 
704 void CloseFile(fd_t fd) {
705   CloseHandle(fd);
706 }
707 
708 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
709                   error_t *error_p) {
710   CHECK(fd != kInvalidFd);
711 
712   // bytes_read can't be passed directly to ReadFile:
713   // uptr is unsigned long long on 64-bit Windows.
714   unsigned long num_read_long;
715 
716   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
717   if (!success && error_p)
718     *error_p = GetLastError();
719   if (bytes_read)
720     *bytes_read = num_read_long;
721   return success;
722 }
723 
724 bool SupportsColoredOutput(fd_t fd) {
725   // FIXME: support colored output.
726   return false;
727 }
728 
729 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
730                  error_t *error_p) {
731   CHECK(fd != kInvalidFd);
732 
733   // Handle null optional parameters.
734   error_t dummy_error;
735   error_p = error_p ? error_p : &dummy_error;
736   uptr dummy_bytes_written;
737   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
738 
739   // Initialize output parameters in case we fail.
740   *error_p = 0;
741   *bytes_written = 0;
742 
743   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
744   // closed, in which case this will fail.
745   if (fd == kStdoutFd || fd == kStderrFd) {
746     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
747     if (fd == 0) {
748       *error_p = ERROR_INVALID_HANDLE;
749       return false;
750     }
751   }
752 
753   DWORD bytes_written_32;
754   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
755     *error_p = GetLastError();
756     return false;
757   } else {
758     *bytes_written = bytes_written_32;
759     return true;
760   }
761 }
762 
763 uptr internal_sched_yield() {
764   Sleep(0);
765   return 0;
766 }
767 
768 void internal__exit(int exitcode) {
769   TraceLoggingUnregister(g_asan_provider);
770   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
771   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
772   // so add our own breakpoint here.
773   if (::IsDebuggerPresent())
774     __debugbreak();
775   TerminateProcess(GetCurrentProcess(), exitcode);
776   BUILTIN_UNREACHABLE();
777 }
778 
779 uptr internal_ftruncate(fd_t fd, uptr size) {
780   UNIMPLEMENTED();
781 }
782 
783 uptr GetRSS() {
784   PROCESS_MEMORY_COUNTERS counters;
785   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
786     return 0;
787   return counters.WorkingSetSize;
788 }
789 
790 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
791 void internal_join_thread(void *th) { }
792 
793 // ---------------------- BlockingMutex ---------------- {{{1
794 
795 BlockingMutex::BlockingMutex() {
796   CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
797   internal_memset(this, 0, sizeof(*this));
798 }
799 
800 void BlockingMutex::Lock() {
801   AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
802   CHECK_EQ(owner_, 0);
803   owner_ = GetThreadSelf();
804 }
805 
806 void BlockingMutex::Unlock() {
807   CheckLocked();
808   owner_ = 0;
809   ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
810 }
811 
812 void BlockingMutex::CheckLocked() {
813   CHECK_EQ(owner_, GetThreadSelf());
814 }
815 
816 uptr GetTlsSize() {
817   return 0;
818 }
819 
820 void InitTlsSize() {
821 }
822 
823 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
824                           uptr *tls_addr, uptr *tls_size) {
825 #if SANITIZER_GO
826   *stk_addr = 0;
827   *stk_size = 0;
828   *tls_addr = 0;
829   *tls_size = 0;
830 #else
831   uptr stack_top, stack_bottom;
832   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
833   *stk_addr = stack_bottom;
834   *stk_size = stack_top - stack_bottom;
835   *tls_addr = 0;
836   *tls_size = 0;
837 #endif
838 }
839 
840 void ReportFile::Write(const char *buffer, uptr length) {
841   SpinMutexLock l(mu);
842   ReopenIfNecessary();
843   if (!WriteToFile(fd, buffer, length)) {
844     // stderr may be closed, but we may be able to print to the debugger
845     // instead.  This is the case when launching a program from Visual Studio,
846     // and the following routine should write to its console.
847     OutputDebugStringA(buffer);
848   }
849 }
850 
851 void SetAlternateSignalStack() {
852   // FIXME: Decide what to do on Windows.
853 }
854 
855 void UnsetAlternateSignalStack() {
856   // FIXME: Decide what to do on Windows.
857 }
858 
859 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
860   (void)handler;
861   // FIXME: Decide what to do on Windows.
862 }
863 
864 HandleSignalMode GetHandleSignalMode(int signum) {
865   // FIXME: Decide what to do on Windows.
866   return kHandleSignalNo;
867 }
868 
869 // Check based on flags if we should handle this exception.
870 bool IsHandledDeadlyException(DWORD exceptionCode) {
871   switch (exceptionCode) {
872     case EXCEPTION_ACCESS_VIOLATION:
873     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
874     case EXCEPTION_STACK_OVERFLOW:
875     case EXCEPTION_DATATYPE_MISALIGNMENT:
876     case EXCEPTION_IN_PAGE_ERROR:
877       return common_flags()->handle_segv;
878     case EXCEPTION_ILLEGAL_INSTRUCTION:
879     case EXCEPTION_PRIV_INSTRUCTION:
880     case EXCEPTION_BREAKPOINT:
881       return common_flags()->handle_sigill;
882     case EXCEPTION_FLT_DENORMAL_OPERAND:
883     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
884     case EXCEPTION_FLT_INEXACT_RESULT:
885     case EXCEPTION_FLT_INVALID_OPERATION:
886     case EXCEPTION_FLT_OVERFLOW:
887     case EXCEPTION_FLT_STACK_CHECK:
888     case EXCEPTION_FLT_UNDERFLOW:
889     case EXCEPTION_INT_DIVIDE_BY_ZERO:
890     case EXCEPTION_INT_OVERFLOW:
891       return common_flags()->handle_sigfpe;
892   }
893   return false;
894 }
895 
896 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
897   SYSTEM_INFO si;
898   GetNativeSystemInfo(&si);
899   uptr page_size = si.dwPageSize;
900   uptr page_mask = ~(page_size - 1);
901 
902   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
903        page <= end;) {
904     MEMORY_BASIC_INFORMATION info;
905     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
906       return false;
907 
908     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
909         info.Protect == PAGE_EXECUTE)
910       return false;
911 
912     if (info.RegionSize == 0)
913       return false;
914 
915     page += info.RegionSize;
916   }
917 
918   return true;
919 }
920 
921 bool SignalContext::IsStackOverflow() const {
922   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
923 }
924 
925 void SignalContext::InitPcSpBp() {
926   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
927   CONTEXT *context_record = (CONTEXT *)context;
928 
929   pc = (uptr)exception_record->ExceptionAddress;
930 #ifdef _WIN64
931   bp = (uptr)context_record->Rbp;
932   sp = (uptr)context_record->Rsp;
933 #else
934   bp = (uptr)context_record->Ebp;
935   sp = (uptr)context_record->Esp;
936 #endif
937 }
938 
939 uptr SignalContext::GetAddress() const {
940   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
941   return exception_record->ExceptionInformation[1];
942 }
943 
944 bool SignalContext::IsMemoryAccess() const {
945   return GetWriteFlag() != SignalContext::UNKNOWN;
946 }
947 
948 bool SignalContext::IsTrueFaultingAddress() const {
949   // FIXME: Provide real implementation for this. See Linux and Mac variants.
950   return IsMemoryAccess();
951 }
952 
953 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
954   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
955   // The contents of this array are documented at
956   // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
957   // The first element indicates read as 0, write as 1, or execute as 8.  The
958   // second element is the faulting address.
959   switch (exception_record->ExceptionInformation[0]) {
960     case 0:
961       return SignalContext::READ;
962     case 1:
963       return SignalContext::WRITE;
964     case 8:
965       return SignalContext::UNKNOWN;
966   }
967   return SignalContext::UNKNOWN;
968 }
969 
970 void SignalContext::DumpAllRegisters(void *context) {
971   // FIXME: Implement this.
972 }
973 
974 int SignalContext::GetType() const {
975   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
976 }
977 
978 const char *SignalContext::Describe() const {
979   unsigned code = GetType();
980   // Get the string description of the exception if this is a known deadly
981   // exception.
982   switch (code) {
983     case EXCEPTION_ACCESS_VIOLATION:
984       return "access-violation";
985     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
986       return "array-bounds-exceeded";
987     case EXCEPTION_STACK_OVERFLOW:
988       return "stack-overflow";
989     case EXCEPTION_DATATYPE_MISALIGNMENT:
990       return "datatype-misalignment";
991     case EXCEPTION_IN_PAGE_ERROR:
992       return "in-page-error";
993     case EXCEPTION_ILLEGAL_INSTRUCTION:
994       return "illegal-instruction";
995     case EXCEPTION_PRIV_INSTRUCTION:
996       return "priv-instruction";
997     case EXCEPTION_BREAKPOINT:
998       return "breakpoint";
999     case EXCEPTION_FLT_DENORMAL_OPERAND:
1000       return "flt-denormal-operand";
1001     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1002       return "flt-divide-by-zero";
1003     case EXCEPTION_FLT_INEXACT_RESULT:
1004       return "flt-inexact-result";
1005     case EXCEPTION_FLT_INVALID_OPERATION:
1006       return "flt-invalid-operation";
1007     case EXCEPTION_FLT_OVERFLOW:
1008       return "flt-overflow";
1009     case EXCEPTION_FLT_STACK_CHECK:
1010       return "flt-stack-check";
1011     case EXCEPTION_FLT_UNDERFLOW:
1012       return "flt-underflow";
1013     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1014       return "int-divide-by-zero";
1015     case EXCEPTION_INT_OVERFLOW:
1016       return "int-overflow";
1017   }
1018   return "unknown exception";
1019 }
1020 
1021 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1022   // FIXME: Actually implement this function.
1023   CHECK_GT(buf_len, 0);
1024   buf[0] = 0;
1025   return 0;
1026 }
1027 
1028 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1029   return ReadBinaryName(buf, buf_len);
1030 }
1031 
1032 void CheckVMASize() {
1033   // Do nothing.
1034 }
1035 
1036 void InitializePlatformEarly() {
1037   // Do nothing.
1038 }
1039 
1040 void MaybeReexec() {
1041   // No need to re-exec on Windows.
1042 }
1043 
1044 void CheckASLR() {
1045   // Do nothing
1046 }
1047 
1048 void CheckMPROTECT() {
1049   // Do nothing
1050 }
1051 
1052 char **GetArgv() {
1053   // FIXME: Actually implement this function.
1054   return 0;
1055 }
1056 
1057 char **GetEnviron() {
1058   // FIXME: Actually implement this function.
1059   return 0;
1060 }
1061 
1062 pid_t StartSubprocess(const char *program, const char *const argv[],
1063                       fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
1064   // FIXME: implement on this platform
1065   // Should be implemented based on
1066   // SymbolizerProcess::StarAtSymbolizerSubprocess
1067   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1068   return -1;
1069 }
1070 
1071 bool IsProcessRunning(pid_t pid) {
1072   // FIXME: implement on this platform.
1073   return false;
1074 }
1075 
1076 int WaitForProcess(pid_t pid) { return -1; }
1077 
1078 // FIXME implement on this platform.
1079 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1080 
1081 void CheckNoDeepBind(const char *filename, int flag) {
1082   // Do nothing.
1083 }
1084 
1085 // FIXME: implement on this platform.
1086 bool GetRandom(void *buffer, uptr length, bool blocking) {
1087   UNIMPLEMENTED();
1088 }
1089 
1090 u32 GetNumberOfCPUs() {
1091   SYSTEM_INFO sysinfo = {};
1092   GetNativeSystemInfo(&sysinfo);
1093   return sysinfo.dwNumberOfProcessors;
1094 }
1095 
1096 #if SANITIZER_WIN_TRACE
1097 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1098 void AndroidLogInit(void) {
1099   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1100   if (!SUCCEEDED(hr))
1101     return;
1102 }
1103 
1104 void SetAbortMessage(const char *) {}
1105 
1106 void LogFullErrorReport(const char *buffer) {
1107   if (common_flags()->log_to_syslog) {
1108     InternalMmapVector<wchar_t> filename;
1109     DWORD filename_length = 0;
1110     do {
1111       filename.resize(filename.size() + 0x100);
1112       filename_length =
1113           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1114     } while (filename_length >= filename.size());
1115     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1116                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1117                       TraceLoggingValue(buffer, "AsanReportContents"));
1118   }
1119 }
1120 #endif // SANITIZER_WIN_TRACE
1121 
1122 }  // namespace __sanitizer
1123 
1124 #endif  // _WIN32
1125