1 //===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Mac-specific interceptors.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_APPLE
16 
17 #include "interception/interception.h"
18 #include "tsan_interceptors.h"
19 #include "tsan_interface.h"
20 #include "tsan_interface_ann.h"
21 #include "tsan_spinlock_defs_mac.h"
22 #include "sanitizer_common/sanitizer_addrhashmap.h"
23 
24 #include <errno.h>
25 #include <libkern/OSAtomic.h>
26 #include <objc/objc-sync.h>
27 #include <os/lock.h>
28 #include <sys/ucontext.h>
29 
30 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
31 #include <xpc/xpc.h>
32 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
33 
34 typedef long long_t;
35 
36 extern "C" {
37 int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
38 int setcontext(const ucontext_t *ucp);
39 }
40 
41 namespace __tsan {
42 
43 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
44 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
45 // actually aliases of each other, and we cannot have different interceptors for
46 // them, because they're actually the same function.  Thus, we have to stay
47 // conservative and treat the non-barrier versions as mo_acq_rel.
48 static constexpr morder kMacOrderBarrier = mo_acq_rel;
49 static constexpr morder kMacOrderNonBarrier = mo_acq_rel;
50 static constexpr morder kMacFailureOrder = mo_relaxed;
51 
52 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
53   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
54     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
55     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
56   }
57 
58 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
59   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
60     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
61     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
62   }
63 
64 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
65   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
66     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
67     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
68   }
69 
70 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
71                                      mo)                                    \
72   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
73     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
74     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
75   }
76 
77 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
78   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
79     kMacOrderNonBarrier)                                                       \
80   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
81     kMacOrderBarrier)                                                          \
82   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
83     kMacOrderNonBarrier)                                                       \
84   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
85     kMacOrderBarrier)
86 
87 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
88   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
89     kMacOrderNonBarrier)                                                       \
90   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
91     kMacOrderBarrier)                                                          \
92   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
93     kMacOrderNonBarrier)                                                       \
94   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
95     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
96 
OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd,fetch_add,OSATOMIC_INTERCEPTOR_PLUS_X)97 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
98                                  OSATOMIC_INTERCEPTOR_PLUS_X)
99 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
100                                  OSATOMIC_INTERCEPTOR_PLUS_1)
101 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
102                                  OSATOMIC_INTERCEPTOR_MINUS_1)
103 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
104                               OSATOMIC_INTERCEPTOR)
105 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
106                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
107 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
108                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
109 
110 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
111   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
112     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
113     return tsan_atomic_f##_compare_exchange_strong(                         \
114         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
115         kMacOrderNonBarrier, kMacFailureOrder);                             \
116   }                                                                         \
117                                                                             \
118   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
119                    t volatile *ptr) {                                       \
120     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
121     return tsan_atomic_f##_compare_exchange_strong(                         \
122         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
123         kMacOrderBarrier, kMacFailureOrder);                                \
124   }
125 
126 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
127 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
128                           long_t)
129 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
130                           void *)
131 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
132                           int32_t)
133 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
134                           int64_t)
135 
136 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
137   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
138     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
139     volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
140     char bit = 0x80u >> (n & 7);                                 \
141     char mask = clear ? ~bit : bit;                              \
142     char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
143     return orig_byte & bit;                                      \
144   }
145 
146 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
147   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
148   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
149 
150 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
151 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
152                             true)
153 
154 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
155                  size_t offset) {
156   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
157   __tsan_release(item);
158   REAL(OSAtomicEnqueue)(list, item, offset);
159 }
160 
TSAN_INTERCEPTOR(void *,OSAtomicDequeue,OSQueueHead * list,size_t offset)161 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
162   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
163   void *item = REAL(OSAtomicDequeue)(list, offset);
164   if (item) __tsan_acquire(item);
165   return item;
166 }
167 
168 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
169 #if !SANITIZER_IOS
170 
TSAN_INTERCEPTOR(void,OSAtomicFifoEnqueue,OSFifoQueueHead * list,void * item,size_t offset)171 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
172                  size_t offset) {
173   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
174   __tsan_release(item);
175   REAL(OSAtomicFifoEnqueue)(list, item, offset);
176 }
177 
TSAN_INTERCEPTOR(void *,OSAtomicFifoDequeue,OSFifoQueueHead * list,size_t offset)178 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
179                  size_t offset) {
180   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
181   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
182   if (item) __tsan_acquire(item);
183   return item;
184 }
185 
186 #endif
187 
TSAN_INTERCEPTOR(void,OSSpinLockLock,volatile OSSpinLock * lock)188 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
189   CHECK(!cur_thread()->is_dead);
190   if (!cur_thread()->is_inited) {
191     return REAL(OSSpinLockLock)(lock);
192   }
193   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
194   REAL(OSSpinLockLock)(lock);
195   Acquire(thr, pc, (uptr)lock);
196 }
197 
TSAN_INTERCEPTOR(bool,OSSpinLockTry,volatile OSSpinLock * lock)198 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
199   CHECK(!cur_thread()->is_dead);
200   if (!cur_thread()->is_inited) {
201     return REAL(OSSpinLockTry)(lock);
202   }
203   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
204   bool result = REAL(OSSpinLockTry)(lock);
205   if (result)
206     Acquire(thr, pc, (uptr)lock);
207   return result;
208 }
209 
TSAN_INTERCEPTOR(void,OSSpinLockUnlock,volatile OSSpinLock * lock)210 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
211   CHECK(!cur_thread()->is_dead);
212   if (!cur_thread()->is_inited) {
213     return REAL(OSSpinLockUnlock)(lock);
214   }
215   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
216   Release(thr, pc, (uptr)lock);
217   REAL(OSSpinLockUnlock)(lock);
218 }
219 
TSAN_INTERCEPTOR(void,os_lock_lock,void * lock)220 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
221   CHECK(!cur_thread()->is_dead);
222   if (!cur_thread()->is_inited) {
223     return REAL(os_lock_lock)(lock);
224   }
225   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
226   REAL(os_lock_lock)(lock);
227   Acquire(thr, pc, (uptr)lock);
228 }
229 
TSAN_INTERCEPTOR(bool,os_lock_trylock,void * lock)230 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
231   CHECK(!cur_thread()->is_dead);
232   if (!cur_thread()->is_inited) {
233     return REAL(os_lock_trylock)(lock);
234   }
235   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
236   bool result = REAL(os_lock_trylock)(lock);
237   if (result)
238     Acquire(thr, pc, (uptr)lock);
239   return result;
240 }
241 
TSAN_INTERCEPTOR(void,os_lock_unlock,void * lock)242 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
243   CHECK(!cur_thread()->is_dead);
244   if (!cur_thread()->is_inited) {
245     return REAL(os_lock_unlock)(lock);
246   }
247   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
248   Release(thr, pc, (uptr)lock);
249   REAL(os_lock_unlock)(lock);
250 }
251 
TSAN_INTERCEPTOR(void,os_unfair_lock_lock,os_unfair_lock_t lock)252 TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
253   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
254     return REAL(os_unfair_lock_lock)(lock);
255   }
256   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
257   REAL(os_unfair_lock_lock)(lock);
258   Acquire(thr, pc, (uptr)lock);
259 }
260 
TSAN_INTERCEPTOR(void,os_unfair_lock_lock_with_options,os_unfair_lock_t lock,u32 options)261 TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
262                  u32 options) {
263   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
264     return REAL(os_unfair_lock_lock_with_options)(lock, options);
265   }
266   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
267   REAL(os_unfair_lock_lock_with_options)(lock, options);
268   Acquire(thr, pc, (uptr)lock);
269 }
270 
TSAN_INTERCEPTOR(bool,os_unfair_lock_trylock,os_unfair_lock_t lock)271 TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
272   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
273     return REAL(os_unfair_lock_trylock)(lock);
274   }
275   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
276   bool result = REAL(os_unfair_lock_trylock)(lock);
277   if (result)
278     Acquire(thr, pc, (uptr)lock);
279   return result;
280 }
281 
TSAN_INTERCEPTOR(void,os_unfair_lock_unlock,os_unfair_lock_t lock)282 TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
283   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
284     return REAL(os_unfair_lock_unlock)(lock);
285   }
286   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
287   Release(thr, pc, (uptr)lock);
288   REAL(os_unfair_lock_unlock)(lock);
289 }
290 
291 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
292 
TSAN_INTERCEPTOR(void,xpc_connection_set_event_handler,xpc_connection_t connection,xpc_handler_t handler)293 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
294                  xpc_connection_t connection, xpc_handler_t handler) {
295   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
296                           handler);
297   Release(thr, pc, (uptr)connection);
298   xpc_handler_t new_handler = ^(xpc_object_t object) {
299     {
300       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
301       Acquire(thr, pc, (uptr)connection);
302     }
303     handler(object);
304   };
305   REAL(xpc_connection_set_event_handler)(connection, new_handler);
306 }
307 
TSAN_INTERCEPTOR(void,xpc_connection_send_barrier,xpc_connection_t connection,dispatch_block_t barrier)308 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
309                  dispatch_block_t barrier) {
310   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
311   Release(thr, pc, (uptr)connection);
312   dispatch_block_t new_barrier = ^() {
313     {
314       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
315       Acquire(thr, pc, (uptr)connection);
316     }
317     barrier();
318   };
319   REAL(xpc_connection_send_barrier)(connection, new_barrier);
320 }
321 
TSAN_INTERCEPTOR(void,xpc_connection_send_message_with_reply,xpc_connection_t connection,xpc_object_t message,dispatch_queue_t replyq,xpc_handler_t handler)322 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
323                  xpc_connection_t connection, xpc_object_t message,
324                  dispatch_queue_t replyq, xpc_handler_t handler) {
325   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
326                           message, replyq, handler);
327   Release(thr, pc, (uptr)connection);
328   xpc_handler_t new_handler = ^(xpc_object_t object) {
329     {
330       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
331       Acquire(thr, pc, (uptr)connection);
332     }
333     handler(object);
334   };
335   REAL(xpc_connection_send_message_with_reply)
336   (connection, message, replyq, new_handler);
337 }
338 
TSAN_INTERCEPTOR(void,xpc_connection_cancel,xpc_connection_t connection)339 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
340   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
341   Release(thr, pc, (uptr)connection);
342   REAL(xpc_connection_cancel)(connection);
343 }
344 
345 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
346 
347 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
348 // pointers encode the object data directly in their pointer bits and do not
349 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
350 // to transparently optimize small objects.
IsTaggedObjCPointer(id obj)351 static bool IsTaggedObjCPointer(id obj) {
352   const uptr kPossibleTaggedBits = 0x8000000000000001ull;
353   return ((uptr)obj & kPossibleTaggedBits) != 0;
354 }
355 
356 // Returns an address which can be used to inform TSan about synchronization
357 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
358 // address in the process space. We do a small allocation here to obtain a
359 // stable address (the array backing the hash map can change). The memory is
360 // never free'd (leaked) and allocation and locking are slow, but this code only
361 // runs for @synchronized with tagged pointers, which is very rare.
GetOrCreateSyncAddress(uptr addr,ThreadState * thr,uptr pc)362 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
363   typedef AddrHashMap<uptr, 5> Map;
364   static Map Addresses;
365   Map::Handle h(&Addresses, addr);
366   if (h.created()) {
367     ThreadIgnoreBegin(thr, pc);
368     *h = (uptr) user_alloc(thr, pc, /*size=*/1);
369     ThreadIgnoreEnd(thr);
370   }
371   return *h;
372 }
373 
374 // Returns an address on which we can synchronize given an Obj-C object pointer.
375 // For normal object pointers, this is just the address of the object in memory.
376 // Tagged pointers are not backed by an actual memory allocation, so we need to
377 // synthesize a valid address.
SyncAddressForObjCObject(id obj,ThreadState * thr,uptr pc)378 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
379   if (IsTaggedObjCPointer(obj))
380     return GetOrCreateSyncAddress((uptr)obj, thr, pc);
381   return (uptr)obj;
382 }
383 
TSAN_INTERCEPTOR(int,objc_sync_enter,id obj)384 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
385   SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
386   if (!obj) return REAL(objc_sync_enter)(obj);
387   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
388   MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
389   int result = REAL(objc_sync_enter)(obj);
390   CHECK_EQ(result, OBJC_SYNC_SUCCESS);
391   MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
392   return result;
393 }
394 
TSAN_INTERCEPTOR(int,objc_sync_exit,id obj)395 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
396   SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
397   if (!obj) return REAL(objc_sync_exit)(obj);
398   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
399   MutexUnlock(thr, pc, addr);
400   int result = REAL(objc_sync_exit)(obj);
401   if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
402   return result;
403 }
404 
TSAN_INTERCEPTOR(int,swapcontext,ucontext_t * oucp,const ucontext_t * ucp)405 TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
406   {
407     SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
408   }
409   // Because of swapcontext() semantics we have no option but to copy its
410   // implementation here
411   if (!oucp || !ucp) {
412     errno = EINVAL;
413     return -1;
414   }
415   ThreadState *thr = cur_thread();
416   const int UCF_SWAPPED = 0x80000000;
417   oucp->uc_onstack &= ~UCF_SWAPPED;
418   thr->ignore_interceptors++;
419   int ret = getcontext(oucp);
420   if (!(oucp->uc_onstack & UCF_SWAPPED)) {
421     thr->ignore_interceptors--;
422     if (!ret) {
423       oucp->uc_onstack |= UCF_SWAPPED;
424       ret = setcontext(ucp);
425     }
426   }
427   return ret;
428 }
429 
430 // On macOS, libc++ is always linked dynamically, so intercepting works the
431 // usual way.
432 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
433 
434 namespace {
435 struct fake_shared_weak_count {
436   volatile a64 shared_owners;
437   volatile a64 shared_weak_owners;
438   virtual void _unused_0x0() = 0;
439   virtual void _unused_0x8() = 0;
440   virtual void on_zero_shared() = 0;
441   virtual void _unused_0x18() = 0;
442   virtual void on_zero_shared_weak() = 0;
443   virtual ~fake_shared_weak_count() = 0;  // suppress -Wnon-virtual-dtor
444 };
445 }  // namespace
446 
447 // The following code adds libc++ interceptors for:
448 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
449 //     bool __shared_count::__release_shared() _NOEXCEPT;
450 // Shared and weak pointers in C++ maintain reference counts via atomics in
451 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
452 // destructor code. These interceptors re-implements the whole functions so that
453 // the mo_acq_rel semantics of the atomic decrement are visible.
454 //
455 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
456 // object and call the original function, because it would have a race between
457 // the sync and the destruction of the object.  Calling both under a lock will
458 // not work because the destructor can invoke this interceptor again (and even
459 // in a different thread, so recursive locks don't help).
460 
STDCXX_INTERCEPTOR(void,_ZNSt3__119__shared_weak_count16__release_sharedEv,fake_shared_weak_count * o)461 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
462                    fake_shared_weak_count *o) {
463   if (!flags()->shared_ptr_interceptor)
464     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
465 
466   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
467                           o);
468   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
469     Acquire(thr, pc, (uptr)&o->shared_owners);
470     o->on_zero_shared();
471     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
472         0) {
473       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
474       o->on_zero_shared_weak();
475     }
476   }
477 }
478 
STDCXX_INTERCEPTOR(bool,_ZNSt3__114__shared_count16__release_sharedEv,fake_shared_weak_count * o)479 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
480                    fake_shared_weak_count *o) {
481   if (!flags()->shared_ptr_interceptor)
482     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
483 
484   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
485   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
486     Acquire(thr, pc, (uptr)&o->shared_owners);
487     o->on_zero_shared();
488     return true;
489   }
490   return false;
491 }
492 
493 namespace {
494 struct call_once_callback_args {
495   void (*orig_func)(void *arg);
496   void *orig_arg;
497   void *flag;
498 };
499 
call_once_callback_wrapper(void * arg)500 void call_once_callback_wrapper(void *arg) {
501   call_once_callback_args *new_args = (call_once_callback_args *)arg;
502   new_args->orig_func(new_args->orig_arg);
503   __tsan_release(new_args->flag);
504 }
505 }  // namespace
506 
507 // This adds a libc++ interceptor for:
508 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
509 // C++11 call_once is implemented via an internal function __call_once which is
510 // inside libc++.dylib, and the atomic release store inside it is thus
511 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
512 // function and performs an explicit Release after the user code has run.
STDCXX_INTERCEPTOR(void,_ZNSt3__111__call_onceERVmPvPFvS2_E,void * flag,void * arg,void (* func)(void * arg))513 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
514                    void *arg, void (*func)(void *arg)) {
515   call_once_callback_args new_args = {func, arg, flag};
516   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
517                                             call_once_callback_wrapper);
518 }
519 
520 }  // namespace __tsan
521 
522 #endif  // SANITIZER_APPLE
523