1 //===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Mac-specific interceptors.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_MAC
16 
17 #include "interception/interception.h"
18 #include "tsan_interceptors.h"
19 #include "tsan_interface.h"
20 #include "tsan_interface_ann.h"
21 #include "sanitizer_common/sanitizer_addrhashmap.h"
22 
23 #include <errno.h>
24 #include <libkern/OSAtomic.h>
25 #include <objc/objc-sync.h>
26 #include <os/lock.h>
27 #include <sys/ucontext.h>
28 
29 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
30 #include <xpc/xpc.h>
31 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
32 
33 typedef long long_t;
34 
35 extern "C" {
36 int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
37 int setcontext(const ucontext_t *ucp);
38 }
39 
40 namespace __tsan {
41 
42 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
43 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
44 // actually aliases of each other, and we cannot have different interceptors for
45 // them, because they're actually the same function.  Thus, we have to stay
46 // conservative and treat the non-barrier versions as mo_acq_rel.
47 static const morder kMacOrderBarrier = mo_acq_rel;
48 static const morder kMacOrderNonBarrier = mo_acq_rel;
49 
50 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
51   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
52     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
53     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
54   }
55 
56 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
57   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
58     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
59     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
60   }
61 
62 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
63   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
64     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
65     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
66   }
67 
68 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
69                                      mo)                                    \
70   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
71     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
72     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
73   }
74 
75 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
76   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
77     kMacOrderNonBarrier)                                                       \
78   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
79     kMacOrderBarrier)                                                          \
80   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
81     kMacOrderNonBarrier)                                                       \
82   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
83     kMacOrderBarrier)
84 
85 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
86   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
87     kMacOrderNonBarrier)                                                       \
88   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
89     kMacOrderBarrier)                                                          \
90   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
91     kMacOrderNonBarrier)                                                       \
92   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
93     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
94 
95 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
96                                  OSATOMIC_INTERCEPTOR_PLUS_X)
97 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
98                                  OSATOMIC_INTERCEPTOR_PLUS_1)
99 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
100                                  OSATOMIC_INTERCEPTOR_MINUS_1)
101 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
102                               OSATOMIC_INTERCEPTOR)
103 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
104                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
105 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
106                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
107 
108 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
109   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
110     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
111     return tsan_atomic_f##_compare_exchange_strong(                         \
112         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
113         kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
114   }                                                                         \
115                                                                             \
116   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
117                    t volatile *ptr) {                                       \
118     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
119     return tsan_atomic_f##_compare_exchange_strong(                         \
120         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
121         kMacOrderBarrier, kMacOrderNonBarrier);                             \
122   }
123 
124 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
125 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
126                           long_t)
127 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
128                           void *)
129 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
130                           int32_t)
131 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
132                           int64_t)
133 
134 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
135   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
136     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
137     volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
138     char bit = 0x80u >> (n & 7);                                 \
139     char mask = clear ? ~bit : bit;                              \
140     char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
141     return orig_byte & bit;                                      \
142   }
143 
144 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
145   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
146   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
147 
148 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
149 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
150                             true)
151 
152 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
153                  size_t offset) {
154   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
155   __tsan_release(item);
156   REAL(OSAtomicEnqueue)(list, item, offset);
157 }
158 
159 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
160   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
161   void *item = REAL(OSAtomicDequeue)(list, offset);
162   if (item) __tsan_acquire(item);
163   return item;
164 }
165 
166 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
167 #if !SANITIZER_IOS
168 
169 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
170                  size_t offset) {
171   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
172   __tsan_release(item);
173   REAL(OSAtomicFifoEnqueue)(list, item, offset);
174 }
175 
176 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
177                  size_t offset) {
178   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
179   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
180   if (item) __tsan_acquire(item);
181   return item;
182 }
183 
184 #endif
185 
186 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
187   CHECK(!cur_thread()->is_dead);
188   if (!cur_thread()->is_inited) {
189     return REAL(OSSpinLockLock)(lock);
190   }
191   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
192   REAL(OSSpinLockLock)(lock);
193   Acquire(thr, pc, (uptr)lock);
194 }
195 
196 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
197   CHECK(!cur_thread()->is_dead);
198   if (!cur_thread()->is_inited) {
199     return REAL(OSSpinLockTry)(lock);
200   }
201   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
202   bool result = REAL(OSSpinLockTry)(lock);
203   if (result)
204     Acquire(thr, pc, (uptr)lock);
205   return result;
206 }
207 
208 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
209   CHECK(!cur_thread()->is_dead);
210   if (!cur_thread()->is_inited) {
211     return REAL(OSSpinLockUnlock)(lock);
212   }
213   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
214   Release(thr, pc, (uptr)lock);
215   REAL(OSSpinLockUnlock)(lock);
216 }
217 
218 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
219   CHECK(!cur_thread()->is_dead);
220   if (!cur_thread()->is_inited) {
221     return REAL(os_lock_lock)(lock);
222   }
223   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
224   REAL(os_lock_lock)(lock);
225   Acquire(thr, pc, (uptr)lock);
226 }
227 
228 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
229   CHECK(!cur_thread()->is_dead);
230   if (!cur_thread()->is_inited) {
231     return REAL(os_lock_trylock)(lock);
232   }
233   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
234   bool result = REAL(os_lock_trylock)(lock);
235   if (result)
236     Acquire(thr, pc, (uptr)lock);
237   return result;
238 }
239 
240 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
241   CHECK(!cur_thread()->is_dead);
242   if (!cur_thread()->is_inited) {
243     return REAL(os_lock_unlock)(lock);
244   }
245   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
246   Release(thr, pc, (uptr)lock);
247   REAL(os_lock_unlock)(lock);
248 }
249 
250 TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
251   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
252     return REAL(os_unfair_lock_lock)(lock);
253   }
254   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
255   REAL(os_unfair_lock_lock)(lock);
256   Acquire(thr, pc, (uptr)lock);
257 }
258 
259 TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
260                  u32 options) {
261   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
262     return REAL(os_unfair_lock_lock_with_options)(lock, options);
263   }
264   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
265   REAL(os_unfair_lock_lock_with_options)(lock, options);
266   Acquire(thr, pc, (uptr)lock);
267 }
268 
269 TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
270   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
271     return REAL(os_unfair_lock_trylock)(lock);
272   }
273   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
274   bool result = REAL(os_unfair_lock_trylock)(lock);
275   if (result)
276     Acquire(thr, pc, (uptr)lock);
277   return result;
278 }
279 
280 TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
281   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
282     return REAL(os_unfair_lock_unlock)(lock);
283   }
284   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
285   Release(thr, pc, (uptr)lock);
286   REAL(os_unfair_lock_unlock)(lock);
287 }
288 
289 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
290 
291 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
292                  xpc_connection_t connection, xpc_handler_t handler) {
293   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
294                           handler);
295   Release(thr, pc, (uptr)connection);
296   xpc_handler_t new_handler = ^(xpc_object_t object) {
297     {
298       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
299       Acquire(thr, pc, (uptr)connection);
300     }
301     handler(object);
302   };
303   REAL(xpc_connection_set_event_handler)(connection, new_handler);
304 }
305 
306 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
307                  dispatch_block_t barrier) {
308   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
309   Release(thr, pc, (uptr)connection);
310   dispatch_block_t new_barrier = ^() {
311     {
312       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
313       Acquire(thr, pc, (uptr)connection);
314     }
315     barrier();
316   };
317   REAL(xpc_connection_send_barrier)(connection, new_barrier);
318 }
319 
320 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
321                  xpc_connection_t connection, xpc_object_t message,
322                  dispatch_queue_t replyq, xpc_handler_t handler) {
323   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
324                           message, replyq, handler);
325   Release(thr, pc, (uptr)connection);
326   xpc_handler_t new_handler = ^(xpc_object_t object) {
327     {
328       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
329       Acquire(thr, pc, (uptr)connection);
330     }
331     handler(object);
332   };
333   REAL(xpc_connection_send_message_with_reply)
334   (connection, message, replyq, new_handler);
335 }
336 
337 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
338   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
339   Release(thr, pc, (uptr)connection);
340   REAL(xpc_connection_cancel)(connection);
341 }
342 
343 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
344 
345 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
346 // pointers encode the object data directly in their pointer bits and do not
347 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
348 // to transparently optimize small objects.
349 static bool IsTaggedObjCPointer(id obj) {
350   const uptr kPossibleTaggedBits = 0x8000000000000001ull;
351   return ((uptr)obj & kPossibleTaggedBits) != 0;
352 }
353 
354 // Returns an address which can be used to inform TSan about synchronization
355 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
356 // address in the process space. We do a small allocation here to obtain a
357 // stable address (the array backing the hash map can change). The memory is
358 // never free'd (leaked) and allocation and locking are slow, but this code only
359 // runs for @synchronized with tagged pointers, which is very rare.
360 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
361   typedef AddrHashMap<uptr, 5> Map;
362   static Map Addresses;
363   Map::Handle h(&Addresses, addr);
364   if (h.created()) {
365     ThreadIgnoreBegin(thr, pc);
366     *h = (uptr) user_alloc(thr, pc, /*size=*/1);
367     ThreadIgnoreEnd(thr, pc);
368   }
369   return *h;
370 }
371 
372 // Returns an address on which we can synchronize given an Obj-C object pointer.
373 // For normal object pointers, this is just the address of the object in memory.
374 // Tagged pointers are not backed by an actual memory allocation, so we need to
375 // synthesize a valid address.
376 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
377   if (IsTaggedObjCPointer(obj))
378     return GetOrCreateSyncAddress((uptr)obj, thr, pc);
379   return (uptr)obj;
380 }
381 
382 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
383   SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
384   if (!obj) return REAL(objc_sync_enter)(obj);
385   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
386   MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
387   int result = REAL(objc_sync_enter)(obj);
388   CHECK_EQ(result, OBJC_SYNC_SUCCESS);
389   MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
390   return result;
391 }
392 
393 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
394   SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
395   if (!obj) return REAL(objc_sync_exit)(obj);
396   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
397   MutexUnlock(thr, pc, addr);
398   int result = REAL(objc_sync_exit)(obj);
399   if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
400   return result;
401 }
402 
403 TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
404   {
405     SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
406   }
407   // Bacause of swapcontext() semantics we have no option but to copy its
408   // impementation here
409   if (!oucp || !ucp) {
410     errno = EINVAL;
411     return -1;
412   }
413   ThreadState *thr = cur_thread();
414   const int UCF_SWAPPED = 0x80000000;
415   oucp->uc_onstack &= ~UCF_SWAPPED;
416   thr->ignore_interceptors++;
417   int ret = getcontext(oucp);
418   if (!(oucp->uc_onstack & UCF_SWAPPED)) {
419     thr->ignore_interceptors--;
420     if (!ret) {
421       oucp->uc_onstack |= UCF_SWAPPED;
422       ret = setcontext(ucp);
423     }
424   }
425   return ret;
426 }
427 
428 // On macOS, libc++ is always linked dynamically, so intercepting works the
429 // usual way.
430 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
431 
432 namespace {
433 struct fake_shared_weak_count {
434   volatile a64 shared_owners;
435   volatile a64 shared_weak_owners;
436   virtual void _unused_0x0() = 0;
437   virtual void _unused_0x8() = 0;
438   virtual void on_zero_shared() = 0;
439   virtual void _unused_0x18() = 0;
440   virtual void on_zero_shared_weak() = 0;
441   virtual ~fake_shared_weak_count() = 0;  // suppress -Wnon-virtual-dtor
442 };
443 }  // namespace
444 
445 // The following code adds libc++ interceptors for:
446 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
447 //     bool __shared_count::__release_shared() _NOEXCEPT;
448 // Shared and weak pointers in C++ maintain reference counts via atomics in
449 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
450 // destructor code. These interceptors re-implements the whole functions so that
451 // the mo_acq_rel semantics of the atomic decrement are visible.
452 //
453 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
454 // object and call the original function, because it would have a race between
455 // the sync and the destruction of the object.  Calling both under a lock will
456 // not work because the destructor can invoke this interceptor again (and even
457 // in a different thread, so recursive locks don't help).
458 
459 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
460                    fake_shared_weak_count *o) {
461   if (!flags()->shared_ptr_interceptor)
462     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
463 
464   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
465                           o);
466   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
467     Acquire(thr, pc, (uptr)&o->shared_owners);
468     o->on_zero_shared();
469     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
470         0) {
471       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
472       o->on_zero_shared_weak();
473     }
474   }
475 }
476 
477 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
478                    fake_shared_weak_count *o) {
479   if (!flags()->shared_ptr_interceptor)
480     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
481 
482   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
483   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
484     Acquire(thr, pc, (uptr)&o->shared_owners);
485     o->on_zero_shared();
486     return true;
487   }
488   return false;
489 }
490 
491 namespace {
492 struct call_once_callback_args {
493   void (*orig_func)(void *arg);
494   void *orig_arg;
495   void *flag;
496 };
497 
498 void call_once_callback_wrapper(void *arg) {
499   call_once_callback_args *new_args = (call_once_callback_args *)arg;
500   new_args->orig_func(new_args->orig_arg);
501   __tsan_release(new_args->flag);
502 }
503 }  // namespace
504 
505 // This adds a libc++ interceptor for:
506 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
507 // C++11 call_once is implemented via an internal function __call_once which is
508 // inside libc++.dylib, and the atomic release store inside it is thus
509 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
510 // function and performs an explicit Release after the user code has run.
511 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
512                    void *arg, void (*func)(void *arg)) {
513   call_once_callback_args new_args = {func, arg, flag};
514   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
515                                             call_once_callback_wrapper);
516 }
517 
518 }  // namespace __tsan
519 
520 #endif  // SANITIZER_MAC
521