1 //===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Mac-specific interceptors.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_MAC
16 
17 #include "interception/interception.h"
18 #include "tsan_interceptors.h"
19 #include "tsan_interface.h"
20 #include "tsan_interface_ann.h"
21 #include "sanitizer_common/sanitizer_addrhashmap.h"
22 
23 #include <errno.h>
24 #include <libkern/OSAtomic.h>
25 #include <objc/objc-sync.h>
26 #include <os/lock.h>
27 #include <sys/ucontext.h>
28 
29 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
30 #include <xpc/xpc.h>
31 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
32 
33 typedef long long_t;
34 
35 extern "C" {
36 int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
37 int setcontext(const ucontext_t *ucp);
38 }
39 
40 namespace __tsan {
41 
42 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
43 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
44 // actually aliases of each other, and we cannot have different interceptors for
45 // them, because they're actually the same function.  Thus, we have to stay
46 // conservative and treat the non-barrier versions as mo_acq_rel.
47 static constexpr morder kMacOrderBarrier = mo_acq_rel;
48 static constexpr morder kMacOrderNonBarrier = mo_acq_rel;
49 static constexpr morder kMacFailureOrder = mo_relaxed;
50 
51 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
52   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
53     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
54     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
55   }
56 
57 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
58   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
59     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
60     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
61   }
62 
63 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
64   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
65     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
66     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
67   }
68 
69 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
70                                      mo)                                    \
71   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
72     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
73     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
74   }
75 
76 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
77   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
78     kMacOrderNonBarrier)                                                       \
79   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
80     kMacOrderBarrier)                                                          \
81   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
82     kMacOrderNonBarrier)                                                       \
83   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
84     kMacOrderBarrier)
85 
86 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
87   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
88     kMacOrderNonBarrier)                                                       \
89   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
90     kMacOrderBarrier)                                                          \
91   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
92     kMacOrderNonBarrier)                                                       \
93   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
94     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
95 
96 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
97                                  OSATOMIC_INTERCEPTOR_PLUS_X)
98 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
99                                  OSATOMIC_INTERCEPTOR_PLUS_1)
100 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
101                                  OSATOMIC_INTERCEPTOR_MINUS_1)
102 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
103                               OSATOMIC_INTERCEPTOR)
104 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
105                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
106 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
107                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
108 
109 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
110   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
111     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
112     return tsan_atomic_f##_compare_exchange_strong(                         \
113         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
114         kMacOrderNonBarrier, kMacFailureOrder);                             \
115   }                                                                         \
116                                                                             \
117   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
118                    t volatile *ptr) {                                       \
119     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
120     return tsan_atomic_f##_compare_exchange_strong(                         \
121         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
122         kMacOrderBarrier, kMacFailureOrder);                                \
123   }
124 
125 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
126 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
127                           long_t)
128 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
129                           void *)
130 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
131                           int32_t)
132 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
133                           int64_t)
134 
135 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
136   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
137     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
138     volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
139     char bit = 0x80u >> (n & 7);                                 \
140     char mask = clear ? ~bit : bit;                              \
141     char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
142     return orig_byte & bit;                                      \
143   }
144 
145 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
146   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
147   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
148 
149 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
150 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
151                             true)
152 
153 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
154                  size_t offset) {
155   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
156   __tsan_release(item);
157   REAL(OSAtomicEnqueue)(list, item, offset);
158 }
159 
160 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
161   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
162   void *item = REAL(OSAtomicDequeue)(list, offset);
163   if (item) __tsan_acquire(item);
164   return item;
165 }
166 
167 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
168 #if !SANITIZER_IOS
169 
170 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
171                  size_t offset) {
172   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
173   __tsan_release(item);
174   REAL(OSAtomicFifoEnqueue)(list, item, offset);
175 }
176 
177 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
178                  size_t offset) {
179   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
180   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
181   if (item) __tsan_acquire(item);
182   return item;
183 }
184 
185 #endif
186 
187 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
188   CHECK(!cur_thread()->is_dead);
189   if (!cur_thread()->is_inited) {
190     return REAL(OSSpinLockLock)(lock);
191   }
192   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
193   REAL(OSSpinLockLock)(lock);
194   Acquire(thr, pc, (uptr)lock);
195 }
196 
197 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
198   CHECK(!cur_thread()->is_dead);
199   if (!cur_thread()->is_inited) {
200     return REAL(OSSpinLockTry)(lock);
201   }
202   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
203   bool result = REAL(OSSpinLockTry)(lock);
204   if (result)
205     Acquire(thr, pc, (uptr)lock);
206   return result;
207 }
208 
209 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
210   CHECK(!cur_thread()->is_dead);
211   if (!cur_thread()->is_inited) {
212     return REAL(OSSpinLockUnlock)(lock);
213   }
214   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
215   Release(thr, pc, (uptr)lock);
216   REAL(OSSpinLockUnlock)(lock);
217 }
218 
219 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
220   CHECK(!cur_thread()->is_dead);
221   if (!cur_thread()->is_inited) {
222     return REAL(os_lock_lock)(lock);
223   }
224   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
225   REAL(os_lock_lock)(lock);
226   Acquire(thr, pc, (uptr)lock);
227 }
228 
229 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
230   CHECK(!cur_thread()->is_dead);
231   if (!cur_thread()->is_inited) {
232     return REAL(os_lock_trylock)(lock);
233   }
234   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
235   bool result = REAL(os_lock_trylock)(lock);
236   if (result)
237     Acquire(thr, pc, (uptr)lock);
238   return result;
239 }
240 
241 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
242   CHECK(!cur_thread()->is_dead);
243   if (!cur_thread()->is_inited) {
244     return REAL(os_lock_unlock)(lock);
245   }
246   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
247   Release(thr, pc, (uptr)lock);
248   REAL(os_lock_unlock)(lock);
249 }
250 
251 TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
252   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
253     return REAL(os_unfair_lock_lock)(lock);
254   }
255   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
256   REAL(os_unfair_lock_lock)(lock);
257   Acquire(thr, pc, (uptr)lock);
258 }
259 
260 TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
261                  u32 options) {
262   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
263     return REAL(os_unfair_lock_lock_with_options)(lock, options);
264   }
265   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
266   REAL(os_unfair_lock_lock_with_options)(lock, options);
267   Acquire(thr, pc, (uptr)lock);
268 }
269 
270 TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
271   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
272     return REAL(os_unfair_lock_trylock)(lock);
273   }
274   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
275   bool result = REAL(os_unfair_lock_trylock)(lock);
276   if (result)
277     Acquire(thr, pc, (uptr)lock);
278   return result;
279 }
280 
281 TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
282   if (!cur_thread()->is_inited || cur_thread()->is_dead) {
283     return REAL(os_unfair_lock_unlock)(lock);
284   }
285   SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
286   Release(thr, pc, (uptr)lock);
287   REAL(os_unfair_lock_unlock)(lock);
288 }
289 
290 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
291 
292 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
293                  xpc_connection_t connection, xpc_handler_t handler) {
294   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
295                           handler);
296   Release(thr, pc, (uptr)connection);
297   xpc_handler_t new_handler = ^(xpc_object_t object) {
298     {
299       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
300       Acquire(thr, pc, (uptr)connection);
301     }
302     handler(object);
303   };
304   REAL(xpc_connection_set_event_handler)(connection, new_handler);
305 }
306 
307 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
308                  dispatch_block_t barrier) {
309   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
310   Release(thr, pc, (uptr)connection);
311   dispatch_block_t new_barrier = ^() {
312     {
313       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
314       Acquire(thr, pc, (uptr)connection);
315     }
316     barrier();
317   };
318   REAL(xpc_connection_send_barrier)(connection, new_barrier);
319 }
320 
321 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
322                  xpc_connection_t connection, xpc_object_t message,
323                  dispatch_queue_t replyq, xpc_handler_t handler) {
324   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
325                           message, replyq, handler);
326   Release(thr, pc, (uptr)connection);
327   xpc_handler_t new_handler = ^(xpc_object_t object) {
328     {
329       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
330       Acquire(thr, pc, (uptr)connection);
331     }
332     handler(object);
333   };
334   REAL(xpc_connection_send_message_with_reply)
335   (connection, message, replyq, new_handler);
336 }
337 
338 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
339   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
340   Release(thr, pc, (uptr)connection);
341   REAL(xpc_connection_cancel)(connection);
342 }
343 
344 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
345 
346 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
347 // pointers encode the object data directly in their pointer bits and do not
348 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
349 // to transparently optimize small objects.
350 static bool IsTaggedObjCPointer(id obj) {
351   const uptr kPossibleTaggedBits = 0x8000000000000001ull;
352   return ((uptr)obj & kPossibleTaggedBits) != 0;
353 }
354 
355 // Returns an address which can be used to inform TSan about synchronization
356 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
357 // address in the process space. We do a small allocation here to obtain a
358 // stable address (the array backing the hash map can change). The memory is
359 // never free'd (leaked) and allocation and locking are slow, but this code only
360 // runs for @synchronized with tagged pointers, which is very rare.
361 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
362   typedef AddrHashMap<uptr, 5> Map;
363   static Map Addresses;
364   Map::Handle h(&Addresses, addr);
365   if (h.created()) {
366     ThreadIgnoreBegin(thr, pc);
367     *h = (uptr) user_alloc(thr, pc, /*size=*/1);
368     ThreadIgnoreEnd(thr);
369   }
370   return *h;
371 }
372 
373 // Returns an address on which we can synchronize given an Obj-C object pointer.
374 // For normal object pointers, this is just the address of the object in memory.
375 // Tagged pointers are not backed by an actual memory allocation, so we need to
376 // synthesize a valid address.
377 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
378   if (IsTaggedObjCPointer(obj))
379     return GetOrCreateSyncAddress((uptr)obj, thr, pc);
380   return (uptr)obj;
381 }
382 
383 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
384   SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
385   if (!obj) return REAL(objc_sync_enter)(obj);
386   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
387   MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
388   int result = REAL(objc_sync_enter)(obj);
389   CHECK_EQ(result, OBJC_SYNC_SUCCESS);
390   MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
391   return result;
392 }
393 
394 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
395   SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
396   if (!obj) return REAL(objc_sync_exit)(obj);
397   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
398   MutexUnlock(thr, pc, addr);
399   int result = REAL(objc_sync_exit)(obj);
400   if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
401   return result;
402 }
403 
404 TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
405   {
406     SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
407   }
408   // Because of swapcontext() semantics we have no option but to copy its
409   // implementation here
410   if (!oucp || !ucp) {
411     errno = EINVAL;
412     return -1;
413   }
414   ThreadState *thr = cur_thread();
415   const int UCF_SWAPPED = 0x80000000;
416   oucp->uc_onstack &= ~UCF_SWAPPED;
417   thr->ignore_interceptors++;
418   int ret = getcontext(oucp);
419   if (!(oucp->uc_onstack & UCF_SWAPPED)) {
420     thr->ignore_interceptors--;
421     if (!ret) {
422       oucp->uc_onstack |= UCF_SWAPPED;
423       ret = setcontext(ucp);
424     }
425   }
426   return ret;
427 }
428 
429 // On macOS, libc++ is always linked dynamically, so intercepting works the
430 // usual way.
431 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
432 
433 namespace {
434 struct fake_shared_weak_count {
435   volatile a64 shared_owners;
436   volatile a64 shared_weak_owners;
437   virtual void _unused_0x0() = 0;
438   virtual void _unused_0x8() = 0;
439   virtual void on_zero_shared() = 0;
440   virtual void _unused_0x18() = 0;
441   virtual void on_zero_shared_weak() = 0;
442   virtual ~fake_shared_weak_count() = 0;  // suppress -Wnon-virtual-dtor
443 };
444 }  // namespace
445 
446 // The following code adds libc++ interceptors for:
447 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
448 //     bool __shared_count::__release_shared() _NOEXCEPT;
449 // Shared and weak pointers in C++ maintain reference counts via atomics in
450 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
451 // destructor code. These interceptors re-implements the whole functions so that
452 // the mo_acq_rel semantics of the atomic decrement are visible.
453 //
454 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
455 // object and call the original function, because it would have a race between
456 // the sync and the destruction of the object.  Calling both under a lock will
457 // not work because the destructor can invoke this interceptor again (and even
458 // in a different thread, so recursive locks don't help).
459 
460 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
461                    fake_shared_weak_count *o) {
462   if (!flags()->shared_ptr_interceptor)
463     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
464 
465   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
466                           o);
467   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
468     Acquire(thr, pc, (uptr)&o->shared_owners);
469     o->on_zero_shared();
470     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
471         0) {
472       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
473       o->on_zero_shared_weak();
474     }
475   }
476 }
477 
478 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
479                    fake_shared_weak_count *o) {
480   if (!flags()->shared_ptr_interceptor)
481     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
482 
483   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
484   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
485     Acquire(thr, pc, (uptr)&o->shared_owners);
486     o->on_zero_shared();
487     return true;
488   }
489   return false;
490 }
491 
492 namespace {
493 struct call_once_callback_args {
494   void (*orig_func)(void *arg);
495   void *orig_arg;
496   void *flag;
497 };
498 
499 void call_once_callback_wrapper(void *arg) {
500   call_once_callback_args *new_args = (call_once_callback_args *)arg;
501   new_args->orig_func(new_args->orig_arg);
502   __tsan_release(new_args->flag);
503 }
504 }  // namespace
505 
506 // This adds a libc++ interceptor for:
507 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
508 // C++11 call_once is implemented via an internal function __call_once which is
509 // inside libc++.dylib, and the atomic release store inside it is thus
510 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
511 // function and performs an explicit Release after the user code has run.
512 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
513                    void *arg, void (*func)(void *arg)) {
514   call_once_callback_args new_args = {func, arg, flag};
515   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
516                                             call_once_callback_wrapper);
517 }
518 
519 }  // namespace __tsan
520 
521 #endif  // SANITIZER_MAC
522