1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
20 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 #include "interception/interception.h"
26 #include "tsan_interceptors.h"
27 #include "tsan_interface.h"
28 #include "tsan_platform.h"
29 #include "tsan_suppressions.h"
30 #include "tsan_rtl.h"
31 #include "tsan_mman.h"
32 #include "tsan_fd.h"
33 
34 using namespace __tsan;
35 
36 #if SANITIZER_FREEBSD || SANITIZER_MAC
37 #define stdout __stdoutp
38 #define stderr __stderrp
39 #endif
40 
41 #if SANITIZER_NETBSD
42 #define dirfd(dirp) (*(int *)(dirp))
43 #define fileno_unlocked(fp)              \
44   (((__sanitizer_FILE *)fp)->_file == -1 \
45        ? -1                              \
46        : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
47 
48 #define stdout ((__sanitizer_FILE*)&__sF[1])
49 #define stderr ((__sanitizer_FILE*)&__sF[2])
50 
51 #define nanosleep __nanosleep50
52 #define vfork __vfork14
53 #endif
54 
55 #if SANITIZER_ANDROID
56 #define mallopt(a, b)
57 #endif
58 
59 #ifdef __mips__
60 const int kSigCount = 129;
61 #else
62 const int kSigCount = 65;
63 #endif
64 
65 #ifdef __mips__
66 struct ucontext_t {
67   u64 opaque[768 / sizeof(u64) + 1];
68 };
69 #else
70 struct ucontext_t {
71   // The size is determined by looking at sizeof of real ucontext_t on linux.
72   u64 opaque[936 / sizeof(u64) + 1];
73 };
74 #endif
75 
76 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
77 #define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
78 #elif defined(__aarch64__) || SANITIZER_PPC64V2
79 #define PTHREAD_ABI_BASE  "GLIBC_2.17"
80 #endif
81 
82 extern "C" int pthread_attr_init(void *attr);
83 extern "C" int pthread_attr_destroy(void *attr);
84 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
85 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
86 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
87 extern "C" int pthread_setspecific(unsigned key, const void *v);
88 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
89 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
90 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
91 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
92 extern "C" void *pthread_self();
93 extern "C" void _exit(int status);
94 #if !SANITIZER_NETBSD
95 extern "C" int fileno_unlocked(void *stream);
96 extern "C" int dirfd(void *dirp);
97 #endif
98 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
99 extern "C" int mallopt(int param, int value);
100 #endif
101 #if SANITIZER_NETBSD
102 extern __sanitizer_FILE __sF[];
103 #else
104 extern __sanitizer_FILE *stdout, *stderr;
105 #endif
106 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
107 const int PTHREAD_MUTEX_RECURSIVE = 1;
108 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
109 #else
110 const int PTHREAD_MUTEX_RECURSIVE = 2;
111 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
112 #endif
113 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
114 const int EPOLL_CTL_ADD = 1;
115 #endif
116 const int SIGILL = 4;
117 const int SIGTRAP = 5;
118 const int SIGABRT = 6;
119 const int SIGFPE = 8;
120 const int SIGSEGV = 11;
121 const int SIGPIPE = 13;
122 const int SIGTERM = 15;
123 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
124 const int SIGBUS = 10;
125 const int SIGSYS = 12;
126 #else
127 const int SIGBUS = 7;
128 const int SIGSYS = 31;
129 #endif
130 void *const MAP_FAILED = (void*)-1;
131 #if SANITIZER_NETBSD
132 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
133 #elif !SANITIZER_MAC
134 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
135 #endif
136 const int MAP_FIXED = 0x10;
137 typedef long long_t;
138 
139 // From /usr/include/unistd.h
140 # define F_ULOCK 0      /* Unlock a previously locked region.  */
141 # define F_LOCK  1      /* Lock a region for exclusive use.  */
142 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
143 # define F_TEST  3      /* Test a region for other processes locks.  */
144 
145 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
146 const int SA_SIGINFO = 0x40;
147 const int SIG_SETMASK = 3;
148 #elif defined(__mips__)
149 const int SA_SIGINFO = 8;
150 const int SIG_SETMASK = 3;
151 #else
152 const int SA_SIGINFO = 4;
153 const int SIG_SETMASK = 2;
154 #endif
155 
156 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
157   (cur_thread_init(), !cur_thread()->is_inited)
158 
159 namespace __tsan {
160 struct SignalDesc {
161   bool armed;
162   bool sigaction;
163   __sanitizer_siginfo siginfo;
164   ucontext_t ctx;
165 };
166 
167 struct ThreadSignalContext {
168   int int_signal_send;
169   atomic_uintptr_t in_blocking_func;
170   atomic_uintptr_t have_pending_signals;
171   SignalDesc pending_signals[kSigCount];
172   // emptyset and oldset are too big for stack.
173   __sanitizer_sigset_t emptyset;
174   __sanitizer_sigset_t oldset;
175 };
176 
177 // The sole reason tsan wraps atexit callbacks is to establish synchronization
178 // between callback setup and callback execution.
179 struct AtExitCtx {
180   void (*f)();
181   void *arg;
182 };
183 
184 // InterceptorContext holds all global data required for interceptors.
185 // It's explicitly constructed in InitializeInterceptors with placement new
186 // and is never destroyed. This allows usage of members with non-trivial
187 // constructors and destructors.
188 struct InterceptorContext {
189   // The object is 64-byte aligned, because we want hot data to be located
190   // in a single cache line if possible (it's accessed in every interceptor).
191   ALIGNED(64) LibIgnore libignore;
192   __sanitizer_sigaction sigactions[kSigCount];
193 #if !SANITIZER_MAC && !SANITIZER_NETBSD
194   unsigned finalize_key;
195 #endif
196 
197   BlockingMutex atexit_mu;
198   Vector<struct AtExitCtx *> AtExitStack;
199 
200   InterceptorContext()
201       : libignore(LINKER_INITIALIZED), AtExitStack() {
202   }
203 };
204 
205 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
206 InterceptorContext *interceptor_ctx() {
207   return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
208 }
209 
210 LibIgnore *libignore() {
211   return &interceptor_ctx()->libignore;
212 }
213 
214 void InitializeLibIgnore() {
215   const SuppressionContext &supp = *Suppressions();
216   const uptr n = supp.SuppressionCount();
217   for (uptr i = 0; i < n; i++) {
218     const Suppression *s = supp.SuppressionAt(i);
219     if (0 == internal_strcmp(s->type, kSuppressionLib))
220       libignore()->AddIgnoredLibrary(s->templ);
221   }
222   if (flags()->ignore_noninstrumented_modules)
223     libignore()->IgnoreNoninstrumentedModules(true);
224   libignore()->OnLibraryLoaded(0);
225 }
226 
227 // The following two hooks can be used by for cooperative scheduling when
228 // locking.
229 #ifdef TSAN_EXTERNAL_HOOKS
230 void OnPotentiallyBlockingRegionBegin();
231 void OnPotentiallyBlockingRegionEnd();
232 #else
233 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
234 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
235 #endif
236 
237 }  // namespace __tsan
238 
239 static ThreadSignalContext *SigCtx(ThreadState *thr) {
240   ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
241   if (ctx == 0 && !thr->is_dead) {
242     ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
243     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
244     thr->signal_ctx = ctx;
245   }
246   return ctx;
247 }
248 
249 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
250                                      uptr pc)
251     : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
252   Initialize(thr);
253   if (!thr_->is_inited) return;
254   if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
255   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
256   ignoring_ =
257       !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
258                                 libignore()->IsIgnored(pc, &in_ignored_lib_));
259   EnableIgnores();
260 }
261 
262 ScopedInterceptor::~ScopedInterceptor() {
263   if (!thr_->is_inited) return;
264   DisableIgnores();
265   if (!thr_->ignore_interceptors) {
266     ProcessPendingSignals(thr_);
267     FuncExit(thr_);
268     CheckNoLocks(thr_);
269   }
270 }
271 
272 void ScopedInterceptor::EnableIgnores() {
273   if (ignoring_) {
274     ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
275     if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
276     if (in_ignored_lib_) {
277       DCHECK(!thr_->in_ignored_lib);
278       thr_->in_ignored_lib = true;
279     }
280   }
281 }
282 
283 void ScopedInterceptor::DisableIgnores() {
284   if (ignoring_) {
285     ThreadIgnoreEnd(thr_, pc_);
286     if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
287     if (in_ignored_lib_) {
288       DCHECK(thr_->in_ignored_lib);
289       thr_->in_ignored_lib = false;
290     }
291   }
292 }
293 
294 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
295 #if SANITIZER_FREEBSD
296 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
297 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
298 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
299 #elif SANITIZER_NETBSD
300 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
301 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
302          INTERCEPT_FUNCTION(__libc_##func)
303 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
304          INTERCEPT_FUNCTION(__libc_thr_##func)
305 #else
306 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
307 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
308 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
309 #endif
310 
311 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
312   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
313     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
314 
315 #define READ_STRING(thr, pc, s, n)                             \
316     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
317 
318 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
319 
320 struct BlockingCall {
321   explicit BlockingCall(ThreadState *thr)
322       : thr(thr)
323       , ctx(SigCtx(thr)) {
324     for (;;) {
325       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
326       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
327         break;
328       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
329       ProcessPendingSignals(thr);
330     }
331     // When we are in a "blocking call", we process signals asynchronously
332     // (right when they arrive). In this context we do not expect to be
333     // executing any user/runtime code. The known interceptor sequence when
334     // this is not true is: pthread_join -> munmap(stack). It's fine
335     // to ignore munmap in this case -- we handle stack shadow separately.
336     thr->ignore_interceptors++;
337   }
338 
339   ~BlockingCall() {
340     thr->ignore_interceptors--;
341     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
342   }
343 
344   ThreadState *thr;
345   ThreadSignalContext *ctx;
346 };
347 
348 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
349   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
350   unsigned res = BLOCK_REAL(sleep)(sec);
351   AfterSleep(thr, pc);
352   return res;
353 }
354 
355 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
356   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
357   int res = BLOCK_REAL(usleep)(usec);
358   AfterSleep(thr, pc);
359   return res;
360 }
361 
362 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
363   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
364   int res = BLOCK_REAL(nanosleep)(req, rem);
365   AfterSleep(thr, pc);
366   return res;
367 }
368 
369 TSAN_INTERCEPTOR(int, pause, int fake) {
370   SCOPED_TSAN_INTERCEPTOR(pause, fake);
371   return BLOCK_REAL(pause)(fake);
372 }
373 
374 static void at_exit_wrapper() {
375   AtExitCtx *ctx;
376   {
377     // Ensure thread-safety.
378     BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
379 
380     // Pop AtExitCtx from the top of the stack of callback functions
381     uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
382     ctx = interceptor_ctx()->AtExitStack[element];
383     interceptor_ctx()->AtExitStack.PopBack();
384   }
385 
386   Acquire(cur_thread(), (uptr)0, (uptr)ctx);
387   ((void(*)())ctx->f)();
388   InternalFree(ctx);
389 }
390 
391 static void cxa_at_exit_wrapper(void *arg) {
392   Acquire(cur_thread(), 0, (uptr)arg);
393   AtExitCtx *ctx = (AtExitCtx*)arg;
394   ((void(*)(void *arg))ctx->f)(ctx->arg);
395   InternalFree(ctx);
396 }
397 
398 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
399       void *arg, void *dso);
400 
401 #if !SANITIZER_ANDROID
402 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
403   if (in_symbolizer())
404     return 0;
405   // We want to setup the atexit callback even if we are in ignored lib
406   // or after fork.
407   SCOPED_INTERCEPTOR_RAW(atexit, f);
408   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
409 }
410 #endif
411 
412 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
413   if (in_symbolizer())
414     return 0;
415   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
416   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
417 }
418 
419 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
420       void *arg, void *dso) {
421   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
422   ctx->f = f;
423   ctx->arg = arg;
424   Release(thr, pc, (uptr)ctx);
425   // Memory allocation in __cxa_atexit will race with free during exit,
426   // because we do not see synchronization around atexit callback list.
427   ThreadIgnoreBegin(thr, pc);
428   int res;
429   if (!dso) {
430     // NetBSD does not preserve the 2nd argument if dso is equal to 0
431     // Store ctx in a local stack-like structure
432 
433     // Ensure thread-safety.
434     BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
435 
436     res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
437     // Push AtExitCtx on the top of the stack of callback functions
438     if (!res) {
439       interceptor_ctx()->AtExitStack.PushBack(ctx);
440     }
441   } else {
442     res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
443   }
444   ThreadIgnoreEnd(thr, pc);
445   return res;
446 }
447 
448 #if !SANITIZER_MAC && !SANITIZER_NETBSD
449 static void on_exit_wrapper(int status, void *arg) {
450   ThreadState *thr = cur_thread();
451   uptr pc = 0;
452   Acquire(thr, pc, (uptr)arg);
453   AtExitCtx *ctx = (AtExitCtx*)arg;
454   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
455   InternalFree(ctx);
456 }
457 
458 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
459   if (in_symbolizer())
460     return 0;
461   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
462   AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
463   ctx->f = (void(*)())f;
464   ctx->arg = arg;
465   Release(thr, pc, (uptr)ctx);
466   // Memory allocation in __cxa_atexit will race with free during exit,
467   // because we do not see synchronization around atexit callback list.
468   ThreadIgnoreBegin(thr, pc);
469   int res = REAL(on_exit)(on_exit_wrapper, ctx);
470   ThreadIgnoreEnd(thr, pc);
471   return res;
472 }
473 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
474 #else
475 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
476 #endif
477 
478 // Cleanup old bufs.
479 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
480   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
481     JmpBuf *buf = &thr->jmp_bufs[i];
482     if (buf->sp <= sp) {
483       uptr sz = thr->jmp_bufs.Size();
484       internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
485       thr->jmp_bufs.PopBack();
486       i--;
487     }
488   }
489 }
490 
491 static void SetJmp(ThreadState *thr, uptr sp) {
492   if (!thr->is_inited)  // called from libc guts during bootstrap
493     return;
494   // Cleanup old bufs.
495   JmpBufGarbageCollect(thr, sp);
496   // Remember the buf.
497   JmpBuf *buf = thr->jmp_bufs.PushBack();
498   buf->sp = sp;
499   buf->shadow_stack_pos = thr->shadow_stack_pos;
500   ThreadSignalContext *sctx = SigCtx(thr);
501   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
502   buf->in_blocking_func = sctx ?
503       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
504       false;
505   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
506       memory_order_relaxed);
507 }
508 
509 static void LongJmp(ThreadState *thr, uptr *env) {
510   uptr sp = ExtractLongJmpSp(env);
511   // Find the saved buf with matching sp.
512   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
513     JmpBuf *buf = &thr->jmp_bufs[i];
514     if (buf->sp == sp) {
515       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
516       // Unwind the stack.
517       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
518         FuncExit(thr);
519       ThreadSignalContext *sctx = SigCtx(thr);
520       if (sctx) {
521         sctx->int_signal_send = buf->int_signal_send;
522         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
523             memory_order_relaxed);
524       }
525       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
526           memory_order_relaxed);
527       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
528       return;
529     }
530   }
531   Printf("ThreadSanitizer: can't find longjmp buf\n");
532   CHECK(0);
533 }
534 
535 // FIXME: put everything below into a common extern "C" block?
536 extern "C" void __tsan_setjmp(uptr sp) {
537   cur_thread_init();
538   SetJmp(cur_thread(), sp);
539 }
540 
541 #if SANITIZER_MAC
542 TSAN_INTERCEPTOR(int, setjmp, void *env);
543 TSAN_INTERCEPTOR(int, _setjmp, void *env);
544 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
545 #else  // SANITIZER_MAC
546 
547 #if SANITIZER_NETBSD
548 #define setjmp_symname __setjmp14
549 #define sigsetjmp_symname __sigsetjmp14
550 #else
551 #define setjmp_symname setjmp
552 #define sigsetjmp_symname sigsetjmp
553 #endif
554 
555 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
556 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
557 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
558 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
559 
560 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
561 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
562 
563 // Not called.  Merely to satisfy TSAN_INTERCEPT().
564 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
565 int TSAN_INTERCEPTOR_SETJMP(void *env);
566 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
567   CHECK(0);
568   return 0;
569 }
570 
571 // FIXME: any reason to have a separate declaration?
572 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
573 int __interceptor__setjmp(void *env);
574 extern "C" int __interceptor__setjmp(void *env) {
575   CHECK(0);
576   return 0;
577 }
578 
579 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
580 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
581 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
582   CHECK(0);
583   return 0;
584 }
585 
586 #if !SANITIZER_NETBSD
587 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
588 int __interceptor___sigsetjmp(void *env);
589 extern "C" int __interceptor___sigsetjmp(void *env) {
590   CHECK(0);
591   return 0;
592 }
593 #endif
594 
595 extern "C" int setjmp_symname(void *env);
596 extern "C" int _setjmp(void *env);
597 extern "C" int sigsetjmp_symname(void *env);
598 #if !SANITIZER_NETBSD
599 extern "C" int __sigsetjmp(void *env);
600 #endif
601 DEFINE_REAL(int, setjmp_symname, void *env)
602 DEFINE_REAL(int, _setjmp, void *env)
603 DEFINE_REAL(int, sigsetjmp_symname, void *env)
604 #if !SANITIZER_NETBSD
605 DEFINE_REAL(int, __sigsetjmp, void *env)
606 #endif
607 #endif  // SANITIZER_MAC
608 
609 #if SANITIZER_NETBSD
610 #define longjmp_symname __longjmp14
611 #define siglongjmp_symname __siglongjmp14
612 #else
613 #define longjmp_symname longjmp
614 #define siglongjmp_symname siglongjmp
615 #endif
616 
617 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
618   // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
619   // bad things will happen. We will jump over ScopedInterceptor dtor and can
620   // leave thr->in_ignored_lib set.
621   {
622     SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
623   }
624   LongJmp(cur_thread(), env);
625   REAL(longjmp_symname)(env, val);
626 }
627 
628 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
629   {
630     SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
631   }
632   LongJmp(cur_thread(), env);
633   REAL(siglongjmp_symname)(env, val);
634 }
635 
636 #if SANITIZER_NETBSD
637 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
638   {
639     SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
640   }
641   LongJmp(cur_thread(), env);
642   REAL(_longjmp)(env, val);
643 }
644 #endif
645 
646 #if !SANITIZER_MAC
647 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
648   if (in_symbolizer())
649     return InternalAlloc(size);
650   void *p = 0;
651   {
652     SCOPED_INTERCEPTOR_RAW(malloc, size);
653     p = user_alloc(thr, pc, size);
654   }
655   invoke_malloc_hook(p, size);
656   return p;
657 }
658 
659 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
660   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
661   return user_memalign(thr, pc, align, sz);
662 }
663 
664 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
665   if (in_symbolizer())
666     return InternalCalloc(size, n);
667   void *p = 0;
668   {
669     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
670     p = user_calloc(thr, pc, size, n);
671   }
672   invoke_malloc_hook(p, n * size);
673   return p;
674 }
675 
676 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
677   if (in_symbolizer())
678     return InternalRealloc(p, size);
679   if (p)
680     invoke_free_hook(p);
681   {
682     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
683     p = user_realloc(thr, pc, p, size);
684   }
685   invoke_malloc_hook(p, size);
686   return p;
687 }
688 
689 TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
690   if (in_symbolizer())
691     return InternalReallocArray(p, size, n);
692   if (p)
693     invoke_free_hook(p);
694   {
695     SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
696     p = user_reallocarray(thr, pc, p, size, n);
697   }
698   invoke_malloc_hook(p, size);
699   return p;
700 }
701 
702 TSAN_INTERCEPTOR(void, free, void *p) {
703   if (p == 0)
704     return;
705   if (in_symbolizer())
706     return InternalFree(p);
707   invoke_free_hook(p);
708   SCOPED_INTERCEPTOR_RAW(free, p);
709   user_free(thr, pc, p);
710 }
711 
712 TSAN_INTERCEPTOR(void, cfree, void *p) {
713   if (p == 0)
714     return;
715   if (in_symbolizer())
716     return InternalFree(p);
717   invoke_free_hook(p);
718   SCOPED_INTERCEPTOR_RAW(cfree, p);
719   user_free(thr, pc, p);
720 }
721 
722 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
723   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
724   return user_alloc_usable_size(p);
725 }
726 #endif
727 
728 TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
729   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
730   uptr srclen = internal_strlen(src);
731   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
732   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
733   return REAL(strcpy)(dst, src);
734 }
735 
736 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
737   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
738   uptr srclen = internal_strnlen(src, n);
739   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
740   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
741   return REAL(strncpy)(dst, src, n);
742 }
743 
744 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
745   SCOPED_TSAN_INTERCEPTOR(strdup, str);
746   // strdup will call malloc, so no instrumentation is required here.
747   return REAL(strdup)(str);
748 }
749 
750 // Zero out addr if it points into shadow memory and was provided as a hint
751 // only, i.e., MAP_FIXED is not set.
752 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
753   if (*addr) {
754     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
755       if (flags & MAP_FIXED) {
756         errno = errno_EINVAL;
757         return false;
758       } else {
759         *addr = 0;
760       }
761     }
762   }
763   return true;
764 }
765 
766 template <class Mmap>
767 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
768                               void *addr, SIZE_T sz, int prot, int flags,
769                               int fd, OFF64_T off) {
770   if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
771   void *res = real_mmap(addr, sz, prot, flags, fd, off);
772   if (res != MAP_FAILED) {
773     if (fd > 0) FdAccess(thr, pc, fd);
774     MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
775   }
776   return res;
777 }
778 
779 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
780   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
781   UnmapShadow(thr, (uptr)addr, sz);
782   int res = REAL(munmap)(addr, sz);
783   return res;
784 }
785 
786 #if SANITIZER_LINUX
787 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
788   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
789   return user_memalign(thr, pc, align, sz);
790 }
791 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
792 #else
793 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
794 #endif
795 
796 #if !SANITIZER_MAC
797 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
798   if (in_symbolizer())
799     return InternalAlloc(sz, nullptr, align);
800   SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
801   return user_aligned_alloc(thr, pc, align, sz);
802 }
803 
804 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
805   if (in_symbolizer())
806     return InternalAlloc(sz, nullptr, GetPageSizeCached());
807   SCOPED_INTERCEPTOR_RAW(valloc, sz);
808   return user_valloc(thr, pc, sz);
809 }
810 #endif
811 
812 #if SANITIZER_LINUX
813 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
814   if (in_symbolizer()) {
815     uptr PageSize = GetPageSizeCached();
816     sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
817     return InternalAlloc(sz, nullptr, PageSize);
818   }
819   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
820   return user_pvalloc(thr, pc, sz);
821 }
822 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
823 #else
824 #define TSAN_MAYBE_INTERCEPT_PVALLOC
825 #endif
826 
827 #if !SANITIZER_MAC
828 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
829   if (in_symbolizer()) {
830     void *p = InternalAlloc(sz, nullptr, align);
831     if (!p)
832       return errno_ENOMEM;
833     *memptr = p;
834     return 0;
835   }
836   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
837   return user_posix_memalign(thr, pc, memptr, align, sz);
838 }
839 #endif
840 
841 // __cxa_guard_acquire and friends need to be intercepted in a special way -
842 // regular interceptors will break statically-linked libstdc++. Linux
843 // interceptors are especially defined as weak functions (so that they don't
844 // cause link errors when user defines them as well). So they silently
845 // auto-disable themselves when such symbol is already present in the binary. If
846 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
847 // will silently replace our interceptor.  That's why on Linux we simply export
848 // these interceptors with INTERFACE_ATTRIBUTE.
849 // On OS X, we don't support statically linking, so we just use a regular
850 // interceptor.
851 #if SANITIZER_MAC
852 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
853 #else
854 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
855   extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
856 #endif
857 
858 // Used in thread-safe function static initialization.
859 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
860   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
861   OnPotentiallyBlockingRegionBegin();
862   auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
863   for (;;) {
864     u32 cmp = atomic_load(g, memory_order_acquire);
865     if (cmp == 0) {
866       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
867         return 1;
868     } else if (cmp == 1) {
869       Acquire(thr, pc, (uptr)g);
870       return 0;
871     } else {
872       internal_sched_yield();
873     }
874   }
875 }
876 
877 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
878   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
879   Release(thr, pc, (uptr)g);
880   atomic_store(g, 1, memory_order_release);
881 }
882 
883 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
884   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
885   atomic_store(g, 0, memory_order_relaxed);
886 }
887 
888 namespace __tsan {
889 void DestroyThreadState() {
890   ThreadState *thr = cur_thread();
891   Processor *proc = thr->proc();
892   ThreadFinish(thr);
893   ProcUnwire(proc, thr);
894   ProcDestroy(proc);
895   DTLS_Destroy();
896   cur_thread_finalize();
897 }
898 
899 void PlatformCleanUpThreadState(ThreadState *thr) {
900   ThreadSignalContext *sctx = thr->signal_ctx;
901   if (sctx) {
902     thr->signal_ctx = 0;
903     UnmapOrDie(sctx, sizeof(*sctx));
904   }
905 }
906 }  // namespace __tsan
907 
908 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
909 static void thread_finalize(void *v) {
910   uptr iter = (uptr)v;
911   if (iter > 1) {
912     if (pthread_setspecific(interceptor_ctx()->finalize_key,
913         (void*)(iter - 1))) {
914       Printf("ThreadSanitizer: failed to set thread key\n");
915       Die();
916     }
917     return;
918   }
919   DestroyThreadState();
920 }
921 #endif
922 
923 
924 struct ThreadParam {
925   void* (*callback)(void *arg);
926   void *param;
927   atomic_uintptr_t tid;
928 };
929 
930 extern "C" void *__tsan_thread_start_func(void *arg) {
931   ThreadParam *p = (ThreadParam*)arg;
932   void* (*callback)(void *arg) = p->callback;
933   void *param = p->param;
934   int tid = 0;
935   {
936     cur_thread_init();
937     ThreadState *thr = cur_thread();
938     // Thread-local state is not initialized yet.
939     ScopedIgnoreInterceptors ignore;
940 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
941     ThreadIgnoreBegin(thr, 0);
942     if (pthread_setspecific(interceptor_ctx()->finalize_key,
943                             (void *)GetPthreadDestructorIterations())) {
944       Printf("ThreadSanitizer: failed to set thread key\n");
945       Die();
946     }
947     ThreadIgnoreEnd(thr, 0);
948 #endif
949     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
950       internal_sched_yield();
951     Processor *proc = ProcCreate();
952     ProcWire(proc, thr);
953     ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
954     atomic_store(&p->tid, 0, memory_order_release);
955   }
956   void *res = callback(param);
957   // Prevent the callback from being tail called,
958   // it mixes up stack traces.
959   volatile int foo = 42;
960   foo++;
961   return res;
962 }
963 
964 TSAN_INTERCEPTOR(int, pthread_create,
965     void *th, void *attr, void *(*callback)(void*), void * param) {
966   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
967 
968   MaybeSpawnBackgroundThread();
969 
970   if (ctx->after_multithreaded_fork) {
971     if (flags()->die_after_fork) {
972       Report("ThreadSanitizer: starting new threads after multi-threaded "
973           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
974       Die();
975     } else {
976       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
977           "fork is not supported (pid %d). Continuing because of "
978           "die_after_fork=0, but you are on your own\n", internal_getpid());
979     }
980   }
981   __sanitizer_pthread_attr_t myattr;
982   if (attr == 0) {
983     pthread_attr_init(&myattr);
984     attr = &myattr;
985   }
986   int detached = 0;
987   REAL(pthread_attr_getdetachstate)(attr, &detached);
988   AdjustStackSize(attr);
989 
990   ThreadParam p;
991   p.callback = callback;
992   p.param = param;
993   atomic_store(&p.tid, 0, memory_order_relaxed);
994   int res = -1;
995   {
996     // Otherwise we see false positives in pthread stack manipulation.
997     ScopedIgnoreInterceptors ignore;
998     ThreadIgnoreBegin(thr, pc);
999     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1000     ThreadIgnoreEnd(thr, pc);
1001   }
1002   if (res == 0) {
1003     int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
1004     CHECK_NE(tid, 0);
1005     // Synchronization on p.tid serves two purposes:
1006     // 1. ThreadCreate must finish before the new thread starts.
1007     //    Otherwise the new thread can call pthread_detach, but the pthread_t
1008     //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
1009     // 2. ThreadStart must finish before this thread continues.
1010     //    Otherwise, this thread can call pthread_detach and reset thr->sync
1011     //    before the new thread got a chance to acquire from it in ThreadStart.
1012     atomic_store(&p.tid, tid, memory_order_release);
1013     while (atomic_load(&p.tid, memory_order_acquire) != 0)
1014       internal_sched_yield();
1015   }
1016   if (attr == &myattr)
1017     pthread_attr_destroy(&myattr);
1018   return res;
1019 }
1020 
1021 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1022   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1023   int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1024   ThreadIgnoreBegin(thr, pc);
1025   int res = BLOCK_REAL(pthread_join)(th, ret);
1026   ThreadIgnoreEnd(thr, pc);
1027   if (res == 0) {
1028     ThreadJoin(thr, pc, tid);
1029   }
1030   return res;
1031 }
1032 
1033 DEFINE_REAL_PTHREAD_FUNCTIONS
1034 
1035 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1036   SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
1037   int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1038   int res = REAL(pthread_detach)(th);
1039   if (res == 0) {
1040     ThreadDetach(thr, pc, tid);
1041   }
1042   return res;
1043 }
1044 
1045 TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1046   {
1047     SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1048 #if !SANITIZER_MAC && !SANITIZER_ANDROID
1049     CHECK_EQ(thr, &cur_thread_placeholder);
1050 #endif
1051   }
1052   REAL(pthread_exit)(retval);
1053 }
1054 
1055 #if SANITIZER_LINUX
1056 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1057   SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
1058   int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1059   ThreadIgnoreBegin(thr, pc);
1060   int res = REAL(pthread_tryjoin_np)(th, ret);
1061   ThreadIgnoreEnd(thr, pc);
1062   if (res == 0)
1063     ThreadJoin(thr, pc, tid);
1064   else
1065     ThreadNotJoined(thr, pc, tid, (uptr)th);
1066   return res;
1067 }
1068 
1069 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1070                  const struct timespec *abstime) {
1071   SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
1072   int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1073   ThreadIgnoreBegin(thr, pc);
1074   int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1075   ThreadIgnoreEnd(thr, pc);
1076   if (res == 0)
1077     ThreadJoin(thr, pc, tid);
1078   else
1079     ThreadNotJoined(thr, pc, tid, (uptr)th);
1080   return res;
1081 }
1082 #endif
1083 
1084 // Problem:
1085 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1086 // pthread_cond_t has different size in the different versions.
1087 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1088 // after pthread_cond_t (old cond is smaller).
1089 // If we call old REAL functions for new pthread_cond_t, we will lose  some
1090 // functionality (e.g. old functions do not support waiting against
1091 // CLOCK_REALTIME).
1092 // Proper handling would require to have 2 versions of interceptors as well.
1093 // But this is messy, in particular requires linker scripts when sanitizer
1094 // runtime is linked into a shared library.
1095 // Instead we assume we don't have dynamic libraries built against old
1096 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1097 // that allows to work with old libraries (but this mode does not support
1098 // some features, e.g. pthread_condattr_getpshared).
1099 static void *init_cond(void *c, bool force = false) {
1100   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1101   // So we allocate additional memory on the side large enough to hold
1102   // any pthread_cond_t object. Always call new REAL functions, but pass
1103   // the aux object to them.
1104   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1105   // first word of pthread_cond_t to zero.
1106   // It's all relevant only for linux.
1107   if (!common_flags()->legacy_pthread_cond)
1108     return c;
1109   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1110   uptr cond = atomic_load(p, memory_order_acquire);
1111   if (!force && cond != 0)
1112     return (void*)cond;
1113   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1114   internal_memset(newcond, 0, pthread_cond_t_sz);
1115   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1116       memory_order_acq_rel))
1117     return newcond;
1118   WRAP(free)(newcond);
1119   return (void*)cond;
1120 }
1121 
1122 struct CondMutexUnlockCtx {
1123   ScopedInterceptor *si;
1124   ThreadState *thr;
1125   uptr pc;
1126   void *m;
1127 };
1128 
1129 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1130   // pthread_cond_wait interceptor has enabled async signal delivery
1131   // (see BlockingCall below). Disable async signals since we are running
1132   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1133   // since the thread is cancelled, so we have to manually execute them
1134   // (the thread still can run some user code due to pthread_cleanup_push).
1135   ThreadSignalContext *ctx = SigCtx(arg->thr);
1136   CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1137   atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1138   MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1139   // Undo BlockingCall ctor effects.
1140   arg->thr->ignore_interceptors--;
1141   arg->si->~ScopedInterceptor();
1142 }
1143 
1144 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1145   void *cond = init_cond(c, true);
1146   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1147   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1148   return REAL(pthread_cond_init)(cond, a);
1149 }
1150 
1151 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1152                      int (*fn)(void *c, void *m, void *abstime), void *c,
1153                      void *m, void *t) {
1154   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1155   MutexUnlock(thr, pc, (uptr)m);
1156   CondMutexUnlockCtx arg = {si, thr, pc, m};
1157   int res = 0;
1158   // This ensures that we handle mutex lock even in case of pthread_cancel.
1159   // See test/tsan/cond_cancel.cpp.
1160   {
1161     // Enable signal delivery while the thread is blocked.
1162     BlockingCall bc(thr);
1163     res = call_pthread_cancel_with_cleanup(
1164         fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1165   }
1166   if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1167   MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1168   return res;
1169 }
1170 
1171 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1172   void *cond = init_cond(c);
1173   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1174   return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1175                                      pthread_cond_wait),
1176                    cond, m, 0);
1177 }
1178 
1179 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1180   void *cond = init_cond(c);
1181   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1182   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1183                    abstime);
1184 }
1185 
1186 #if SANITIZER_MAC
1187 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1188             void *reltime) {
1189   void *cond = init_cond(c);
1190   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1191   return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1192                    m, reltime);
1193 }
1194 #endif
1195 
1196 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1197   void *cond = init_cond(c);
1198   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1199   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1200   return REAL(pthread_cond_signal)(cond);
1201 }
1202 
1203 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1204   void *cond = init_cond(c);
1205   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1206   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1207   return REAL(pthread_cond_broadcast)(cond);
1208 }
1209 
1210 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1211   void *cond = init_cond(c);
1212   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1213   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1214   int res = REAL(pthread_cond_destroy)(cond);
1215   if (common_flags()->legacy_pthread_cond) {
1216     // Free our aux cond and zero the pointer to not leave dangling pointers.
1217     WRAP(free)(cond);
1218     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1219   }
1220   return res;
1221 }
1222 
1223 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1224   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1225   int res = REAL(pthread_mutex_init)(m, a);
1226   if (res == 0) {
1227     u32 flagz = 0;
1228     if (a) {
1229       int type = 0;
1230       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1231         if (type == PTHREAD_MUTEX_RECURSIVE ||
1232             type == PTHREAD_MUTEX_RECURSIVE_NP)
1233           flagz |= MutexFlagWriteReentrant;
1234     }
1235     MutexCreate(thr, pc, (uptr)m, flagz);
1236   }
1237   return res;
1238 }
1239 
1240 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1241   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1242   int res = REAL(pthread_mutex_destroy)(m);
1243   if (res == 0 || res == errno_EBUSY) {
1244     MutexDestroy(thr, pc, (uptr)m);
1245   }
1246   return res;
1247 }
1248 
1249 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1250   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1251   int res = REAL(pthread_mutex_trylock)(m);
1252   if (res == errno_EOWNERDEAD)
1253     MutexRepair(thr, pc, (uptr)m);
1254   if (res == 0 || res == errno_EOWNERDEAD)
1255     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1256   return res;
1257 }
1258 
1259 #if !SANITIZER_MAC
1260 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1261   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1262   int res = REAL(pthread_mutex_timedlock)(m, abstime);
1263   if (res == 0) {
1264     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1265   }
1266   return res;
1267 }
1268 #endif
1269 
1270 #if !SANITIZER_MAC
1271 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1272   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1273   int res = REAL(pthread_spin_init)(m, pshared);
1274   if (res == 0) {
1275     MutexCreate(thr, pc, (uptr)m);
1276   }
1277   return res;
1278 }
1279 
1280 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1281   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1282   int res = REAL(pthread_spin_destroy)(m);
1283   if (res == 0) {
1284     MutexDestroy(thr, pc, (uptr)m);
1285   }
1286   return res;
1287 }
1288 
1289 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1290   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1291   MutexPreLock(thr, pc, (uptr)m);
1292   int res = REAL(pthread_spin_lock)(m);
1293   if (res == 0) {
1294     MutexPostLock(thr, pc, (uptr)m);
1295   }
1296   return res;
1297 }
1298 
1299 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1300   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1301   int res = REAL(pthread_spin_trylock)(m);
1302   if (res == 0) {
1303     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1304   }
1305   return res;
1306 }
1307 
1308 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1309   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1310   MutexUnlock(thr, pc, (uptr)m);
1311   int res = REAL(pthread_spin_unlock)(m);
1312   return res;
1313 }
1314 #endif
1315 
1316 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1317   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1318   int res = REAL(pthread_rwlock_init)(m, a);
1319   if (res == 0) {
1320     MutexCreate(thr, pc, (uptr)m);
1321   }
1322   return res;
1323 }
1324 
1325 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1326   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1327   int res = REAL(pthread_rwlock_destroy)(m);
1328   if (res == 0) {
1329     MutexDestroy(thr, pc, (uptr)m);
1330   }
1331   return res;
1332 }
1333 
1334 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1335   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1336   MutexPreReadLock(thr, pc, (uptr)m);
1337   int res = REAL(pthread_rwlock_rdlock)(m);
1338   if (res == 0) {
1339     MutexPostReadLock(thr, pc, (uptr)m);
1340   }
1341   return res;
1342 }
1343 
1344 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1345   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1346   int res = REAL(pthread_rwlock_tryrdlock)(m);
1347   if (res == 0) {
1348     MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1349   }
1350   return res;
1351 }
1352 
1353 #if !SANITIZER_MAC
1354 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1355   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1356   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1357   if (res == 0) {
1358     MutexPostReadLock(thr, pc, (uptr)m);
1359   }
1360   return res;
1361 }
1362 #endif
1363 
1364 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1365   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1366   MutexPreLock(thr, pc, (uptr)m);
1367   int res = REAL(pthread_rwlock_wrlock)(m);
1368   if (res == 0) {
1369     MutexPostLock(thr, pc, (uptr)m);
1370   }
1371   return res;
1372 }
1373 
1374 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1375   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1376   int res = REAL(pthread_rwlock_trywrlock)(m);
1377   if (res == 0) {
1378     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1379   }
1380   return res;
1381 }
1382 
1383 #if !SANITIZER_MAC
1384 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1385   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1386   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1387   if (res == 0) {
1388     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1389   }
1390   return res;
1391 }
1392 #endif
1393 
1394 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1395   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1396   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1397   int res = REAL(pthread_rwlock_unlock)(m);
1398   return res;
1399 }
1400 
1401 #if !SANITIZER_MAC
1402 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1403   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1404   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1405   int res = REAL(pthread_barrier_init)(b, a, count);
1406   return res;
1407 }
1408 
1409 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1410   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1411   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1412   int res = REAL(pthread_barrier_destroy)(b);
1413   return res;
1414 }
1415 
1416 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1417   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1418   Release(thr, pc, (uptr)b);
1419   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1420   int res = REAL(pthread_barrier_wait)(b);
1421   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1422   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1423     Acquire(thr, pc, (uptr)b);
1424   }
1425   return res;
1426 }
1427 #endif
1428 
1429 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1430   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1431   if (o == 0 || f == 0)
1432     return errno_EINVAL;
1433   atomic_uint32_t *a;
1434 
1435   if (SANITIZER_MAC)
1436     a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1437   else if (SANITIZER_NETBSD)
1438     a = static_cast<atomic_uint32_t*>
1439           ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1440   else
1441     a = static_cast<atomic_uint32_t*>(o);
1442 
1443   u32 v = atomic_load(a, memory_order_acquire);
1444   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1445                                                memory_order_relaxed)) {
1446     (*f)();
1447     if (!thr->in_ignored_lib)
1448       Release(thr, pc, (uptr)o);
1449     atomic_store(a, 2, memory_order_release);
1450   } else {
1451     while (v != 2) {
1452       internal_sched_yield();
1453       v = atomic_load(a, memory_order_acquire);
1454     }
1455     if (!thr->in_ignored_lib)
1456       Acquire(thr, pc, (uptr)o);
1457   }
1458   return 0;
1459 }
1460 
1461 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1462 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1463   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1464   if (fd > 0)
1465     FdAccess(thr, pc, fd);
1466   return REAL(__fxstat)(version, fd, buf);
1467 }
1468 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1469 #else
1470 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1471 #endif
1472 
1473 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1474 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1475   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1476   if (fd > 0)
1477     FdAccess(thr, pc, fd);
1478   return REAL(fstat)(fd, buf);
1479 #else
1480   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1481   if (fd > 0)
1482     FdAccess(thr, pc, fd);
1483   return REAL(__fxstat)(0, fd, buf);
1484 #endif
1485 }
1486 
1487 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1488 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1489   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1490   if (fd > 0)
1491     FdAccess(thr, pc, fd);
1492   return REAL(__fxstat64)(version, fd, buf);
1493 }
1494 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1495 #else
1496 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1497 #endif
1498 
1499 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1500 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1501   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1502   if (fd > 0)
1503     FdAccess(thr, pc, fd);
1504   return REAL(__fxstat64)(0, fd, buf);
1505 }
1506 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1507 #else
1508 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1509 #endif
1510 
1511 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1512   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1513   READ_STRING(thr, pc, name, 0);
1514   int fd = REAL(open)(name, flags, mode);
1515   if (fd >= 0)
1516     FdFileCreate(thr, pc, fd);
1517   return fd;
1518 }
1519 
1520 #if SANITIZER_LINUX
1521 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1522   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1523   READ_STRING(thr, pc, name, 0);
1524   int fd = REAL(open64)(name, flags, mode);
1525   if (fd >= 0)
1526     FdFileCreate(thr, pc, fd);
1527   return fd;
1528 }
1529 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1530 #else
1531 #define TSAN_MAYBE_INTERCEPT_OPEN64
1532 #endif
1533 
1534 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1535   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1536   READ_STRING(thr, pc, name, 0);
1537   int fd = REAL(creat)(name, mode);
1538   if (fd >= 0)
1539     FdFileCreate(thr, pc, fd);
1540   return fd;
1541 }
1542 
1543 #if SANITIZER_LINUX
1544 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1545   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1546   READ_STRING(thr, pc, name, 0);
1547   int fd = REAL(creat64)(name, mode);
1548   if (fd >= 0)
1549     FdFileCreate(thr, pc, fd);
1550   return fd;
1551 }
1552 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1553 #else
1554 #define TSAN_MAYBE_INTERCEPT_CREAT64
1555 #endif
1556 
1557 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1558   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1559   int newfd = REAL(dup)(oldfd);
1560   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1561     FdDup(thr, pc, oldfd, newfd, true);
1562   return newfd;
1563 }
1564 
1565 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1566   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1567   int newfd2 = REAL(dup2)(oldfd, newfd);
1568   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1569     FdDup(thr, pc, oldfd, newfd2, false);
1570   return newfd2;
1571 }
1572 
1573 #if !SANITIZER_MAC
1574 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1575   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1576   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1577   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1578     FdDup(thr, pc, oldfd, newfd2, false);
1579   return newfd2;
1580 }
1581 #endif
1582 
1583 #if SANITIZER_LINUX
1584 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1585   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1586   int fd = REAL(eventfd)(initval, flags);
1587   if (fd >= 0)
1588     FdEventCreate(thr, pc, fd);
1589   return fd;
1590 }
1591 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1592 #else
1593 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1594 #endif
1595 
1596 #if SANITIZER_LINUX
1597 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1598   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1599   if (fd >= 0)
1600     FdClose(thr, pc, fd);
1601   fd = REAL(signalfd)(fd, mask, flags);
1602   if (fd >= 0)
1603     FdSignalCreate(thr, pc, fd);
1604   return fd;
1605 }
1606 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1607 #else
1608 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1609 #endif
1610 
1611 #if SANITIZER_LINUX
1612 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1613   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1614   int fd = REAL(inotify_init)(fake);
1615   if (fd >= 0)
1616     FdInotifyCreate(thr, pc, fd);
1617   return fd;
1618 }
1619 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1620 #else
1621 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1622 #endif
1623 
1624 #if SANITIZER_LINUX
1625 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1626   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1627   int fd = REAL(inotify_init1)(flags);
1628   if (fd >= 0)
1629     FdInotifyCreate(thr, pc, fd);
1630   return fd;
1631 }
1632 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1633 #else
1634 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1635 #endif
1636 
1637 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1638   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1639   int fd = REAL(socket)(domain, type, protocol);
1640   if (fd >= 0)
1641     FdSocketCreate(thr, pc, fd);
1642   return fd;
1643 }
1644 
1645 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1646   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1647   int res = REAL(socketpair)(domain, type, protocol, fd);
1648   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1649     FdPipeCreate(thr, pc, fd[0], fd[1]);
1650   return res;
1651 }
1652 
1653 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1654   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1655   FdSocketConnecting(thr, pc, fd);
1656   int res = REAL(connect)(fd, addr, addrlen);
1657   if (res == 0 && fd >= 0)
1658     FdSocketConnect(thr, pc, fd);
1659   return res;
1660 }
1661 
1662 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1663   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1664   int res = REAL(bind)(fd, addr, addrlen);
1665   if (fd > 0 && res == 0)
1666     FdAccess(thr, pc, fd);
1667   return res;
1668 }
1669 
1670 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1671   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1672   int res = REAL(listen)(fd, backlog);
1673   if (fd > 0 && res == 0)
1674     FdAccess(thr, pc, fd);
1675   return res;
1676 }
1677 
1678 TSAN_INTERCEPTOR(int, close, int fd) {
1679   SCOPED_TSAN_INTERCEPTOR(close, fd);
1680   if (fd >= 0)
1681     FdClose(thr, pc, fd);
1682   return REAL(close)(fd);
1683 }
1684 
1685 #if SANITIZER_LINUX
1686 TSAN_INTERCEPTOR(int, __close, int fd) {
1687   SCOPED_TSAN_INTERCEPTOR(__close, fd);
1688   if (fd >= 0)
1689     FdClose(thr, pc, fd);
1690   return REAL(__close)(fd);
1691 }
1692 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1693 #else
1694 #define TSAN_MAYBE_INTERCEPT___CLOSE
1695 #endif
1696 
1697 // glibc guts
1698 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1699 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1700   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1701   int fds[64];
1702   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1703   for (int i = 0; i < cnt; i++) {
1704     if (fds[i] > 0)
1705       FdClose(thr, pc, fds[i]);
1706   }
1707   REAL(__res_iclose)(state, free_addr);
1708 }
1709 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1710 #else
1711 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1712 #endif
1713 
1714 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1715   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1716   int res = REAL(pipe)(pipefd);
1717   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1718     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1719   return res;
1720 }
1721 
1722 #if !SANITIZER_MAC
1723 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1724   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1725   int res = REAL(pipe2)(pipefd, flags);
1726   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1727     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1728   return res;
1729 }
1730 #endif
1731 
1732 TSAN_INTERCEPTOR(int, unlink, char *path) {
1733   SCOPED_TSAN_INTERCEPTOR(unlink, path);
1734   Release(thr, pc, File2addr(path));
1735   int res = REAL(unlink)(path);
1736   return res;
1737 }
1738 
1739 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1740   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1741   void *res = REAL(tmpfile)(fake);
1742   if (res) {
1743     int fd = fileno_unlocked(res);
1744     if (fd >= 0)
1745       FdFileCreate(thr, pc, fd);
1746   }
1747   return res;
1748 }
1749 
1750 #if SANITIZER_LINUX
1751 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1752   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1753   void *res = REAL(tmpfile64)(fake);
1754   if (res) {
1755     int fd = fileno_unlocked(res);
1756     if (fd >= 0)
1757       FdFileCreate(thr, pc, fd);
1758   }
1759   return res;
1760 }
1761 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1762 #else
1763 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1764 #endif
1765 
1766 static void FlushStreams() {
1767   // Flushing all the streams here may freeze the process if a child thread is
1768   // performing file stream operations at the same time.
1769   REAL(fflush)(stdout);
1770   REAL(fflush)(stderr);
1771 }
1772 
1773 TSAN_INTERCEPTOR(void, abort, int fake) {
1774   SCOPED_TSAN_INTERCEPTOR(abort, fake);
1775   FlushStreams();
1776   REAL(abort)(fake);
1777 }
1778 
1779 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1780   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1781   Release(thr, pc, Dir2addr(path));
1782   int res = REAL(rmdir)(path);
1783   return res;
1784 }
1785 
1786 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1787   SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1788   if (dirp) {
1789     int fd = dirfd(dirp);
1790     FdClose(thr, pc, fd);
1791   }
1792   return REAL(closedir)(dirp);
1793 }
1794 
1795 #if SANITIZER_LINUX
1796 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1797   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1798   int fd = REAL(epoll_create)(size);
1799   if (fd >= 0)
1800     FdPollCreate(thr, pc, fd);
1801   return fd;
1802 }
1803 
1804 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1805   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1806   int fd = REAL(epoll_create1)(flags);
1807   if (fd >= 0)
1808     FdPollCreate(thr, pc, fd);
1809   return fd;
1810 }
1811 
1812 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1813   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1814   if (epfd >= 0)
1815     FdAccess(thr, pc, epfd);
1816   if (epfd >= 0 && fd >= 0)
1817     FdAccess(thr, pc, fd);
1818   if (op == EPOLL_CTL_ADD && epfd >= 0)
1819     FdRelease(thr, pc, epfd);
1820   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1821   return res;
1822 }
1823 
1824 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1825   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1826   if (epfd >= 0)
1827     FdAccess(thr, pc, epfd);
1828   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1829   if (res > 0 && epfd >= 0)
1830     FdAcquire(thr, pc, epfd);
1831   return res;
1832 }
1833 
1834 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1835                  void *sigmask) {
1836   SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1837   if (epfd >= 0)
1838     FdAccess(thr, pc, epfd);
1839   int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1840   if (res > 0 && epfd >= 0)
1841     FdAcquire(thr, pc, epfd);
1842   return res;
1843 }
1844 
1845 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1846     TSAN_INTERCEPT(epoll_create); \
1847     TSAN_INTERCEPT(epoll_create1); \
1848     TSAN_INTERCEPT(epoll_ctl); \
1849     TSAN_INTERCEPT(epoll_wait); \
1850     TSAN_INTERCEPT(epoll_pwait)
1851 #else
1852 #define TSAN_MAYBE_INTERCEPT_EPOLL
1853 #endif
1854 
1855 // The following functions are intercepted merely to process pending signals.
1856 // If program blocks signal X, we must deliver the signal before the function
1857 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1858 // it's better to deliver the signal straight away.
1859 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1860   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1861   return REAL(sigsuspend)(mask);
1862 }
1863 
1864 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1865   SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1866   return REAL(sigblock)(mask);
1867 }
1868 
1869 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1870   SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1871   return REAL(sigsetmask)(mask);
1872 }
1873 
1874 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1875     __sanitizer_sigset_t *oldset) {
1876   SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1877   return REAL(pthread_sigmask)(how, set, oldset);
1878 }
1879 
1880 namespace __tsan {
1881 
1882 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1883                                   bool sigact, int sig,
1884                                   __sanitizer_siginfo *info, void *uctx) {
1885   __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1886   if (acquire)
1887     Acquire(thr, 0, (uptr)&sigactions[sig]);
1888   // Signals are generally asynchronous, so if we receive a signals when
1889   // ignores are enabled we should disable ignores. This is critical for sync
1890   // and interceptors, because otherwise we can miss syncronization and report
1891   // false races.
1892   int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1893   int ignore_interceptors = thr->ignore_interceptors;
1894   int ignore_sync = thr->ignore_sync;
1895   if (!ctx->after_multithreaded_fork) {
1896     thr->ignore_reads_and_writes = 0;
1897     thr->fast_state.ClearIgnoreBit();
1898     thr->ignore_interceptors = 0;
1899     thr->ignore_sync = 0;
1900   }
1901   // Ensure that the handler does not spoil errno.
1902   const int saved_errno = errno;
1903   errno = 99;
1904   // This code races with sigaction. Be careful to not read sa_sigaction twice.
1905   // Also need to remember pc for reporting before the call,
1906   // because the handler can reset it.
1907   volatile uptr pc =
1908       sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
1909   if (pc != sig_dfl && pc != sig_ign) {
1910     if (sigact)
1911       ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
1912     else
1913       ((__sanitizer_sighandler_ptr)pc)(sig);
1914   }
1915   if (!ctx->after_multithreaded_fork) {
1916     thr->ignore_reads_and_writes = ignore_reads_and_writes;
1917     if (ignore_reads_and_writes)
1918       thr->fast_state.SetIgnoreBit();
1919     thr->ignore_interceptors = ignore_interceptors;
1920     thr->ignore_sync = ignore_sync;
1921   }
1922   // We do not detect errno spoiling for SIGTERM,
1923   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1924   // tsan reports false positive in such case.
1925   // It's difficult to properly detect this situation (reraise),
1926   // because in async signal processing case (when handler is called directly
1927   // from rtl_generic_sighandler) we have not yet received the reraised
1928   // signal; and it looks too fragile to intercept all ways to reraise a signal.
1929   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1930     VarSizeStackTrace stack;
1931     // StackTrace::GetNestInstructionPc(pc) is used because return address is
1932     // expected, OutputReport() will undo this.
1933     ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1934     ThreadRegistryLock l(ctx->thread_registry);
1935     ScopedReport rep(ReportTypeErrnoInSignal);
1936     if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1937       rep.AddStack(stack, true);
1938       OutputReport(thr, rep);
1939     }
1940   }
1941   errno = saved_errno;
1942 }
1943 
1944 void ProcessPendingSignals(ThreadState *thr) {
1945   ThreadSignalContext *sctx = SigCtx(thr);
1946   if (sctx == 0 ||
1947       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1948     return;
1949   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1950   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1951   internal_sigfillset(&sctx->emptyset);
1952   int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1953   CHECK_EQ(res, 0);
1954   for (int sig = 0; sig < kSigCount; sig++) {
1955     SignalDesc *signal = &sctx->pending_signals[sig];
1956     if (signal->armed) {
1957       signal->armed = false;
1958       CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1959           &signal->siginfo, &signal->ctx);
1960     }
1961   }
1962   res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1963   CHECK_EQ(res, 0);
1964   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1965 }
1966 
1967 }  // namespace __tsan
1968 
1969 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1970   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
1971          sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1972          // If we are sending signal to ourselves, we must process it now.
1973          (sctx && sig == sctx->int_signal_send);
1974 }
1975 
1976 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1977                                           __sanitizer_siginfo *info,
1978                                           void *ctx) {
1979   cur_thread_init();
1980   ThreadState *thr = cur_thread();
1981   ThreadSignalContext *sctx = SigCtx(thr);
1982   if (sig < 0 || sig >= kSigCount) {
1983     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1984     return;
1985   }
1986   // Don't mess with synchronous signals.
1987   const bool sync = is_sync_signal(sctx, sig);
1988   if (sync ||
1989       // If we are in blocking function, we can safely process it now
1990       // (but check if we are in a recursive interceptor,
1991       // i.e. pthread_join()->munmap()).
1992       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1993     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1994     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1995       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1996       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1997       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1998     } else {
1999       // Be very conservative with when we do acquire in this case.
2000       // It's unsafe to do acquire in async handlers, because ThreadState
2001       // can be in inconsistent state.
2002       // SIGSYS looks relatively safe -- it's synchronous and can actually
2003       // need some global state.
2004       bool acq = (sig == SIGSYS);
2005       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
2006     }
2007     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2008     return;
2009   }
2010 
2011   if (sctx == 0)
2012     return;
2013   SignalDesc *signal = &sctx->pending_signals[sig];
2014   if (signal->armed == false) {
2015     signal->armed = true;
2016     signal->sigaction = sigact;
2017     if (info)
2018       internal_memcpy(&signal->siginfo, info, sizeof(*info));
2019     if (ctx)
2020       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2021     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
2022   }
2023 }
2024 
2025 static void rtl_sighandler(int sig) {
2026   rtl_generic_sighandler(false, sig, 0, 0);
2027 }
2028 
2029 static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
2030   rtl_generic_sighandler(true, sig, info, ctx);
2031 }
2032 
2033 TSAN_INTERCEPTOR(int, raise, int sig) {
2034   SCOPED_TSAN_INTERCEPTOR(raise, sig);
2035   ThreadSignalContext *sctx = SigCtx(thr);
2036   CHECK_NE(sctx, 0);
2037   int prev = sctx->int_signal_send;
2038   sctx->int_signal_send = sig;
2039   int res = REAL(raise)(sig);
2040   CHECK_EQ(sctx->int_signal_send, sig);
2041   sctx->int_signal_send = prev;
2042   return res;
2043 }
2044 
2045 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2046   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2047   ThreadSignalContext *sctx = SigCtx(thr);
2048   CHECK_NE(sctx, 0);
2049   int prev = sctx->int_signal_send;
2050   if (pid == (int)internal_getpid()) {
2051     sctx->int_signal_send = sig;
2052   }
2053   int res = REAL(kill)(pid, sig);
2054   if (pid == (int)internal_getpid()) {
2055     CHECK_EQ(sctx->int_signal_send, sig);
2056     sctx->int_signal_send = prev;
2057   }
2058   return res;
2059 }
2060 
2061 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2062   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2063   ThreadSignalContext *sctx = SigCtx(thr);
2064   CHECK_NE(sctx, 0);
2065   int prev = sctx->int_signal_send;
2066   if (tid == pthread_self()) {
2067     sctx->int_signal_send = sig;
2068   }
2069   int res = REAL(pthread_kill)(tid, sig);
2070   if (tid == pthread_self()) {
2071     CHECK_EQ(sctx->int_signal_send, sig);
2072     sctx->int_signal_send = prev;
2073   }
2074   return res;
2075 }
2076 
2077 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2078   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2079   // It's intercepted merely to process pending signals.
2080   return REAL(gettimeofday)(tv, tz);
2081 }
2082 
2083 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2084     void *hints, void *rv) {
2085   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2086   // We miss atomic synchronization in getaddrinfo,
2087   // and can report false race between malloc and free
2088   // inside of getaddrinfo. So ignore memory accesses.
2089   ThreadIgnoreBegin(thr, pc);
2090   int res = REAL(getaddrinfo)(node, service, hints, rv);
2091   ThreadIgnoreEnd(thr, pc);
2092   return res;
2093 }
2094 
2095 TSAN_INTERCEPTOR(int, fork, int fake) {
2096   if (in_symbolizer())
2097     return REAL(fork)(fake);
2098   SCOPED_INTERCEPTOR_RAW(fork, fake);
2099   ForkBefore(thr, pc);
2100   int pid;
2101   {
2102     // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2103     // we'll assert in CheckNoLocks() unless we ignore interceptors.
2104     ScopedIgnoreInterceptors ignore;
2105     pid = REAL(fork)(fake);
2106   }
2107   if (pid == 0) {
2108     // child
2109     ForkChildAfter(thr, pc);
2110     FdOnFork(thr, pc);
2111   } else if (pid > 0) {
2112     // parent
2113     ForkParentAfter(thr, pc);
2114   } else {
2115     // error
2116     ForkParentAfter(thr, pc);
2117   }
2118   return pid;
2119 }
2120 
2121 TSAN_INTERCEPTOR(int, vfork, int fake) {
2122   // Some programs (e.g. openjdk) call close for all file descriptors
2123   // in the child process. Under tsan it leads to false positives, because
2124   // address space is shared, so the parent process also thinks that
2125   // the descriptors are closed (while they are actually not).
2126   // This leads to false positives due to missed synchronization.
2127   // Strictly saying this is undefined behavior, because vfork child is not
2128   // allowed to call any functions other than exec/exit. But this is what
2129   // openjdk does, so we want to handle it.
2130   // We could disable interceptors in the child process. But it's not possible
2131   // to simply intercept and wrap vfork, because vfork child is not allowed
2132   // to return from the function that calls vfork, and that's exactly what
2133   // we would do. So this would require some assembly trickery as well.
2134   // Instead we simply turn vfork into fork.
2135   return WRAP(fork)(fake);
2136 }
2137 
2138 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2139 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2140                                     void *data);
2141 struct dl_iterate_phdr_data {
2142   ThreadState *thr;
2143   uptr pc;
2144   dl_iterate_phdr_cb_t cb;
2145   void *data;
2146 };
2147 
2148 static bool IsAppNotRodata(uptr addr) {
2149   return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2150 }
2151 
2152 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2153                               void *data) {
2154   dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2155   // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2156   // accessible in dl_iterate_phdr callback. But we don't see synchronization
2157   // inside of dynamic linker, so we "unpoison" it here in order to not
2158   // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2159   // because some libc functions call __libc_dlopen.
2160   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2161     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2162                      internal_strlen(info->dlpi_name));
2163   int res = cbdata->cb(info, size, cbdata->data);
2164   // Perform the check one more time in case info->dlpi_name was overwritten
2165   // by user callback.
2166   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2167     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2168                      internal_strlen(info->dlpi_name));
2169   return res;
2170 }
2171 
2172 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2173   SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2174   dl_iterate_phdr_data cbdata;
2175   cbdata.thr = thr;
2176   cbdata.pc = pc;
2177   cbdata.cb = cb;
2178   cbdata.data = data;
2179   int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2180   return res;
2181 }
2182 #endif
2183 
2184 static int OnExit(ThreadState *thr) {
2185   int status = Finalize(thr);
2186   FlushStreams();
2187   return status;
2188 }
2189 
2190 struct TsanInterceptorContext {
2191   ThreadState *thr;
2192   const uptr caller_pc;
2193   const uptr pc;
2194 };
2195 
2196 #if !SANITIZER_MAC
2197 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2198     __sanitizer_msghdr *msg) {
2199   int fds[64];
2200   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2201   for (int i = 0; i < cnt; i++)
2202     FdEventCreate(thr, pc, fds[i]);
2203 }
2204 #endif
2205 
2206 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2207 // Causes interceptor recursion (getaddrinfo() and fopen())
2208 #undef SANITIZER_INTERCEPT_GETADDRINFO
2209 // We define our own.
2210 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2211 #define NEED_TLS_GET_ADDR
2212 #endif
2213 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2214 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2215 
2216 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2217 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
2218   INTERCEPT_FUNCTION_VER(name, ver)
2219 
2220 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
2221   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
2222                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2223                     true)
2224 
2225 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
2226   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
2227                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2228                     false)
2229 
2230 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
2231   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
2232   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2233   ctx = (void *)&_ctx;                                \
2234   (void) ctx;
2235 
2236 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2237   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2238   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
2239   ctx = (void *)&_ctx;                                    \
2240   (void) ctx;
2241 
2242 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2243   if (path)                                           \
2244     Acquire(thr, pc, File2addr(path));                \
2245   if (file) {                                         \
2246     int fd = fileno_unlocked(file);                   \
2247     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2248   }
2249 
2250 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2251   if (file) {                                    \
2252     int fd = fileno_unlocked(file);              \
2253     if (fd >= 0) FdClose(thr, pc, fd);           \
2254   }
2255 
2256 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2257   libignore()->OnLibraryLoaded(filename)
2258 
2259 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2260   libignore()->OnLibraryUnloaded()
2261 
2262 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2263   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2264 
2265 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2266   Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2267 
2268 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2269   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2270 
2271 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2272   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2273 
2274 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2275   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2276 
2277 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2278   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2279 
2280 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2281   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2282 
2283 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2284   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2285 
2286 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2287   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2288 
2289 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2290 
2291 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2292   OnExit(((TsanInterceptorContext *) ctx)->thr)
2293 
2294 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2295   MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2296             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2297 
2298 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2299   MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2300             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2301 
2302 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2303   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2304             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2305 
2306 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2307   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2308             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2309 
2310 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2311   MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2312                      ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2313 
2314 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd,  \
2315                                      off)                                   \
2316   do {                                                                      \
2317     return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2318                             off);                                           \
2319   } while (false)
2320 
2321 #if !SANITIZER_MAC
2322 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2323   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2324       ((TsanInterceptorContext *)ctx)->pc, msg)
2325 #endif
2326 
2327 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
2328   if (TsanThread *t = GetCurrentThread()) {                                    \
2329     *begin = t->tls_begin();                                                   \
2330     *end = t->tls_end();                                                       \
2331   } else {                                                                     \
2332     *begin = *end = 0;                                                         \
2333   }
2334 
2335 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2336   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2337 
2338 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2339   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2340 
2341 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2342 
2343 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2344                           __sanitizer_sigaction *old);
2345 static __sanitizer_sighandler_ptr signal_impl(int sig,
2346                                               __sanitizer_sighandler_ptr h);
2347 
2348 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2349   { return sigaction_impl(signo, act, oldact); }
2350 
2351 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2352   { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2353 
2354 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2355 
2356 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2357                    __sanitizer_sigaction *old) {
2358   // Note: if we call REAL(sigaction) directly for any reason without proxying
2359   // the signal handler through rtl_sigaction, very bad things will happen.
2360   // The handler will run synchronously and corrupt tsan per-thread state.
2361   SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2362   __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2363   __sanitizer_sigaction old_stored;
2364   if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2365   __sanitizer_sigaction newact;
2366   if (act) {
2367     // Copy act into sigactions[sig].
2368     // Can't use struct copy, because compiler can emit call to memcpy.
2369     // Can't use internal_memcpy, because it copies byte-by-byte,
2370     // and signal handler reads the handler concurrently. It it can read
2371     // some bytes from old value and some bytes from new value.
2372     // Use volatile to prevent insertion of memcpy.
2373     sigactions[sig].handler =
2374         *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2375     sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2376     internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2377                     sizeof(sigactions[sig].sa_mask));
2378 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2379     sigactions[sig].sa_restorer = act->sa_restorer;
2380 #endif
2381     internal_memcpy(&newact, act, sizeof(newact));
2382     internal_sigfillset(&newact.sa_mask);
2383     if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
2384       if (newact.sa_flags & SA_SIGINFO)
2385         newact.sigaction = rtl_sigaction;
2386       else
2387         newact.handler = rtl_sighandler;
2388     }
2389     ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2390     act = &newact;
2391   }
2392   int res = REAL(sigaction)(sig, act, old);
2393   if (res == 0 && old) {
2394     uptr cb = (uptr)old->sigaction;
2395     if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
2396       internal_memcpy(old, &old_stored, sizeof(*old));
2397     }
2398   }
2399   return res;
2400 }
2401 
2402 static __sanitizer_sighandler_ptr signal_impl(int sig,
2403                                               __sanitizer_sighandler_ptr h) {
2404   __sanitizer_sigaction act;
2405   act.handler = h;
2406   internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2407   act.sa_flags = 0;
2408   __sanitizer_sigaction old;
2409   int res = sigaction_symname(sig, &act, &old);
2410   if (res) return (__sanitizer_sighandler_ptr)sig_err;
2411   return old.handler;
2412 }
2413 
2414 #define TSAN_SYSCALL() \
2415   ThreadState *thr = cur_thread(); \
2416   if (thr->ignore_interceptors) \
2417     return; \
2418   ScopedSyscall scoped_syscall(thr) \
2419 /**/
2420 
2421 struct ScopedSyscall {
2422   ThreadState *thr;
2423 
2424   explicit ScopedSyscall(ThreadState *thr)
2425       : thr(thr) {
2426     Initialize(thr);
2427   }
2428 
2429   ~ScopedSyscall() {
2430     ProcessPendingSignals(thr);
2431   }
2432 };
2433 
2434 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
2435 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2436   TSAN_SYSCALL();
2437   MemoryAccessRange(thr, pc, p, s, write);
2438 }
2439 
2440 static void syscall_acquire(uptr pc, uptr addr) {
2441   TSAN_SYSCALL();
2442   Acquire(thr, pc, addr);
2443   DPrintf("syscall_acquire(%p)\n", addr);
2444 }
2445 
2446 static void syscall_release(uptr pc, uptr addr) {
2447   TSAN_SYSCALL();
2448   DPrintf("syscall_release(%p)\n", addr);
2449   Release(thr, pc, addr);
2450 }
2451 
2452 static void syscall_fd_close(uptr pc, int fd) {
2453   TSAN_SYSCALL();
2454   FdClose(thr, pc, fd);
2455 }
2456 
2457 static USED void syscall_fd_acquire(uptr pc, int fd) {
2458   TSAN_SYSCALL();
2459   FdAcquire(thr, pc, fd);
2460   DPrintf("syscall_fd_acquire(%p)\n", fd);
2461 }
2462 
2463 static USED void syscall_fd_release(uptr pc, int fd) {
2464   TSAN_SYSCALL();
2465   DPrintf("syscall_fd_release(%p)\n", fd);
2466   FdRelease(thr, pc, fd);
2467 }
2468 
2469 static void syscall_pre_fork(uptr pc) {
2470   TSAN_SYSCALL();
2471   ForkBefore(thr, pc);
2472 }
2473 
2474 static void syscall_post_fork(uptr pc, int pid) {
2475   TSAN_SYSCALL();
2476   if (pid == 0) {
2477     // child
2478     ForkChildAfter(thr, pc);
2479     FdOnFork(thr, pc);
2480   } else if (pid > 0) {
2481     // parent
2482     ForkParentAfter(thr, pc);
2483   } else {
2484     // error
2485     ForkParentAfter(thr, pc);
2486   }
2487 }
2488 #endif
2489 
2490 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2491   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2492 
2493 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2494   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2495 
2496 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2497   do {                                       \
2498     (void)(p);                               \
2499     (void)(s);                               \
2500   } while (false)
2501 
2502 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2503   do {                                        \
2504     (void)(p);                                \
2505     (void)(s);                                \
2506   } while (false)
2507 
2508 #define COMMON_SYSCALL_ACQUIRE(addr) \
2509     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2510 
2511 #define COMMON_SYSCALL_RELEASE(addr) \
2512     syscall_release(GET_CALLER_PC(), (uptr)(addr))
2513 
2514 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2515 
2516 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2517 
2518 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2519 
2520 #define COMMON_SYSCALL_PRE_FORK() \
2521   syscall_pre_fork(GET_CALLER_PC())
2522 
2523 #define COMMON_SYSCALL_POST_FORK(res) \
2524   syscall_post_fork(GET_CALLER_PC(), res)
2525 
2526 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2527 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2528 
2529 #ifdef NEED_TLS_GET_ADDR
2530 // Define own interceptor instead of sanitizer_common's for three reasons:
2531 // 1. It must not process pending signals.
2532 //    Signal handlers may contain MOVDQA instruction (see below).
2533 // 2. It must be as simple as possible to not contain MOVDQA.
2534 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2535 //    is empty for tsan (meant only for msan).
2536 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2537 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2538 // So the interceptor must work with mis-aligned stack, in particular, does not
2539 // execute MOVDQA with stack addresses.
2540 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2541   void *res = REAL(__tls_get_addr)(arg);
2542   ThreadState *thr = cur_thread();
2543   if (!thr)
2544     return res;
2545   DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2546                                         thr->tls_addr + thr->tls_size);
2547   if (!dtv)
2548     return res;
2549   // New DTLS block has been allocated.
2550   MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2551   return res;
2552 }
2553 #endif
2554 
2555 #if SANITIZER_NETBSD
2556 TSAN_INTERCEPTOR(void, _lwp_exit) {
2557   SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2558   DestroyThreadState();
2559   REAL(_lwp_exit)();
2560 }
2561 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2562 #else
2563 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2564 #endif
2565 
2566 #if SANITIZER_FREEBSD
2567 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2568   SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2569   DestroyThreadState();
2570   REAL(thr_exit(state));
2571 }
2572 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2573 #else
2574 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2575 #endif
2576 
2577 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2578 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2579 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2580 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2581 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2582 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2583 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2584 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2585 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2586 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2587 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2588 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2589 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2590 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2591 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2592 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2593 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2594   void *c)
2595 
2596 namespace __tsan {
2597 
2598 static void finalize(void *arg) {
2599   ThreadState *thr = cur_thread();
2600   int status = Finalize(thr);
2601   // Make sure the output is not lost.
2602   FlushStreams();
2603   if (status)
2604     Die();
2605 }
2606 
2607 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2608 static void unreachable() {
2609   Report("FATAL: ThreadSanitizer: unreachable called\n");
2610   Die();
2611 }
2612 #endif
2613 
2614 // Define default implementation since interception of libdispatch  is optional.
2615 SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2616 
2617 void InitializeInterceptors() {
2618 #if !SANITIZER_MAC
2619   // We need to setup it early, because functions like dlsym() can call it.
2620   REAL(memset) = internal_memset;
2621   REAL(memcpy) = internal_memcpy;
2622 #endif
2623 
2624   // Instruct libc malloc to consume less memory.
2625 #if SANITIZER_LINUX
2626   mallopt(1, 0);  // M_MXFAST
2627   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
2628 #endif
2629 
2630   new(interceptor_ctx()) InterceptorContext();
2631 
2632   InitializeCommonInterceptors();
2633   InitializeSignalInterceptors();
2634   InitializeLibdispatchInterceptors();
2635 
2636 #if !SANITIZER_MAC
2637   // We can not use TSAN_INTERCEPT to get setjmp addr,
2638   // because it does &setjmp and setjmp is not present in some versions of libc.
2639   using __interception::InterceptFunction;
2640   InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
2641   InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2642   InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
2643                     0);
2644 #if !SANITIZER_NETBSD
2645   InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2646 #endif
2647 #endif
2648 
2649   TSAN_INTERCEPT(longjmp_symname);
2650   TSAN_INTERCEPT(siglongjmp_symname);
2651 #if SANITIZER_NETBSD
2652   TSAN_INTERCEPT(_longjmp);
2653 #endif
2654 
2655   TSAN_INTERCEPT(malloc);
2656   TSAN_INTERCEPT(__libc_memalign);
2657   TSAN_INTERCEPT(calloc);
2658   TSAN_INTERCEPT(realloc);
2659   TSAN_INTERCEPT(reallocarray);
2660   TSAN_INTERCEPT(free);
2661   TSAN_INTERCEPT(cfree);
2662   TSAN_INTERCEPT(munmap);
2663   TSAN_MAYBE_INTERCEPT_MEMALIGN;
2664   TSAN_INTERCEPT(valloc);
2665   TSAN_MAYBE_INTERCEPT_PVALLOC;
2666   TSAN_INTERCEPT(posix_memalign);
2667 
2668   TSAN_INTERCEPT(strcpy);
2669   TSAN_INTERCEPT(strncpy);
2670   TSAN_INTERCEPT(strdup);
2671 
2672   TSAN_INTERCEPT(pthread_create);
2673   TSAN_INTERCEPT(pthread_join);
2674   TSAN_INTERCEPT(pthread_detach);
2675   TSAN_INTERCEPT(pthread_exit);
2676   #if SANITIZER_LINUX
2677   TSAN_INTERCEPT(pthread_tryjoin_np);
2678   TSAN_INTERCEPT(pthread_timedjoin_np);
2679   #endif
2680 
2681   TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2682   TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2683   TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2684   TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2685   TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2686   TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2687 
2688   TSAN_INTERCEPT(pthread_mutex_init);
2689   TSAN_INTERCEPT(pthread_mutex_destroy);
2690   TSAN_INTERCEPT(pthread_mutex_trylock);
2691   TSAN_INTERCEPT(pthread_mutex_timedlock);
2692 
2693   TSAN_INTERCEPT(pthread_spin_init);
2694   TSAN_INTERCEPT(pthread_spin_destroy);
2695   TSAN_INTERCEPT(pthread_spin_lock);
2696   TSAN_INTERCEPT(pthread_spin_trylock);
2697   TSAN_INTERCEPT(pthread_spin_unlock);
2698 
2699   TSAN_INTERCEPT(pthread_rwlock_init);
2700   TSAN_INTERCEPT(pthread_rwlock_destroy);
2701   TSAN_INTERCEPT(pthread_rwlock_rdlock);
2702   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2703   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2704   TSAN_INTERCEPT(pthread_rwlock_wrlock);
2705   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2706   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2707   TSAN_INTERCEPT(pthread_rwlock_unlock);
2708 
2709   TSAN_INTERCEPT(pthread_barrier_init);
2710   TSAN_INTERCEPT(pthread_barrier_destroy);
2711   TSAN_INTERCEPT(pthread_barrier_wait);
2712 
2713   TSAN_INTERCEPT(pthread_once);
2714 
2715   TSAN_INTERCEPT(fstat);
2716   TSAN_MAYBE_INTERCEPT___FXSTAT;
2717   TSAN_MAYBE_INTERCEPT_FSTAT64;
2718   TSAN_MAYBE_INTERCEPT___FXSTAT64;
2719   TSAN_INTERCEPT(open);
2720   TSAN_MAYBE_INTERCEPT_OPEN64;
2721   TSAN_INTERCEPT(creat);
2722   TSAN_MAYBE_INTERCEPT_CREAT64;
2723   TSAN_INTERCEPT(dup);
2724   TSAN_INTERCEPT(dup2);
2725   TSAN_INTERCEPT(dup3);
2726   TSAN_MAYBE_INTERCEPT_EVENTFD;
2727   TSAN_MAYBE_INTERCEPT_SIGNALFD;
2728   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2729   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2730   TSAN_INTERCEPT(socket);
2731   TSAN_INTERCEPT(socketpair);
2732   TSAN_INTERCEPT(connect);
2733   TSAN_INTERCEPT(bind);
2734   TSAN_INTERCEPT(listen);
2735   TSAN_MAYBE_INTERCEPT_EPOLL;
2736   TSAN_INTERCEPT(close);
2737   TSAN_MAYBE_INTERCEPT___CLOSE;
2738   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2739   TSAN_INTERCEPT(pipe);
2740   TSAN_INTERCEPT(pipe2);
2741 
2742   TSAN_INTERCEPT(unlink);
2743   TSAN_INTERCEPT(tmpfile);
2744   TSAN_MAYBE_INTERCEPT_TMPFILE64;
2745   TSAN_INTERCEPT(abort);
2746   TSAN_INTERCEPT(rmdir);
2747   TSAN_INTERCEPT(closedir);
2748 
2749   TSAN_INTERCEPT(sigsuspend);
2750   TSAN_INTERCEPT(sigblock);
2751   TSAN_INTERCEPT(sigsetmask);
2752   TSAN_INTERCEPT(pthread_sigmask);
2753   TSAN_INTERCEPT(raise);
2754   TSAN_INTERCEPT(kill);
2755   TSAN_INTERCEPT(pthread_kill);
2756   TSAN_INTERCEPT(sleep);
2757   TSAN_INTERCEPT(usleep);
2758   TSAN_INTERCEPT(nanosleep);
2759   TSAN_INTERCEPT(pause);
2760   TSAN_INTERCEPT(gettimeofday);
2761   TSAN_INTERCEPT(getaddrinfo);
2762 
2763   TSAN_INTERCEPT(fork);
2764   TSAN_INTERCEPT(vfork);
2765 #if !SANITIZER_ANDROID
2766   TSAN_INTERCEPT(dl_iterate_phdr);
2767 #endif
2768   TSAN_MAYBE_INTERCEPT_ON_EXIT;
2769   TSAN_INTERCEPT(__cxa_atexit);
2770   TSAN_INTERCEPT(_exit);
2771 
2772 #ifdef NEED_TLS_GET_ADDR
2773   TSAN_INTERCEPT(__tls_get_addr);
2774 #endif
2775 
2776   TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2777   TSAN_MAYBE_INTERCEPT_THR_EXIT;
2778 
2779 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2780   // Need to setup it, because interceptors check that the function is resolved.
2781   // But atexit is emitted directly into the module, so can't be resolved.
2782   REAL(atexit) = (int(*)(void(*)()))unreachable;
2783 #endif
2784 
2785   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2786     Printf("ThreadSanitizer: failed to setup atexit callback\n");
2787     Die();
2788   }
2789 
2790 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2791   if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2792     Printf("ThreadSanitizer: failed to create thread key\n");
2793     Die();
2794   }
2795 #endif
2796 
2797   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2798   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2799   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2800   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2801   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2802   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2803   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2804   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2805   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2806   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
2807   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
2808   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
2809   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
2810   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
2811   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
2812   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
2813   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
2814 
2815   FdInit();
2816 }
2817 
2818 }  // namespace __tsan
2819 
2820 // Invisible barrier for tests.
2821 // There were several unsuccessful iterations for this functionality:
2822 // 1. Initially it was implemented in user code using
2823 //    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2824 //    MacOS. Futexes are linux-specific for this matter.
2825 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2826 //    "as-if synchronized via sleep" messages in reports which failed some
2827 //    output tests.
2828 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2829 //    visible events, which lead to "failed to restore stack trace" failures.
2830 // Note that no_sanitize_thread attribute does not turn off atomic interception
2831 // so attaching it to the function defined in user code does not help.
2832 // That's why we now have what we have.
2833 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2834 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2835   if (count >= (1 << 8)) {
2836       Printf("barrier_init: count is too large (%d)\n", count);
2837       Die();
2838   }
2839   // 8 lsb is thread count, the remaining are count of entered threads.
2840   *barrier = count;
2841 }
2842 
2843 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2844 void __tsan_testonly_barrier_wait(u64 *barrier) {
2845   unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2846   unsigned old_epoch = (old >> 8) / (old & 0xff);
2847   for (;;) {
2848     unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2849     unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2850     if (cur_epoch != old_epoch)
2851       return;
2852     internal_sched_yield();
2853   }
2854 }
2855