1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main internal TSan header file.
12 //
13 // Ground rules:
14 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15 //     function-scope locals)
16 //   - All functions/classes/etc reside in namespace __tsan, except for those
17 //     declared in tsan_interface.h.
18 //   - Platform-specific files should be used instead of ifdefs (*).
19 //   - No system headers included in header files (*).
20 //   - Platform specific headres included only into platform-specific files (*).
21 //
22 //  (*) Except when inlining is critical for performance.
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef TSAN_RTL_H
26 #define TSAN_RTL_H
27 
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "sanitizer_common/sanitizer_allocator_internal.h"
30 #include "sanitizer_common/sanitizer_asm.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33 #include "sanitizer_common/sanitizer_libignore.h"
34 #include "sanitizer_common/sanitizer_suppressions.h"
35 #include "sanitizer_common/sanitizer_thread_registry.h"
36 #include "sanitizer_common/sanitizer_vector.h"
37 #include "tsan_defs.h"
38 #include "tsan_flags.h"
39 #include "tsan_ignoreset.h"
40 #include "tsan_ilist.h"
41 #include "tsan_mman.h"
42 #include "tsan_mutexset.h"
43 #include "tsan_platform.h"
44 #include "tsan_report.h"
45 #include "tsan_shadow.h"
46 #include "tsan_stack_trace.h"
47 #include "tsan_sync.h"
48 #include "tsan_trace.h"
49 #include "tsan_vector_clock.h"
50 
51 #if SANITIZER_WORDSIZE != 64
52 # error "ThreadSanitizer is supported only on 64-bit platforms"
53 #endif
54 
55 namespace __tsan {
56 
57 #if !SANITIZER_GO
58 struct MapUnmapCallback;
59 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
60 
61 struct AP32 {
62   static const uptr kSpaceBeg = 0;
63   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
64   static const uptr kMetadataSize = 0;
65   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
66   static const uptr kRegionSizeLog = 20;
67   using AddressSpaceView = LocalAddressSpaceView;
68   typedef __tsan::MapUnmapCallback MapUnmapCallback;
69   static const uptr kFlags = 0;
70 };
71 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
72 #else
73 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
74 #    if defined(__s390x__)
75   typedef MappingS390x Mapping;
76 #    else
77   typedef Mapping48AddressSpace Mapping;
78 #    endif
79   static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
80   static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
81   static const uptr kMetadataSize = 0;
82   typedef DefaultSizeClassMap SizeClassMap;
83   typedef __tsan::MapUnmapCallback MapUnmapCallback;
84   static const uptr kFlags = 0;
85   using AddressSpaceView = LocalAddressSpaceView;
86 };
87 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
88 #endif
89 typedef CombinedAllocator<PrimaryAllocator> Allocator;
90 typedef Allocator::AllocatorCache AllocatorCache;
91 Allocator *allocator();
92 #endif
93 
94 struct ThreadSignalContext;
95 
96 struct JmpBuf {
97   uptr sp;
98   int int_signal_send;
99   bool in_blocking_func;
100   uptr in_signal_handler;
101   uptr *shadow_stack_pos;
102 };
103 
104 // A Processor represents a physical thread, or a P for Go.
105 // It is used to store internal resources like allocate cache, and does not
106 // participate in race-detection logic (invisible to end user).
107 // In C++ it is tied to an OS thread just like ThreadState, however ideally
108 // it should be tied to a CPU (this way we will have fewer allocator caches).
109 // In Go it is tied to a P, so there are significantly fewer Processor's than
110 // ThreadState's (which are tied to Gs).
111 // A ThreadState must be wired with a Processor to handle events.
112 struct Processor {
113   ThreadState *thr; // currently wired thread, or nullptr
114 #if !SANITIZER_GO
115   AllocatorCache alloc_cache;
116   InternalAllocatorCache internal_alloc_cache;
117 #endif
118   DenseSlabAllocCache block_cache;
119   DenseSlabAllocCache sync_cache;
120   DDPhysicalThread *dd_pt;
121 };
122 
123 #if !SANITIZER_GO
124 // ScopedGlobalProcessor temporary setups a global processor for the current
125 // thread, if it does not have one. Intended for interceptors that can run
126 // at the very thread end, when we already destroyed the thread processor.
127 struct ScopedGlobalProcessor {
128   ScopedGlobalProcessor();
129   ~ScopedGlobalProcessor();
130 };
131 #endif
132 
133 struct TidEpoch {
134   Tid tid;
135   Epoch epoch;
136 };
137 
138 struct TidSlot {
139   Mutex mtx;
140   Sid sid;
141   atomic_uint32_t raw_epoch;
142   ThreadState *thr;
143   Vector<TidEpoch> journal;
144   INode node;
145 
146   Epoch epoch() const {
147     return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
148   }
149 
150   void SetEpoch(Epoch v) {
151     atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
152   }
153 
154   TidSlot();
155 } ALIGNED(SANITIZER_CACHE_LINE_SIZE);
156 
157 // This struct is stored in TLS.
158 struct ThreadState {
159   FastState fast_state;
160   int ignore_sync;
161 #if !SANITIZER_GO
162   int ignore_interceptors;
163 #endif
164   uptr *shadow_stack_pos;
165 
166   // Current position in tctx->trace.Back()->events (Event*).
167   atomic_uintptr_t trace_pos;
168   // PC of the last memory access, used to compute PC deltas in the trace.
169   uptr trace_prev_pc;
170 
171   // Technically `current` should be a separate THREADLOCAL variable;
172   // but it is placed here in order to share cache line with previous fields.
173   ThreadState* current;
174 
175   atomic_sint32_t pending_signals;
176 
177   VectorClock clock;
178 
179   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
180   // We do not distinguish beteween ignoring reads and writes
181   // for better performance.
182   int ignore_reads_and_writes;
183   int suppress_reports;
184   // Go does not support ignores.
185 #if !SANITIZER_GO
186   IgnoreSet mop_ignore_set;
187   IgnoreSet sync_ignore_set;
188 #endif
189   uptr *shadow_stack;
190   uptr *shadow_stack_end;
191 #if !SANITIZER_GO
192   Vector<JmpBuf> jmp_bufs;
193   int in_symbolizer;
194   bool in_ignored_lib;
195   bool is_inited;
196 #endif
197   MutexSet mset;
198   bool is_dead;
199   const Tid tid;
200   uptr stk_addr;
201   uptr stk_size;
202   uptr tls_addr;
203   uptr tls_size;
204   ThreadContext *tctx;
205 
206   DDLogicalThread *dd_lt;
207 
208   TidSlot *slot;
209   uptr slot_epoch;
210   bool slot_locked;
211 
212   // Current wired Processor, or nullptr. Required to handle any events.
213   Processor *proc1;
214 #if !SANITIZER_GO
215   Processor *proc() { return proc1; }
216 #else
217   Processor *proc();
218 #endif
219 
220   atomic_uintptr_t in_signal_handler;
221   ThreadSignalContext *signal_ctx;
222 
223 #if !SANITIZER_GO
224   StackID last_sleep_stack_id;
225   VectorClock last_sleep_clock;
226 #endif
227 
228   // Set in regions of runtime that must be signal-safe and fork-safe.
229   // If set, malloc must not be called.
230   int nomalloc;
231 
232   const ReportDesc *current_report;
233 
234   explicit ThreadState(Tid tid);
235 } ALIGNED(SANITIZER_CACHE_LINE_SIZE);
236 
237 #if !SANITIZER_GO
238 #if SANITIZER_APPLE || SANITIZER_ANDROID
239 ThreadState *cur_thread();
240 void set_cur_thread(ThreadState *thr);
241 void cur_thread_finalize();
242 inline ThreadState *cur_thread_init() { return cur_thread(); }
243 #  else
244 __attribute__((tls_model("initial-exec")))
245 extern THREADLOCAL char cur_thread_placeholder[];
246 inline ThreadState *cur_thread() {
247   return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
248 }
249 inline ThreadState *cur_thread_init() {
250   ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
251   if (UNLIKELY(!thr->current))
252     thr->current = thr;
253   return thr->current;
254 }
255 inline void set_cur_thread(ThreadState *thr) {
256   reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
257 }
258 inline void cur_thread_finalize() { }
259 #  endif  // SANITIZER_APPLE || SANITIZER_ANDROID
260 #endif  // SANITIZER_GO
261 
262 class ThreadContext final : public ThreadContextBase {
263  public:
264   explicit ThreadContext(Tid tid);
265   ~ThreadContext();
266   ThreadState *thr;
267   StackID creation_stack_id;
268   VectorClock *sync;
269   uptr sync_epoch;
270   Trace trace;
271 
272   // Override superclass callbacks.
273   void OnDead() override;
274   void OnJoined(void *arg) override;
275   void OnFinished() override;
276   void OnStarted(void *arg) override;
277   void OnCreated(void *arg) override;
278   void OnReset() override;
279   void OnDetached(void *arg) override;
280 };
281 
282 struct RacyStacks {
283   MD5Hash hash[2];
284   bool operator==(const RacyStacks &other) const;
285 };
286 
287 struct RacyAddress {
288   uptr addr_min;
289   uptr addr_max;
290 };
291 
292 struct FiredSuppression {
293   ReportType type;
294   uptr pc_or_addr;
295   Suppression *supp;
296 };
297 
298 struct Context {
299   Context();
300 
301   bool initialized;
302 #if !SANITIZER_GO
303   bool after_multithreaded_fork;
304 #endif
305 
306   MetaMap metamap;
307 
308   Mutex report_mtx;
309   int nreported;
310   atomic_uint64_t last_symbolize_time_ns;
311 
312   void *background_thread;
313   atomic_uint32_t stop_background_thread;
314 
315   ThreadRegistry thread_registry;
316 
317   // This is used to prevent a very unlikely but very pathological behavior.
318   // Since memory access handling is not synchronized with DoReset,
319   // a thread running concurrently with DoReset can leave a bogus shadow value
320   // that will be later falsely detected as a race. For such false races
321   // RestoreStack will return false and we will not report it.
322   // However, consider that a thread leaves a whole lot of such bogus values
323   // and these values are later read by a whole lot of threads.
324   // This will cause massive amounts of ReportRace calls and lots of
325   // serialization. In very pathological cases the resulting slowdown
326   // can be >100x. This is very unlikely, but it was presumably observed
327   // in practice: https://github.com/google/sanitizers/issues/1552
328   // If this happens, previous access sid+epoch will be the same for all of
329   // these false races b/c if the thread will try to increment epoch, it will
330   // notice that DoReset has happened and will stop producing bogus shadow
331   // values. So, last_spurious_race is used to remember the last sid+epoch
332   // for which RestoreStack returned false. Then it is used to filter out
333   // races with the same sid+epoch very early and quickly.
334   // It is of course possible that multiple threads left multiple bogus shadow
335   // values and all of them are read by lots of threads at the same time.
336   // In such case last_spurious_race will only be able to deduplicate a few
337   // races from one thread, then few from another and so on. An alternative
338   // would be to hold an array of such sid+epoch, but we consider such scenario
339   // as even less likely.
340   // Note: this can lead to some rare false negatives as well:
341   // 1. When a legit access with the same sid+epoch participates in a race
342   // as the "previous" memory access, it will be wrongly filtered out.
343   // 2. When RestoreStack returns false for a legit memory access because it
344   // was already evicted from the thread trace, we will still remember it in
345   // last_spurious_race. Then if there is another racing memory access from
346   // the same thread that happened in the same epoch, but was stored in the
347   // next thread trace part (which is still preserved in the thread trace),
348   // we will also wrongly filter it out while RestoreStack would actually
349   // succeed for that second memory access.
350   RawShadow last_spurious_race;
351 
352   Mutex racy_mtx;
353   Vector<RacyStacks> racy_stacks;
354   // Number of fired suppressions may be large enough.
355   Mutex fired_suppressions_mtx;
356   InternalMmapVector<FiredSuppression> fired_suppressions;
357   DDetector *dd;
358 
359   Flags flags;
360   fd_t memprof_fd;
361 
362   // The last slot index (kFreeSid) is used to denote freed memory.
363   TidSlot slots[kThreadSlotCount - 1];
364 
365   // Protects global_epoch, slot_queue, trace_part_recycle.
366   Mutex slot_mtx;
367   uptr global_epoch;  // guarded by slot_mtx and by all slot mutexes
368   bool resetting;     // global reset is in progress
369   IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
370   IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
371       SANITIZER_GUARDED_BY(slot_mtx);
372   uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
373   uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
374   uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
375 #if SANITIZER_GO
376   uptr mapped_shadow_begin;
377   uptr mapped_shadow_end;
378 #endif
379 };
380 
381 extern Context *ctx;  // The one and the only global runtime context.
382 
383 ALWAYS_INLINE Flags *flags() {
384   return &ctx->flags;
385 }
386 
387 struct ScopedIgnoreInterceptors {
388   ScopedIgnoreInterceptors() {
389 #if !SANITIZER_GO
390     cur_thread()->ignore_interceptors++;
391 #endif
392   }
393 
394   ~ScopedIgnoreInterceptors() {
395 #if !SANITIZER_GO
396     cur_thread()->ignore_interceptors--;
397 #endif
398   }
399 };
400 
401 const char *GetObjectTypeFromTag(uptr tag);
402 const char *GetReportHeaderFromTag(uptr tag);
403 uptr TagFromShadowStackFrame(uptr pc);
404 
405 class ScopedReportBase {
406  public:
407   void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
408                        StackTrace stack, const MutexSet *mset);
409   void AddStack(StackTrace stack, bool suppressable = false);
410   void AddThread(const ThreadContext *tctx, bool suppressable = false);
411   void AddThread(Tid tid, bool suppressable = false);
412   void AddUniqueTid(Tid unique_tid);
413   int AddMutex(uptr addr, StackID creation_stack_id);
414   void AddLocation(uptr addr, uptr size);
415   void AddSleep(StackID stack_id);
416   void SetCount(int count);
417   void SetSigNum(int sig);
418 
419   const ReportDesc *GetReport() const;
420 
421  protected:
422   ScopedReportBase(ReportType typ, uptr tag);
423   ~ScopedReportBase();
424 
425  private:
426   ReportDesc *rep_;
427   // Symbolizer makes lots of intercepted calls. If we try to process them,
428   // at best it will cause deadlocks on internal mutexes.
429   ScopedIgnoreInterceptors ignore_interceptors_;
430 
431   ScopedReportBase(const ScopedReportBase &) = delete;
432   void operator=(const ScopedReportBase &) = delete;
433 };
434 
435 class ScopedReport : public ScopedReportBase {
436  public:
437   explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
438   ~ScopedReport();
439 
440  private:
441   ScopedErrorReportLock lock_;
442 };
443 
444 bool ShouldReport(ThreadState *thr, ReportType typ);
445 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
446 
447 // The stack could look like:
448 //   <start> | <main> | <foo> | tag | <bar>
449 // This will extract the tag and keep:
450 //   <start> | <main> | <foo> | <bar>
451 template<typename StackTraceTy>
452 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
453   if (stack->size < 2) return;
454   uptr possible_tag_pc = stack->trace[stack->size - 2];
455   uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
456   if (possible_tag == kExternalTagNone) return;
457   stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
458   stack->size -= 1;
459   if (tag) *tag = possible_tag;
460 }
461 
462 template<typename StackTraceTy>
463 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
464                         uptr *tag = nullptr) {
465   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
466   uptr start = 0;
467   if (size + !!toppc > kStackTraceMax) {
468     start = size + !!toppc - kStackTraceMax;
469     size = kStackTraceMax - !!toppc;
470   }
471   stack->Init(&thr->shadow_stack[start], size, toppc);
472   ExtractTagFromStack(stack, tag);
473 }
474 
475 #define GET_STACK_TRACE_FATAL(thr, pc) \
476   VarSizeStackTrace stack; \
477   ObtainCurrentStack(thr, pc, &stack); \
478   stack.ReverseOrder();
479 
480 void MapShadow(uptr addr, uptr size);
481 void MapThreadTrace(uptr addr, uptr size, const char *name);
482 void DontNeedShadowFor(uptr addr, uptr size);
483 void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
484 void InitializeShadowMemory();
485 void InitializeInterceptors();
486 void InitializeLibIgnore();
487 void InitializeDynamicAnnotations();
488 
489 void ForkBefore(ThreadState *thr, uptr pc);
490 void ForkParentAfter(ThreadState *thr, uptr pc);
491 void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
492 
493 void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
494                 AccessType typ);
495 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
496 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
497 bool IsExpectedReport(uptr addr, uptr size);
498 
499 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
500 # define DPrintf Printf
501 #else
502 # define DPrintf(...)
503 #endif
504 
505 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
506 # define DPrintf2 Printf
507 #else
508 # define DPrintf2(...)
509 #endif
510 
511 StackID CurrentStackId(ThreadState *thr, uptr pc);
512 ReportStack *SymbolizeStackId(StackID stack_id);
513 void PrintCurrentStack(ThreadState *thr, uptr pc);
514 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
515 MBlock *JavaHeapBlock(uptr addr, uptr *start);
516 
517 void Initialize(ThreadState *thr);
518 void MaybeSpawnBackgroundThread();
519 int Finalize(ThreadState *thr);
520 
521 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
522 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
523 
524 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
525                   AccessType typ);
526 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
527                            AccessType typ);
528 // This creates 2 non-inlined specialized versions of MemoryAccessRange.
529 template <bool is_read>
530 void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
531 
532 ALWAYS_INLINE
533 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
534                        bool is_write) {
535   if (size == 0)
536     return;
537   if (is_write)
538     MemoryAccessRangeT<false>(thr, pc, addr, size);
539   else
540     MemoryAccessRangeT<true>(thr, pc, addr, size);
541 }
542 
543 void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
544 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
545 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
546 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
547 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
548                                          uptr size);
549 
550 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
551 void ThreadIgnoreEnd(ThreadState *thr);
552 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
553 void ThreadIgnoreSyncEnd(ThreadState *thr);
554 
555 Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
556 void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
557                  ThreadType thread_type);
558 void ThreadFinish(ThreadState *thr);
559 Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
560 void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
561 void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
562 void ThreadFinalize(ThreadState *thr);
563 void ThreadSetName(ThreadState *thr, const char *name);
564 int ThreadCount(ThreadState *thr);
565 void ProcessPendingSignalsImpl(ThreadState *thr);
566 void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
567 
568 Processor *ProcCreate();
569 void ProcDestroy(Processor *proc);
570 void ProcWire(Processor *proc, ThreadState *thr);
571 void ProcUnwire(Processor *proc, ThreadState *thr);
572 
573 // Note: the parameter is called flagz, because flags is already taken
574 // by the global function that returns flags.
575 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
576 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
577 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
578 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
579     int rec = 1);
580 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
581 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
582 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
583 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
584 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
585 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
586 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
587 
588 void Acquire(ThreadState *thr, uptr pc, uptr addr);
589 // AcquireGlobal synchronizes the current thread with all other threads.
590 // In terms of happens-before relation, it draws a HB edge from all threads
591 // (where they happen to execute right now) to the current thread. We use it to
592 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
593 // right before executing finalizers. This provides a coarse, but simple
594 // approximation of the actual required synchronization.
595 void AcquireGlobal(ThreadState *thr);
596 void Release(ThreadState *thr, uptr pc, uptr addr);
597 void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
598 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
599 void AfterSleep(ThreadState *thr, uptr pc);
600 void IncrementEpoch(ThreadState *thr);
601 
602 #if !SANITIZER_GO
603 uptr ALWAYS_INLINE HeapEnd() {
604   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
605 }
606 #endif
607 
608 void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
609 void SlotDetach(ThreadState *thr);
610 void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
611 void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
612 void DoReset(ThreadState *thr, uptr epoch);
613 void FlushShadowMemory();
614 
615 ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
616 void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
617 void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
618 
619 // These need to match __tsan_switch_to_fiber_* flags defined in
620 // tsan_interface.h. See documentation there as well.
621 enum FiberSwitchFlags {
622   FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
623 };
624 
625 class SlotLocker {
626  public:
627   ALWAYS_INLINE
628   SlotLocker(ThreadState *thr, bool recursive = false)
629       : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
630     if (!locked_)
631       SlotLock(thr_);
632   }
633 
634   ALWAYS_INLINE
635   ~SlotLocker() {
636     if (!locked_)
637       SlotUnlock(thr_);
638   }
639 
640  private:
641   ThreadState *thr_;
642   bool locked_;
643 };
644 
645 class SlotUnlocker {
646  public:
647   SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
648     if (locked_)
649       SlotUnlock(thr_);
650   }
651 
652   ~SlotUnlocker() {
653     if (locked_)
654       SlotLock(thr_);
655   }
656 
657  private:
658   ThreadState *thr_;
659   bool locked_;
660 };
661 
662 ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
663   if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
664     ProcessPendingSignalsImpl(thr);
665 }
666 
667 extern bool is_initialized;
668 
669 ALWAYS_INLINE
670 void LazyInitialize(ThreadState *thr) {
671   // If we can use .preinit_array, assume that __tsan_init
672   // called from .preinit_array initializes runtime before
673   // any instrumented code.
674 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
675   if (UNLIKELY(!is_initialized))
676     Initialize(thr);
677 #endif
678 }
679 
680 void TraceResetForTesting();
681 void TraceSwitchPart(ThreadState *thr);
682 void TraceSwitchPartImpl(ThreadState *thr);
683 bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
684                   AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
685                   MutexSet *pmset, uptr *ptag);
686 
687 template <typename EventT>
688 ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
689                                                    EventT **ev) {
690   // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
691   // so we check it here proactively.
692   DCHECK(thr->shadow_stack);
693   Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
694 #if SANITIZER_DEBUG
695   // TraceSwitch acquires these mutexes,
696   // so we lock them here to detect deadlocks more reliably.
697   { Lock lock(&ctx->slot_mtx); }
698   { Lock lock(&thr->tctx->trace.mtx); }
699   TracePart *current = thr->tctx->trace.parts.Back();
700   if (current) {
701     DCHECK_GE(pos, &current->events[0]);
702     DCHECK_LE(pos, &current->events[TracePart::kSize]);
703   } else {
704     DCHECK_EQ(pos, nullptr);
705   }
706 #endif
707   // TracePart is allocated with mmap and is at least 4K aligned.
708   // So the following check is a faster way to check for part end.
709   // It may have false positives in the middle of the trace,
710   // they are filtered out in TraceSwitch.
711   if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
712     return false;
713   *ev = reinterpret_cast<EventT *>(pos);
714   return true;
715 }
716 
717 template <typename EventT>
718 ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
719   DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
720   atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
721 }
722 
723 template <typename EventT>
724 void TraceEvent(ThreadState *thr, EventT ev) {
725   EventT *evp;
726   if (!TraceAcquire(thr, &evp)) {
727     TraceSwitchPart(thr);
728     UNUSED bool res = TraceAcquire(thr, &evp);
729     DCHECK(res);
730   }
731   *evp = ev;
732   TraceRelease(thr, evp);
733 }
734 
735 ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
736                                                    uptr pc = 0) {
737   if (!kCollectHistory)
738     return true;
739   EventFunc *ev;
740   if (UNLIKELY(!TraceAcquire(thr, &ev)))
741     return false;
742   ev->is_access = 0;
743   ev->is_func = 1;
744   ev->pc = pc;
745   TraceRelease(thr, ev);
746   return true;
747 }
748 
749 WARN_UNUSED_RESULT
750 bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
751                           AccessType typ);
752 WARN_UNUSED_RESULT
753 bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
754                                AccessType typ);
755 void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
756                             AccessType typ);
757 void TraceFunc(ThreadState *thr, uptr pc = 0);
758 void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
759                     StackID stk);
760 void TraceMutexUnlock(ThreadState *thr, uptr addr);
761 void TraceTime(ThreadState *thr);
762 
763 void TraceRestartFuncExit(ThreadState *thr);
764 void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
765 
766 void GrowShadowStack(ThreadState *thr);
767 
768 ALWAYS_INLINE
769 void FuncEntry(ThreadState *thr, uptr pc) {
770   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
771   if (UNLIKELY(!TryTraceFunc(thr, pc)))
772     return TraceRestartFuncEntry(thr, pc);
773   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
774 #if !SANITIZER_GO
775   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
776 #else
777   if (thr->shadow_stack_pos == thr->shadow_stack_end)
778     GrowShadowStack(thr);
779 #endif
780   thr->shadow_stack_pos[0] = pc;
781   thr->shadow_stack_pos++;
782 }
783 
784 ALWAYS_INLINE
785 void FuncExit(ThreadState *thr) {
786   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
787   if (UNLIKELY(!TryTraceFunc(thr, 0)))
788     return TraceRestartFuncExit(thr);
789   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
790 #if !SANITIZER_GO
791   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
792 #endif
793   thr->shadow_stack_pos--;
794 }
795 
796 #if !SANITIZER_GO
797 extern void (*on_initialize)(void);
798 extern int (*on_finalize)(int);
799 #endif
800 }  // namespace __tsan
801 
802 #endif  // TSAN_RTL_H
803