1 //===-- xray_fdr_logging.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of XRay, a dynamic runtime instrumentation system.
10 //
11 // Here we implement the Flight Data Recorder mode for XRay, where we use
12 // compact structures to store records in memory as well as when writing out the
13 // data to files.
14 //
15 //===----------------------------------------------------------------------===//
16 #include "xray_fdr_logging.h"
17 #include <cassert>
18 #include <cstddef>
19 #include <errno.h>
20 #include <limits>
21 #include <memory>
22 #include <pthread.h>
23 #include <sys/time.h>
24 #include <time.h>
25 #include <unistd.h>
26 
27 #include "sanitizer_common/sanitizer_allocator_internal.h"
28 #include "sanitizer_common/sanitizer_atomic.h"
29 #include "sanitizer_common/sanitizer_common.h"
30 #include "xray/xray_interface.h"
31 #include "xray/xray_records.h"
32 #include "xray_allocator.h"
33 #include "xray_buffer_queue.h"
34 #include "xray_defs.h"
35 #include "xray_fdr_controller.h"
36 #include "xray_fdr_flags.h"
37 #include "xray_fdr_log_writer.h"
38 #include "xray_flags.h"
39 #include "xray_recursion_guard.h"
40 #include "xray_tsc.h"
41 #include "xray_utils.h"
42 
43 namespace __xray {
44 
45 static atomic_sint32_t LoggingStatus = {
46     XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
47 
48 namespace {
49 
50 // Group together thread-local-data in a struct, then hide it behind a function
51 // call so that it can be initialized on first use instead of as a global. We
52 // force the alignment to 64-bytes for x86 cache line alignment, as this
53 // structure is used in the hot path of implementation.
54 struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
55   BufferQueue::Buffer Buffer{};
56   BufferQueue *BQ = nullptr;
57 
58   using LogWriterStorage =
59       typename std::aligned_storage<sizeof(FDRLogWriter),
60                                     alignof(FDRLogWriter)>::type;
61 
62   LogWriterStorage LWStorage;
63   FDRLogWriter *Writer = nullptr;
64 
65   using ControllerStorage =
66       typename std::aligned_storage<sizeof(FDRController<>),
67                                     alignof(FDRController<>)>::type;
68   ControllerStorage CStorage;
69   FDRController<> *Controller = nullptr;
70 };
71 
72 } // namespace
73 
74 static_assert(std::is_trivially_destructible<ThreadLocalData>::value,
75               "ThreadLocalData must be trivially destructible");
76 
77 // Use a global pthread key to identify thread-local data for logging.
78 static pthread_key_t Key;
79 
80 // Global BufferQueue.
81 static std::aligned_storage<sizeof(BufferQueue)>::type BufferQueueStorage;
82 static BufferQueue *BQ = nullptr;
83 
84 // Global thresholds for function durations.
85 static atomic_uint64_t ThresholdTicks{0};
86 
87 // Global for ticks per second.
88 static atomic_uint64_t TicksPerSec{0};
89 
90 static atomic_sint32_t LogFlushStatus = {
91     XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
92 
93 // This function will initialize the thread-local data structure used by the FDR
94 // logging implementation and return a reference to it. The implementation
95 // details require a bit of care to maintain.
96 //
97 // First, some requirements on the implementation in general:
98 //
99 //   - XRay handlers should not call any memory allocation routines that may
100 //     delegate to an instrumented implementation. This means functions like
101 //     malloc() and free() should not be called while instrumenting.
102 //
103 //   - We would like to use some thread-local data initialized on first-use of
104 //     the XRay instrumentation. These allow us to implement unsynchronized
105 //     routines that access resources associated with the thread.
106 //
107 // The implementation here uses a few mechanisms that allow us to provide both
108 // the requirements listed above. We do this by:
109 //
110 //   1. Using a thread-local aligned storage buffer for representing the
111 //      ThreadLocalData struct. This data will be uninitialized memory by
112 //      design.
113 //
114 //   2. Not requiring a thread exit handler/implementation, keeping the
115 //      thread-local as purely a collection of references/data that do not
116 //      require cleanup.
117 //
118 // We're doing this to avoid using a `thread_local` object that has a
119 // non-trivial destructor, because the C++ runtime might call std::malloc(...)
120 // to register calls to destructors. Deadlocks may arise when, for example, an
121 // externally provided malloc implementation is XRay instrumented, and
122 // initializing the thread-locals involves calling into malloc. A malloc
123 // implementation that does global synchronization might be holding a lock for a
124 // critical section, calling a function that might be XRay instrumented (and
125 // thus in turn calling into malloc by virtue of registration of the
126 // thread_local's destructor).
127 #if XRAY_HAS_TLS_ALIGNAS
128 static_assert(alignof(ThreadLocalData) >= 64,
129               "ThreadLocalData must be cache line aligned.");
130 #endif
131 static ThreadLocalData &getThreadLocalData() {
132   thread_local typename std::aligned_storage<
133       sizeof(ThreadLocalData), alignof(ThreadLocalData)>::type TLDStorage{};
134 
135   if (pthread_getspecific(Key) == NULL) {
136     new (reinterpret_cast<ThreadLocalData *>(&TLDStorage)) ThreadLocalData{};
137     pthread_setspecific(Key, &TLDStorage);
138   }
139 
140   return *reinterpret_cast<ThreadLocalData *>(&TLDStorage);
141 }
142 
143 static XRayFileHeader &fdrCommonHeaderInfo() {
144   alignas(XRayFileHeader) static std::byte HStorage[sizeof(XRayFileHeader)];
145   static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
146   static bool TSCSupported = true;
147   static uint64_t CycleFrequency = NanosecondsPerSecond;
148   pthread_once(
149       &OnceInit, +[] {
150         XRayFileHeader &H = reinterpret_cast<XRayFileHeader &>(HStorage);
151         // Version 2 of the log writes the extents of the buffer, instead of
152         // relying on an end-of-buffer record.
153         // Version 3 includes PID metadata record.
154         // Version 4 includes CPU data in the custom event records.
155         // Version 5 uses relative deltas for custom and typed event records,
156         // and removes the CPU data in custom event records (similar to how
157         // function records use deltas instead of full TSCs and rely on other
158         // metadata records for TSC wraparound and CPU migration).
159         H.Version = 5;
160         H.Type = FileTypes::FDR_LOG;
161 
162         // Test for required CPU features and cache the cycle frequency
163         TSCSupported = probeRequiredCPUFeatures();
164         if (TSCSupported)
165           CycleFrequency = getTSCFrequency();
166         H.CycleFrequency = CycleFrequency;
167 
168         // FIXME: Actually check whether we have 'constant_tsc' and
169         // 'nonstop_tsc' before setting the values in the header.
170         H.ConstantTSC = 1;
171         H.NonstopTSC = 1;
172       });
173   return reinterpret_cast<XRayFileHeader &>(HStorage);
174 }
175 
176 // This is the iterator implementation, which knows how to handle FDR-mode
177 // specific buffers. This is used as an implementation of the iterator function
178 // needed by __xray_set_buffer_iterator(...). It maintains a global state of the
179 // buffer iteration for the currently installed FDR mode buffers. In particular:
180 //
181 //   - If the argument represents the initial state of XRayBuffer ({nullptr, 0})
182 //     then the iterator returns the header information.
183 //   - If the argument represents the header information ({address of header
184 //     info, size of the header info}) then it returns the first FDR buffer's
185 //     address and extents.
186 //   - It will keep returning the next buffer and extents as there are more
187 //     buffers to process. When the input represents the last buffer, it will
188 //     return the initial state to signal completion ({nullptr, 0}).
189 //
190 // See xray/xray_log_interface.h for more details on the requirements for the
191 // implementations of __xray_set_buffer_iterator(...) and
192 // __xray_log_process_buffers(...).
193 XRayBuffer fdrIterator(const XRayBuffer B) {
194   DCHECK(internal_strcmp(__xray_log_get_current_mode(), "xray-fdr") == 0);
195   DCHECK(BQ->finalizing());
196 
197   if (BQ == nullptr || !BQ->finalizing()) {
198     if (Verbosity())
199       Report(
200           "XRay FDR: Failed global buffer queue is null or not finalizing!\n");
201     return {nullptr, 0};
202   }
203 
204   // We use a global scratch-pad for the header information, which only gets
205   // initialized the first time this function is called. We'll update one part
206   // of this information with some relevant data (in particular the number of
207   // buffers to expect).
208   alignas(
209       XRayFileHeader) static std::byte HeaderStorage[sizeof(XRayFileHeader)];
210   static pthread_once_t HeaderOnce = PTHREAD_ONCE_INIT;
211   pthread_once(
212       &HeaderOnce, +[] {
213         reinterpret_cast<XRayFileHeader &>(HeaderStorage) =
214             fdrCommonHeaderInfo();
215       });
216 
217   // We use a convenience alias for code referring to Header from here on out.
218   auto &Header = reinterpret_cast<XRayFileHeader &>(HeaderStorage);
219   if (B.Data == nullptr && B.Size == 0) {
220     Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
221     return XRayBuffer{static_cast<void *>(&Header), sizeof(Header)};
222   }
223 
224   static BufferQueue::const_iterator It{};
225   static BufferQueue::const_iterator End{};
226   static uint8_t *CurrentBuffer{nullptr};
227   static size_t SerializedBufferSize = 0;
228   if (B.Data == static_cast<void *>(&Header) && B.Size == sizeof(Header)) {
229     // From this point on, we provide raw access to the raw buffer we're getting
230     // from the BufferQueue. We're relying on the iterators from the current
231     // Buffer queue.
232     It = BQ->cbegin();
233     End = BQ->cend();
234   }
235 
236   if (CurrentBuffer != nullptr) {
237     deallocateBuffer(CurrentBuffer, SerializedBufferSize);
238     CurrentBuffer = nullptr;
239   }
240 
241   if (It == End)
242     return {nullptr, 0};
243 
244   // Set up the current buffer to contain the extents like we would when writing
245   // out to disk. The difference here would be that we still write "empty"
246   // buffers, or at least go through the iterators faithfully to let the
247   // handlers see the empty buffers in the queue.
248   //
249   // We need this atomic fence here to ensure that writes happening to the
250   // buffer have been committed before we load the extents atomically. Because
251   // the buffer is not explicitly synchronised across threads, we rely on the
252   // fence ordering to ensure that writes we expect to have been completed
253   // before the fence are fully committed before we read the extents.
254   atomic_thread_fence(memory_order_acquire);
255   auto BufferSize = atomic_load(It->Extents, memory_order_acquire);
256   SerializedBufferSize = BufferSize + sizeof(MetadataRecord);
257   CurrentBuffer = allocateBuffer(SerializedBufferSize);
258   if (CurrentBuffer == nullptr)
259     return {nullptr, 0};
260 
261   // Write out the extents as a Metadata Record into the CurrentBuffer.
262   MetadataRecord ExtentsRecord;
263   ExtentsRecord.Type = uint8_t(RecordType::Metadata);
264   ExtentsRecord.RecordKind =
265       uint8_t(MetadataRecord::RecordKinds::BufferExtents);
266   internal_memcpy(ExtentsRecord.Data, &BufferSize, sizeof(BufferSize));
267   auto AfterExtents =
268       static_cast<char *>(internal_memcpy(CurrentBuffer, &ExtentsRecord,
269                                           sizeof(MetadataRecord))) +
270       sizeof(MetadataRecord);
271   internal_memcpy(AfterExtents, It->Data, BufferSize);
272 
273   XRayBuffer Result;
274   Result.Data = CurrentBuffer;
275   Result.Size = SerializedBufferSize;
276   ++It;
277   return Result;
278 }
279 
280 // Must finalize before flushing.
281 XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
282   if (atomic_load(&LoggingStatus, memory_order_acquire) !=
283       XRayLogInitStatus::XRAY_LOG_FINALIZED) {
284     if (Verbosity())
285       Report("Not flushing log, implementation is not finalized.\n");
286     return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
287   }
288 
289   if (atomic_exchange(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHING,
290                       memory_order_release) ==
291       XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
292     if (Verbosity())
293       Report("Not flushing log, implementation is still flushing.\n");
294     return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
295   }
296 
297   if (BQ == nullptr) {
298     if (Verbosity())
299       Report("Cannot flush when global buffer queue is null.\n");
300     return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
301   }
302 
303   // We wait a number of milliseconds to allow threads to see that we've
304   // finalised before attempting to flush the log.
305   SleepForMillis(fdrFlags()->grace_period_ms);
306 
307   // At this point, we're going to uninstall the iterator implementation, before
308   // we decide to do anything further with the global buffer queue.
309   __xray_log_remove_buffer_iterator();
310 
311   // Once flushed, we should set the global status of the logging implementation
312   // to "uninitialized" to allow for FDR-logging multiple runs.
313   auto ResetToUnitialized = at_scope_exit([] {
314     atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
315                  memory_order_release);
316   });
317 
318   auto CleanupBuffers = at_scope_exit([] {
319     auto &TLD = getThreadLocalData();
320     if (TLD.Controller != nullptr)
321       TLD.Controller->flush();
322   });
323 
324   if (fdrFlags()->no_file_flush) {
325     if (Verbosity())
326       Report("XRay FDR: Not flushing to file, 'no_file_flush=true'.\n");
327 
328     atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
329                  memory_order_release);
330     return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
331   }
332 
333   // We write out the file in the following format:
334   //
335   //   1) We write down the XRay file header with version 1, type FDR_LOG.
336   //   2) Then we use the 'apply' member of the BufferQueue that's live, to
337   //      ensure that at this point in time we write down the buffers that have
338   //      been released (and marked "used") -- we dump the full buffer for now
339   //      (fixed-sized) and let the tools reading the buffers deal with the data
340   //      afterwards.
341   //
342   LogWriter *LW = LogWriter::Open();
343   if (LW == nullptr) {
344     auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
345     atomic_store(&LogFlushStatus, Result, memory_order_release);
346     return Result;
347   }
348 
349   XRayFileHeader Header = fdrCommonHeaderInfo();
350   Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
351   LW->WriteAll(reinterpret_cast<char *>(&Header),
352                reinterpret_cast<char *>(&Header) + sizeof(Header));
353 
354   // Release the current thread's buffer before we attempt to write out all the
355   // buffers. This ensures that in case we had only a single thread going, that
356   // we are able to capture the data nonetheless.
357   auto &TLD = getThreadLocalData();
358   if (TLD.Controller != nullptr)
359     TLD.Controller->flush();
360 
361   BQ->apply([&](const BufferQueue::Buffer &B) {
362     // Starting at version 2 of the FDR logging implementation, we only write
363     // the records identified by the extents of the buffer. We use the Extents
364     // from the Buffer and write that out as the first record in the buffer.  We
365     // still use a Metadata record, but fill in the extents instead for the
366     // data.
367     MetadataRecord ExtentsRecord;
368     auto BufferExtents = atomic_load(B.Extents, memory_order_acquire);
369     DCHECK(BufferExtents <= B.Size);
370     ExtentsRecord.Type = uint8_t(RecordType::Metadata);
371     ExtentsRecord.RecordKind =
372         uint8_t(MetadataRecord::RecordKinds::BufferExtents);
373     internal_memcpy(ExtentsRecord.Data, &BufferExtents, sizeof(BufferExtents));
374     if (BufferExtents > 0) {
375       LW->WriteAll(reinterpret_cast<char *>(&ExtentsRecord),
376                    reinterpret_cast<char *>(&ExtentsRecord) +
377                        sizeof(MetadataRecord));
378       LW->WriteAll(reinterpret_cast<char *>(B.Data),
379                    reinterpret_cast<char *>(B.Data) + BufferExtents);
380     }
381   });
382 
383   atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
384                memory_order_release);
385   return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
386 }
387 
388 XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
389   s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
390   if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
391                                       XRayLogInitStatus::XRAY_LOG_FINALIZING,
392                                       memory_order_release)) {
393     if (Verbosity())
394       Report("Cannot finalize log, implementation not initialized.\n");
395     return static_cast<XRayLogInitStatus>(CurrentStatus);
396   }
397 
398   // Do special things to make the log finalize itself, and not allow any more
399   // operations to be performed until re-initialized.
400   if (BQ == nullptr) {
401     if (Verbosity())
402       Report("Attempting to finalize an uninitialized global buffer!\n");
403   } else {
404     BQ->finalize();
405   }
406 
407   atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
408                memory_order_release);
409   return XRayLogInitStatus::XRAY_LOG_FINALIZED;
410 }
411 
412 struct TSCAndCPU {
413   uint64_t TSC = 0;
414   unsigned char CPU = 0;
415 };
416 
417 static TSCAndCPU getTimestamp() XRAY_NEVER_INSTRUMENT {
418   // We want to get the TSC as early as possible, so that we can check whether
419   // we've seen this CPU before. We also do it before we load anything else,
420   // to allow for forward progress with the scheduling.
421   TSCAndCPU Result;
422 
423   // Test once for required CPU features
424   static pthread_once_t OnceProbe = PTHREAD_ONCE_INIT;
425   static bool TSCSupported = true;
426   pthread_once(
427       &OnceProbe, +[] { TSCSupported = probeRequiredCPUFeatures(); });
428 
429   if (TSCSupported) {
430     Result.TSC = __xray::readTSC(Result.CPU);
431   } else {
432     // FIXME: This code needs refactoring as it appears in multiple locations
433     timespec TS;
434     int result = clock_gettime(CLOCK_REALTIME, &TS);
435     if (result != 0) {
436       Report("clock_gettime(2) return %d, errno=%d", result, int(errno));
437       TS = {0, 0};
438     }
439     Result.CPU = 0;
440     Result.TSC = TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
441   }
442   return Result;
443 }
444 
445 thread_local atomic_uint8_t Running{0};
446 
447 static bool setupTLD(ThreadLocalData &TLD) XRAY_NEVER_INSTRUMENT {
448   // Check if we're finalizing, before proceeding.
449   {
450     auto Status = atomic_load(&LoggingStatus, memory_order_acquire);
451     if (Status == XRayLogInitStatus::XRAY_LOG_FINALIZING ||
452         Status == XRayLogInitStatus::XRAY_LOG_FINALIZED) {
453       if (TLD.Controller != nullptr) {
454         TLD.Controller->flush();
455         TLD.Controller = nullptr;
456       }
457       return false;
458     }
459   }
460 
461   if (UNLIKELY(TLD.Controller == nullptr)) {
462     // Set up the TLD buffer queue.
463     if (UNLIKELY(BQ == nullptr))
464       return false;
465     TLD.BQ = BQ;
466 
467     // Check that we have a valid buffer.
468     if (TLD.Buffer.Generation != BQ->generation() &&
469         TLD.BQ->releaseBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
470       return false;
471 
472     // Set up a buffer, before setting up the log writer. Bail out on failure.
473     if (TLD.BQ->getBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
474       return false;
475 
476     // Set up the Log Writer for this thread.
477     if (UNLIKELY(TLD.Writer == nullptr)) {
478       auto *LWStorage = reinterpret_cast<FDRLogWriter *>(&TLD.LWStorage);
479       new (LWStorage) FDRLogWriter(TLD.Buffer);
480       TLD.Writer = LWStorage;
481     } else {
482       TLD.Writer->resetRecord();
483     }
484 
485     auto *CStorage = reinterpret_cast<FDRController<> *>(&TLD.CStorage);
486     new (CStorage)
487         FDRController<>(TLD.BQ, TLD.Buffer, *TLD.Writer, clock_gettime,
488                         atomic_load_relaxed(&ThresholdTicks));
489     TLD.Controller = CStorage;
490   }
491 
492   DCHECK_NE(TLD.Controller, nullptr);
493   return true;
494 }
495 
496 void fdrLoggingHandleArg0(int32_t FuncId,
497                           XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
498   auto TC = getTimestamp();
499   auto &TSC = TC.TSC;
500   auto &CPU = TC.CPU;
501   RecursionGuard Guard{Running};
502   if (!Guard)
503     return;
504 
505   auto &TLD = getThreadLocalData();
506   if (!setupTLD(TLD))
507     return;
508 
509   switch (Entry) {
510   case XRayEntryType::ENTRY:
511   case XRayEntryType::LOG_ARGS_ENTRY:
512     TLD.Controller->functionEnter(FuncId, TSC, CPU);
513     return;
514   case XRayEntryType::EXIT:
515     TLD.Controller->functionExit(FuncId, TSC, CPU);
516     return;
517   case XRayEntryType::TAIL:
518     TLD.Controller->functionTailExit(FuncId, TSC, CPU);
519     return;
520   case XRayEntryType::CUSTOM_EVENT:
521   case XRayEntryType::TYPED_EVENT:
522     break;
523   }
524 }
525 
526 void fdrLoggingHandleArg1(int32_t FuncId, XRayEntryType Entry,
527                           uint64_t Arg) XRAY_NEVER_INSTRUMENT {
528   auto TC = getTimestamp();
529   auto &TSC = TC.TSC;
530   auto &CPU = TC.CPU;
531   RecursionGuard Guard{Running};
532   if (!Guard)
533     return;
534 
535   auto &TLD = getThreadLocalData();
536   if (!setupTLD(TLD))
537     return;
538 
539   switch (Entry) {
540   case XRayEntryType::ENTRY:
541   case XRayEntryType::LOG_ARGS_ENTRY:
542     TLD.Controller->functionEnterArg(FuncId, TSC, CPU, Arg);
543     return;
544   case XRayEntryType::EXIT:
545     TLD.Controller->functionExit(FuncId, TSC, CPU);
546     return;
547   case XRayEntryType::TAIL:
548     TLD.Controller->functionTailExit(FuncId, TSC, CPU);
549     return;
550   case XRayEntryType::CUSTOM_EVENT:
551   case XRayEntryType::TYPED_EVENT:
552     break;
553   }
554 }
555 
556 void fdrLoggingHandleCustomEvent(void *Event,
557                                  std::size_t EventSize) XRAY_NEVER_INSTRUMENT {
558   auto TC = getTimestamp();
559   auto &TSC = TC.TSC;
560   auto &CPU = TC.CPU;
561   RecursionGuard Guard{Running};
562   if (!Guard)
563     return;
564 
565   // Complain when we ever get at least one custom event that's larger than what
566   // we can possibly support.
567   if (EventSize >
568       static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
569     static pthread_once_t Once = PTHREAD_ONCE_INIT;
570     pthread_once(
571         &Once, +[] {
572           Report("Custom event size too large; truncating to %d.\n",
573                  std::numeric_limits<int32_t>::max());
574         });
575   }
576 
577   auto &TLD = getThreadLocalData();
578   if (!setupTLD(TLD))
579     return;
580 
581   int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
582   TLD.Controller->customEvent(TSC, CPU, Event, ReducedEventSize);
583 }
584 
585 void fdrLoggingHandleTypedEvent(size_t EventType, const void *Event,
586                                 size_t EventSize) noexcept
587     XRAY_NEVER_INSTRUMENT {
588   auto TC = getTimestamp();
589   auto &TSC = TC.TSC;
590   auto &CPU = TC.CPU;
591   RecursionGuard Guard{Running};
592   if (!Guard)
593     return;
594 
595   // Complain when we ever get at least one typed event that's larger than what
596   // we can possibly support.
597   if (EventSize >
598       static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
599     static pthread_once_t Once = PTHREAD_ONCE_INIT;
600     pthread_once(
601         &Once, +[] {
602           Report("Typed event size too large; truncating to %d.\n",
603                  std::numeric_limits<int32_t>::max());
604         });
605   }
606 
607   auto &TLD = getThreadLocalData();
608   if (!setupTLD(TLD))
609     return;
610 
611   int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
612   TLD.Controller->typedEvent(TSC, CPU, static_cast<uint16_t>(EventType), Event,
613                              ReducedEventSize);
614 }
615 
616 XRayLogInitStatus fdrLoggingInit(size_t, size_t, void *Options,
617                                  size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
618   if (Options == nullptr)
619     return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
620 
621   s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
622   if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
623                                       XRayLogInitStatus::XRAY_LOG_INITIALIZING,
624                                       memory_order_release)) {
625     if (Verbosity())
626       Report("Cannot initialize already initialized implementation.\n");
627     return static_cast<XRayLogInitStatus>(CurrentStatus);
628   }
629 
630   if (Verbosity())
631     Report("Initializing FDR mode with options: %s\n",
632            static_cast<const char *>(Options));
633 
634   // TODO: Factor out the flags specific to the FDR mode implementation. For
635   // now, use the global/single definition of the flags, since the FDR mode
636   // flags are already defined there.
637   FlagParser FDRParser;
638   FDRFlags FDRFlags;
639   registerXRayFDRFlags(&FDRParser, &FDRFlags);
640   FDRFlags.setDefaults();
641 
642   // Override first from the general XRAY_DEFAULT_OPTIONS compiler-provided
643   // options until we migrate everyone to use the XRAY_FDR_OPTIONS
644   // compiler-provided options.
645   FDRParser.ParseString(useCompilerDefinedFlags());
646   FDRParser.ParseString(useCompilerDefinedFDRFlags());
647   auto *EnvOpts = GetEnv("XRAY_FDR_OPTIONS");
648   if (EnvOpts == nullptr)
649     EnvOpts = "";
650   FDRParser.ParseString(EnvOpts);
651 
652   // FIXME: Remove this when we fully remove the deprecated flags.
653   if (internal_strlen(EnvOpts) == 0) {
654     FDRFlags.func_duration_threshold_us =
655         flags()->xray_fdr_log_func_duration_threshold_us;
656     FDRFlags.grace_period_ms = flags()->xray_fdr_log_grace_period_ms;
657   }
658 
659   // The provided options should always override the compiler-provided and
660   // environment-variable defined options.
661   FDRParser.ParseString(static_cast<const char *>(Options));
662   *fdrFlags() = FDRFlags;
663   auto BufferSize = FDRFlags.buffer_size;
664   auto BufferMax = FDRFlags.buffer_max;
665 
666   if (BQ == nullptr) {
667     bool Success = false;
668     BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
669     new (BQ) BufferQueue(BufferSize, BufferMax, Success);
670     if (!Success) {
671       Report("BufferQueue init failed.\n");
672       return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
673     }
674   } else {
675     if (BQ->init(BufferSize, BufferMax) != BufferQueue::ErrorCode::Ok) {
676       if (Verbosity())
677         Report("Failed to re-initialize global buffer queue. Init failed.\n");
678       return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
679     }
680   }
681 
682   static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
683   pthread_once(
684       &OnceInit, +[] {
685         atomic_store(&TicksPerSec,
686                      probeRequiredCPUFeatures() ? getTSCFrequency()
687                                                 : __xray::NanosecondsPerSecond,
688                      memory_order_release);
689         pthread_key_create(
690             &Key, +[](void *TLDPtr) {
691               if (TLDPtr == nullptr)
692                 return;
693               auto &TLD = *reinterpret_cast<ThreadLocalData *>(TLDPtr);
694               if (TLD.BQ == nullptr)
695                 return;
696               if (TLD.Buffer.Data == nullptr)
697                 return;
698               auto EC = TLD.BQ->releaseBuffer(TLD.Buffer);
699               if (EC != BufferQueue::ErrorCode::Ok)
700                 Report("At thread exit, failed to release buffer at %p; "
701                        "error=%s\n",
702                        TLD.Buffer.Data, BufferQueue::getErrorString(EC));
703             });
704       });
705 
706   atomic_store(&ThresholdTicks,
707                atomic_load_relaxed(&TicksPerSec) *
708                    fdrFlags()->func_duration_threshold_us / 1000000,
709                memory_order_release);
710   // Arg1 handler should go in first to avoid concurrent code accidentally
711   // falling back to arg0 when it should have ran arg1.
712   __xray_set_handler_arg1(fdrLoggingHandleArg1);
713   // Install the actual handleArg0 handler after initialising the buffers.
714   __xray_set_handler(fdrLoggingHandleArg0);
715   __xray_set_customevent_handler(fdrLoggingHandleCustomEvent);
716   __xray_set_typedevent_handler(fdrLoggingHandleTypedEvent);
717 
718   // Install the buffer iterator implementation.
719   __xray_log_set_buffer_iterator(fdrIterator);
720 
721   atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
722                memory_order_release);
723 
724   if (Verbosity())
725     Report("XRay FDR init successful.\n");
726   return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
727 }
728 
729 bool fdrLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
730   XRayLogImpl Impl{
731       fdrLoggingInit,
732       fdrLoggingFinalize,
733       fdrLoggingHandleArg0,
734       fdrLoggingFlush,
735   };
736   auto RegistrationResult = __xray_log_register_mode("xray-fdr", Impl);
737   if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
738       Verbosity()) {
739     Report("Cannot register XRay FDR mode to 'xray-fdr'; error = %d\n",
740            RegistrationResult);
741     return false;
742   }
743 
744   if (flags()->xray_fdr_log ||
745       !internal_strcmp(flags()->xray_mode, "xray-fdr")) {
746     auto SelectResult = __xray_log_select_mode("xray-fdr");
747     if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
748         Verbosity()) {
749       Report("Cannot select XRay FDR mode as 'xray-fdr'; error = %d\n",
750              SelectResult);
751       return false;
752     }
753   }
754   return true;
755 }
756 
757 } // namespace __xray
758 
759 static auto UNUSED Unused = __xray::fdrLogDynamicInitializer();
760