1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This is based on the ELF port, see ELF/CallGraphSort.cpp for the details
10 /// about the algorithm.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "CallGraphSort.h"
15 #include "InputFiles.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "lld/Common/ErrorHandler.h"
19 
20 #include <numeric>
21 
22 using namespace llvm;
23 using namespace lld;
24 using namespace lld::coff;
25 
26 namespace {
27 struct Edge {
28   int from;
29   uint64_t weight;
30 };
31 
32 struct Cluster {
33   Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
34 
35   double getDensity() const {
36     if (size == 0)
37       return 0;
38     return double(weight) / double(size);
39   }
40 
41   int next;
42   int prev;
43   uint64_t size;
44   uint64_t weight = 0;
45   uint64_t initialWeight = 0;
46   Edge bestPred = {-1, 0};
47 };
48 
49 class CallGraphSort {
50 public:
51   CallGraphSort();
52 
53   DenseMap<const SectionChunk *, int> run();
54 
55 private:
56   std::vector<Cluster> clusters;
57   std::vector<const SectionChunk *> sections;
58 };
59 
60 // Maximum amount the combined cluster density can be worse than the original
61 // cluster to consider merging.
62 constexpr int MAX_DENSITY_DEGRADATION = 8;
63 
64 // Maximum cluster size in bytes.
65 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
66 } // end anonymous namespace
67 
68 using SectionPair = std::pair<const SectionChunk *, const SectionChunk *>;
69 
70 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
71 // Symbols, and generate a graph between InputSections with the provided
72 // weights.
73 CallGraphSort::CallGraphSort() {
74   MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
75   DenseMap<const SectionChunk *, int> secToCluster;
76 
77   auto getOrCreateNode = [&](const SectionChunk *isec) -> int {
78     auto res = secToCluster.try_emplace(isec, clusters.size());
79     if (res.second) {
80       sections.push_back(isec);
81       clusters.emplace_back(clusters.size(), isec->getSize());
82     }
83     return res.first->second;
84   };
85 
86   // Create the graph.
87   for (std::pair<SectionPair, uint64_t> &c : profile) {
88     const auto *fromSec = cast<SectionChunk>(c.first.first->repl);
89     const auto *toSec = cast<SectionChunk>(c.first.second->repl);
90     uint64_t weight = c.second;
91 
92     // Ignore edges between input sections belonging to different output
93     // sections.  This is done because otherwise we would end up with clusters
94     // containing input sections that can't actually be placed adjacently in the
95     // output.  This messes with the cluster size and density calculations.  We
96     // would also end up moving input sections in other output sections without
97     // moving them closer to what calls them.
98     if (fromSec->getOutputSection() != toSec->getOutputSection())
99       continue;
100 
101     int from = getOrCreateNode(fromSec);
102     int to = getOrCreateNode(toSec);
103 
104     clusters[to].weight += weight;
105 
106     if (from == to)
107       continue;
108 
109     // Remember the best edge.
110     Cluster &toC = clusters[to];
111     if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
112       toC.bestPred.from = from;
113       toC.bestPred.weight = weight;
114     }
115   }
116   for (Cluster &c : clusters)
117     c.initialWeight = c.weight;
118 }
119 
120 // It's bad to merge clusters which would degrade the density too much.
121 static bool isNewDensityBad(Cluster &a, Cluster &b) {
122   double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
123   return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
124 }
125 
126 // Find the leader of V's belonged cluster (represented as an equivalence
127 // class). We apply union-find path-halving technique (simple to implement) in
128 // the meantime as it decreases depths and the time complexity.
129 static int getLeader(std::vector<int> &leaders, int v) {
130   while (leaders[v] != v) {
131     leaders[v] = leaders[leaders[v]];
132     v = leaders[v];
133   }
134   return v;
135 }
136 
137 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
138                           Cluster &from, int fromIdx) {
139   int tail1 = into.prev, tail2 = from.prev;
140   into.prev = tail2;
141   cs[tail2].next = intoIdx;
142   from.prev = tail1;
143   cs[tail1].next = fromIdx;
144   into.size += from.size;
145   into.weight += from.weight;
146   from.size = 0;
147   from.weight = 0;
148 }
149 
150 // Group InputSections into clusters using the Call-Chain Clustering heuristic
151 // then sort the clusters by density.
152 DenseMap<const SectionChunk *, int> CallGraphSort::run() {
153   std::vector<int> sorted(clusters.size());
154   std::vector<int> leaders(clusters.size());
155 
156   std::iota(leaders.begin(), leaders.end(), 0);
157   std::iota(sorted.begin(), sorted.end(), 0);
158   llvm::stable_sort(sorted, [&](int a, int b) {
159     return clusters[a].getDensity() > clusters[b].getDensity();
160   });
161 
162   for (int l : sorted) {
163     // The cluster index is the same as the index of its leader here because
164     // clusters[L] has not been merged into another cluster yet.
165     Cluster &c = clusters[l];
166 
167     // Don't consider merging if the edge is unlikely.
168     if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
169       continue;
170 
171     int predL = getLeader(leaders, c.bestPred.from);
172     if (l == predL)
173       continue;
174 
175     Cluster *predC = &clusters[predL];
176     if (c.size + predC->size > MAX_CLUSTER_SIZE)
177       continue;
178 
179     if (isNewDensityBad(*predC, c))
180       continue;
181 
182     leaders[l] = predL;
183     mergeClusters(clusters, *predC, predL, c, l);
184   }
185 
186   // Sort remaining non-empty clusters by density.
187   sorted.clear();
188   for (int i = 0, e = (int)clusters.size(); i != e; ++i)
189     if (clusters[i].size > 0)
190       sorted.push_back(i);
191   llvm::stable_sort(sorted, [&](int a, int b) {
192     return clusters[a].getDensity() > clusters[b].getDensity();
193   });
194 
195   DenseMap<const SectionChunk *, int> orderMap;
196   // Sections will be sorted by increasing order. Absent sections will have
197   // priority 0 and be placed at the end of sections.
198   int curOrder = INT_MIN;
199   for (int leader : sorted) {
200     for (int i = leader;;) {
201       orderMap[sections[i]] = curOrder++;
202       i = clusters[i].next;
203       if (i == leader)
204         break;
205     }
206   }
207   if (!config->printSymbolOrder.empty()) {
208     std::error_code ec;
209     raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
210     if (ec) {
211       error("cannot open " + config->printSymbolOrder + ": " + ec.message());
212       return orderMap;
213     }
214     // Print the symbols ordered by C3, in the order of increasing curOrder
215     // Instead of sorting all the orderMap, just repeat the loops above.
216     for (int leader : sorted)
217       for (int i = leader;;) {
218         const SectionChunk *sc = sections[i];
219 
220         // Search all the symbols in the file of the section
221         // and find out a DefinedCOFF symbol with name that is within the
222         // section.
223         for (Symbol *sym : sc->file->getSymbols())
224           if (auto *d = dyn_cast_or_null<DefinedCOFF>(sym))
225             // Filter out non-COMDAT symbols and section symbols.
226             if (d->isCOMDAT && !d->getCOFFSymbol().isSection() &&
227                 sc == d->getChunk())
228               os << sym->getName() << "\n";
229         i = clusters[i].next;
230         if (i == leader)
231           break;
232       }
233   }
234 
235   return orderMap;
236 }
237 
238 // Sort sections by the profile data provided by  /call-graph-ordering-file
239 //
240 // This first builds a call graph based on the profile data then merges sections
241 // according to the C³ heuristic. All clusters are then sorted by a density
242 // metric to further improve locality.
243 DenseMap<const SectionChunk *, int> coff::computeCallGraphProfileOrder() {
244   return CallGraphSort().run();
245 }
246