xref: /freebsd/contrib/llvm-project/lld/COFF/ICF.cpp (revision d0b2dbfa)
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
13 //
14 // On Windows, ICF is enabled by default.
15 //
16 // See ELF/ICF.cpp for the details about the algorithm.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "ICF.h"
21 #include "COFFLinkerContext.h"
22 #include "Chunks.h"
23 #include "Symbols.h"
24 #include "lld/Common/ErrorHandler.h"
25 #include "lld/Common/Timer.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Support/xxhash.h"
31 #include <algorithm>
32 #include <atomic>
33 #include <vector>
34 
35 using namespace llvm;
36 
37 namespace lld::coff {
38 
39 class ICF {
40 public:
41   ICF(COFFLinkerContext &c) : ctx(c){};
42   void run();
43 
44 private:
45   void segregate(size_t begin, size_t end, bool constant);
46 
47   bool assocEquals(const SectionChunk *a, const SectionChunk *b);
48 
49   bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
50   bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
51 
52   bool isEligible(SectionChunk *c);
53 
54   size_t findBoundary(size_t begin, size_t end);
55 
56   void forEachClassRange(size_t begin, size_t end,
57                          std::function<void(size_t, size_t)> fn);
58 
59   void forEachClass(std::function<void(size_t, size_t)> fn);
60 
61   std::vector<SectionChunk *> chunks;
62   int cnt = 0;
63   std::atomic<bool> repeat = {false};
64 
65   COFFLinkerContext &ctx;
66 };
67 
68 // Returns true if section S is subject of ICF.
69 //
70 // Microsoft's documentation
71 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
72 // 2017) says that /opt:icf folds both functions and read-only data.
73 // Despite that, the MSVC linker folds only functions. We found
74 // a few instances of programs that are not safe for data merging.
75 // Therefore, we merge only functions just like the MSVC tool. However, we also
76 // merge read-only sections in a couple of cases where the address of the
77 // section is insignificant to the user program and the behaviour matches that
78 // of the Visual C++ linker.
79 bool ICF::isEligible(SectionChunk *c) {
80   // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
81   bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
82   if (!c->isCOMDAT() || !c->live || writable)
83     return false;
84 
85   // Under regular (not safe) ICF, all code sections are eligible.
86   if ((ctx.config.doICF == ICFLevel::All) &&
87       c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
88     return true;
89 
90   // .pdata and .xdata unwind info sections are eligible.
91   StringRef outSecName = c->getSectionName().split('$').first;
92   if (outSecName == ".pdata" || outSecName == ".xdata")
93     return true;
94 
95   // So are vtables.
96   if (c->sym && c->sym->getName().startswith("??_7"))
97     return true;
98 
99   // Anything else not in an address-significance table is eligible.
100   return !c->keepUnique;
101 }
102 
103 // Split an equivalence class into smaller classes.
104 void ICF::segregate(size_t begin, size_t end, bool constant) {
105   while (begin < end) {
106     // Divide [Begin, End) into two. Let Mid be the start index of the
107     // second group.
108     auto bound = std::stable_partition(
109         chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
110           if (constant)
111             return equalsConstant(chunks[begin], s);
112           return equalsVariable(chunks[begin], s);
113         });
114     size_t mid = bound - chunks.begin();
115 
116     // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
117     // equivalence class ID because every group ends with a unique index.
118     for (size_t i = begin; i < mid; ++i)
119       chunks[i]->eqClass[(cnt + 1) % 2] = mid;
120 
121     // If we created a group, we need to iterate the main loop again.
122     if (mid != end)
123       repeat = true;
124 
125     begin = mid;
126   }
127 }
128 
129 // Returns true if two sections' associative children are equal.
130 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
131   // Ignore associated metadata sections that don't participate in ICF, such as
132   // debug info and CFGuard metadata.
133   auto considerForICF = [](const SectionChunk &assoc) {
134     StringRef Name = assoc.getSectionName();
135     return !(Name.startswith(".debug") || Name == ".gfids$y" ||
136              Name == ".giats$y" || Name == ".gljmp$y");
137   };
138   auto ra = make_filter_range(a->children(), considerForICF);
139   auto rb = make_filter_range(b->children(), considerForICF);
140   return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
141                     [&](const SectionChunk &ia, const SectionChunk &ib) {
142                       return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
143                     });
144 }
145 
146 // Compare "non-moving" part of two sections, namely everything
147 // except relocation targets.
148 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
149   if (a->relocsSize != b->relocsSize)
150     return false;
151 
152   // Compare relocations.
153   auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
154     if (r1.Type != r2.Type ||
155         r1.VirtualAddress != r2.VirtualAddress) {
156       return false;
157     }
158     Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
159     Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
160     if (b1 == b2)
161       return true;
162     if (auto *d1 = dyn_cast<DefinedRegular>(b1))
163       if (auto *d2 = dyn_cast<DefinedRegular>(b2))
164         return d1->getValue() == d2->getValue() &&
165                d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
166     return false;
167   };
168   if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
169                   b->getRelocs().begin(), eq))
170     return false;
171 
172   // Compare section attributes and contents.
173   return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
174          a->getSectionName() == b->getSectionName() &&
175          a->header->SizeOfRawData == b->header->SizeOfRawData &&
176          a->checksum == b->checksum && a->getContents() == b->getContents() &&
177          assocEquals(a, b);
178 }
179 
180 // Compare "moving" part of two sections, namely relocation targets.
181 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
182   // Compare relocations.
183   auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
184     Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
185     Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
186     if (b1 == b2)
187       return true;
188     if (auto *d1 = dyn_cast<DefinedRegular>(b1))
189       if (auto *d2 = dyn_cast<DefinedRegular>(b2))
190         return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
191     return false;
192   };
193   return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
194                     b->getRelocs().begin(), eq) &&
195          assocEquals(a, b);
196 }
197 
198 // Find the first Chunk after Begin that has a different class from Begin.
199 size_t ICF::findBoundary(size_t begin, size_t end) {
200   for (size_t i = begin + 1; i < end; ++i)
201     if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
202       return i;
203   return end;
204 }
205 
206 void ICF::forEachClassRange(size_t begin, size_t end,
207                             std::function<void(size_t, size_t)> fn) {
208   while (begin < end) {
209     size_t mid = findBoundary(begin, end);
210     fn(begin, mid);
211     begin = mid;
212   }
213 }
214 
215 // Call Fn on each class group.
216 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
217   // If the number of sections are too small to use threading,
218   // call Fn sequentially.
219   if (chunks.size() < 1024) {
220     forEachClassRange(0, chunks.size(), fn);
221     ++cnt;
222     return;
223   }
224 
225   // Shard into non-overlapping intervals, and call Fn in parallel.
226   // The sharding must be completed before any calls to Fn are made
227   // so that Fn can modify the Chunks in its shard without causing data
228   // races.
229   const size_t numShards = 256;
230   size_t step = chunks.size() / numShards;
231   size_t boundaries[numShards + 1];
232   boundaries[0] = 0;
233   boundaries[numShards] = chunks.size();
234   parallelFor(1, numShards, [&](size_t i) {
235     boundaries[i] = findBoundary((i - 1) * step, chunks.size());
236   });
237   parallelFor(1, numShards + 1, [&](size_t i) {
238     if (boundaries[i - 1] < boundaries[i]) {
239       forEachClassRange(boundaries[i - 1], boundaries[i], fn);
240     }
241   });
242   ++cnt;
243 }
244 
245 // Merge identical COMDAT sections.
246 // Two sections are considered the same if their section headers,
247 // contents and relocations are all the same.
248 void ICF::run() {
249   ScopedTimer t(ctx.icfTimer);
250 
251   // Collect only mergeable sections and group by hash value.
252   uint32_t nextId = 1;
253   for (Chunk *c : ctx.symtab.getChunks()) {
254     if (auto *sc = dyn_cast<SectionChunk>(c)) {
255       if (isEligible(sc))
256         chunks.push_back(sc);
257       else
258         sc->eqClass[0] = nextId++;
259     }
260   }
261 
262   // Make sure that ICF doesn't merge sections that are being handled by string
263   // tail merging.
264   for (MergeChunk *mc : ctx.mergeChunkInstances)
265     if (mc)
266       for (SectionChunk *sc : mc->sections)
267         sc->eqClass[0] = nextId++;
268 
269   // Initially, we use hash values to partition sections.
270   parallelForEach(chunks, [&](SectionChunk *sc) {
271     sc->eqClass[0] = xxHash64(sc->getContents());
272   });
273 
274   // Combine the hashes of the sections referenced by each section into its
275   // hash.
276   for (unsigned cnt = 0; cnt != 2; ++cnt) {
277     parallelForEach(chunks, [&](SectionChunk *sc) {
278       uint32_t hash = sc->eqClass[cnt % 2];
279       for (Symbol *b : sc->symbols())
280         if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
281           hash += sym->getChunk()->eqClass[cnt % 2];
282       // Set MSB to 1 to avoid collisions with non-hash classes.
283       sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
284     });
285   }
286 
287   // From now on, sections in Chunks are ordered so that sections in
288   // the same group are consecutive in the vector.
289   llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
290     return a->eqClass[0] < b->eqClass[0];
291   });
292 
293   // Compare static contents and assign unique IDs for each static content.
294   forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
295 
296   // Split groups by comparing relocations until convergence is obtained.
297   do {
298     repeat = false;
299     forEachClass(
300         [&](size_t begin, size_t end) { segregate(begin, end, false); });
301   } while (repeat);
302 
303   log("ICF needed " + Twine(cnt) + " iterations");
304 
305   // Merge sections in the same classes.
306   forEachClass([&](size_t begin, size_t end) {
307     if (end - begin == 1)
308       return;
309 
310     log("Selected " + chunks[begin]->getDebugName());
311     for (size_t i = begin + 1; i < end; ++i) {
312       log("  Removed " + chunks[i]->getDebugName());
313       chunks[begin]->replace(chunks[i]);
314     }
315   });
316 }
317 
318 // Entry point to ICF.
319 void doICF(COFFLinkerContext &ctx) { ICF(ctx).run(); }
320 
321 } // namespace lld::coff
322