1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "COFFLinkerContext.h"
11 #include "Chunks.h"
12 #include "Config.h"
13 #include "DebugTypes.h"
14 #include "Driver.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "lld/Common/DWARF.h"
18 #include "llvm-c/lto.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/BinaryFormat/COFF.h"
23 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
24 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
25 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
26 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
27 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
28 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
29 #include "llvm/LTO/LTO.h"
30 #include "llvm/Object/Binary.h"
31 #include "llvm/Object/COFF.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Endian.h"
34 #include "llvm/Support/Error.h"
35 #include "llvm/Support/ErrorOr.h"
36 #include "llvm/Support/FileSystem.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include <cstring>
40 #include <system_error>
41 #include <utility>
42 
43 using namespace llvm;
44 using namespace llvm::COFF;
45 using namespace llvm::codeview;
46 using namespace llvm::object;
47 using namespace llvm::support::endian;
48 using namespace lld;
49 using namespace lld::coff;
50 
51 using llvm::Triple;
52 using llvm::support::ulittle32_t;
53 
54 // Returns the last element of a path, which is supposed to be a filename.
55 static StringRef getBasename(StringRef path) {
56   return sys::path::filename(path, sys::path::Style::windows);
57 }
58 
59 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
60 std::string lld::toString(const coff::InputFile *file) {
61   if (!file)
62     return "<internal>";
63   if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
64     return std::string(file->getName());
65 
66   return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
67           ")")
68       .str();
69 }
70 
71 /// Checks that Source is compatible with being a weak alias to Target.
72 /// If Source is Undefined and has no weak alias set, makes it a weak
73 /// alias to Target.
74 static void checkAndSetWeakAlias(SymbolTable *symtab, InputFile *f,
75                                  Symbol *source, Symbol *target) {
76   if (auto *u = dyn_cast<Undefined>(source)) {
77     if (u->weakAlias && u->weakAlias != target) {
78       // Weak aliases as produced by GCC are named in the form
79       // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
80       // of another symbol emitted near the weak symbol.
81       // Just use the definition from the first object file that defined
82       // this weak symbol.
83       if (config->mingw)
84         return;
85       symtab->reportDuplicate(source, f);
86     }
87     u->weakAlias = target;
88   }
89 }
90 
91 static bool ignoredSymbolName(StringRef name) {
92   return name == "@feat.00" || name == "@comp.id";
93 }
94 
95 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
96     : InputFile(ctx, ArchiveKind, m) {}
97 
98 void ArchiveFile::parse() {
99   // Parse a MemoryBufferRef as an archive file.
100   file = CHECK(Archive::create(mb), this);
101 
102   // Read the symbol table to construct Lazy objects.
103   for (const Archive::Symbol &sym : file->symbols())
104     ctx.symtab.addLazyArchive(this, sym);
105 }
106 
107 // Returns a buffer pointing to a member file containing a given symbol.
108 void ArchiveFile::addMember(const Archive::Symbol &sym) {
109   const Archive::Child &c =
110       CHECK(sym.getMember(),
111             "could not get the member for symbol " + toCOFFString(sym));
112 
113   // Return an empty buffer if we have already returned the same buffer.
114   if (!seen.insert(c.getChildOffset()).second)
115     return;
116 
117   driver->enqueueArchiveMember(c, sym, getName());
118 }
119 
120 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
121   std::vector<MemoryBufferRef> v;
122   Error err = Error::success();
123   for (const Archive::Child &c : file->children(err)) {
124     MemoryBufferRef mbref =
125         CHECK(c.getMemoryBufferRef(),
126               file->getFileName() +
127                   ": could not get the buffer for a child of the archive");
128     v.push_back(mbref);
129   }
130   if (err)
131     fatal(file->getFileName() +
132           ": Archive::children failed: " + toString(std::move(err)));
133   return v;
134 }
135 
136 void ObjFile::parseLazy() {
137   // Native object file.
138   std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
139   COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
140   uint32_t numSymbols = coffObj->getNumberOfSymbols();
141   for (uint32_t i = 0; i < numSymbols; ++i) {
142     COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
143     if (coffSym.isUndefined() || !coffSym.isExternal() ||
144         coffSym.isWeakExternal())
145       continue;
146     StringRef name = check(coffObj->getSymbolName(coffSym));
147     if (coffSym.isAbsolute() && ignoredSymbolName(name))
148       continue;
149     ctx.symtab.addLazyObject(this, name);
150     i += coffSym.getNumberOfAuxSymbols();
151   }
152 }
153 
154 void ObjFile::parse() {
155   // Parse a memory buffer as a COFF file.
156   std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
157 
158   if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
159     bin.release();
160     coffObj.reset(obj);
161   } else {
162     fatal(toString(this) + " is not a COFF file");
163   }
164 
165   // Read section and symbol tables.
166   initializeChunks();
167   initializeSymbols();
168   initializeFlags();
169   initializeDependencies();
170 }
171 
172 const coff_section *ObjFile::getSection(uint32_t i) {
173   auto sec = coffObj->getSection(i);
174   if (!sec)
175     fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
176   return *sec;
177 }
178 
179 // We set SectionChunk pointers in the SparseChunks vector to this value
180 // temporarily to mark comdat sections as having an unknown resolution. As we
181 // walk the object file's symbol table, once we visit either a leader symbol or
182 // an associative section definition together with the parent comdat's leader,
183 // we set the pointer to either nullptr (to mark the section as discarded) or a
184 // valid SectionChunk for that section.
185 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
186 
187 void ObjFile::initializeChunks() {
188   uint32_t numSections = coffObj->getNumberOfSections();
189   sparseChunks.resize(numSections + 1);
190   for (uint32_t i = 1; i < numSections + 1; ++i) {
191     const coff_section *sec = getSection(i);
192     if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
193       sparseChunks[i] = pendingComdat;
194     else
195       sparseChunks[i] = readSection(i, nullptr, "");
196   }
197 }
198 
199 SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
200                                    const coff_aux_section_definition *def,
201                                    StringRef leaderName) {
202   const coff_section *sec = getSection(sectionNumber);
203 
204   StringRef name;
205   if (Expected<StringRef> e = coffObj->getSectionName(sec))
206     name = *e;
207   else
208     fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
209           toString(e.takeError()));
210 
211   if (name == ".drectve") {
212     ArrayRef<uint8_t> data;
213     cantFail(coffObj->getSectionContents(sec, data));
214     directives = StringRef((const char *)data.data(), data.size());
215     return nullptr;
216   }
217 
218   if (name == ".llvm_addrsig") {
219     addrsigSec = sec;
220     return nullptr;
221   }
222 
223   if (name == ".llvm.call-graph-profile") {
224     callgraphSec = sec;
225     return nullptr;
226   }
227 
228   // Object files may have DWARF debug info or MS CodeView debug info
229   // (or both).
230   //
231   // DWARF sections don't need any special handling from the perspective
232   // of the linker; they are just a data section containing relocations.
233   // We can just link them to complete debug info.
234   //
235   // CodeView needs linker support. We need to interpret debug info,
236   // and then write it to a separate .pdb file.
237 
238   // Ignore DWARF debug info unless /debug is given.
239   if (!config->debug && name.startswith(".debug_"))
240     return nullptr;
241 
242   if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
243     return nullptr;
244   auto *c = make<SectionChunk>(this, sec);
245   if (def)
246     c->checksum = def->CheckSum;
247 
248   // CodeView sections are stored to a different vector because they are not
249   // linked in the regular manner.
250   if (c->isCodeView())
251     debugChunks.push_back(c);
252   else if (name == ".gfids$y")
253     guardFidChunks.push_back(c);
254   else if (name == ".giats$y")
255     guardIATChunks.push_back(c);
256   else if (name == ".gljmp$y")
257     guardLJmpChunks.push_back(c);
258   else if (name == ".gehcont$y")
259     guardEHContChunks.push_back(c);
260   else if (name == ".sxdata")
261     sxDataChunks.push_back(c);
262   else if (config->tailMerge && sec->NumberOfRelocations == 0 &&
263            name == ".rdata" && leaderName.startswith("??_C@"))
264     // COFF sections that look like string literal sections (i.e. no
265     // relocations, in .rdata, leader symbol name matches the MSVC name mangling
266     // for string literals) are subject to string tail merging.
267     MergeChunk::addSection(ctx, c);
268   else if (name == ".rsrc" || name.startswith(".rsrc$"))
269     resourceChunks.push_back(c);
270   else
271     chunks.push_back(c);
272 
273   return c;
274 }
275 
276 void ObjFile::includeResourceChunks() {
277   chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
278 }
279 
280 void ObjFile::readAssociativeDefinition(
281     COFFSymbolRef sym, const coff_aux_section_definition *def) {
282   readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
283 }
284 
285 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
286                                         const coff_aux_section_definition *def,
287                                         uint32_t parentIndex) {
288   SectionChunk *parent = sparseChunks[parentIndex];
289   int32_t sectionNumber = sym.getSectionNumber();
290 
291   auto diag = [&]() {
292     StringRef name = check(coffObj->getSymbolName(sym));
293 
294     StringRef parentName;
295     const coff_section *parentSec = getSection(parentIndex);
296     if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
297       parentName = *e;
298     error(toString(this) + ": associative comdat " + name + " (sec " +
299           Twine(sectionNumber) + ") has invalid reference to section " +
300           parentName + " (sec " + Twine(parentIndex) + ")");
301   };
302 
303   if (parent == pendingComdat) {
304     // This can happen if an associative comdat refers to another associative
305     // comdat that appears after it (invalid per COFF spec) or to a section
306     // without any symbols.
307     diag();
308     return;
309   }
310 
311   // Check whether the parent is prevailing. If it is, so are we, and we read
312   // the section; otherwise mark it as discarded.
313   if (parent) {
314     SectionChunk *c = readSection(sectionNumber, def, "");
315     sparseChunks[sectionNumber] = c;
316     if (c) {
317       c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
318       parent->addAssociative(c);
319     }
320   } else {
321     sparseChunks[sectionNumber] = nullptr;
322   }
323 }
324 
325 void ObjFile::recordPrevailingSymbolForMingw(
326     COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
327   // For comdat symbols in executable sections, where this is the copy
328   // of the section chunk we actually include instead of discarding it,
329   // add the symbol to a map to allow using it for implicitly
330   // associating .[px]data$<func> sections to it.
331   // Use the suffix from the .text$<func> instead of the leader symbol
332   // name, for cases where the names differ (i386 mangling/decorations,
333   // cases where the leader is a weak symbol named .weak.func.default*).
334   int32_t sectionNumber = sym.getSectionNumber();
335   SectionChunk *sc = sparseChunks[sectionNumber];
336   if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
337     StringRef name = sc->getSectionName().split('$').second;
338     prevailingSectionMap[name] = sectionNumber;
339   }
340 }
341 
342 void ObjFile::maybeAssociateSEHForMingw(
343     COFFSymbolRef sym, const coff_aux_section_definition *def,
344     const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
345   StringRef name = check(coffObj->getSymbolName(sym));
346   if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
347       name.consume_front(".eh_frame$")) {
348     // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
349     // associative to the symbol <func>.
350     auto parentSym = prevailingSectionMap.find(name);
351     if (parentSym != prevailingSectionMap.end())
352       readAssociativeDefinition(sym, def, parentSym->second);
353   }
354 }
355 
356 Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
357   SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
358   if (sym.isExternal()) {
359     StringRef name = check(coffObj->getSymbolName(sym));
360     if (sc)
361       return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
362                                    sym.getValue());
363     // For MinGW symbols named .weak.* that point to a discarded section,
364     // don't create an Undefined symbol. If nothing ever refers to the symbol,
365     // everything should be fine. If something actually refers to the symbol
366     // (e.g. the undefined weak alias), linking will fail due to undefined
367     // references at the end.
368     if (config->mingw && name.startswith(".weak."))
369       return nullptr;
370     return ctx.symtab.addUndefined(name, this, false);
371   }
372   if (sc)
373     return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
374                                 /*IsExternal*/ false, sym.getGeneric(), sc);
375   return nullptr;
376 }
377 
378 void ObjFile::initializeSymbols() {
379   uint32_t numSymbols = coffObj->getNumberOfSymbols();
380   symbols.resize(numSymbols);
381 
382   SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
383   std::vector<uint32_t> pendingIndexes;
384   pendingIndexes.reserve(numSymbols);
385 
386   DenseMap<StringRef, uint32_t> prevailingSectionMap;
387   std::vector<const coff_aux_section_definition *> comdatDefs(
388       coffObj->getNumberOfSections() + 1);
389 
390   for (uint32_t i = 0; i < numSymbols; ++i) {
391     COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
392     bool prevailingComdat;
393     if (coffSym.isUndefined()) {
394       symbols[i] = createUndefined(coffSym);
395     } else if (coffSym.isWeakExternal()) {
396       symbols[i] = createUndefined(coffSym);
397       uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
398       weakAliases.emplace_back(symbols[i], tagIndex);
399     } else if (Optional<Symbol *> optSym =
400                    createDefined(coffSym, comdatDefs, prevailingComdat)) {
401       symbols[i] = *optSym;
402       if (config->mingw && prevailingComdat)
403         recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
404     } else {
405       // createDefined() returns None if a symbol belongs to a section that
406       // was pending at the point when the symbol was read. This can happen in
407       // two cases:
408       // 1) section definition symbol for a comdat leader;
409       // 2) symbol belongs to a comdat section associated with another section.
410       // In both of these cases, we can expect the section to be resolved by
411       // the time we finish visiting the remaining symbols in the symbol
412       // table. So we postpone the handling of this symbol until that time.
413       pendingIndexes.push_back(i);
414     }
415     i += coffSym.getNumberOfAuxSymbols();
416   }
417 
418   for (uint32_t i : pendingIndexes) {
419     COFFSymbolRef sym = check(coffObj->getSymbol(i));
420     if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
421       if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
422         readAssociativeDefinition(sym, def);
423       else if (config->mingw)
424         maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
425     }
426     if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
427       StringRef name = check(coffObj->getSymbolName(sym));
428       log("comdat section " + name +
429           " without leader and unassociated, discarding");
430       continue;
431     }
432     symbols[i] = createRegular(sym);
433   }
434 
435   for (auto &kv : weakAliases) {
436     Symbol *sym = kv.first;
437     uint32_t idx = kv.second;
438     checkAndSetWeakAlias(&ctx.symtab, this, sym, symbols[idx]);
439   }
440 
441   // Free the memory used by sparseChunks now that symbol loading is finished.
442   decltype(sparseChunks)().swap(sparseChunks);
443 }
444 
445 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
446   StringRef name = check(coffObj->getSymbolName(sym));
447   return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
448 }
449 
450 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
451                                                          int32_t section) {
452   uint32_t numSymbols = obj->getNumberOfSymbols();
453   for (uint32_t i = 0; i < numSymbols; ++i) {
454     COFFSymbolRef sym = check(obj->getSymbol(i));
455     if (sym.getSectionNumber() != section)
456       continue;
457     if (const coff_aux_section_definition *def = sym.getSectionDefinition())
458       return def;
459   }
460   return nullptr;
461 }
462 
463 void ObjFile::handleComdatSelection(
464     COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
465     DefinedRegular *leader,
466     const llvm::object::coff_aux_section_definition *def) {
467   if (prevailing)
468     return;
469   // There's already an existing comdat for this symbol: `Leader`.
470   // Use the comdats's selection field to determine if the new
471   // symbol in `Sym` should be discarded, produce a duplicate symbol
472   // error, etc.
473 
474   SectionChunk *leaderChunk = leader->getChunk();
475   COMDATType leaderSelection = leaderChunk->selection;
476 
477   assert(leader->data && "Comdat leader without SectionChunk?");
478   if (isa<BitcodeFile>(leader->file)) {
479     // If the leader is only a LTO symbol, we don't know e.g. its final size
480     // yet, so we can't do the full strict comdat selection checking yet.
481     selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
482   }
483 
484   if ((selection == IMAGE_COMDAT_SELECT_ANY &&
485        leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
486       (selection == IMAGE_COMDAT_SELECT_LARGEST &&
487        leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
488     // cl.exe picks "any" for vftables when building with /GR- and
489     // "largest" when building with /GR. To be able to link object files
490     // compiled with each flag, "any" and "largest" are merged as "largest".
491     leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
492   }
493 
494   // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
495   // Clang on the other hand picks "any". To be able to link two object files
496   // with a __declspec(selectany) declaration, one compiled with gcc and the
497   // other with clang, we merge them as proper "same size as"
498   if (config->mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
499                          leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
500                         (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
501                          leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
502     leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
503   }
504 
505   // Other than that, comdat selections must match.  This is a bit more
506   // strict than link.exe which allows merging "any" and "largest" if "any"
507   // is the first symbol the linker sees, and it allows merging "largest"
508   // with everything (!) if "largest" is the first symbol the linker sees.
509   // Making this symmetric independent of which selection is seen first
510   // seems better though.
511   // (This behavior matches ModuleLinker::getComdatResult().)
512   if (selection != leaderSelection) {
513     log(("conflicting comdat type for " + toString(*leader) + ": " +
514          Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
515          " and " + Twine((int)selection) + " in " + toString(this))
516             .str());
517     ctx.symtab.reportDuplicate(leader, this);
518     return;
519   }
520 
521   switch (selection) {
522   case IMAGE_COMDAT_SELECT_NODUPLICATES:
523     ctx.symtab.reportDuplicate(leader, this);
524     break;
525 
526   case IMAGE_COMDAT_SELECT_ANY:
527     // Nothing to do.
528     break;
529 
530   case IMAGE_COMDAT_SELECT_SAME_SIZE:
531     if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
532       if (!config->mingw) {
533         ctx.symtab.reportDuplicate(leader, this);
534       } else {
535         const coff_aux_section_definition *leaderDef = nullptr;
536         if (leaderChunk->file)
537           leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
538                                      leaderChunk->getSectionNumber());
539         if (!leaderDef || leaderDef->Length != def->Length)
540           ctx.symtab.reportDuplicate(leader, this);
541       }
542     }
543     break;
544 
545   case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
546     SectionChunk newChunk(this, getSection(sym));
547     // link.exe only compares section contents here and doesn't complain
548     // if the two comdat sections have e.g. different alignment.
549     // Match that.
550     if (leaderChunk->getContents() != newChunk.getContents())
551       ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
552     break;
553   }
554 
555   case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
556     // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
557     // (This means lld-link doesn't produce duplicate symbol errors for
558     // associative comdats while link.exe does, but associate comdats
559     // are never extern in practice.)
560     llvm_unreachable("createDefined not called for associative comdats");
561 
562   case IMAGE_COMDAT_SELECT_LARGEST:
563     if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
564       // Replace the existing comdat symbol with the new one.
565       StringRef name = check(coffObj->getSymbolName(sym));
566       // FIXME: This is incorrect: With /opt:noref, the previous sections
567       // make it into the final executable as well. Correct handling would
568       // be to undo reading of the whole old section that's being replaced,
569       // or doing one pass that determines what the final largest comdat
570       // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
571       // only the largest one.
572       replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
573                                     /*IsExternal*/ true, sym.getGeneric(),
574                                     nullptr);
575       prevailing = true;
576     }
577     break;
578 
579   case IMAGE_COMDAT_SELECT_NEWEST:
580     llvm_unreachable("should have been rejected earlier");
581   }
582 }
583 
584 Optional<Symbol *> ObjFile::createDefined(
585     COFFSymbolRef sym,
586     std::vector<const coff_aux_section_definition *> &comdatDefs,
587     bool &prevailing) {
588   prevailing = false;
589   auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
590 
591   if (sym.isCommon()) {
592     auto *c = make<CommonChunk>(sym);
593     chunks.push_back(c);
594     return ctx.symtab.addCommon(this, getName(), sym.getValue(),
595                                 sym.getGeneric(), c);
596   }
597 
598   if (sym.isAbsolute()) {
599     StringRef name = getName();
600 
601     if (name == "@feat.00")
602       feat00Flags = sym.getValue();
603     // Skip special symbols.
604     if (ignoredSymbolName(name))
605       return nullptr;
606 
607     if (sym.isExternal())
608       return ctx.symtab.addAbsolute(name, sym);
609     return make<DefinedAbsolute>(name, sym);
610   }
611 
612   int32_t sectionNumber = sym.getSectionNumber();
613   if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
614     return nullptr;
615 
616   if (llvm::COFF::isReservedSectionNumber(sectionNumber))
617     fatal(toString(this) + ": " + getName() +
618           " should not refer to special section " + Twine(sectionNumber));
619 
620   if ((uint32_t)sectionNumber >= sparseChunks.size())
621     fatal(toString(this) + ": " + getName() +
622           " should not refer to non-existent section " + Twine(sectionNumber));
623 
624   // Comdat handling.
625   // A comdat symbol consists of two symbol table entries.
626   // The first symbol entry has the name of the section (e.g. .text), fixed
627   // values for the other fields, and one auxiliary record.
628   // The second symbol entry has the name of the comdat symbol, called the
629   // "comdat leader".
630   // When this function is called for the first symbol entry of a comdat,
631   // it sets comdatDefs and returns None, and when it's called for the second
632   // symbol entry it reads comdatDefs and then sets it back to nullptr.
633 
634   // Handle comdat leader.
635   if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
636     comdatDefs[sectionNumber] = nullptr;
637     DefinedRegular *leader;
638 
639     if (sym.isExternal()) {
640       std::tie(leader, prevailing) =
641           ctx.symtab.addComdat(this, getName(), sym.getGeneric());
642     } else {
643       leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
644                                     /*IsExternal*/ false, sym.getGeneric());
645       prevailing = true;
646     }
647 
648     if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
649         // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
650         // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
651         def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
652       fatal("unknown comdat type " + std::to_string((int)def->Selection) +
653             " for " + getName() + " in " + toString(this));
654     }
655     COMDATType selection = (COMDATType)def->Selection;
656 
657     if (leader->isCOMDAT)
658       handleComdatSelection(sym, selection, prevailing, leader, def);
659 
660     if (prevailing) {
661       SectionChunk *c = readSection(sectionNumber, def, getName());
662       sparseChunks[sectionNumber] = c;
663       c->sym = cast<DefinedRegular>(leader);
664       c->selection = selection;
665       cast<DefinedRegular>(leader)->data = &c->repl;
666     } else {
667       sparseChunks[sectionNumber] = nullptr;
668     }
669     return leader;
670   }
671 
672   // Prepare to handle the comdat leader symbol by setting the section's
673   // ComdatDefs pointer if we encounter a non-associative comdat.
674   if (sparseChunks[sectionNumber] == pendingComdat) {
675     if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
676       if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
677         comdatDefs[sectionNumber] = def;
678     }
679     return None;
680   }
681 
682   return createRegular(sym);
683 }
684 
685 MachineTypes ObjFile::getMachineType() {
686   if (coffObj)
687     return static_cast<MachineTypes>(coffObj->getMachine());
688   return IMAGE_FILE_MACHINE_UNKNOWN;
689 }
690 
691 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
692   if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
693     return sec->consumeDebugMagic();
694   return {};
695 }
696 
697 // OBJ files systematically store critical information in a .debug$S stream,
698 // even if the TU was compiled with no debug info. At least two records are
699 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
700 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
701 // currently used to initialize the hotPatchable member.
702 void ObjFile::initializeFlags() {
703   ArrayRef<uint8_t> data = getDebugSection(".debug$S");
704   if (data.empty())
705     return;
706 
707   DebugSubsectionArray subsections;
708 
709   BinaryStreamReader reader(data, support::little);
710   ExitOnError exitOnErr;
711   exitOnErr(reader.readArray(subsections, data.size()));
712 
713   for (const DebugSubsectionRecord &ss : subsections) {
714     if (ss.kind() != DebugSubsectionKind::Symbols)
715       continue;
716 
717     unsigned offset = 0;
718 
719     // Only parse the first two records. We are only looking for S_OBJNAME
720     // and S_COMPILE3, and they usually appear at the beginning of the
721     // stream.
722     for (unsigned i = 0; i < 2; ++i) {
723       Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
724       if (!sym) {
725         consumeError(sym.takeError());
726         return;
727       }
728       if (sym->kind() == SymbolKind::S_COMPILE3) {
729         auto cs =
730             cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
731         hotPatchable =
732             (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
733       }
734       if (sym->kind() == SymbolKind::S_OBJNAME) {
735         auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
736             sym.get()));
737         pchSignature = objName.Signature;
738       }
739       offset += sym->length();
740     }
741   }
742 }
743 
744 // Depending on the compilation flags, OBJs can refer to external files,
745 // necessary to merge this OBJ into the final PDB. We currently support two
746 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
747 // And PDB type servers, when compiling with /Zi. This function extracts these
748 // dependencies and makes them available as a TpiSource interface (see
749 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
750 // output even with /Yc and /Yu and with /Zi.
751 void ObjFile::initializeDependencies() {
752   if (!config->debug)
753     return;
754 
755   bool isPCH = false;
756 
757   ArrayRef<uint8_t> data = getDebugSection(".debug$P");
758   if (!data.empty())
759     isPCH = true;
760   else
761     data = getDebugSection(".debug$T");
762 
763   // symbols but no types, make a plain, empty TpiSource anyway, because it
764   // simplifies adding the symbols later.
765   if (data.empty()) {
766     if (!debugChunks.empty())
767       debugTypesObj = makeTpiSource(ctx, this);
768     return;
769   }
770 
771   // Get the first type record. It will indicate if this object uses a type
772   // server (/Zi) or a PCH file (/Yu).
773   CVTypeArray types;
774   BinaryStreamReader reader(data, support::little);
775   cantFail(reader.readArray(types, reader.getLength()));
776   CVTypeArray::Iterator firstType = types.begin();
777   if (firstType == types.end())
778     return;
779 
780   // Remember the .debug$T or .debug$P section.
781   debugTypes = data;
782 
783   // This object file is a PCH file that others will depend on.
784   if (isPCH) {
785     debugTypesObj = makePrecompSource(ctx, this);
786     return;
787   }
788 
789   // This object file was compiled with /Zi. Enqueue the PDB dependency.
790   if (firstType->kind() == LF_TYPESERVER2) {
791     TypeServer2Record ts = cantFail(
792         TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
793     debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
794     enqueuePdbFile(ts.getName(), this);
795     return;
796   }
797 
798   // This object was compiled with /Yu. It uses types from another object file
799   // with a matching signature.
800   if (firstType->kind() == LF_PRECOMP) {
801     PrecompRecord precomp = cantFail(
802         TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
803     debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
804     // Drop the LF_PRECOMP record from the input stream.
805     debugTypes = debugTypes.drop_front(firstType->RecordData.size());
806     return;
807   }
808 
809   // This is a plain old object file.
810   debugTypesObj = makeTpiSource(ctx, this);
811 }
812 
813 // Make a PDB path assuming the PDB is in the same folder as the OBJ
814 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) {
815   StringRef localPath =
816       !file->parentName.empty() ? file->parentName : file->getName();
817   SmallString<128> path = sys::path::parent_path(localPath);
818 
819   // Currently, type server PDBs are only created by MSVC cl, which only runs
820   // on Windows, so we can assume type server paths are Windows style.
821   sys::path::append(path,
822                     sys::path::filename(tSPath, sys::path::Style::windows));
823   return std::string(path.str());
824 }
825 
826 // The casing of the PDB path stamped in the OBJ can differ from the actual path
827 // on disk. With this, we ensure to always use lowercase as a key for the
828 // pdbInputFileInstances map, at least on Windows.
829 static std::string normalizePdbPath(StringRef path) {
830 #if defined(_WIN32)
831   return path.lower();
832 #else // LINUX
833   return std::string(path);
834 #endif
835 }
836 
837 // If existing, return the actual PDB path on disk.
838 static Optional<std::string> findPdbPath(StringRef pdbPath,
839                                          ObjFile *dependentFile) {
840   // Ensure the file exists before anything else. In some cases, if the path
841   // points to a removable device, Driver::enqueuePath() would fail with an
842   // error (EAGAIN, "resource unavailable try again") which we want to skip
843   // silently.
844   if (llvm::sys::fs::exists(pdbPath))
845     return normalizePdbPath(pdbPath);
846   std::string ret = getPdbBaseName(dependentFile, pdbPath);
847   if (llvm::sys::fs::exists(ret))
848     return normalizePdbPath(ret);
849   return None;
850 }
851 
852 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
853     : InputFile(ctx, PDBKind, m) {}
854 
855 PDBInputFile::~PDBInputFile() = default;
856 
857 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
858                                                StringRef path,
859                                                ObjFile *fromFile) {
860   auto p = findPdbPath(path.str(), fromFile);
861   if (!p)
862     return nullptr;
863   auto it = ctx.pdbInputFileInstances.find(*p);
864   if (it != ctx.pdbInputFileInstances.end())
865     return it->second;
866   return nullptr;
867 }
868 
869 void PDBInputFile::parse() {
870   ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
871 
872   std::unique_ptr<pdb::IPDBSession> thisSession;
873   loadErr.emplace(pdb::NativeSession::createFromPdb(
874       MemoryBuffer::getMemBuffer(mb, false), thisSession));
875   if (*loadErr)
876     return; // fail silently at this point - the error will be handled later,
877             // when merging the debug type stream
878 
879   session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
880 
881   pdb::PDBFile &pdbFile = session->getPDBFile();
882   auto expectedInfo = pdbFile.getPDBInfoStream();
883   // All PDB Files should have an Info stream.
884   if (!expectedInfo) {
885     loadErr.emplace(expectedInfo.takeError());
886     return;
887   }
888   debugTypesObj = makeTypeServerSource(ctx, this);
889 }
890 
891 // Used only for DWARF debug info, which is not common (except in MinGW
892 // environments). This returns an optional pair of file name and line
893 // number for where the variable was defined.
894 Optional<std::pair<StringRef, uint32_t>>
895 ObjFile::getVariableLocation(StringRef var) {
896   if (!dwarf) {
897     dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
898     if (!dwarf)
899       return None;
900   }
901   if (config->machine == I386)
902     var.consume_front("_");
903   Optional<std::pair<std::string, unsigned>> ret = dwarf->getVariableLoc(var);
904   if (!ret)
905     return None;
906   return std::make_pair(saver().save(ret->first), ret->second);
907 }
908 
909 // Used only for DWARF debug info, which is not common (except in MinGW
910 // environments).
911 Optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
912                                             uint32_t sectionIndex) {
913   if (!dwarf) {
914     dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
915     if (!dwarf)
916       return None;
917   }
918 
919   return dwarf->getDILineInfo(offset, sectionIndex);
920 }
921 
922 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
923   auto p = findPdbPath(path.str(), fromFile);
924   if (!p)
925     return;
926   auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
927   if (!it.second)
928     return; // already scheduled for load
929   driver->enqueuePDB(*p);
930 }
931 
932 void ImportFile::parse() {
933   const char *buf = mb.getBufferStart();
934   const auto *hdr = reinterpret_cast<const coff_import_header *>(buf);
935 
936   // Check if the total size is valid.
937   if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
938     fatal("broken import library");
939 
940   // Read names and create an __imp_ symbol.
941   StringRef name = saver().save(StringRef(buf + sizeof(*hdr)));
942   StringRef impName = saver().save("__imp_" + name);
943   const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1;
944   dllName = std::string(StringRef(nameStart));
945   StringRef extName;
946   switch (hdr->getNameType()) {
947   case IMPORT_ORDINAL:
948     extName = "";
949     break;
950   case IMPORT_NAME:
951     extName = name;
952     break;
953   case IMPORT_NAME_NOPREFIX:
954     extName = ltrim1(name, "?@_");
955     break;
956   case IMPORT_NAME_UNDECORATE:
957     extName = ltrim1(name, "?@_");
958     extName = extName.substr(0, extName.find('@'));
959     break;
960   }
961 
962   this->hdr = hdr;
963   externalName = extName;
964 
965   impSym = ctx.symtab.addImportData(impName, this);
966   // If this was a duplicate, we logged an error but may continue;
967   // in this case, impSym is nullptr.
968   if (!impSym)
969     return;
970 
971   if (hdr->getType() == llvm::COFF::IMPORT_CONST)
972     static_cast<void>(ctx.symtab.addImportData(name, this));
973 
974   // If type is function, we need to create a thunk which jump to an
975   // address pointed by the __imp_ symbol. (This allows you to call
976   // DLL functions just like regular non-DLL functions.)
977   if (hdr->getType() == llvm::COFF::IMPORT_CODE)
978     thunkSym = ctx.symtab.addImportThunk(
979         name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
980 }
981 
982 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
983                          StringRef archiveName, uint64_t offsetInArchive,
984                          bool lazy)
985     : InputFile(ctx, BitcodeKind, mb, lazy) {
986   std::string path = mb.getBufferIdentifier().str();
987   if (config->thinLTOIndexOnly)
988     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
989 
990   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
991   // name. If two archives define two members with the same name, this
992   // causes a collision which result in only one of the objects being taken
993   // into consideration at LTO time (which very likely causes undefined
994   // symbols later in the link stage). So we append file offset to make
995   // filename unique.
996   MemoryBufferRef mbref(mb.getBuffer(),
997                         saver().save(archiveName.empty()
998                                          ? path
999                                          : archiveName +
1000                                                sys::path::filename(path) +
1001                                                utostr(offsetInArchive)));
1002 
1003   obj = check(lto::InputFile::create(mbref));
1004 }
1005 
1006 BitcodeFile::~BitcodeFile() = default;
1007 
1008 namespace {
1009 // Convenience class for initializing a coff_section with specific flags.
1010 class FakeSection {
1011 public:
1012   FakeSection(int c) { section.Characteristics = c; }
1013 
1014   coff_section section;
1015 };
1016 
1017 // Convenience class for initializing a SectionChunk with specific flags.
1018 class FakeSectionChunk {
1019 public:
1020   FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) {
1021     // Comdats from LTO files can't be fully treated as regular comdats
1022     // at this point; we don't know what size or contents they are going to
1023     // have, so we can't do proper checking of such aspects of them.
1024     chunk.selection = IMAGE_COMDAT_SELECT_ANY;
1025   }
1026 
1027   SectionChunk chunk;
1028 };
1029 
1030 FakeSection ltoTextSection(IMAGE_SCN_MEM_EXECUTE);
1031 FakeSection ltoDataSection(IMAGE_SCN_CNT_INITIALIZED_DATA);
1032 FakeSectionChunk ltoTextSectionChunk(&ltoTextSection.section);
1033 FakeSectionChunk ltoDataSectionChunk(&ltoDataSection.section);
1034 } // namespace
1035 
1036 void BitcodeFile::parse() {
1037   llvm::StringSaver &saver = lld::saver();
1038   std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1039   for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1040     // FIXME: Check nodeduplicate
1041     comdat[i] =
1042         ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
1043   for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1044     StringRef symName = saver.save(objSym.getName());
1045     int comdatIndex = objSym.getComdatIndex();
1046     Symbol *sym;
1047     SectionChunk *fakeSC = nullptr;
1048     if (objSym.isExecutable())
1049       fakeSC = &ltoTextSectionChunk.chunk;
1050     else
1051       fakeSC = &ltoDataSectionChunk.chunk;
1052     if (objSym.isUndefined()) {
1053       sym = ctx.symtab.addUndefined(symName, this, false);
1054     } else if (objSym.isCommon()) {
1055       sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
1056     } else if (objSym.isWeak() && objSym.isIndirect()) {
1057       // Weak external.
1058       sym = ctx.symtab.addUndefined(symName, this, true);
1059       std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1060       Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
1061       checkAndSetWeakAlias(&ctx.symtab, this, sym, alias);
1062     } else if (comdatIndex != -1) {
1063       if (symName == obj->getComdatTable()[comdatIndex].first) {
1064         sym = comdat[comdatIndex].first;
1065         if (cast<DefinedRegular>(sym)->data == nullptr)
1066           cast<DefinedRegular>(sym)->data = &fakeSC->repl;
1067       } else if (comdat[comdatIndex].second) {
1068         sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1069       } else {
1070         sym = ctx.symtab.addUndefined(symName, this, false);
1071       }
1072     } else {
1073       sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1074     }
1075     symbols.push_back(sym);
1076     if (objSym.isUsed())
1077       config->gcroot.push_back(sym);
1078   }
1079   directives = obj->getCOFFLinkerOpts();
1080 }
1081 
1082 void BitcodeFile::parseLazy() {
1083   for (const lto::InputFile::Symbol &sym : obj->symbols())
1084     if (!sym.isUndefined())
1085       ctx.symtab.addLazyObject(this, sym.getName());
1086 }
1087 
1088 MachineTypes BitcodeFile::getMachineType() {
1089   switch (Triple(obj->getTargetTriple()).getArch()) {
1090   case Triple::x86_64:
1091     return AMD64;
1092   case Triple::x86:
1093     return I386;
1094   case Triple::arm:
1095     return ARMNT;
1096   case Triple::aarch64:
1097     return ARM64;
1098   default:
1099     return IMAGE_FILE_MACHINE_UNKNOWN;
1100   }
1101 }
1102 
1103 std::string lld::coff::replaceThinLTOSuffix(StringRef path) {
1104   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1105   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1106 
1107   if (path.consume_back(suffix))
1108     return (path + repl).str();
1109   return std::string(path);
1110 }
1111 
1112 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
1113   for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
1114     const coff_section *sec = CHECK(coffObj->getSection(i), file);
1115     if (rva >= sec->VirtualAddress &&
1116         rva <= sec->VirtualAddress + sec->VirtualSize) {
1117       return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
1118     }
1119   }
1120   return false;
1121 }
1122 
1123 void DLLFile::parse() {
1124   // Parse a memory buffer as a PE-COFF executable.
1125   std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
1126 
1127   if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
1128     bin.release();
1129     coffObj.reset(obj);
1130   } else {
1131     error(toString(this) + " is not a COFF file");
1132     return;
1133   }
1134 
1135   if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
1136     error(toString(this) + " is not a PE-COFF executable");
1137     return;
1138   }
1139 
1140   for (const auto &exp : coffObj->export_directories()) {
1141     StringRef dllName, symbolName;
1142     uint32_t exportRVA;
1143     checkError(exp.getDllName(dllName));
1144     checkError(exp.getSymbolName(symbolName));
1145     checkError(exp.getExportRVA(exportRVA));
1146 
1147     if (symbolName.empty())
1148       continue;
1149 
1150     bool code = isRVACode(coffObj.get(), exportRVA, this);
1151 
1152     Symbol *s = make<Symbol>();
1153     s->dllName = dllName;
1154     s->symbolName = symbolName;
1155     s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
1156     s->nameType = ImportNameType::IMPORT_NAME;
1157 
1158     if (coffObj->getMachine() == I386) {
1159       s->symbolName = symbolName = saver().save("_" + symbolName);
1160       s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
1161     }
1162 
1163     StringRef impName = saver().save("__imp_" + symbolName);
1164     ctx.symtab.addLazyDLLSymbol(this, s, impName);
1165     if (code)
1166       ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
1167   }
1168 }
1169 
1170 MachineTypes DLLFile::getMachineType() {
1171   if (coffObj)
1172     return static_cast<MachineTypes>(coffObj->getMachine());
1173   return IMAGE_FILE_MACHINE_UNKNOWN;
1174 }
1175 
1176 void DLLFile::makeImport(DLLFile::Symbol *s) {
1177   if (!seen.insert(s->symbolName).second)
1178     return;
1179 
1180   size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
1181   size_t size = sizeof(coff_import_header) + impSize;
1182   char *buf = bAlloc().Allocate<char>(size);
1183   memset(buf, 0, size);
1184   char *p = buf;
1185   auto *imp = reinterpret_cast<coff_import_header *>(p);
1186   p += sizeof(*imp);
1187   imp->Sig2 = 0xFFFF;
1188   imp->Machine = coffObj->getMachine();
1189   imp->SizeOfData = impSize;
1190   imp->OrdinalHint = 0; // Only linking by name
1191   imp->TypeInfo = (s->nameType << 2) | s->importType;
1192 
1193   // Write symbol name and DLL name.
1194   memcpy(p, s->symbolName.data(), s->symbolName.size());
1195   p += s->symbolName.size() + 1;
1196   memcpy(p, s->dllName.data(), s->dllName.size());
1197   MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
1198   ImportFile *impFile = make<ImportFile>(ctx, mbref);
1199   ctx.symtab.addFile(impFile);
1200 }
1201