1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Support/Endian.h"
16 
17 using namespace llvm;
18 using namespace llvm::support::endian;
19 using namespace llvm::ELF;
20 using namespace lld;
21 using namespace lld::elf;
22 
23 // Page(Expr) is the page address of the expression Expr, defined
24 // as (Expr & ~0xFFF). (This applies even if the machine page size
25 // supported by the platform has a different value.)
26 uint64_t elf::getAArch64Page(uint64_t expr) {
27   return expr & ~static_cast<uint64_t>(0xFFF);
28 }
29 
30 namespace {
31 class AArch64 : public TargetInfo {
32 public:
33   AArch64();
34   RelExpr getRelExpr(RelType type, const Symbol &s,
35                      const uint8_t *loc) const override;
36   RelType getDynRel(RelType type) const override;
37   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
38   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
39   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
40   void writePltHeader(uint8_t *buf) const override;
41   void writePlt(uint8_t *buf, const Symbol &sym,
42                 uint64_t pltEntryAddr) const override;
43   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
44                   uint64_t branchAddr, const Symbol &s,
45                   int64_t a) const override;
46   uint32_t getThunkSectionSpacing() const override;
47   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
48   bool usesOnlyLowPageBits(RelType type) const override;
49   void relocate(uint8_t *loc, const Relocation &rel,
50                 uint64_t val) const override;
51   RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
52   void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
53 
54 private:
55   void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
56   void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
57   void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
58 };
59 
60 struct AArch64Relaxer {
61   bool safeToRelaxAdrpLdr = false;
62 
63   AArch64Relaxer(ArrayRef<Relocation> relocs);
64   bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel,
65                        uint64_t secAddr, uint8_t *buf) const;
66   bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel,
67                        uint64_t secAddr, uint8_t *buf) const;
68 };
69 } // namespace
70 
71 AArch64::AArch64() {
72   copyRel = R_AARCH64_COPY;
73   relativeRel = R_AARCH64_RELATIVE;
74   iRelativeRel = R_AARCH64_IRELATIVE;
75   gotRel = R_AARCH64_GLOB_DAT;
76   pltRel = R_AARCH64_JUMP_SLOT;
77   symbolicRel = R_AARCH64_ABS64;
78   tlsDescRel = R_AARCH64_TLSDESC;
79   tlsGotRel = R_AARCH64_TLS_TPREL64;
80   pltHeaderSize = 32;
81   pltEntrySize = 16;
82   ipltEntrySize = 16;
83   defaultMaxPageSize = 65536;
84 
85   // Align to the 2 MiB page size (known as a superpage or huge page).
86   // FreeBSD automatically promotes 2 MiB-aligned allocations.
87   defaultImageBase = 0x200000;
88 
89   needsThunks = true;
90 }
91 
92 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
93                             const uint8_t *loc) const {
94   switch (type) {
95   case R_AARCH64_ABS16:
96   case R_AARCH64_ABS32:
97   case R_AARCH64_ABS64:
98   case R_AARCH64_ADD_ABS_LO12_NC:
99   case R_AARCH64_LDST128_ABS_LO12_NC:
100   case R_AARCH64_LDST16_ABS_LO12_NC:
101   case R_AARCH64_LDST32_ABS_LO12_NC:
102   case R_AARCH64_LDST64_ABS_LO12_NC:
103   case R_AARCH64_LDST8_ABS_LO12_NC:
104   case R_AARCH64_MOVW_SABS_G0:
105   case R_AARCH64_MOVW_SABS_G1:
106   case R_AARCH64_MOVW_SABS_G2:
107   case R_AARCH64_MOVW_UABS_G0:
108   case R_AARCH64_MOVW_UABS_G0_NC:
109   case R_AARCH64_MOVW_UABS_G1:
110   case R_AARCH64_MOVW_UABS_G1_NC:
111   case R_AARCH64_MOVW_UABS_G2:
112   case R_AARCH64_MOVW_UABS_G2_NC:
113   case R_AARCH64_MOVW_UABS_G3:
114     return R_ABS;
115   case R_AARCH64_TLSDESC_ADR_PAGE21:
116     return R_AARCH64_TLSDESC_PAGE;
117   case R_AARCH64_TLSDESC_LD64_LO12:
118   case R_AARCH64_TLSDESC_ADD_LO12:
119     return R_TLSDESC;
120   case R_AARCH64_TLSDESC_CALL:
121     return R_TLSDESC_CALL;
122   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
123   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
124   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
125   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
126   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
127   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
128   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
129   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
130   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
131   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
132   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
133   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
134     return R_TPREL;
135   case R_AARCH64_CALL26:
136   case R_AARCH64_CONDBR19:
137   case R_AARCH64_JUMP26:
138   case R_AARCH64_TSTBR14:
139     return R_PLT_PC;
140   case R_AARCH64_PLT32:
141     const_cast<Symbol &>(s).thunkAccessed = true;
142     return R_PLT_PC;
143   case R_AARCH64_PREL16:
144   case R_AARCH64_PREL32:
145   case R_AARCH64_PREL64:
146   case R_AARCH64_ADR_PREL_LO21:
147   case R_AARCH64_LD_PREL_LO19:
148   case R_AARCH64_MOVW_PREL_G0:
149   case R_AARCH64_MOVW_PREL_G0_NC:
150   case R_AARCH64_MOVW_PREL_G1:
151   case R_AARCH64_MOVW_PREL_G1_NC:
152   case R_AARCH64_MOVW_PREL_G2:
153   case R_AARCH64_MOVW_PREL_G2_NC:
154   case R_AARCH64_MOVW_PREL_G3:
155     return R_PC;
156   case R_AARCH64_ADR_PREL_PG_HI21:
157   case R_AARCH64_ADR_PREL_PG_HI21_NC:
158     return R_AARCH64_PAGE_PC;
159   case R_AARCH64_LD64_GOT_LO12_NC:
160   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
161     return R_GOT;
162   case R_AARCH64_LD64_GOTPAGE_LO15:
163     return R_AARCH64_GOT_PAGE;
164   case R_AARCH64_ADR_GOT_PAGE:
165   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
166     return R_AARCH64_GOT_PAGE_PC;
167   case R_AARCH64_NONE:
168     return R_NONE;
169   default:
170     error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
171           ") against symbol " + toString(s));
172     return R_NONE;
173   }
174 }
175 
176 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
177   if (expr == R_RELAX_TLS_GD_TO_IE) {
178     if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
179       return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
180     return R_RELAX_TLS_GD_TO_IE_ABS;
181   }
182   return expr;
183 }
184 
185 bool AArch64::usesOnlyLowPageBits(RelType type) const {
186   switch (type) {
187   default:
188     return false;
189   case R_AARCH64_ADD_ABS_LO12_NC:
190   case R_AARCH64_LD64_GOT_LO12_NC:
191   case R_AARCH64_LDST128_ABS_LO12_NC:
192   case R_AARCH64_LDST16_ABS_LO12_NC:
193   case R_AARCH64_LDST32_ABS_LO12_NC:
194   case R_AARCH64_LDST64_ABS_LO12_NC:
195   case R_AARCH64_LDST8_ABS_LO12_NC:
196   case R_AARCH64_TLSDESC_ADD_LO12:
197   case R_AARCH64_TLSDESC_LD64_LO12:
198   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
199     return true;
200   }
201 }
202 
203 RelType AArch64::getDynRel(RelType type) const {
204   if (type == R_AARCH64_ABS64)
205     return type;
206   return R_AARCH64_NONE;
207 }
208 
209 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
210   switch (type) {
211   case R_AARCH64_TLSDESC:
212     return read64(buf + 8);
213   case R_AARCH64_NONE:
214   case R_AARCH64_GLOB_DAT:
215   case R_AARCH64_JUMP_SLOT:
216     return 0;
217   case R_AARCH64_PREL32:
218     return SignExtend64<32>(read32(buf));
219   case R_AARCH64_ABS64:
220   case R_AARCH64_PREL64:
221   case R_AARCH64_RELATIVE:
222   case R_AARCH64_IRELATIVE:
223   case R_AARCH64_TLS_TPREL64:
224     return read64(buf);
225   default:
226     internalLinkerError(getErrorLocation(buf),
227                         "cannot read addend for relocation " + toString(type));
228     return 0;
229   }
230 }
231 
232 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
233   write64(buf, in.plt->getVA());
234 }
235 
236 void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
237   if (config->writeAddends)
238     write64(buf, s.getVA());
239 }
240 
241 void AArch64::writePltHeader(uint8_t *buf) const {
242   const uint8_t pltData[] = {
243       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
244       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.got.plt[2]))
245       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.got.plt[2]))]
246       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.got.plt[2]))
247       0x20, 0x02, 0x1f, 0xd6, // br     x17
248       0x1f, 0x20, 0x03, 0xd5, // nop
249       0x1f, 0x20, 0x03, 0xd5, // nop
250       0x1f, 0x20, 0x03, 0xd5  // nop
251   };
252   memcpy(buf, pltData, sizeof(pltData));
253 
254   uint64_t got = in.gotPlt->getVA();
255   uint64_t plt = in.plt->getVA();
256   relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
257                 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
258   relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
259   relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
260 }
261 
262 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
263                        uint64_t pltEntryAddr) const {
264   const uint8_t inst[] = {
265       0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
266       0x11, 0x02, 0x40, 0xf9, // ldr  x17, [x16, Offset(&(.got.plt[n]))]
267       0x10, 0x02, 0x00, 0x91, // add  x16, x16, Offset(&(.got.plt[n]))
268       0x20, 0x02, 0x1f, 0xd6  // br   x17
269   };
270   memcpy(buf, inst, sizeof(inst));
271 
272   uint64_t gotPltEntryAddr = sym.getGotPltVA();
273   relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
274                 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
275   relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
276   relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
277 }
278 
279 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
280                          uint64_t branchAddr, const Symbol &s,
281                          int64_t a) const {
282   // If s is an undefined weak symbol and does not have a PLT entry then it will
283   // be resolved as a branch to the next instruction. If it is hidden, its
284   // binding has been converted to local, so we just check isUndefined() here. A
285   // undefined non-weak symbol will have been errored.
286   if (s.isUndefined() && !s.isInPlt())
287     return false;
288   // ELF for the ARM 64-bit architecture, section Call and Jump relocations
289   // only permits range extension thunks for R_AARCH64_CALL26 and
290   // R_AARCH64_JUMP26 relocation types.
291   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
292       type != R_AARCH64_PLT32)
293     return false;
294   uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
295   return !inBranchRange(type, branchAddr, dst);
296 }
297 
298 uint32_t AArch64::getThunkSectionSpacing() const {
299   // See comment in Arch/ARM.cpp for a more detailed explanation of
300   // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
301   // Thunk have a range of +/- 128 MiB
302   return (128 * 1024 * 1024) - 0x30000;
303 }
304 
305 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
306   if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
307       type != R_AARCH64_PLT32)
308     return true;
309   // The AArch64 call and unconditional branch instructions have a range of
310   // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
311   uint64_t range =
312       type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
313   if (dst > src) {
314     // Immediate of branch is signed.
315     range -= 4;
316     return dst - src <= range;
317   }
318   return src - dst <= range;
319 }
320 
321 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
322   uint32_t immLo = (imm & 0x3) << 29;
323   uint32_t immHi = (imm & 0x1FFFFC) << 3;
324   uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
325   write32le(l, (read32le(l) & ~mask) | immLo | immHi);
326 }
327 
328 // Return the bits [Start, End] from Val shifted Start bits.
329 // For instance, getBits(0xF0, 4, 8) returns 0xF.
330 static uint64_t getBits(uint64_t val, int start, int end) {
331   uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
332   return (val >> start) & mask;
333 }
334 
335 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
336 
337 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
338 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
339   or32le(l, (imm & 0xFFF) << 10);
340 }
341 
342 // Update the immediate field in an AArch64 movk, movn or movz instruction
343 // for a signed relocation, and update the opcode of a movn or movz instruction
344 // to match the sign of the operand.
345 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
346   uint32_t inst = read32le(loc);
347   // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
348   if (!(inst & (1 << 29))) {
349     // movn or movz.
350     if (imm & 0x10000) {
351       // Change opcode to movn, which takes an inverted operand.
352       imm ^= 0xFFFF;
353       inst &= ~(1 << 30);
354     } else {
355       // Change opcode to movz.
356       inst |= 1 << 30;
357     }
358   }
359   write32le(loc, inst | ((imm & 0xFFFF) << 5));
360 }
361 
362 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
363                        uint64_t val) const {
364   switch (rel.type) {
365   case R_AARCH64_ABS16:
366   case R_AARCH64_PREL16:
367     checkIntUInt(loc, val, 16, rel);
368     write16(loc, val);
369     break;
370   case R_AARCH64_ABS32:
371   case R_AARCH64_PREL32:
372     checkIntUInt(loc, val, 32, rel);
373     write32(loc, val);
374     break;
375   case R_AARCH64_PLT32:
376     checkInt(loc, val, 32, rel);
377     write32(loc, val);
378     break;
379   case R_AARCH64_ABS64:
380   case R_AARCH64_PREL64:
381     write64(loc, val);
382     break;
383   case R_AARCH64_ADD_ABS_LO12_NC:
384     or32AArch64Imm(loc, val);
385     break;
386   case R_AARCH64_ADR_GOT_PAGE:
387   case R_AARCH64_ADR_PREL_PG_HI21:
388   case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
389   case R_AARCH64_TLSDESC_ADR_PAGE21:
390     checkInt(loc, val, 33, rel);
391     [[fallthrough]];
392   case R_AARCH64_ADR_PREL_PG_HI21_NC:
393     write32AArch64Addr(loc, val >> 12);
394     break;
395   case R_AARCH64_ADR_PREL_LO21:
396     checkInt(loc, val, 21, rel);
397     write32AArch64Addr(loc, val);
398     break;
399   case R_AARCH64_JUMP26:
400     // Normally we would just write the bits of the immediate field, however
401     // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
402     // we want to replace a non-branch instruction with a branch immediate
403     // instruction. By writing all the bits of the instruction including the
404     // opcode and the immediate (0 001 | 01 imm26) we can do this
405     // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
406     // the instruction we want to patch.
407     write32le(loc, 0x14000000);
408     [[fallthrough]];
409   case R_AARCH64_CALL26:
410     checkInt(loc, val, 28, rel);
411     or32le(loc, (val & 0x0FFFFFFC) >> 2);
412     break;
413   case R_AARCH64_CONDBR19:
414   case R_AARCH64_LD_PREL_LO19:
415     checkAlignment(loc, val, 4, rel);
416     checkInt(loc, val, 21, rel);
417     or32le(loc, (val & 0x1FFFFC) << 3);
418     break;
419   case R_AARCH64_LDST8_ABS_LO12_NC:
420   case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
421     or32AArch64Imm(loc, getBits(val, 0, 11));
422     break;
423   case R_AARCH64_LDST16_ABS_LO12_NC:
424   case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
425     checkAlignment(loc, val, 2, rel);
426     or32AArch64Imm(loc, getBits(val, 1, 11));
427     break;
428   case R_AARCH64_LDST32_ABS_LO12_NC:
429   case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
430     checkAlignment(loc, val, 4, rel);
431     or32AArch64Imm(loc, getBits(val, 2, 11));
432     break;
433   case R_AARCH64_LDST64_ABS_LO12_NC:
434   case R_AARCH64_LD64_GOT_LO12_NC:
435   case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
436   case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
437   case R_AARCH64_TLSDESC_LD64_LO12:
438     checkAlignment(loc, val, 8, rel);
439     or32AArch64Imm(loc, getBits(val, 3, 11));
440     break;
441   case R_AARCH64_LDST128_ABS_LO12_NC:
442   case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
443     checkAlignment(loc, val, 16, rel);
444     or32AArch64Imm(loc, getBits(val, 4, 11));
445     break;
446   case R_AARCH64_LD64_GOTPAGE_LO15:
447     checkAlignment(loc, val, 8, rel);
448     or32AArch64Imm(loc, getBits(val, 3, 14));
449     break;
450   case R_AARCH64_MOVW_UABS_G0:
451     checkUInt(loc, val, 16, rel);
452     [[fallthrough]];
453   case R_AARCH64_MOVW_UABS_G0_NC:
454     or32le(loc, (val & 0xFFFF) << 5);
455     break;
456   case R_AARCH64_MOVW_UABS_G1:
457     checkUInt(loc, val, 32, rel);
458     [[fallthrough]];
459   case R_AARCH64_MOVW_UABS_G1_NC:
460     or32le(loc, (val & 0xFFFF0000) >> 11);
461     break;
462   case R_AARCH64_MOVW_UABS_G2:
463     checkUInt(loc, val, 48, rel);
464     [[fallthrough]];
465   case R_AARCH64_MOVW_UABS_G2_NC:
466     or32le(loc, (val & 0xFFFF00000000) >> 27);
467     break;
468   case R_AARCH64_MOVW_UABS_G3:
469     or32le(loc, (val & 0xFFFF000000000000) >> 43);
470     break;
471   case R_AARCH64_MOVW_PREL_G0:
472   case R_AARCH64_MOVW_SABS_G0:
473   case R_AARCH64_TLSLE_MOVW_TPREL_G0:
474     checkInt(loc, val, 17, rel);
475     [[fallthrough]];
476   case R_AARCH64_MOVW_PREL_G0_NC:
477   case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
478     writeSMovWImm(loc, val);
479     break;
480   case R_AARCH64_MOVW_PREL_G1:
481   case R_AARCH64_MOVW_SABS_G1:
482   case R_AARCH64_TLSLE_MOVW_TPREL_G1:
483     checkInt(loc, val, 33, rel);
484     [[fallthrough]];
485   case R_AARCH64_MOVW_PREL_G1_NC:
486   case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
487     writeSMovWImm(loc, val >> 16);
488     break;
489   case R_AARCH64_MOVW_PREL_G2:
490   case R_AARCH64_MOVW_SABS_G2:
491   case R_AARCH64_TLSLE_MOVW_TPREL_G2:
492     checkInt(loc, val, 49, rel);
493     [[fallthrough]];
494   case R_AARCH64_MOVW_PREL_G2_NC:
495     writeSMovWImm(loc, val >> 32);
496     break;
497   case R_AARCH64_MOVW_PREL_G3:
498     writeSMovWImm(loc, val >> 48);
499     break;
500   case R_AARCH64_TSTBR14:
501     checkInt(loc, val, 16, rel);
502     or32le(loc, (val & 0xFFFC) << 3);
503     break;
504   case R_AARCH64_TLSLE_ADD_TPREL_HI12:
505     checkUInt(loc, val, 24, rel);
506     or32AArch64Imm(loc, val >> 12);
507     break;
508   case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
509   case R_AARCH64_TLSDESC_ADD_LO12:
510     or32AArch64Imm(loc, val);
511     break;
512   case R_AARCH64_TLSDESC:
513     // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
514     write64(loc + 8, val);
515     break;
516   default:
517     llvm_unreachable("unknown relocation");
518   }
519 }
520 
521 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
522                              uint64_t val) const {
523   // TLSDESC Global-Dynamic relocation are in the form:
524   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
525   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
526   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
527   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
528   //   blr     x1
529   // And it can optimized to:
530   //   movz    x0, #0x0, lsl #16
531   //   movk    x0, #0x10
532   //   nop
533   //   nop
534   checkUInt(loc, val, 32, rel);
535 
536   switch (rel.type) {
537   case R_AARCH64_TLSDESC_ADD_LO12:
538   case R_AARCH64_TLSDESC_CALL:
539     write32le(loc, 0xd503201f); // nop
540     return;
541   case R_AARCH64_TLSDESC_ADR_PAGE21:
542     write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
543     return;
544   case R_AARCH64_TLSDESC_LD64_LO12:
545     write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
546     return;
547   default:
548     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
549   }
550 }
551 
552 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
553                              uint64_t val) const {
554   // TLSDESC Global-Dynamic relocation are in the form:
555   //   adrp    x0, :tlsdesc:v             [R_AARCH64_TLSDESC_ADR_PAGE21]
556   //   ldr     x1, [x0, #:tlsdesc_lo12:v  [R_AARCH64_TLSDESC_LD64_LO12]
557   //   add     x0, x0, :tlsdesc_los:v     [R_AARCH64_TLSDESC_ADD_LO12]
558   //   .tlsdesccall                       [R_AARCH64_TLSDESC_CALL]
559   //   blr     x1
560   // And it can optimized to:
561   //   adrp    x0, :gottprel:v
562   //   ldr     x0, [x0, :gottprel_lo12:v]
563   //   nop
564   //   nop
565 
566   switch (rel.type) {
567   case R_AARCH64_TLSDESC_ADD_LO12:
568   case R_AARCH64_TLSDESC_CALL:
569     write32le(loc, 0xd503201f); // nop
570     break;
571   case R_AARCH64_TLSDESC_ADR_PAGE21:
572     write32le(loc, 0x90000000); // adrp
573     relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
574     break;
575   case R_AARCH64_TLSDESC_LD64_LO12:
576     write32le(loc, 0xf9400000); // ldr
577     relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
578     break;
579   default:
580     llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
581   }
582 }
583 
584 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
585                              uint64_t val) const {
586   checkUInt(loc, val, 32, rel);
587 
588   if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
589     // Generate MOVZ.
590     uint32_t regNo = read32le(loc) & 0x1f;
591     write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
592     return;
593   }
594   if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
595     // Generate MOVK.
596     uint32_t regNo = read32le(loc) & 0x1f;
597     write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
598     return;
599   }
600   llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
601 }
602 
603 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
604   if (!config->relax)
605     return;
606   // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
607   // always appear in pairs.
608   size_t i = 0;
609   const size_t size = relocs.size();
610   for (; i != size; ++i) {
611     if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
612       if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
613         ++i;
614         continue;
615       }
616       break;
617     } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
618       break;
619     }
620   }
621   safeToRelaxAdrpLdr = i == size;
622 }
623 
624 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
625                                      const Relocation &addRel, uint64_t secAddr,
626                                      uint8_t *buf) const {
627   // When the address of sym is within the range of ADR then
628   // we may relax
629   // ADRP xn, sym
630   // ADD  xn, xn, :lo12: sym
631   // to
632   // NOP
633   // ADR xn, sym
634   if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
635       addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
636     return false;
637   // Check if the relocations apply to consecutive instructions.
638   if (adrpRel.offset + 4 != addRel.offset)
639     return false;
640   if (adrpRel.sym != addRel.sym)
641     return false;
642   if (adrpRel.addend != 0 || addRel.addend != 0)
643     return false;
644 
645   uint32_t adrpInstr = read32le(buf + adrpRel.offset);
646   uint32_t addInstr = read32le(buf + addRel.offset);
647   // Check if the first instruction is ADRP and the second instruction is ADD.
648   if ((adrpInstr & 0x9f000000) != 0x90000000 ||
649       (addInstr & 0xffc00000) != 0x91000000)
650     return false;
651   uint32_t adrpDestReg = adrpInstr & 0x1f;
652   uint32_t addDestReg = addInstr & 0x1f;
653   uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
654   if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
655     return false;
656 
657   Symbol &sym = *adrpRel.sym;
658   // Check if the address difference is within 1MiB range.
659   int64_t val = sym.getVA() - (secAddr + addRel.offset);
660   if (val < -1024 * 1024 || val >= 1024 * 1024)
661     return false;
662 
663   Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
664                        /*addend=*/0, &sym};
665   // nop
666   write32le(buf + adrpRel.offset, 0xd503201f);
667   // adr x_<dest_reg>
668   write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
669   target->relocate(buf + adrRel.offset, adrRel, val);
670   return true;
671 }
672 
673 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
674                                      const Relocation &ldrRel, uint64_t secAddr,
675                                      uint8_t *buf) const {
676   if (!safeToRelaxAdrpLdr)
677     return false;
678 
679   // When the definition of sym is not preemptible then we may
680   // be able to relax
681   // ADRP xn, :got: sym
682   // LDR xn, [ xn :got_lo12: sym]
683   // to
684   // ADRP xn, sym
685   // ADD xn, xn, :lo_12: sym
686 
687   if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
688       ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
689     return false;
690   // Check if the relocations apply to consecutive instructions.
691   if (adrpRel.offset + 4 != ldrRel.offset)
692     return false;
693   // Check if the relocations reference the same symbol and
694   // skip undefined, preemptible and STT_GNU_IFUNC symbols.
695   if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
696       adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
697     return false;
698   // Check if the addends of the both relocations are zero.
699   if (adrpRel.addend != 0 || ldrRel.addend != 0)
700     return false;
701   uint32_t adrpInstr = read32le(buf + adrpRel.offset);
702   uint32_t ldrInstr = read32le(buf + ldrRel.offset);
703   // Check if the first instruction is ADRP and the second instruction is LDR.
704   if ((adrpInstr & 0x9f000000) != 0x90000000 ||
705       (ldrInstr & 0x3b000000) != 0x39000000)
706     return false;
707   // Check the value of the sf bit.
708   if (!(ldrInstr >> 31))
709     return false;
710   uint32_t adrpDestReg = adrpInstr & 0x1f;
711   uint32_t ldrDestReg = ldrInstr & 0x1f;
712   uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
713   // Check if ADPR and LDR use the same register.
714   if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
715     return false;
716 
717   Symbol &sym = *adrpRel.sym;
718   // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
719   // position-independent code because these instructions produce a relative
720   // address.
721   if (config->isPic && !cast<Defined>(sym).section)
722     return false;
723   // Check if the address difference is within 4GB range.
724   int64_t val =
725       getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
726   if (val != llvm::SignExtend64(val, 33))
727     return false;
728 
729   Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
730                            adrpRel.offset, /*addend=*/0, &sym};
731   Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
732                        /*addend=*/0, &sym};
733 
734   // adrp x_<dest_reg>
735   write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
736   // add x_<dest reg>, x_<dest reg>
737   write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
738 
739   target->relocate(buf + adrpSymRel.offset, adrpSymRel,
740                    SignExtend64(getAArch64Page(sym.getVA()) -
741                                     getAArch64Page(secAddr + adrpSymRel.offset),
742                                 64));
743   target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
744   tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
745   return true;
746 }
747 
748 void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
749   uint64_t secAddr = sec.getOutputSection()->addr;
750   if (auto *s = dyn_cast<InputSection>(&sec))
751     secAddr += s->outSecOff;
752   AArch64Relaxer relaxer(sec.relocs());
753   for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) {
754     const Relocation &rel = sec.relocs()[i];
755     uint8_t *loc = buf + rel.offset;
756     const uint64_t val =
757         sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
758                              secAddr + rel.offset, *rel.sym, rel.expr);
759     switch (rel.expr) {
760     case R_AARCH64_GOT_PAGE_PC:
761       if (i + 1 < size &&
762           relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) {
763         ++i;
764         continue;
765       }
766       break;
767     case R_AARCH64_PAGE_PC:
768       if (i + 1 < size &&
769           relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) {
770         ++i;
771         continue;
772       }
773       break;
774     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
775     case R_RELAX_TLS_GD_TO_IE_ABS:
776       relaxTlsGdToIe(loc, rel, val);
777       continue;
778     case R_RELAX_TLS_GD_TO_LE:
779       relaxTlsGdToLe(loc, rel, val);
780       continue;
781     case R_RELAX_TLS_IE_TO_LE:
782       relaxTlsIeToLe(loc, rel, val);
783       continue;
784     default:
785       break;
786     }
787     relocate(loc, rel, val);
788   }
789 }
790 
791 // AArch64 may use security features in variant PLT sequences. These are:
792 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
793 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
794 // in the variant Plt sequences are encoded in the Hint space so they can be
795 // deployed on older architectures, which treat the instructions as a nop.
796 // PAC and BTI can be combined leading to the following combinations:
797 // writePltHeader
798 // writePltHeaderBti (no PAC Header needed)
799 // writePlt
800 // writePltBti (BTI only)
801 // writePltPac (PAC only)
802 // writePltBtiPac (BTI and PAC)
803 //
804 // When PAC is enabled the dynamic loader encrypts the address that it places
805 // in the .got.plt using the pacia1716 instruction which encrypts the value in
806 // x17 using the modifier in x16. The static linker places autia1716 before the
807 // indirect branch to x17 to authenticate the address in x17 with the modifier
808 // in x16. This makes it more difficult for an attacker to modify the value in
809 // the .got.plt.
810 //
811 // When BTI is enabled all indirect branches must land on a bti instruction.
812 // The static linker must place a bti instruction at the start of any PLT entry
813 // that may be the target of an indirect branch. As the PLT entries call the
814 // lazy resolver indirectly this must have a bti instruction at start. In
815 // general a bti instruction is not needed for a PLT entry as indirect calls
816 // are resolved to the function address and not the PLT entry for the function.
817 // There are a small number of cases where the PLT address can escape, such as
818 // taking the address of a function or ifunc via a non got-generating
819 // relocation, and a shared library refers to that symbol.
820 //
821 // We use the bti c variant of the instruction which permits indirect branches
822 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
823 // guarantees that all indirect branches from code requiring BTI protection
824 // will go via x16/x17
825 
826 namespace {
827 class AArch64BtiPac final : public AArch64 {
828 public:
829   AArch64BtiPac();
830   void writePltHeader(uint8_t *buf) const override;
831   void writePlt(uint8_t *buf, const Symbol &sym,
832                 uint64_t pltEntryAddr) const override;
833 
834 private:
835   bool btiHeader; // bti instruction needed in PLT Header and Entry
836   bool pacEntry;  // autia1716 instruction needed in PLT Entry
837 };
838 } // namespace
839 
840 AArch64BtiPac::AArch64BtiPac() {
841   btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
842   // A BTI (Branch Target Indicator) Plt Entry is only required if the
843   // address of the PLT entry can be taken by the program, which permits an
844   // indirect jump to the PLT entry. This can happen when the address
845   // of the PLT entry for a function is canonicalised due to the address of
846   // the function in an executable being taken by a shared library, or
847   // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
848   // relocations.
849   // The PAC PLT entries require dynamic loader support and this isn't known
850   // from properties in the objects, so we use the command line flag.
851   pacEntry = config->zPacPlt;
852 
853   if (btiHeader || pacEntry) {
854     pltEntrySize = 24;
855     ipltEntrySize = 24;
856   }
857 }
858 
859 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
860   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
861   const uint8_t pltData[] = {
862       0xf0, 0x7b, 0xbf, 0xa9, // stp    x16, x30, [sp,#-16]!
863       0x10, 0x00, 0x00, 0x90, // adrp   x16, Page(&(.got.plt[2]))
864       0x11, 0x02, 0x40, 0xf9, // ldr    x17, [x16, Offset(&(.got.plt[2]))]
865       0x10, 0x02, 0x00, 0x91, // add    x16, x16, Offset(&(.got.plt[2]))
866       0x20, 0x02, 0x1f, 0xd6, // br     x17
867       0x1f, 0x20, 0x03, 0xd5, // nop
868       0x1f, 0x20, 0x03, 0xd5  // nop
869   };
870   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
871 
872   uint64_t got = in.gotPlt->getVA();
873   uint64_t plt = in.plt->getVA();
874 
875   if (btiHeader) {
876     // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
877     // instruction.
878     memcpy(buf, btiData, sizeof(btiData));
879     buf += sizeof(btiData);
880     plt += sizeof(btiData);
881   }
882   memcpy(buf, pltData, sizeof(pltData));
883 
884   relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
885                 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
886   relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
887   relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
888   if (!btiHeader)
889     // We didn't add the BTI c instruction so round out size with NOP.
890     memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
891 }
892 
893 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
894                              uint64_t pltEntryAddr) const {
895   // The PLT entry is of the form:
896   // [btiData] addrInst (pacBr | stdBr) [nopData]
897   const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
898   const uint8_t addrInst[] = {
899       0x10, 0x00, 0x00, 0x90,  // adrp x16, Page(&(.got.plt[n]))
900       0x11, 0x02, 0x40, 0xf9,  // ldr  x17, [x16, Offset(&(.got.plt[n]))]
901       0x10, 0x02, 0x00, 0x91   // add  x16, x16, Offset(&(.got.plt[n]))
902   };
903   const uint8_t pacBr[] = {
904       0x9f, 0x21, 0x03, 0xd5,  // autia1716
905       0x20, 0x02, 0x1f, 0xd6   // br   x17
906   };
907   const uint8_t stdBr[] = {
908       0x20, 0x02, 0x1f, 0xd6,  // br   x17
909       0x1f, 0x20, 0x03, 0xd5   // nop
910   };
911   const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
912 
913   // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may
914   // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
915   // address may escape if referenced by a direct relocation. If relative
916   // vtables are used then if the vtable is in a shared object the offsets will
917   // be to the PLT entry. The condition is conservative.
918   bool hasBti = btiHeader &&
919                 (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed);
920   if (hasBti) {
921     memcpy(buf, btiData, sizeof(btiData));
922     buf += sizeof(btiData);
923     pltEntryAddr += sizeof(btiData);
924   }
925 
926   uint64_t gotPltEntryAddr = sym.getGotPltVA();
927   memcpy(buf, addrInst, sizeof(addrInst));
928   relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
929                 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
930   relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
931   relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
932 
933   if (pacEntry)
934     memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
935   else
936     memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
937   if (!hasBti)
938     // We didn't add the BTI c instruction so round out size with NOP.
939     memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
940 }
941 
942 static TargetInfo *getTargetInfo() {
943   if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
944       config->zPacPlt) {
945     static AArch64BtiPac t;
946     return &t;
947   }
948   static AArch64 t;
949   return &t;
950 }
951 
952 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
953