1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/TarWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 
33 using namespace llvm;
34 using namespace llvm::ELF;
35 using namespace llvm::object;
36 using namespace llvm::sys;
37 using namespace llvm::sys::fs;
38 using namespace llvm::support::endian;
39 
40 namespace lld {
41 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
42 std::string toString(const elf::InputFile *f) {
43   if (!f)
44     return "<internal>";
45 
46   if (f->toStringCache.empty()) {
47     if (f->archiveName.empty())
48       f->toStringCache = f->getName();
49     else
50       f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
51   }
52   return f->toStringCache;
53 }
54 
55 namespace elf {
56 bool InputFile::isInGroup;
57 uint32_t InputFile::nextGroupId;
58 std::vector<BinaryFile *> binaryFiles;
59 std::vector<BitcodeFile *> bitcodeFiles;
60 std::vector<LazyObjFile *> lazyObjFiles;
61 std::vector<InputFile *> objectFiles;
62 std::vector<SharedFile *> sharedFiles;
63 
64 std::unique_ptr<TarWriter> tar;
65 
66 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
67   unsigned char size;
68   unsigned char endian;
69   std::tie(size, endian) = getElfArchType(mb.getBuffer());
70 
71   auto report = [&](StringRef msg) {
72     StringRef filename = mb.getBufferIdentifier();
73     if (archiveName.empty())
74       fatal(filename + ": " + msg);
75     else
76       fatal(archiveName + "(" + filename + "): " + msg);
77   };
78 
79   if (!mb.getBuffer().startswith(ElfMagic))
80     report("not an ELF file");
81   if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
82     report("corrupted ELF file: invalid data encoding");
83   if (size != ELFCLASS32 && size != ELFCLASS64)
84     report("corrupted ELF file: invalid file class");
85 
86   size_t bufSize = mb.getBuffer().size();
87   if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
88       (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
89     report("corrupted ELF file: file is too short");
90 
91   if (size == ELFCLASS32)
92     return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
93   return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
94 }
95 
96 InputFile::InputFile(Kind k, MemoryBufferRef m)
97     : mb(m), groupId(nextGroupId), fileKind(k) {
98   // All files within the same --{start,end}-group get the same group ID.
99   // Otherwise, a new file will get a new group ID.
100   if (!isInGroup)
101     ++nextGroupId;
102 }
103 
104 Optional<MemoryBufferRef> readFile(StringRef path) {
105   // The --chroot option changes our virtual root directory.
106   // This is useful when you are dealing with files created by --reproduce.
107   if (!config->chroot.empty() && path.startswith("/"))
108     path = saver.save(config->chroot + path);
109 
110   log(path);
111 
112   auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
113   if (auto ec = mbOrErr.getError()) {
114     error("cannot open " + path + ": " + ec.message());
115     return None;
116   }
117 
118   std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
119   MemoryBufferRef mbref = mb->getMemBufferRef();
120   make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
121 
122   if (tar)
123     tar->append(relativeToRoot(path), mbref.getBuffer());
124   return mbref;
125 }
126 
127 // All input object files must be for the same architecture
128 // (e.g. it does not make sense to link x86 object files with
129 // MIPS object files.) This function checks for that error.
130 static bool isCompatible(InputFile *file) {
131   if (!file->isElf() && !isa<BitcodeFile>(file))
132     return true;
133 
134   if (file->ekind == config->ekind && file->emachine == config->emachine) {
135     if (config->emachine != EM_MIPS)
136       return true;
137     if (isMipsN32Abi(file) == config->mipsN32Abi)
138       return true;
139   }
140 
141   if (!config->emulation.empty()) {
142     error(toString(file) + " is incompatible with " + config->emulation);
143     return false;
144   }
145 
146   InputFile *existing;
147   if (!objectFiles.empty())
148     existing = objectFiles[0];
149   else if (!sharedFiles.empty())
150     existing = sharedFiles[0];
151   else
152     existing = bitcodeFiles[0];
153 
154   error(toString(file) + " is incompatible with " + toString(existing));
155   return false;
156 }
157 
158 template <class ELFT> static void doParseFile(InputFile *file) {
159   if (!isCompatible(file))
160     return;
161 
162   // Binary file
163   if (auto *f = dyn_cast<BinaryFile>(file)) {
164     binaryFiles.push_back(f);
165     f->parse();
166     return;
167   }
168 
169   // .a file
170   if (auto *f = dyn_cast<ArchiveFile>(file)) {
171     f->parse();
172     return;
173   }
174 
175   // Lazy object file
176   if (auto *f = dyn_cast<LazyObjFile>(file)) {
177     lazyObjFiles.push_back(f);
178     f->parse<ELFT>();
179     return;
180   }
181 
182   if (config->trace)
183     message(toString(file));
184 
185   // .so file
186   if (auto *f = dyn_cast<SharedFile>(file)) {
187     f->parse<ELFT>();
188     return;
189   }
190 
191   // LLVM bitcode file
192   if (auto *f = dyn_cast<BitcodeFile>(file)) {
193     bitcodeFiles.push_back(f);
194     f->parse<ELFT>();
195     return;
196   }
197 
198   // Regular object file
199   objectFiles.push_back(file);
200   cast<ObjFile<ELFT>>(file)->parse();
201 }
202 
203 // Add symbols in File to the symbol table.
204 void parseFile(InputFile *file) {
205   switch (config->ekind) {
206   case ELF32LEKind:
207     doParseFile<ELF32LE>(file);
208     return;
209   case ELF32BEKind:
210     doParseFile<ELF32BE>(file);
211     return;
212   case ELF64LEKind:
213     doParseFile<ELF64LE>(file);
214     return;
215   case ELF64BEKind:
216     doParseFile<ELF64BE>(file);
217     return;
218   default:
219     llvm_unreachable("unknown ELFT");
220   }
221 }
222 
223 // Concatenates arguments to construct a string representing an error location.
224 static std::string createFileLineMsg(StringRef path, unsigned line) {
225   std::string filename = path::filename(path);
226   std::string lineno = ":" + std::to_string(line);
227   if (filename == path)
228     return filename + lineno;
229   return filename + lineno + " (" + path.str() + lineno + ")";
230 }
231 
232 template <class ELFT>
233 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
234                                 InputSectionBase &sec, uint64_t offset) {
235   // In DWARF, functions and variables are stored to different places.
236   // First, lookup a function for a given offset.
237   if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
238     return createFileLineMsg(info->FileName, info->Line);
239 
240   // If it failed, lookup again as a variable.
241   if (Optional<std::pair<std::string, unsigned>> fileLine =
242           file.getVariableLoc(sym.getName()))
243     return createFileLineMsg(fileLine->first, fileLine->second);
244 
245   // File.sourceFile contains STT_FILE symbol, and that is a last resort.
246   return file.sourceFile;
247 }
248 
249 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
250                                  uint64_t offset) {
251   if (kind() != ObjKind)
252     return "";
253   switch (config->ekind) {
254   default:
255     llvm_unreachable("Invalid kind");
256   case ELF32LEKind:
257     return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
258   case ELF32BEKind:
259     return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
260   case ELF64LEKind:
261     return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
262   case ELF64BEKind:
263     return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
264   }
265 }
266 
267 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
268   dwarf = make<DWARFCache>(std::make_unique<DWARFContext>(
269       std::make_unique<LLDDwarfObj<ELFT>>(this)));
270 }
271 
272 // Returns the pair of file name and line number describing location of data
273 // object (variable, array, etc) definition.
274 template <class ELFT>
275 Optional<std::pair<std::string, unsigned>>
276 ObjFile<ELFT>::getVariableLoc(StringRef name) {
277   llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
278 
279   return dwarf->getVariableLoc(name);
280 }
281 
282 // Returns source line information for a given offset
283 // using DWARF debug info.
284 template <class ELFT>
285 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
286                                                   uint64_t offset) {
287   llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
288 
289   // Detect SectionIndex for specified section.
290   uint64_t sectionIndex = object::SectionedAddress::UndefSection;
291   ArrayRef<InputSectionBase *> sections = s->file->getSections();
292   for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
293     if (s == sections[curIndex]) {
294       sectionIndex = curIndex;
295       break;
296     }
297   }
298 
299   // Use fake address calculated by adding section file offset and offset in
300   // section. See comments for ObjectInfo class.
301   return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex);
302 }
303 
304 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
305   ekind = getELFKind(mb, "");
306 
307   switch (ekind) {
308   case ELF32LEKind:
309     init<ELF32LE>();
310     break;
311   case ELF32BEKind:
312     init<ELF32BE>();
313     break;
314   case ELF64LEKind:
315     init<ELF64LE>();
316     break;
317   case ELF64BEKind:
318     init<ELF64BE>();
319     break;
320   default:
321     llvm_unreachable("getELFKind");
322   }
323 }
324 
325 template <typename Elf_Shdr>
326 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
327   for (const Elf_Shdr &sec : sections)
328     if (sec.sh_type == type)
329       return &sec;
330   return nullptr;
331 }
332 
333 template <class ELFT> void ELFFileBase::init() {
334   using Elf_Shdr = typename ELFT::Shdr;
335   using Elf_Sym = typename ELFT::Sym;
336 
337   // Initialize trivial attributes.
338   const ELFFile<ELFT> &obj = getObj<ELFT>();
339   emachine = obj.getHeader()->e_machine;
340   osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
341   abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
342 
343   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
344 
345   // Find a symbol table.
346   bool isDSO =
347       (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
348   const Elf_Shdr *symtabSec =
349       findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
350 
351   if (!symtabSec)
352     return;
353 
354   // Initialize members corresponding to a symbol table.
355   firstGlobal = symtabSec->sh_info;
356 
357   ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
358   if (firstGlobal == 0 || firstGlobal > eSyms.size())
359     fatal(toString(this) + ": invalid sh_info in symbol table");
360 
361   elfSyms = reinterpret_cast<const void *>(eSyms.data());
362   numELFSyms = eSyms.size();
363   stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
364 }
365 
366 template <class ELFT>
367 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
368   return CHECK(
369       this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable),
370       this);
371 }
372 
373 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
374   if (this->symbols.empty())
375     return {};
376   return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
377 }
378 
379 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
380   return makeArrayRef(this->symbols).slice(this->firstGlobal);
381 }
382 
383 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
384   // Read a section table. justSymbols is usually false.
385   if (this->justSymbols)
386     initializeJustSymbols();
387   else
388     initializeSections(ignoreComdats);
389 
390   // Read a symbol table.
391   initializeSymbols();
392 }
393 
394 // Sections with SHT_GROUP and comdat bits define comdat section groups.
395 // They are identified and deduplicated by group name. This function
396 // returns a group name.
397 template <class ELFT>
398 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
399                                               const Elf_Shdr &sec) {
400   typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
401   if (sec.sh_info >= symbols.size())
402     fatal(toString(this) + ": invalid symbol index");
403   const typename ELFT::Sym &sym = symbols[sec.sh_info];
404   StringRef signature = CHECK(sym.getName(this->stringTable), this);
405 
406   // As a special case, if a symbol is a section symbol and has no name,
407   // we use a section name as a signature.
408   //
409   // Such SHT_GROUP sections are invalid from the perspective of the ELF
410   // standard, but GNU gold 1.14 (the newest version as of July 2017) or
411   // older produce such sections as outputs for the -r option, so we need
412   // a bug-compatibility.
413   if (signature.empty() && sym.getType() == STT_SECTION)
414     return getSectionName(sec);
415   return signature;
416 }
417 
418 template <class ELFT>
419 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
420   // On a regular link we don't merge sections if -O0 (default is -O1). This
421   // sometimes makes the linker significantly faster, although the output will
422   // be bigger.
423   //
424   // Doing the same for -r would create a problem as it would combine sections
425   // with different sh_entsize. One option would be to just copy every SHF_MERGE
426   // section as is to the output. While this would produce a valid ELF file with
427   // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
428   // they see two .debug_str. We could have separate logic for combining
429   // SHF_MERGE sections based both on their name and sh_entsize, but that seems
430   // to be more trouble than it is worth. Instead, we just use the regular (-O1)
431   // logic for -r.
432   if (config->optimize == 0 && !config->relocatable)
433     return false;
434 
435   // A mergeable section with size 0 is useless because they don't have
436   // any data to merge. A mergeable string section with size 0 can be
437   // argued as invalid because it doesn't end with a null character.
438   // We'll avoid a mess by handling them as if they were non-mergeable.
439   if (sec.sh_size == 0)
440     return false;
441 
442   // Check for sh_entsize. The ELF spec is not clear about the zero
443   // sh_entsize. It says that "the member [sh_entsize] contains 0 if
444   // the section does not hold a table of fixed-size entries". We know
445   // that Rust 1.13 produces a string mergeable section with a zero
446   // sh_entsize. Here we just accept it rather than being picky about it.
447   uint64_t entSize = sec.sh_entsize;
448   if (entSize == 0)
449     return false;
450   if (sec.sh_size % entSize)
451     fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
452           Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
453           Twine(entSize) + ")");
454 
455   uint64_t flags = sec.sh_flags;
456   if (!(flags & SHF_MERGE))
457     return false;
458   if (flags & SHF_WRITE)
459     fatal(toString(this) + ":(" + name +
460           "): writable SHF_MERGE section is not supported");
461 
462   return true;
463 }
464 
465 // This is for --just-symbols.
466 //
467 // --just-symbols is a very minor feature that allows you to link your
468 // output against other existing program, so that if you load both your
469 // program and the other program into memory, your output can refer the
470 // other program's symbols.
471 //
472 // When the option is given, we link "just symbols". The section table is
473 // initialized with null pointers.
474 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
475   ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
476   this->sections.resize(sections.size());
477 }
478 
479 // An ELF object file may contain a `.deplibs` section. If it exists, the
480 // section contains a list of library specifiers such as `m` for libm. This
481 // function resolves a given name by finding the first matching library checking
482 // the various ways that a library can be specified to LLD. This ELF extension
483 // is a form of autolinking and is called `dependent libraries`. It is currently
484 // unique to LLVM and lld.
485 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
486   if (!config->dependentLibraries)
487     return;
488   if (fs::exists(specifier))
489     driver->addFile(specifier, /*withLOption=*/false);
490   else if (Optional<std::string> s = findFromSearchPaths(specifier))
491     driver->addFile(*s, /*withLOption=*/true);
492   else if (Optional<std::string> s = searchLibraryBaseName(specifier))
493     driver->addFile(*s, /*withLOption=*/true);
494   else
495     error(toString(f) +
496           ": unable to find library from dependent library specifier: " +
497           specifier);
498 }
499 
500 // Record the membership of a section group so that in the garbage collection
501 // pass, section group members are kept or discarded as a unit.
502 template <class ELFT>
503 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
504                                ArrayRef<typename ELFT::Word> entries) {
505   bool hasAlloc = false;
506   for (uint32_t index : entries.slice(1)) {
507     if (index >= sections.size())
508       return;
509     if (InputSectionBase *s = sections[index])
510       if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
511         hasAlloc = true;
512   }
513 
514   // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
515   // collection. See the comment in markLive(). This rule retains .debug_types
516   // and .rela.debug_types.
517   if (!hasAlloc)
518     return;
519 
520   // Connect the members in a circular doubly-linked list via
521   // nextInSectionGroup.
522   InputSectionBase *head;
523   InputSectionBase *prev = nullptr;
524   for (uint32_t index : entries.slice(1)) {
525     InputSectionBase *s = sections[index];
526     if (!s || s == &InputSection::discarded)
527       continue;
528     if (prev)
529       prev->nextInSectionGroup = s;
530     else
531       head = s;
532     prev = s;
533   }
534   if (prev)
535     prev->nextInSectionGroup = head;
536 }
537 
538 template <class ELFT>
539 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
540   const ELFFile<ELFT> &obj = this->getObj();
541 
542   ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
543   uint64_t size = objSections.size();
544   this->sections.resize(size);
545   this->sectionStringTable =
546       CHECK(obj.getSectionStringTable(objSections), this);
547 
548   std::vector<ArrayRef<Elf_Word>> selectedGroups;
549 
550   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
551     if (this->sections[i] == &InputSection::discarded)
552       continue;
553     const Elf_Shdr &sec = objSections[i];
554 
555     if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
556       cgProfile =
557           check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec));
558 
559     // SHF_EXCLUDE'ed sections are discarded by the linker. However,
560     // if -r is given, we'll let the final link discard such sections.
561     // This is compatible with GNU.
562     if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
563       if (sec.sh_type == SHT_LLVM_ADDRSIG) {
564         // We ignore the address-significance table if we know that the object
565         // file was created by objcopy or ld -r. This is because these tools
566         // will reorder the symbols in the symbol table, invalidating the data
567         // in the address-significance table, which refers to symbols by index.
568         if (sec.sh_link != 0)
569           this->addrsigSec = &sec;
570         else if (config->icf == ICFLevel::Safe)
571           warn(toString(this) + ": --icf=safe is incompatible with object "
572                                 "files created using objcopy or ld -r");
573       }
574       this->sections[i] = &InputSection::discarded;
575       continue;
576     }
577 
578     switch (sec.sh_type) {
579     case SHT_GROUP: {
580       // De-duplicate section groups by their signatures.
581       StringRef signature = getShtGroupSignature(objSections, sec);
582       this->sections[i] = &InputSection::discarded;
583 
584 
585       ArrayRef<Elf_Word> entries =
586           CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this);
587       if (entries.empty())
588         fatal(toString(this) + ": empty SHT_GROUP");
589 
590       // The first word of a SHT_GROUP section contains flags. Currently,
591       // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
592       // An group with the empty flag doesn't define anything; such sections
593       // are just skipped.
594       if (entries[0] == 0)
595         continue;
596 
597       if (entries[0] != GRP_COMDAT)
598         fatal(toString(this) + ": unsupported SHT_GROUP format");
599 
600       bool isNew =
601           ignoreComdats ||
602           symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
603               .second;
604       if (isNew) {
605         if (config->relocatable)
606           this->sections[i] = createInputSection(sec);
607         selectedGroups.push_back(entries);
608         continue;
609       }
610 
611       // Otherwise, discard group members.
612       for (uint32_t secIndex : entries.slice(1)) {
613         if (secIndex >= size)
614           fatal(toString(this) +
615                 ": invalid section index in group: " + Twine(secIndex));
616         this->sections[secIndex] = &InputSection::discarded;
617       }
618       break;
619     }
620     case SHT_SYMTAB_SHNDX:
621       shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
622       break;
623     case SHT_SYMTAB:
624     case SHT_STRTAB:
625     case SHT_NULL:
626       break;
627     default:
628       this->sections[i] = createInputSection(sec);
629     }
630   }
631 
632   // This block handles SHF_LINK_ORDER.
633   for (size_t i = 0, e = objSections.size(); i < e; ++i) {
634     if (this->sections[i] == &InputSection::discarded)
635       continue;
636     const Elf_Shdr &sec = objSections[i];
637     if (!(sec.sh_flags & SHF_LINK_ORDER))
638       continue;
639 
640     // .ARM.exidx sections have a reverse dependency on the InputSection they
641     // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
642     InputSectionBase *linkSec = nullptr;
643     if (sec.sh_link < this->sections.size())
644       linkSec = this->sections[sec.sh_link];
645     if (!linkSec)
646       fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
647 
648     InputSection *isec = cast<InputSection>(this->sections[i]);
649     linkSec->dependentSections.push_back(isec);
650     if (!isa<InputSection>(linkSec))
651       error("a section " + isec->name +
652             " with SHF_LINK_ORDER should not refer a non-regular section: " +
653             toString(linkSec));
654   }
655 
656   for (ArrayRef<Elf_Word> entries : selectedGroups)
657     handleSectionGroup<ELFT>(this->sections, entries);
658 }
659 
660 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
661 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
662 // the input objects have been compiled.
663 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
664                              const InputFile *f) {
665   if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
666     // If an ABI tag isn't present then it is implicitly given the value of 0
667     // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
668     // including some in glibc that don't use FP args (and should have value 3)
669     // don't have the attribute so we do not consider an implicit value of 0
670     // as a clash.
671     return;
672 
673   unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
674   ARMVFPArgKind arg;
675   switch (vfpArgs) {
676   case ARMBuildAttrs::BaseAAPCS:
677     arg = ARMVFPArgKind::Base;
678     break;
679   case ARMBuildAttrs::HardFPAAPCS:
680     arg = ARMVFPArgKind::VFP;
681     break;
682   case ARMBuildAttrs::ToolChainFPPCS:
683     // Tool chain specific convention that conforms to neither AAPCS variant.
684     arg = ARMVFPArgKind::ToolChain;
685     break;
686   case ARMBuildAttrs::CompatibleFPAAPCS:
687     // Object compatible with all conventions.
688     return;
689   default:
690     error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
691     return;
692   }
693   // Follow ld.bfd and error if there is a mix of calling conventions.
694   if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
695     error(toString(f) + ": incompatible Tag_ABI_VFP_args");
696   else
697     config->armVFPArgs = arg;
698 }
699 
700 // The ARM support in lld makes some use of instructions that are not available
701 // on all ARM architectures. Namely:
702 // - Use of BLX instruction for interworking between ARM and Thumb state.
703 // - Use of the extended Thumb branch encoding in relocation.
704 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
705 // The ARM Attributes section contains information about the architecture chosen
706 // at compile time. We follow the convention that if at least one input object
707 // is compiled with an architecture that supports these features then lld is
708 // permitted to use them.
709 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
710   if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
711     return;
712   auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
713   switch (arch) {
714   case ARMBuildAttrs::Pre_v4:
715   case ARMBuildAttrs::v4:
716   case ARMBuildAttrs::v4T:
717     // Architectures prior to v5 do not support BLX instruction
718     break;
719   case ARMBuildAttrs::v5T:
720   case ARMBuildAttrs::v5TE:
721   case ARMBuildAttrs::v5TEJ:
722   case ARMBuildAttrs::v6:
723   case ARMBuildAttrs::v6KZ:
724   case ARMBuildAttrs::v6K:
725     config->armHasBlx = true;
726     // Architectures used in pre-Cortex processors do not support
727     // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
728     // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
729     break;
730   default:
731     // All other Architectures have BLX and extended branch encoding
732     config->armHasBlx = true;
733     config->armJ1J2BranchEncoding = true;
734     if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
735       // All Architectures used in Cortex processors with the exception
736       // of v6-M and v6S-M have the MOVT and MOVW instructions.
737       config->armHasMovtMovw = true;
738     break;
739   }
740 }
741 
742 // If a source file is compiled with x86 hardware-assisted call flow control
743 // enabled, the generated object file contains feature flags indicating that
744 // fact. This function reads the feature flags and returns it.
745 //
746 // Essentially we want to read a single 32-bit value in this function, but this
747 // function is rather complicated because the value is buried deep inside a
748 // .note.gnu.property section.
749 //
750 // The section consists of one or more NOTE records. Each NOTE record consists
751 // of zero or more type-length-value fields. We want to find a field of a
752 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
753 // the ABI is unnecessarily complicated.
754 template <class ELFT>
755 static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) {
756   using Elf_Nhdr = typename ELFT::Nhdr;
757   using Elf_Note = typename ELFT::Note;
758 
759   uint32_t featuresSet = 0;
760   while (!data.empty()) {
761     // Read one NOTE record.
762     if (data.size() < sizeof(Elf_Nhdr))
763       fatal(toString(obj) + ": .note.gnu.property: section too short");
764 
765     auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
766     if (data.size() < nhdr->getSize())
767       fatal(toString(obj) + ": .note.gnu.property: section too short");
768 
769     Elf_Note note(*nhdr);
770     if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
771       data = data.slice(nhdr->getSize());
772       continue;
773     }
774 
775     uint32_t featureAndType = config->emachine == EM_AARCH64
776                                   ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
777                                   : GNU_PROPERTY_X86_FEATURE_1_AND;
778 
779     // Read a body of a NOTE record, which consists of type-length-value fields.
780     ArrayRef<uint8_t> desc = note.getDesc();
781     while (!desc.empty()) {
782       if (desc.size() < 8)
783         fatal(toString(obj) + ": .note.gnu.property: section too short");
784 
785       uint32_t type = read32le(desc.data());
786       uint32_t size = read32le(desc.data() + 4);
787 
788       if (type == featureAndType) {
789         // We found a FEATURE_1_AND field. There may be more than one of these
790         // in a .note.gnu.property section, for a relocatable object we
791         // accumulate the bits set.
792         featuresSet |= read32le(desc.data() + 8);
793       }
794 
795       // On 64-bit, a payload may be followed by a 4-byte padding to make its
796       // size a multiple of 8.
797       if (ELFT::Is64Bits)
798         size = alignTo(size, 8);
799 
800       desc = desc.slice(size + 8); // +8 for Type and Size
801     }
802 
803     // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
804     data = data.slice(nhdr->getSize());
805   }
806 
807   return featuresSet;
808 }
809 
810 template <class ELFT>
811 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
812   uint32_t idx = sec.sh_info;
813   if (idx >= this->sections.size())
814     fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
815   InputSectionBase *target = this->sections[idx];
816 
817   // Strictly speaking, a relocation section must be included in the
818   // group of the section it relocates. However, LLVM 3.3 and earlier
819   // would fail to do so, so we gracefully handle that case.
820   if (target == &InputSection::discarded)
821     return nullptr;
822 
823   if (!target)
824     fatal(toString(this) + ": unsupported relocation reference");
825   return target;
826 }
827 
828 // Create a regular InputSection class that has the same contents
829 // as a given section.
830 static InputSection *toRegularSection(MergeInputSection *sec) {
831   return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
832                             sec->data(), sec->name);
833 }
834 
835 template <class ELFT>
836 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
837   StringRef name = getSectionName(sec);
838 
839   switch (sec.sh_type) {
840   case SHT_ARM_ATTRIBUTES: {
841     if (config->emachine != EM_ARM)
842       break;
843     ARMAttributeParser attributes;
844     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
845     attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind);
846     updateSupportedARMFeatures(attributes);
847     updateARMVFPArgs(attributes, this);
848 
849     // FIXME: Retain the first attribute section we see. The eglibc ARM
850     // dynamic loaders require the presence of an attribute section for dlopen
851     // to work. In a full implementation we would merge all attribute sections.
852     if (in.armAttributes == nullptr) {
853       in.armAttributes = make<InputSection>(*this, sec, name);
854       return in.armAttributes;
855     }
856     return &InputSection::discarded;
857   }
858   case SHT_LLVM_DEPENDENT_LIBRARIES: {
859     if (config->relocatable)
860       break;
861     ArrayRef<char> data =
862         CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this);
863     if (!data.empty() && data.back() != '\0') {
864       error(toString(this) +
865             ": corrupted dependent libraries section (unterminated string): " +
866             name);
867       return &InputSection::discarded;
868     }
869     for (const char *d = data.begin(), *e = data.end(); d < e;) {
870       StringRef s(d);
871       addDependentLibrary(s, this);
872       d += s.size() + 1;
873     }
874     return &InputSection::discarded;
875   }
876   case SHT_RELA:
877   case SHT_REL: {
878     // Find a relocation target section and associate this section with that.
879     // Target may have been discarded if it is in a different section group
880     // and the group is discarded, even though it's a violation of the
881     // spec. We handle that situation gracefully by discarding dangling
882     // relocation sections.
883     InputSectionBase *target = getRelocTarget(sec);
884     if (!target)
885       return nullptr;
886 
887     // ELF spec allows mergeable sections with relocations, but they are
888     // rare, and it is in practice hard to merge such sections by contents,
889     // because applying relocations at end of linking changes section
890     // contents. So, we simply handle such sections as non-mergeable ones.
891     // Degrading like this is acceptable because section merging is optional.
892     if (auto *ms = dyn_cast<MergeInputSection>(target)) {
893       target = toRegularSection(ms);
894       this->sections[sec.sh_info] = target;
895     }
896 
897     // This section contains relocation information.
898     // If -r is given, we do not interpret or apply relocation
899     // but just copy relocation sections to output.
900     if (config->relocatable) {
901       InputSection *relocSec = make<InputSection>(*this, sec, name);
902       // We want to add a dependency to target, similar like we do for
903       // -emit-relocs below. This is useful for the case when linker script
904       // contains the "/DISCARD/". It is perhaps uncommon to use a script with
905       // -r, but we faced it in the Linux kernel and have to handle such case
906       // and not to crash.
907       target->dependentSections.push_back(relocSec);
908       return relocSec;
909     }
910 
911     if (target->firstRelocation)
912       fatal(toString(this) +
913             ": multiple relocation sections to one section are not supported");
914 
915     if (sec.sh_type == SHT_RELA) {
916       ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this);
917       target->firstRelocation = rels.begin();
918       target->numRelocations = rels.size();
919       target->areRelocsRela = true;
920     } else {
921       ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this);
922       target->firstRelocation = rels.begin();
923       target->numRelocations = rels.size();
924       target->areRelocsRela = false;
925     }
926     assert(isUInt<31>(target->numRelocations));
927 
928     // Relocation sections processed by the linker are usually removed
929     // from the output, so returning `nullptr` for the normal case.
930     // However, if -emit-relocs is given, we need to leave them in the output.
931     // (Some post link analysis tools need this information.)
932     if (config->emitRelocs) {
933       InputSection *relocSec = make<InputSection>(*this, sec, name);
934       // We will not emit relocation section if target was discarded.
935       target->dependentSections.push_back(relocSec);
936       return relocSec;
937     }
938     return nullptr;
939   }
940   }
941 
942   // The GNU linker uses .note.GNU-stack section as a marker indicating
943   // that the code in the object file does not expect that the stack is
944   // executable (in terms of NX bit). If all input files have the marker,
945   // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
946   // make the stack non-executable. Most object files have this section as
947   // of 2017.
948   //
949   // But making the stack non-executable is a norm today for security
950   // reasons. Failure to do so may result in a serious security issue.
951   // Therefore, we make LLD always add PT_GNU_STACK unless it is
952   // explicitly told to do otherwise (by -z execstack). Because the stack
953   // executable-ness is controlled solely by command line options,
954   // .note.GNU-stack sections are simply ignored.
955   if (name == ".note.GNU-stack")
956     return &InputSection::discarded;
957 
958   // Object files that use processor features such as Intel Control-Flow
959   // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
960   // .note.gnu.property section containing a bitfield of feature bits like the
961   // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
962   //
963   // Since we merge bitmaps from multiple object files to create a new
964   // .note.gnu.property containing a single AND'ed bitmap, we discard an input
965   // file's .note.gnu.property section.
966   if (name == ".note.gnu.property") {
967     ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
968     this->andFeatures = readAndFeatures(this, contents);
969     return &InputSection::discarded;
970   }
971 
972   // Split stacks is a feature to support a discontiguous stack,
973   // commonly used in the programming language Go. For the details,
974   // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
975   // for split stack will include a .note.GNU-split-stack section.
976   if (name == ".note.GNU-split-stack") {
977     if (config->relocatable) {
978       error("cannot mix split-stack and non-split-stack in a relocatable link");
979       return &InputSection::discarded;
980     }
981     this->splitStack = true;
982     return &InputSection::discarded;
983   }
984 
985   // An object file cmpiled for split stack, but where some of the
986   // functions were compiled with the no_split_stack_attribute will
987   // include a .note.GNU-no-split-stack section.
988   if (name == ".note.GNU-no-split-stack") {
989     this->someNoSplitStack = true;
990     return &InputSection::discarded;
991   }
992 
993   // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
994   // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
995   // sections. Drop those sections to avoid duplicate symbol errors.
996   // FIXME: This is glibc PR20543, we should remove this hack once that has been
997   // fixed for a while.
998   if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
999       name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1000     return &InputSection::discarded;
1001 
1002   // If we are creating a new .build-id section, strip existing .build-id
1003   // sections so that the output won't have more than one .build-id.
1004   // This is not usually a problem because input object files normally don't
1005   // have .build-id sections, but you can create such files by
1006   // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1007   if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1008     return &InputSection::discarded;
1009 
1010   // The linker merges EH (exception handling) frames and creates a
1011   // .eh_frame_hdr section for runtime. So we handle them with a special
1012   // class. For relocatable outputs, they are just passed through.
1013   if (name == ".eh_frame" && !config->relocatable)
1014     return make<EhInputSection>(*this, sec, name);
1015 
1016   if (shouldMerge(sec, name))
1017     return make<MergeInputSection>(*this, sec, name);
1018   return make<InputSection>(*this, sec, name);
1019 }
1020 
1021 template <class ELFT>
1022 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1023   return CHECK(getObj().getSectionName(&sec, sectionStringTable), this);
1024 }
1025 
1026 // Initialize this->Symbols. this->Symbols is a parallel array as
1027 // its corresponding ELF symbol table.
1028 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1029   ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1030   this->symbols.resize(eSyms.size());
1031 
1032   // Our symbol table may have already been partially initialized
1033   // because of LazyObjFile.
1034   for (size_t i = 0, end = eSyms.size(); i != end; ++i)
1035     if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL)
1036       this->symbols[i] =
1037           symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1038 
1039   // Fill this->Symbols. A symbol is either local or global.
1040   for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1041     const Elf_Sym &eSym = eSyms[i];
1042 
1043     // Read symbol attributes.
1044     uint32_t secIdx = getSectionIndex(eSym);
1045     if (secIdx >= this->sections.size())
1046       fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1047 
1048     InputSectionBase *sec = this->sections[secIdx];
1049     uint8_t binding = eSym.getBinding();
1050     uint8_t stOther = eSym.st_other;
1051     uint8_t type = eSym.getType();
1052     uint64_t value = eSym.st_value;
1053     uint64_t size = eSym.st_size;
1054     StringRefZ name = this->stringTable.data() + eSym.st_name;
1055 
1056     // Handle local symbols. Local symbols are not added to the symbol
1057     // table because they are not visible from other object files. We
1058     // allocate symbol instances and add their pointers to Symbols.
1059     if (binding == STB_LOCAL) {
1060       if (eSym.getType() == STT_FILE)
1061         sourceFile = CHECK(eSym.getName(this->stringTable), this);
1062 
1063       if (this->stringTable.size() <= eSym.st_name)
1064         fatal(toString(this) + ": invalid symbol name offset");
1065 
1066       if (eSym.st_shndx == SHN_UNDEF)
1067         this->symbols[i] = make<Undefined>(this, name, binding, stOther, type);
1068       else if (sec == &InputSection::discarded)
1069         this->symbols[i] = make<Undefined>(this, name, binding, stOther, type,
1070                                            /*DiscardedSecIdx=*/secIdx);
1071       else
1072         this->symbols[i] =
1073             make<Defined>(this, name, binding, stOther, type, value, size, sec);
1074       continue;
1075     }
1076 
1077     // Handle global undefined symbols.
1078     if (eSym.st_shndx == SHN_UNDEF) {
1079       this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
1080       this->symbols[i]->referenced = true;
1081       continue;
1082     }
1083 
1084     // Handle global common symbols.
1085     if (eSym.st_shndx == SHN_COMMON) {
1086       if (value == 0 || value >= UINT32_MAX)
1087         fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1088               "' has invalid alignment: " + Twine(value));
1089       this->symbols[i]->resolve(
1090           CommonSymbol{this, name, binding, stOther, type, value, size});
1091       continue;
1092     }
1093 
1094     // If a defined symbol is in a discarded section, handle it as if it
1095     // were an undefined symbol. Such symbol doesn't comply with the
1096     // standard, but in practice, a .eh_frame often directly refer
1097     // COMDAT member sections, and if a comdat group is discarded, some
1098     // defined symbol in a .eh_frame becomes dangling symbols.
1099     if (sec == &InputSection::discarded) {
1100       this->symbols[i]->resolve(
1101           Undefined{this, name, binding, stOther, type, secIdx});
1102       continue;
1103     }
1104 
1105     // Handle global defined symbols.
1106     if (binding == STB_GLOBAL || binding == STB_WEAK ||
1107         binding == STB_GNU_UNIQUE) {
1108       this->symbols[i]->resolve(
1109           Defined{this, name, binding, stOther, type, value, size, sec});
1110       continue;
1111     }
1112 
1113     fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1114   }
1115 }
1116 
1117 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1118     : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1119       file(std::move(file)) {}
1120 
1121 void ArchiveFile::parse() {
1122   for (const Archive::Symbol &sym : file->symbols())
1123     symtab->addSymbol(LazyArchive{*this, sym});
1124 }
1125 
1126 // Returns a buffer pointing to a member file containing a given symbol.
1127 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1128   Archive::Child c =
1129       CHECK(sym.getMember(), toString(this) +
1130                                  ": could not get the member for symbol " +
1131                                  toELFString(sym));
1132 
1133   if (!seen.insert(c.getChildOffset()).second)
1134     return;
1135 
1136   MemoryBufferRef mb =
1137       CHECK(c.getMemoryBufferRef(),
1138             toString(this) +
1139                 ": could not get the buffer for the member defining symbol " +
1140                 toELFString(sym));
1141 
1142   if (tar && c.getParent()->isThin())
1143     tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1144 
1145   InputFile *file = createObjectFile(
1146       mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset());
1147   file->groupId = groupId;
1148   parseFile(file);
1149 }
1150 
1151 unsigned SharedFile::vernauxNum;
1152 
1153 // Parse the version definitions in the object file if present, and return a
1154 // vector whose nth element contains a pointer to the Elf_Verdef for version
1155 // identifier n. Version identifiers that are not definitions map to nullptr.
1156 template <typename ELFT>
1157 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1158                                               const typename ELFT::Shdr *sec) {
1159   if (!sec)
1160     return {};
1161 
1162   // We cannot determine the largest verdef identifier without inspecting
1163   // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1164   // sequentially starting from 1, so we predict that the largest identifier
1165   // will be verdefCount.
1166   unsigned verdefCount = sec->sh_info;
1167   std::vector<const void *> verdefs(verdefCount + 1);
1168 
1169   // Build the Verdefs array by following the chain of Elf_Verdef objects
1170   // from the start of the .gnu.version_d section.
1171   const uint8_t *verdef = base + sec->sh_offset;
1172   for (unsigned i = 0; i != verdefCount; ++i) {
1173     auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1174     verdef += curVerdef->vd_next;
1175     unsigned verdefIndex = curVerdef->vd_ndx;
1176     verdefs.resize(verdefIndex + 1);
1177     verdefs[verdefIndex] = curVerdef;
1178   }
1179   return verdefs;
1180 }
1181 
1182 // We do not usually care about alignments of data in shared object
1183 // files because the loader takes care of it. However, if we promote a
1184 // DSO symbol to point to .bss due to copy relocation, we need to keep
1185 // the original alignment requirements. We infer it in this function.
1186 template <typename ELFT>
1187 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1188                              const typename ELFT::Sym &sym) {
1189   uint64_t ret = UINT64_MAX;
1190   if (sym.st_value)
1191     ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1192   if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1193     ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1194   return (ret > UINT32_MAX) ? 0 : ret;
1195 }
1196 
1197 // Fully parse the shared object file.
1198 //
1199 // This function parses symbol versions. If a DSO has version information,
1200 // the file has a ".gnu.version_d" section which contains symbol version
1201 // definitions. Each symbol is associated to one version through a table in
1202 // ".gnu.version" section. That table is a parallel array for the symbol
1203 // table, and each table entry contains an index in ".gnu.version_d".
1204 //
1205 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1206 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1207 // ".gnu.version_d".
1208 //
1209 // The file format for symbol versioning is perhaps a bit more complicated
1210 // than necessary, but you can easily understand the code if you wrap your
1211 // head around the data structure described above.
1212 template <class ELFT> void SharedFile::parse() {
1213   using Elf_Dyn = typename ELFT::Dyn;
1214   using Elf_Shdr = typename ELFT::Shdr;
1215   using Elf_Sym = typename ELFT::Sym;
1216   using Elf_Verdef = typename ELFT::Verdef;
1217   using Elf_Versym = typename ELFT::Versym;
1218 
1219   ArrayRef<Elf_Dyn> dynamicTags;
1220   const ELFFile<ELFT> obj = this->getObj<ELFT>();
1221   ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1222 
1223   const Elf_Shdr *versymSec = nullptr;
1224   const Elf_Shdr *verdefSec = nullptr;
1225 
1226   // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1227   for (const Elf_Shdr &sec : sections) {
1228     switch (sec.sh_type) {
1229     default:
1230       continue;
1231     case SHT_DYNAMIC:
1232       dynamicTags =
1233           CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this);
1234       break;
1235     case SHT_GNU_versym:
1236       versymSec = &sec;
1237       break;
1238     case SHT_GNU_verdef:
1239       verdefSec = &sec;
1240       break;
1241     }
1242   }
1243 
1244   if (versymSec && numELFSyms == 0) {
1245     error("SHT_GNU_versym should be associated with symbol table");
1246     return;
1247   }
1248 
1249   // Search for a DT_SONAME tag to initialize this->soName.
1250   for (const Elf_Dyn &dyn : dynamicTags) {
1251     if (dyn.d_tag == DT_NEEDED) {
1252       uint64_t val = dyn.getVal();
1253       if (val >= this->stringTable.size())
1254         fatal(toString(this) + ": invalid DT_NEEDED entry");
1255       dtNeeded.push_back(this->stringTable.data() + val);
1256     } else if (dyn.d_tag == DT_SONAME) {
1257       uint64_t val = dyn.getVal();
1258       if (val >= this->stringTable.size())
1259         fatal(toString(this) + ": invalid DT_SONAME entry");
1260       soName = this->stringTable.data() + val;
1261     }
1262   }
1263 
1264   // DSOs are uniquified not by filename but by soname.
1265   DenseMap<StringRef, SharedFile *>::iterator it;
1266   bool wasInserted;
1267   std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1268 
1269   // If a DSO appears more than once on the command line with and without
1270   // --as-needed, --no-as-needed takes precedence over --as-needed because a
1271   // user can add an extra DSO with --no-as-needed to force it to be added to
1272   // the dependency list.
1273   it->second->isNeeded |= isNeeded;
1274   if (!wasInserted)
1275     return;
1276 
1277   sharedFiles.push_back(this);
1278 
1279   verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1280 
1281   // Parse ".gnu.version" section which is a parallel array for the symbol
1282   // table. If a given file doesn't have a ".gnu.version" section, we use
1283   // VER_NDX_GLOBAL.
1284   size_t size = numELFSyms - firstGlobal;
1285   std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL);
1286   if (versymSec) {
1287     ArrayRef<Elf_Versym> versym =
1288         CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec),
1289               this)
1290             .slice(firstGlobal);
1291     for (size_t i = 0; i < size; ++i)
1292       versyms[i] = versym[i].vs_index;
1293   }
1294 
1295   // System libraries can have a lot of symbols with versions. Using a
1296   // fixed buffer for computing the versions name (foo@ver) can save a
1297   // lot of allocations.
1298   SmallString<0> versionedNameBuffer;
1299 
1300   // Add symbols to the symbol table.
1301   ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1302   for (size_t i = 0; i < syms.size(); ++i) {
1303     const Elf_Sym &sym = syms[i];
1304 
1305     // ELF spec requires that all local symbols precede weak or global
1306     // symbols in each symbol table, and the index of first non-local symbol
1307     // is stored to sh_info. If a local symbol appears after some non-local
1308     // symbol, that's a violation of the spec.
1309     StringRef name = CHECK(sym.getName(this->stringTable), this);
1310     if (sym.getBinding() == STB_LOCAL) {
1311       warn("found local symbol '" + name +
1312            "' in global part of symbol table in file " + toString(this));
1313       continue;
1314     }
1315 
1316     if (sym.isUndefined()) {
1317       Symbol *s = symtab->addSymbol(
1318           Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1319       s->exportDynamic = true;
1320       continue;
1321     }
1322 
1323     // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1324     // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1325     // workaround for this bug.
1326     uint32_t idx = versyms[i] & ~VERSYM_HIDDEN;
1327     if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1328         name == "_gp_disp")
1329       continue;
1330 
1331     uint32_t alignment = getAlignment<ELFT>(sections, sym);
1332     if (!(versyms[i] & VERSYM_HIDDEN)) {
1333       symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1334                                      sym.st_other, sym.getType(), sym.st_value,
1335                                      sym.st_size, alignment, idx});
1336     }
1337 
1338     // Also add the symbol with the versioned name to handle undefined symbols
1339     // with explicit versions.
1340     if (idx == VER_NDX_GLOBAL)
1341       continue;
1342 
1343     if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1344       error("corrupt input file: version definition index " + Twine(idx) +
1345             " for symbol " + name + " is out of bounds\n>>> defined in " +
1346             toString(this));
1347       continue;
1348     }
1349 
1350     StringRef verName =
1351         this->stringTable.data() +
1352         reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1353     versionedNameBuffer.clear();
1354     name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1355     symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1356                                    sym.st_other, sym.getType(), sym.st_value,
1357                                    sym.st_size, alignment, idx});
1358   }
1359 }
1360 
1361 static ELFKind getBitcodeELFKind(const Triple &t) {
1362   if (t.isLittleEndian())
1363     return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1364   return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1365 }
1366 
1367 static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1368   switch (t.getArch()) {
1369   case Triple::aarch64:
1370     return EM_AARCH64;
1371   case Triple::amdgcn:
1372   case Triple::r600:
1373     return EM_AMDGPU;
1374   case Triple::arm:
1375   case Triple::thumb:
1376     return EM_ARM;
1377   case Triple::avr:
1378     return EM_AVR;
1379   case Triple::mips:
1380   case Triple::mipsel:
1381   case Triple::mips64:
1382   case Triple::mips64el:
1383     return EM_MIPS;
1384   case Triple::msp430:
1385     return EM_MSP430;
1386   case Triple::ppc:
1387     return EM_PPC;
1388   case Triple::ppc64:
1389   case Triple::ppc64le:
1390     return EM_PPC64;
1391   case Triple::riscv32:
1392   case Triple::riscv64:
1393     return EM_RISCV;
1394   case Triple::x86:
1395     return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1396   case Triple::x86_64:
1397     return EM_X86_64;
1398   default:
1399     error(path + ": could not infer e_machine from bitcode target triple " +
1400           t.str());
1401     return EM_NONE;
1402   }
1403 }
1404 
1405 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1406                          uint64_t offsetInArchive)
1407     : InputFile(BitcodeKind, mb) {
1408   this->archiveName = archiveName;
1409 
1410   std::string path = mb.getBufferIdentifier().str();
1411   if (config->thinLTOIndexOnly)
1412     path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1413 
1414   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1415   // name. If two archives define two members with the same name, this
1416   // causes a collision which result in only one of the objects being taken
1417   // into consideration at LTO time (which very likely causes undefined
1418   // symbols later in the link stage). So we append file offset to make
1419   // filename unique.
1420   StringRef name = archiveName.empty()
1421                        ? saver.save(path)
1422                        : saver.save(archiveName + "(" + path + " at " +
1423                                     utostr(offsetInArchive) + ")");
1424   MemoryBufferRef mbref(mb.getBuffer(), name);
1425 
1426   obj = CHECK(lto::InputFile::create(mbref), this);
1427 
1428   Triple t(obj->getTargetTriple());
1429   ekind = getBitcodeELFKind(t);
1430   emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1431 }
1432 
1433 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1434   switch (gvVisibility) {
1435   case GlobalValue::DefaultVisibility:
1436     return STV_DEFAULT;
1437   case GlobalValue::HiddenVisibility:
1438     return STV_HIDDEN;
1439   case GlobalValue::ProtectedVisibility:
1440     return STV_PROTECTED;
1441   }
1442   llvm_unreachable("unknown visibility");
1443 }
1444 
1445 template <class ELFT>
1446 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1447                                    const lto::InputFile::Symbol &objSym,
1448                                    BitcodeFile &f) {
1449   StringRef name = saver.save(objSym.getName());
1450   uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1451   uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1452   uint8_t visibility = mapVisibility(objSym.getVisibility());
1453   bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1454 
1455   int c = objSym.getComdatIndex();
1456   if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1457     Undefined newSym(&f, name, binding, visibility, type);
1458     if (canOmitFromDynSym)
1459       newSym.exportDynamic = false;
1460     Symbol *ret = symtab->addSymbol(newSym);
1461     ret->referenced = true;
1462     return ret;
1463   }
1464 
1465   if (objSym.isCommon())
1466     return symtab->addSymbol(
1467         CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1468                      objSym.getCommonAlignment(), objSym.getCommonSize()});
1469 
1470   Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1471   if (canOmitFromDynSym)
1472     newSym.exportDynamic = false;
1473   return symtab->addSymbol(newSym);
1474 }
1475 
1476 template <class ELFT> void BitcodeFile::parse() {
1477   std::vector<bool> keptComdats;
1478   for (StringRef s : obj->getComdatTable())
1479     keptComdats.push_back(
1480         symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1481 
1482   for (const lto::InputFile::Symbol &objSym : obj->symbols())
1483     symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1484 
1485   for (auto l : obj->getDependentLibraries())
1486     addDependentLibrary(l, this);
1487 }
1488 
1489 void BinaryFile::parse() {
1490   ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1491   auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1492                                      8, data, ".data");
1493   sections.push_back(section);
1494 
1495   // For each input file foo that is embedded to a result as a binary
1496   // blob, we define _binary_foo_{start,end,size} symbols, so that
1497   // user programs can access blobs by name. Non-alphanumeric
1498   // characters in a filename are replaced with underscore.
1499   std::string s = "_binary_" + mb.getBufferIdentifier().str();
1500   for (size_t i = 0; i < s.size(); ++i)
1501     if (!isAlnum(s[i]))
1502       s[i] = '_';
1503 
1504   symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1505                             STV_DEFAULT, STT_OBJECT, 0, 0, section});
1506   symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1507                             STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1508   symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1509                             STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1510 }
1511 
1512 InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1513                             uint64_t offsetInArchive) {
1514   if (isBitcode(mb))
1515     return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1516 
1517   switch (getELFKind(mb, archiveName)) {
1518   case ELF32LEKind:
1519     return make<ObjFile<ELF32LE>>(mb, archiveName);
1520   case ELF32BEKind:
1521     return make<ObjFile<ELF32BE>>(mb, archiveName);
1522   case ELF64LEKind:
1523     return make<ObjFile<ELF64LE>>(mb, archiveName);
1524   case ELF64BEKind:
1525     return make<ObjFile<ELF64BE>>(mb, archiveName);
1526   default:
1527     llvm_unreachable("getELFKind");
1528   }
1529 }
1530 
1531 void LazyObjFile::fetch() {
1532   if (mb.getBuffer().empty())
1533     return;
1534 
1535   InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1536   file->groupId = groupId;
1537 
1538   mb = {};
1539 
1540   // Copy symbol vector so that the new InputFile doesn't have to
1541   // insert the same defined symbols to the symbol table again.
1542   file->symbols = std::move(symbols);
1543 
1544   parseFile(file);
1545 }
1546 
1547 template <class ELFT> void LazyObjFile::parse() {
1548   using Elf_Sym = typename ELFT::Sym;
1549 
1550   // A lazy object file wraps either a bitcode file or an ELF file.
1551   if (isBitcode(this->mb)) {
1552     std::unique_ptr<lto::InputFile> obj =
1553         CHECK(lto::InputFile::create(this->mb), this);
1554     for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1555       if (sym.isUndefined())
1556         continue;
1557       symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1558     }
1559     return;
1560   }
1561 
1562   if (getELFKind(this->mb, archiveName) != config->ekind) {
1563     error("incompatible file: " + this->mb.getBufferIdentifier());
1564     return;
1565   }
1566 
1567   // Find a symbol table.
1568   ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1569   ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1570 
1571   for (const typename ELFT::Shdr &sec : sections) {
1572     if (sec.sh_type != SHT_SYMTAB)
1573       continue;
1574 
1575     // A symbol table is found.
1576     ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1577     uint32_t firstGlobal = sec.sh_info;
1578     StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1579     this->symbols.resize(eSyms.size());
1580 
1581     // Get existing symbols or insert placeholder symbols.
1582     for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1583       if (eSyms[i].st_shndx != SHN_UNDEF)
1584         this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1585 
1586     // Replace existing symbols with LazyObject symbols.
1587     //
1588     // resolve() may trigger this->fetch() if an existing symbol is an
1589     // undefined symbol. If that happens, this LazyObjFile has served
1590     // its purpose, and we can exit from the loop early.
1591     for (Symbol *sym : this->symbols) {
1592       if (!sym)
1593         continue;
1594       sym->resolve(LazyObject{*this, sym->getName()});
1595 
1596       // MemoryBuffer is emptied if this file is instantiated as ObjFile.
1597       if (mb.getBuffer().empty())
1598         return;
1599     }
1600     return;
1601   }
1602 }
1603 
1604 std::string replaceThinLTOSuffix(StringRef path) {
1605   StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1606   StringRef repl = config->thinLTOObjectSuffixReplace.second;
1607 
1608   if (path.consume_back(suffix))
1609     return (path + repl).str();
1610   return path;
1611 }
1612 
1613 template void BitcodeFile::parse<ELF32LE>();
1614 template void BitcodeFile::parse<ELF32BE>();
1615 template void BitcodeFile::parse<ELF64LE>();
1616 template void BitcodeFile::parse<ELF64BE>();
1617 
1618 template void LazyObjFile::parse<ELF32LE>();
1619 template void LazyObjFile::parse<ELF32BE>();
1620 template void LazyObjFile::parse<ELF64LE>();
1621 template void LazyObjFile::parse<ELF64BE>();
1622 
1623 template class ObjFile<ELF32LE>;
1624 template class ObjFile<ELF32BE>;
1625 template class ObjFile<ELF64LE>;
1626 template class ObjFile<ELF64BE>;
1627 
1628 template void SharedFile::parse<ELF32LE>();
1629 template void SharedFile::parse<ELF32BE>();
1630 template void SharedFile::parse<ELF64LE>();
1631 template void SharedFile::parse<ELF64BE>();
1632 
1633 } // namespace elf
1634 } // namespace lld
1635