1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
23 #include <algorithm>
24 #include <mutex>
25 #include <vector>
26 
27 using namespace llvm;
28 using namespace llvm::ELF;
29 using namespace llvm::object;
30 using namespace llvm::support;
31 using namespace llvm::support::endian;
32 using namespace llvm::sys;
33 using namespace lld;
34 using namespace lld::elf;
35 
36 SmallVector<InputSectionBase *, 0> elf::inputSections;
37 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
38 
39 // Returns a string to construct an error message.
40 std::string lld::toString(const InputSectionBase *sec) {
41   return (toString(sec->file) + ":(" + sec->name + ")").str();
42 }
43 
44 template <class ELFT>
45 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
46                                             const typename ELFT::Shdr &hdr) {
47   if (hdr.sh_type == SHT_NOBITS)
48     return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
49   return check(file.getObj().getSectionContents(hdr));
50 }
51 
52 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
53                                    uint32_t type, uint64_t entsize,
54                                    uint32_t link, uint32_t info,
55                                    uint32_t alignment, ArrayRef<uint8_t> data,
56                                    StringRef name, Kind sectionKind)
57     : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
58                   link),
59       file(file), rawData(data) {
60   // In order to reduce memory allocation, we assume that mergeable
61   // sections are smaller than 4 GiB, which is not an unreasonable
62   // assumption as of 2017.
63   if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
64     error(toString(this) + ": section too large");
65 
66   // The ELF spec states that a value of 0 means the section has
67   // no alignment constraints.
68   uint32_t v = std::max<uint32_t>(alignment, 1);
69   if (!isPowerOf2_64(v))
70     fatal(toString(this) + ": sh_addralign is not a power of 2");
71   this->alignment = v;
72 
73   // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
74   // longer supported.
75   if (flags & SHF_COMPRESSED)
76     invokeELFT(parseCompressedHeader);
77 }
78 
79 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
80 // SHF_GROUP is a marker that a section belongs to some comdat group.
81 // That flag doesn't make sense in an executable.
82 static uint64_t getFlags(uint64_t flags) {
83   flags &= ~(uint64_t)SHF_INFO_LINK;
84   if (!config->relocatable)
85     flags &= ~(uint64_t)SHF_GROUP;
86   return flags;
87 }
88 
89 template <class ELFT>
90 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
91                                    const typename ELFT::Shdr &hdr,
92                                    StringRef name, Kind sectionKind)
93     : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
94                        hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
95                        hdr.sh_addralign, getSectionContents(file, hdr), name,
96                        sectionKind) {
97   // We reject object files having insanely large alignments even though
98   // they are allowed by the spec. I think 4GB is a reasonable limitation.
99   // We might want to relax this in the future.
100   if (hdr.sh_addralign > UINT32_MAX)
101     fatal(toString(&file) + ": section sh_addralign is too large");
102 }
103 
104 size_t InputSectionBase::getSize() const {
105   if (auto *s = dyn_cast<SyntheticSection>(this))
106     return s->getSize();
107   if (uncompressedSize >= 0)
108     return uncompressedSize;
109   return rawData.size() - bytesDropped;
110 }
111 
112 void InputSectionBase::uncompress() const {
113   size_t size = uncompressedSize;
114   uint8_t *uncompressedBuf;
115   {
116     static std::mutex mu;
117     std::lock_guard<std::mutex> lock(mu);
118     uncompressedBuf = bAlloc().Allocate<uint8_t>(size);
119   }
120 
121   if (Error e = compression::zlib::uncompress(rawData, uncompressedBuf, size))
122     fatal(toString(this) +
123           ": uncompress failed: " + llvm::toString(std::move(e)));
124   rawData = makeArrayRef(uncompressedBuf, size);
125   uncompressedSize = -1;
126 }
127 
128 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const {
129   if (relSecIdx == 0)
130     return {};
131   RelsOrRelas<ELFT> ret;
132   typename ELFT::Shdr shdr =
133       cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx];
134   if (shdr.sh_type == SHT_REL) {
135     ret.rels = makeArrayRef(reinterpret_cast<const typename ELFT::Rel *>(
136                                 file->mb.getBufferStart() + shdr.sh_offset),
137                             shdr.sh_size / sizeof(typename ELFT::Rel));
138   } else {
139     assert(shdr.sh_type == SHT_RELA);
140     ret.relas = makeArrayRef(reinterpret_cast<const typename ELFT::Rela *>(
141                                  file->mb.getBufferStart() + shdr.sh_offset),
142                              shdr.sh_size / sizeof(typename ELFT::Rela));
143   }
144   return ret;
145 }
146 
147 uint64_t SectionBase::getOffset(uint64_t offset) const {
148   switch (kind()) {
149   case Output: {
150     auto *os = cast<OutputSection>(this);
151     // For output sections we treat offset -1 as the end of the section.
152     return offset == uint64_t(-1) ? os->size : offset;
153   }
154   case Regular:
155   case Synthetic:
156     return cast<InputSection>(this)->outSecOff + offset;
157   case EHFrame: {
158     // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
159     // crtbeginT.o may reference the start of an empty .eh_frame to identify the
160     // start of the output .eh_frame. Just return offset.
161     //
162     // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
163     // discarded due to GC/ICF. We should compute the output section offset.
164     const EhInputSection *es = cast<EhInputSection>(this);
165     if (!es->rawData.empty())
166       if (InputSection *isec = es->getParent())
167         return isec->outSecOff + es->getParentOffset(offset);
168     return offset;
169   }
170   case Merge:
171     const MergeInputSection *ms = cast<MergeInputSection>(this);
172     if (InputSection *isec = ms->getParent())
173       return isec->outSecOff + ms->getParentOffset(offset);
174     return ms->getParentOffset(offset);
175   }
176   llvm_unreachable("invalid section kind");
177 }
178 
179 uint64_t SectionBase::getVA(uint64_t offset) const {
180   const OutputSection *out = getOutputSection();
181   return (out ? out->addr : 0) + getOffset(offset);
182 }
183 
184 OutputSection *SectionBase::getOutputSection() {
185   InputSection *sec;
186   if (auto *isec = dyn_cast<InputSection>(this))
187     sec = isec;
188   else if (auto *ms = dyn_cast<MergeInputSection>(this))
189     sec = ms->getParent();
190   else if (auto *eh = dyn_cast<EhInputSection>(this))
191     sec = eh->getParent();
192   else
193     return cast<OutputSection>(this);
194   return sec ? sec->getParent() : nullptr;
195 }
196 
197 // When a section is compressed, `rawData` consists with a header followed
198 // by zlib-compressed data. This function parses a header to initialize
199 // `uncompressedSize` member and remove the header from `rawData`.
200 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
201   flags &= ~(uint64_t)SHF_COMPRESSED;
202 
203   // New-style header
204   if (rawData.size() < sizeof(typename ELFT::Chdr)) {
205     error(toString(this) + ": corrupted compressed section");
206     return;
207   }
208 
209   auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data());
210   if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
211     if (!compression::zlib::isAvailable())
212       error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
213                              "not built with zlib support");
214   } else {
215     error(toString(this) + ": unsupported compression type (" +
216           Twine(hdr->ch_type) + ")");
217     return;
218   }
219 
220   uncompressedSize = hdr->ch_size;
221   alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
222   rawData = rawData.slice(sizeof(*hdr));
223 }
224 
225 InputSection *InputSectionBase::getLinkOrderDep() const {
226   assert(flags & SHF_LINK_ORDER);
227   if (!link)
228     return nullptr;
229   return cast<InputSection>(file->getSections()[link]);
230 }
231 
232 // Find a function symbol that encloses a given location.
233 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
234   for (Symbol *b : file->getSymbols())
235     if (Defined *d = dyn_cast<Defined>(b))
236       if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
237           offset < d->value + d->size)
238         return d;
239   return nullptr;
240 }
241 
242 // Returns an object file location string. Used to construct an error message.
243 std::string InputSectionBase::getLocation(uint64_t offset) {
244   std::string secAndOffset =
245       (name + "+0x" + Twine::utohexstr(offset) + ")").str();
246 
247   // We don't have file for synthetic sections.
248   if (file == nullptr)
249     return (config->outputFile + ":(" + secAndOffset).str();
250 
251   std::string filename = toString(file);
252   if (Defined *d = getEnclosingFunction(offset))
253     return filename + ":(function " + toString(*d) + ": " + secAndOffset;
254 
255   return filename + ":(" + secAndOffset;
256 }
257 
258 // This function is intended to be used for constructing an error message.
259 // The returned message looks like this:
260 //
261 //   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
262 //
263 //  Returns an empty string if there's no way to get line info.
264 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
265   return file->getSrcMsg(sym, *this, offset);
266 }
267 
268 // Returns a filename string along with an optional section name. This
269 // function is intended to be used for constructing an error
270 // message. The returned message looks like this:
271 //
272 //   path/to/foo.o:(function bar)
273 //
274 // or
275 //
276 //   path/to/foo.o:(function bar) in archive path/to/bar.a
277 std::string InputSectionBase::getObjMsg(uint64_t off) {
278   std::string filename = std::string(file->getName());
279 
280   std::string archive;
281   if (!file->archiveName.empty())
282     archive = (" in archive " + file->archiveName).str();
283 
284   // Find a symbol that encloses a given location. getObjMsg may be called
285   // before ObjFile::initializeLocalSymbols where local symbols are initialized.
286   for (Symbol *b : file->getSymbols())
287     if (auto *d = dyn_cast_or_null<Defined>(b))
288       if (d->section == this && d->value <= off && off < d->value + d->size)
289         return filename + ":(" + toString(*d) + ")" + archive;
290 
291   // If there's no symbol, print out the offset in the section.
292   return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
293       .str();
294 }
295 
296 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
297 
298 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
299                            uint32_t alignment, ArrayRef<uint8_t> data,
300                            StringRef name, Kind k)
301     : InputSectionBase(f, flags, type,
302                        /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
303                        name, k) {}
304 
305 template <class ELFT>
306 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
307                            StringRef name)
308     : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
309 
310 // Copy SHT_GROUP section contents. Used only for the -r option.
311 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
312   // ELFT::Word is the 32-bit integral type in the target endianness.
313   using u32 = typename ELFT::Word;
314   ArrayRef<u32> from = getDataAs<u32>();
315   auto *to = reinterpret_cast<u32 *>(buf);
316 
317   // The first entry is not a section number but a flag.
318   *to++ = from[0];
319 
320   // Adjust section numbers because section numbers in an input object files are
321   // different in the output. We also need to handle combined or discarded
322   // members.
323   ArrayRef<InputSectionBase *> sections = file->getSections();
324   DenseSet<uint32_t> seen;
325   for (uint32_t idx : from.slice(1)) {
326     OutputSection *osec = sections[idx]->getOutputSection();
327     if (osec && seen.insert(osec->sectionIndex).second)
328       *to++ = osec->sectionIndex;
329   }
330 }
331 
332 InputSectionBase *InputSection::getRelocatedSection() const {
333   if (!file || (type != SHT_RELA && type != SHT_REL))
334     return nullptr;
335   ArrayRef<InputSectionBase *> sections = file->getSections();
336   return sections[info];
337 }
338 
339 // This is used for -r and --emit-relocs. We can't use memcpy to copy
340 // relocations because we need to update symbol table offset and section index
341 // for each relocation. So we copy relocations one by one.
342 template <class ELFT, class RelTy>
343 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
344   const TargetInfo &target = *elf::target;
345   InputSectionBase *sec = getRelocatedSection();
346   (void)sec->data(); // uncompress if needed
347 
348   for (const RelTy &rel : rels) {
349     RelType type = rel.getType(config->isMips64EL);
350     const ObjFile<ELFT> *file = getFile<ELFT>();
351     Symbol &sym = file->getRelocTargetSym(rel);
352 
353     auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
354     buf += sizeof(RelTy);
355 
356     if (RelTy::IsRela)
357       p->r_addend = getAddend<ELFT>(rel);
358 
359     // Output section VA is zero for -r, so r_offset is an offset within the
360     // section, but for --emit-relocs it is a virtual address.
361     p->r_offset = sec->getVA(rel.r_offset);
362     p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
363                         config->isMips64EL);
364 
365     if (sym.type == STT_SECTION) {
366       // We combine multiple section symbols into only one per
367       // section. This means we have to update the addend. That is
368       // trivial for Elf_Rela, but for Elf_Rel we have to write to the
369       // section data. We do that by adding to the Relocation vector.
370 
371       // .eh_frame is horribly special and can reference discarded sections. To
372       // avoid having to parse and recreate .eh_frame, we just replace any
373       // relocation in it pointing to discarded sections with R_*_NONE, which
374       // hopefully creates a frame that is ignored at runtime. Also, don't warn
375       // on .gcc_except_table and debug sections.
376       //
377       // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
378       auto *d = dyn_cast<Defined>(&sym);
379       if (!d) {
380         if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
381             sec->name != ".gcc_except_table" && sec->name != ".got2" &&
382             sec->name != ".toc") {
383           uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
384           Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
385           warn("relocation refers to a discarded section: " +
386                CHECK(file->getObj().getSectionName(sec), file) +
387                "\n>>> referenced by " + getObjMsg(p->r_offset));
388         }
389         p->setSymbolAndType(0, 0, false);
390         continue;
391       }
392       SectionBase *section = d->section;
393       if (!section->isLive()) {
394         p->setSymbolAndType(0, 0, false);
395         continue;
396       }
397 
398       int64_t addend = getAddend<ELFT>(rel);
399       const uint8_t *bufLoc = sec->rawData.begin() + rel.r_offset;
400       if (!RelTy::IsRela)
401         addend = target.getImplicitAddend(bufLoc, type);
402 
403       if (config->emachine == EM_MIPS &&
404           target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
405         // Some MIPS relocations depend on "gp" value. By default,
406         // this value has 0x7ff0 offset from a .got section. But
407         // relocatable files produced by a compiler or a linker
408         // might redefine this default value and we must use it
409         // for a calculation of the relocation result. When we
410         // generate EXE or DSO it's trivial. Generating a relocatable
411         // output is more difficult case because the linker does
412         // not calculate relocations in this mode and loses
413         // individual "gp" values used by each input object file.
414         // As a workaround we add the "gp" value to the relocation
415         // addend and save it back to the file.
416         addend += sec->getFile<ELFT>()->mipsGp0;
417       }
418 
419       if (RelTy::IsRela)
420         p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
421       else if (config->relocatable && type != target.noneRel)
422         sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
423     } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
424                p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
425       // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
426       // indicates that r30 is relative to the input section .got2
427       // (r_addend>=0x8000), after linking, r30 should be relative to the output
428       // section .got2 . To compensate for the shift, adjust r_addend by
429       // ppc32Got->outSecOff.
430       p->r_addend += sec->file->ppc32Got2->outSecOff;
431     }
432   }
433 }
434 
435 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
436 // references specially. The general rule is that the value of the symbol in
437 // this context is the address of the place P. A further special case is that
438 // branch relocations to an undefined weak reference resolve to the next
439 // instruction.
440 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
441                                               uint32_t p) {
442   switch (type) {
443   // Unresolved branch relocations to weak references resolve to next
444   // instruction, this will be either 2 or 4 bytes on from P.
445   case R_ARM_THM_JUMP8:
446   case R_ARM_THM_JUMP11:
447     return p + 2 + a;
448   case R_ARM_CALL:
449   case R_ARM_JUMP24:
450   case R_ARM_PC24:
451   case R_ARM_PLT32:
452   case R_ARM_PREL31:
453   case R_ARM_THM_JUMP19:
454   case R_ARM_THM_JUMP24:
455     return p + 4 + a;
456   case R_ARM_THM_CALL:
457     // We don't want an interworking BLX to ARM
458     return p + 5 + a;
459   // Unresolved non branch pc-relative relocations
460   // R_ARM_TARGET2 which can be resolved relatively is not present as it never
461   // targets a weak-reference.
462   case R_ARM_MOVW_PREL_NC:
463   case R_ARM_MOVT_PREL:
464   case R_ARM_REL32:
465   case R_ARM_THM_ALU_PREL_11_0:
466   case R_ARM_THM_MOVW_PREL_NC:
467   case R_ARM_THM_MOVT_PREL:
468   case R_ARM_THM_PC12:
469     return p + a;
470   // p + a is unrepresentable as negative immediates can't be encoded.
471   case R_ARM_THM_PC8:
472     return p;
473   }
474   llvm_unreachable("ARM pc-relative relocation expected\n");
475 }
476 
477 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
478 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
479   switch (type) {
480   // Unresolved branch relocations to weak references resolve to next
481   // instruction, this is 4 bytes on from P.
482   case R_AARCH64_CALL26:
483   case R_AARCH64_CONDBR19:
484   case R_AARCH64_JUMP26:
485   case R_AARCH64_TSTBR14:
486     return p + 4;
487   // Unresolved non branch pc-relative relocations
488   case R_AARCH64_PREL16:
489   case R_AARCH64_PREL32:
490   case R_AARCH64_PREL64:
491   case R_AARCH64_ADR_PREL_LO21:
492   case R_AARCH64_LD_PREL_LO19:
493   case R_AARCH64_PLT32:
494     return p;
495   }
496   llvm_unreachable("AArch64 pc-relative relocation expected\n");
497 }
498 
499 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
500   switch (type) {
501   case R_RISCV_BRANCH:
502   case R_RISCV_JAL:
503   case R_RISCV_CALL:
504   case R_RISCV_CALL_PLT:
505   case R_RISCV_RVC_BRANCH:
506   case R_RISCV_RVC_JUMP:
507     return p;
508   default:
509     return 0;
510   }
511 }
512 
513 // ARM SBREL relocations are of the form S + A - B where B is the static base
514 // The ARM ABI defines base to be "addressing origin of the output segment
515 // defining the symbol S". We defined the "addressing origin"/static base to be
516 // the base of the PT_LOAD segment containing the Sym.
517 // The procedure call standard only defines a Read Write Position Independent
518 // RWPI variant so in practice we should expect the static base to be the base
519 // of the RW segment.
520 static uint64_t getARMStaticBase(const Symbol &sym) {
521   OutputSection *os = sym.getOutputSection();
522   if (!os || !os->ptLoad || !os->ptLoad->firstSec)
523     fatal("SBREL relocation to " + sym.getName() + " without static base");
524   return os->ptLoad->firstSec->addr;
525 }
526 
527 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
528 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
529 // is calculated using PCREL_HI20's symbol.
530 //
531 // This function returns the R_RISCV_PCREL_HI20 relocation from
532 // R_RISCV_PCREL_LO12's symbol and addend.
533 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
534   const Defined *d = cast<Defined>(sym);
535   if (!d->section) {
536     errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
537                 sym->getName());
538     return nullptr;
539   }
540   InputSection *isec = cast<InputSection>(d->section);
541 
542   if (addend != 0)
543     warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
544          isec->getObjMsg(d->value) + " is ignored");
545 
546   // Relocations are sorted by offset, so we can use std::equal_range to do
547   // binary search.
548   Relocation r;
549   r.offset = d->value;
550   auto range =
551       std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
552                        [](const Relocation &lhs, const Relocation &rhs) {
553                          return lhs.offset < rhs.offset;
554                        });
555 
556   for (auto it = range.first; it != range.second; ++it)
557     if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
558         it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
559       return &*it;
560 
561   errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
562               isec->getObjMsg(d->value) +
563               " without an associated R_RISCV_PCREL_HI20 relocation");
564   return nullptr;
565 }
566 
567 // A TLS symbol's virtual address is relative to the TLS segment. Add a
568 // target-specific adjustment to produce a thread-pointer-relative offset.
569 static int64_t getTlsTpOffset(const Symbol &s) {
570   // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
571   if (&s == ElfSym::tlsModuleBase)
572     return 0;
573 
574   // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
575   // while most others use Variant 1. At run time TP will be aligned to p_align.
576 
577   // Variant 1. TP will be followed by an optional gap (which is the size of 2
578   // pointers on ARM/AArch64, 0 on other targets), followed by alignment
579   // padding, then the static TLS blocks. The alignment padding is added so that
580   // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
581   //
582   // Variant 2. Static TLS blocks, followed by alignment padding are placed
583   // before TP. The alignment padding is added so that (TP - padding -
584   // p_memsz) is congruent to p_vaddr modulo p_align.
585   PhdrEntry *tls = Out::tlsPhdr;
586   switch (config->emachine) {
587     // Variant 1.
588   case EM_ARM:
589   case EM_AARCH64:
590     return s.getVA(0) + config->wordsize * 2 +
591            ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
592   case EM_MIPS:
593   case EM_PPC:
594   case EM_PPC64:
595     // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
596     // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
597     // data and 0xf000 of the program's TLS segment.
598     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
599   case EM_RISCV:
600     return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
601 
602     // Variant 2.
603   case EM_HEXAGON:
604   case EM_SPARCV9:
605   case EM_386:
606   case EM_X86_64:
607     return s.getVA(0) - tls->p_memsz -
608            ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
609   default:
610     llvm_unreachable("unhandled Config->EMachine");
611   }
612 }
613 
614 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
615                                             int64_t a, uint64_t p,
616                                             const Symbol &sym, RelExpr expr) {
617   switch (expr) {
618   case R_ABS:
619   case R_DTPREL:
620   case R_RELAX_TLS_LD_TO_LE_ABS:
621   case R_RELAX_GOT_PC_NOPIC:
622   case R_RISCV_ADD:
623     return sym.getVA(a);
624   case R_ADDEND:
625     return a;
626   case R_RELAX_HINT:
627     return 0;
628   case R_ARM_SBREL:
629     return sym.getVA(a) - getARMStaticBase(sym);
630   case R_GOT:
631   case R_RELAX_TLS_GD_TO_IE_ABS:
632     return sym.getGotVA() + a;
633   case R_GOTONLY_PC:
634     return in.got->getVA() + a - p;
635   case R_GOTPLTONLY_PC:
636     return in.gotPlt->getVA() + a - p;
637   case R_GOTREL:
638   case R_PPC64_RELAX_TOC:
639     return sym.getVA(a) - in.got->getVA();
640   case R_GOTPLTREL:
641     return sym.getVA(a) - in.gotPlt->getVA();
642   case R_GOTPLT:
643   case R_RELAX_TLS_GD_TO_IE_GOTPLT:
644     return sym.getGotVA() + a - in.gotPlt->getVA();
645   case R_TLSLD_GOT_OFF:
646   case R_GOT_OFF:
647   case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
648     return sym.getGotOffset() + a;
649   case R_AARCH64_GOT_PAGE_PC:
650   case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
651     return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
652   case R_AARCH64_GOT_PAGE:
653     return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
654   case R_GOT_PC:
655   case R_RELAX_TLS_GD_TO_IE:
656     return sym.getGotVA() + a - p;
657   case R_MIPS_GOTREL:
658     return sym.getVA(a) - in.mipsGot->getGp(file);
659   case R_MIPS_GOT_GP:
660     return in.mipsGot->getGp(file) + a;
661   case R_MIPS_GOT_GP_PC: {
662     // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
663     // is _gp_disp symbol. In that case we should use the following
664     // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
665     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
666     // microMIPS variants of these relocations use slightly different
667     // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
668     // to correctly handle less-significant bit of the microMIPS symbol.
669     uint64_t v = in.mipsGot->getGp(file) + a - p;
670     if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
671       v += 4;
672     if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
673       v -= 1;
674     return v;
675   }
676   case R_MIPS_GOT_LOCAL_PAGE:
677     // If relocation against MIPS local symbol requires GOT entry, this entry
678     // should be initialized by 'page address'. This address is high 16-bits
679     // of sum the symbol's value and the addend.
680     return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
681            in.mipsGot->getGp(file);
682   case R_MIPS_GOT_OFF:
683   case R_MIPS_GOT_OFF32:
684     // In case of MIPS if a GOT relocation has non-zero addend this addend
685     // should be applied to the GOT entry content not to the GOT entry offset.
686     // That is why we use separate expression type.
687     return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
688            in.mipsGot->getGp(file);
689   case R_MIPS_TLSGD:
690     return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
691            in.mipsGot->getGp(file);
692   case R_MIPS_TLSLD:
693     return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
694            in.mipsGot->getGp(file);
695   case R_AARCH64_PAGE_PC: {
696     uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
697     return getAArch64Page(val) - getAArch64Page(p);
698   }
699   case R_RISCV_PC_INDIRECT: {
700     if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
701       return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
702                               *hiRel->sym, hiRel->expr);
703     return 0;
704   }
705   case R_PC:
706   case R_ARM_PCA: {
707     uint64_t dest;
708     if (expr == R_ARM_PCA)
709       // Some PC relative ARM (Thumb) relocations align down the place.
710       p = p & 0xfffffffc;
711     if (sym.isUndefined()) {
712       // On ARM and AArch64 a branch to an undefined weak resolves to the next
713       // instruction, otherwise the place. On RISCV, resolve an undefined weak
714       // to the same instruction to cause an infinite loop (making the user
715       // aware of the issue) while ensuring no overflow.
716       // Note: if the symbol is hidden, its binding has been converted to local,
717       // so we just check isUndefined() here.
718       if (config->emachine == EM_ARM)
719         dest = getARMUndefinedRelativeWeakVA(type, a, p);
720       else if (config->emachine == EM_AARCH64)
721         dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
722       else if (config->emachine == EM_PPC)
723         dest = p;
724       else if (config->emachine == EM_RISCV)
725         dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
726       else
727         dest = sym.getVA(a);
728     } else {
729       dest = sym.getVA(a);
730     }
731     return dest - p;
732   }
733   case R_PLT:
734     return sym.getPltVA() + a;
735   case R_PLT_PC:
736   case R_PPC64_CALL_PLT:
737     return sym.getPltVA() + a - p;
738   case R_PLT_GOTPLT:
739     return sym.getPltVA() + a - in.gotPlt->getVA();
740   case R_PPC32_PLTREL:
741     // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
742     // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
743     // target VA computation.
744     return sym.getPltVA() - p;
745   case R_PPC64_CALL: {
746     uint64_t symVA = sym.getVA(a);
747     // If we have an undefined weak symbol, we might get here with a symbol
748     // address of zero. That could overflow, but the code must be unreachable,
749     // so don't bother doing anything at all.
750     if (!symVA)
751       return 0;
752 
753     // PPC64 V2 ABI describes two entry points to a function. The global entry
754     // point is used for calls where the caller and callee (may) have different
755     // TOC base pointers and r2 needs to be modified to hold the TOC base for
756     // the callee. For local calls the caller and callee share the same
757     // TOC base and so the TOC pointer initialization code should be skipped by
758     // branching to the local entry point.
759     return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
760   }
761   case R_PPC64_TOCBASE:
762     return getPPC64TocBase() + a;
763   case R_RELAX_GOT_PC:
764   case R_PPC64_RELAX_GOT_PC:
765     return sym.getVA(a) - p;
766   case R_RELAX_TLS_GD_TO_LE:
767   case R_RELAX_TLS_IE_TO_LE:
768   case R_RELAX_TLS_LD_TO_LE:
769   case R_TPREL:
770     // It is not very clear what to return if the symbol is undefined. With
771     // --noinhibit-exec, even a non-weak undefined reference may reach here.
772     // Just return A, which matches R_ABS, and the behavior of some dynamic
773     // loaders.
774     if (sym.isUndefined())
775       return a;
776     return getTlsTpOffset(sym) + a;
777   case R_RELAX_TLS_GD_TO_LE_NEG:
778   case R_TPREL_NEG:
779     if (sym.isUndefined())
780       return a;
781     return -getTlsTpOffset(sym) + a;
782   case R_SIZE:
783     return sym.getSize() + a;
784   case R_TLSDESC:
785     return in.got->getTlsDescAddr(sym) + a;
786   case R_TLSDESC_PC:
787     return in.got->getTlsDescAddr(sym) + a - p;
788   case R_TLSDESC_GOTPLT:
789     return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
790   case R_AARCH64_TLSDESC_PAGE:
791     return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p);
792   case R_TLSGD_GOT:
793     return in.got->getGlobalDynOffset(sym) + a;
794   case R_TLSGD_GOTPLT:
795     return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
796   case R_TLSGD_PC:
797     return in.got->getGlobalDynAddr(sym) + a - p;
798   case R_TLSLD_GOTPLT:
799     return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
800   case R_TLSLD_GOT:
801     return in.got->getTlsIndexOff() + a;
802   case R_TLSLD_PC:
803     return in.got->getTlsIndexVA() + a - p;
804   default:
805     llvm_unreachable("invalid expression");
806   }
807 }
808 
809 // This function applies relocations to sections without SHF_ALLOC bit.
810 // Such sections are never mapped to memory at runtime. Debug sections are
811 // an example. Relocations in non-alloc sections are much easier to
812 // handle than in allocated sections because it will never need complex
813 // treatment such as GOT or PLT (because at runtime no one refers them).
814 // So, we handle relocations for non-alloc sections directly in this
815 // function as a performance optimization.
816 template <class ELFT, class RelTy>
817 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
818   const unsigned bits = sizeof(typename ELFT::uint) * 8;
819   const TargetInfo &target = *elf::target;
820   const bool isDebug = isDebugSection(*this);
821   const bool isDebugLocOrRanges =
822       isDebug && (name == ".debug_loc" || name == ".debug_ranges");
823   const bool isDebugLine = isDebug && name == ".debug_line";
824   Optional<uint64_t> tombstone;
825   for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
826     if (patAndValue.first.match(this->name)) {
827       tombstone = patAndValue.second;
828       break;
829     }
830 
831   for (const RelTy &rel : rels) {
832     RelType type = rel.getType(config->isMips64EL);
833 
834     // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
835     // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
836     // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
837     // need to keep this bug-compatible code for a while.
838     if (config->emachine == EM_386 && type == R_386_GOTPC)
839       continue;
840 
841     uint64_t offset = rel.r_offset;
842     uint8_t *bufLoc = buf + offset;
843     int64_t addend = getAddend<ELFT>(rel);
844     if (!RelTy::IsRela)
845       addend += target.getImplicitAddend(bufLoc, type);
846 
847     Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
848     RelExpr expr = target.getRelExpr(type, sym, bufLoc);
849     if (expr == R_NONE)
850       continue;
851 
852     if (tombstone ||
853         (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) {
854       // Resolve relocations in .debug_* referencing (discarded symbols or ICF
855       // folded section symbols) to a tombstone value. Resolving to addend is
856       // unsatisfactory because the result address range may collide with a
857       // valid range of low address, or leave multiple CUs claiming ownership of
858       // the same range of code, which may confuse consumers.
859       //
860       // To address the problems, we use -1 as a tombstone value for most
861       // .debug_* sections. We have to ignore the addend because we don't want
862       // to resolve an address attribute (which may have a non-zero addend) to
863       // -1+addend (wrap around to a low address).
864       //
865       // R_DTPREL type relocations represent an offset into the dynamic thread
866       // vector. The computed value is st_value plus a non-negative offset.
867       // Negative values are invalid, so -1 can be used as the tombstone value.
868       //
869       // If the referenced symbol is discarded (made Undefined), or the
870       // section defining the referenced symbol is garbage collected,
871       // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded
872       // case. However, resolving a relocation in .debug_line to -1 would stop
873       // debugger users from setting breakpoints on the folded-in function, so
874       // exclude .debug_line.
875       //
876       // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
877       // (base address selection entry), use 1 (which is used by GNU ld for
878       // .debug_ranges).
879       //
880       // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
881       // value. Enable -1 in a future release.
882       auto *ds = dyn_cast<Defined>(&sym);
883       if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) {
884         // If -z dead-reloc-in-nonalloc= is specified, respect it.
885         const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
886                                          : (isDebugLocOrRanges ? 1 : 0);
887         target.relocateNoSym(bufLoc, type, value);
888         continue;
889       }
890     }
891 
892     // For a relocatable link, only tombstone values are applied.
893     if (config->relocatable)
894       continue;
895 
896     if (expr == R_SIZE) {
897       target.relocateNoSym(bufLoc, type,
898                            SignExtend64<bits>(sym.getSize() + addend));
899       continue;
900     }
901 
902     // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
903     // sections.
904     if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL ||
905         expr == R_RISCV_ADD) {
906       target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
907       continue;
908     }
909 
910     std::string msg = getLocation(offset) + ": has non-ABS relocation " +
911                       toString(type) + " against symbol '" + toString(sym) +
912                       "'";
913     if (expr != R_PC && expr != R_ARM_PCA) {
914       error(msg);
915       return;
916     }
917 
918     // If the control reaches here, we found a PC-relative relocation in a
919     // non-ALLOC section. Since non-ALLOC section is not loaded into memory
920     // at runtime, the notion of PC-relative doesn't make sense here. So,
921     // this is a usage error. However, GNU linkers historically accept such
922     // relocations without any errors and relocate them as if they were at
923     // address 0. For bug-compatibilty, we accept them with warnings. We
924     // know Steel Bank Common Lisp as of 2018 have this bug.
925     warn(msg);
926     target.relocateNoSym(
927         bufLoc, type,
928         SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
929   }
930 }
931 
932 // This is used when '-r' is given.
933 // For REL targets, InputSection::copyRelocations() may store artificial
934 // relocations aimed to update addends. They are handled in relocateAlloc()
935 // for allocatable sections, and this function does the same for
936 // non-allocatable sections, such as sections with debug information.
937 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
938   const unsigned bits = config->is64 ? 64 : 32;
939 
940   for (const Relocation &rel : sec->relocations) {
941     // InputSection::copyRelocations() adds only R_ABS relocations.
942     assert(rel.expr == R_ABS);
943     uint8_t *bufLoc = buf + rel.offset;
944     uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
945     target->relocate(bufLoc, rel, targetVA);
946   }
947 }
948 
949 template <class ELFT>
950 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
951   if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
952     adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
953 
954   if (flags & SHF_ALLOC) {
955     relocateAlloc(buf, bufEnd);
956     return;
957   }
958 
959   auto *sec = cast<InputSection>(this);
960   if (config->relocatable)
961     relocateNonAllocForRelocatable(sec, buf);
962   // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
963   // locations with tombstone values.
964   const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
965   if (rels.areRelocsRel())
966     sec->relocateNonAlloc<ELFT>(buf, rels.rels);
967   else
968     sec->relocateNonAlloc<ELFT>(buf, rels.relas);
969 }
970 
971 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
972   assert(flags & SHF_ALLOC);
973   const unsigned bits = config->wordsize * 8;
974   const TargetInfo &target = *elf::target;
975   uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1);
976   AArch64Relaxer aarch64relaxer(relocations);
977   for (size_t i = 0, size = relocations.size(); i != size; ++i) {
978     const Relocation &rel = relocations[i];
979     if (rel.expr == R_NONE)
980       continue;
981     uint64_t offset = rel.offset;
982     uint8_t *bufLoc = buf + offset;
983 
984     uint64_t secAddr = getOutputSection()->addr;
985     if (auto *sec = dyn_cast<InputSection>(this))
986       secAddr += sec->outSecOff;
987     const uint64_t addrLoc = secAddr + offset;
988     const uint64_t targetVA =
989         SignExtend64(getRelocTargetVA(file, rel.type, rel.addend, addrLoc,
990                                       *rel.sym, rel.expr),
991                      bits);
992     switch (rel.expr) {
993     case R_RELAX_HINT:
994       continue;
995     case R_RELAX_GOT_PC:
996     case R_RELAX_GOT_PC_NOPIC:
997       target.relaxGot(bufLoc, rel, targetVA);
998       break;
999     case R_AARCH64_GOT_PAGE_PC:
1000       if (i + 1 < size && aarch64relaxer.tryRelaxAdrpLdr(
1001                               rel, relocations[i + 1], secAddr, buf)) {
1002         ++i;
1003         continue;
1004       }
1005       target.relocate(bufLoc, rel, targetVA);
1006       break;
1007     case R_AARCH64_PAGE_PC:
1008       if (i + 1 < size && aarch64relaxer.tryRelaxAdrpAdd(
1009                               rel, relocations[i + 1], secAddr, buf)) {
1010         ++i;
1011         continue;
1012       }
1013       target.relocate(bufLoc, rel, targetVA);
1014       break;
1015     case R_PPC64_RELAX_GOT_PC: {
1016       // The R_PPC64_PCREL_OPT relocation must appear immediately after
1017       // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1018       // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1019       // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1020       // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1021       // and only relax the other if the saved offset matches.
1022       if (rel.type == R_PPC64_GOT_PCREL34)
1023         lastPPCRelaxedRelocOff = offset;
1024       if (rel.type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff)
1025         break;
1026       target.relaxGot(bufLoc, rel, targetVA);
1027       break;
1028     }
1029     case R_PPC64_RELAX_TOC:
1030       // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1031       // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1032       // entry, there may be R_PPC64_TOC16_HA not paired with
1033       // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1034       // opportunities but is safe.
1035       if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1036           !tryRelaxPPC64TocIndirection(rel, bufLoc))
1037         target.relocate(bufLoc, rel, targetVA);
1038       break;
1039     case R_RELAX_TLS_IE_TO_LE:
1040       target.relaxTlsIeToLe(bufLoc, rel, targetVA);
1041       break;
1042     case R_RELAX_TLS_LD_TO_LE:
1043     case R_RELAX_TLS_LD_TO_LE_ABS:
1044       target.relaxTlsLdToLe(bufLoc, rel, targetVA);
1045       break;
1046     case R_RELAX_TLS_GD_TO_LE:
1047     case R_RELAX_TLS_GD_TO_LE_NEG:
1048       target.relaxTlsGdToLe(bufLoc, rel, targetVA);
1049       break;
1050     case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
1051     case R_RELAX_TLS_GD_TO_IE:
1052     case R_RELAX_TLS_GD_TO_IE_ABS:
1053     case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1054     case R_RELAX_TLS_GD_TO_IE_GOTPLT:
1055       target.relaxTlsGdToIe(bufLoc, rel, targetVA);
1056       break;
1057     case R_PPC64_CALL:
1058       // If this is a call to __tls_get_addr, it may be part of a TLS
1059       // sequence that has been relaxed and turned into a nop. In this
1060       // case, we don't want to handle it as a call.
1061       if (read32(bufLoc) == 0x60000000) // nop
1062         break;
1063 
1064       // Patch a nop (0x60000000) to a ld.
1065       if (rel.sym->needsTocRestore) {
1066         // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1067         // recursive calls even if the function is preemptible. This is not
1068         // wrong in the common case where the function is not preempted at
1069         // runtime. Just ignore.
1070         if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
1071             rel.sym->file != file) {
1072           // Use substr(6) to remove the "__plt_" prefix.
1073           errorOrWarn(getErrorLocation(bufLoc) + "call to " +
1074                       lld::toString(*rel.sym).substr(6) +
1075                       " lacks nop, can't restore toc");
1076           break;
1077         }
1078         write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
1079       }
1080       target.relocate(bufLoc, rel, targetVA);
1081       break;
1082     default:
1083       target.relocate(bufLoc, rel, targetVA);
1084       break;
1085     }
1086   }
1087 
1088   // Apply jumpInstrMods.  jumpInstrMods are created when the opcode of
1089   // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
1090   // insn.  This is primarily used to relax and optimize jumps created with
1091   // basic block sections.
1092   if (jumpInstrMod) {
1093     target.applyJumpInstrMod(buf + jumpInstrMod->offset, jumpInstrMod->original,
1094                              jumpInstrMod->size);
1095   }
1096 }
1097 
1098 // For each function-defining prologue, find any calls to __morestack,
1099 // and replace them with calls to __morestack_non_split.
1100 static void switchMorestackCallsToMorestackNonSplit(
1101     DenseSet<Defined *> &prologues,
1102     SmallVector<Relocation *, 0> &morestackCalls) {
1103 
1104   // If the target adjusted a function's prologue, all calls to
1105   // __morestack inside that function should be switched to
1106   // __morestack_non_split.
1107   Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1108   if (!moreStackNonSplit) {
1109     error("mixing split-stack objects requires a definition of "
1110           "__morestack_non_split");
1111     return;
1112   }
1113 
1114   // Sort both collections to compare addresses efficiently.
1115   llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1116     return l->offset < r->offset;
1117   });
1118   std::vector<Defined *> functions(prologues.begin(), prologues.end());
1119   llvm::sort(functions, [](const Defined *l, const Defined *r) {
1120     return l->value < r->value;
1121   });
1122 
1123   auto it = morestackCalls.begin();
1124   for (Defined *f : functions) {
1125     // Find the first call to __morestack within the function.
1126     while (it != morestackCalls.end() && (*it)->offset < f->value)
1127       ++it;
1128     // Adjust all calls inside the function.
1129     while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1130       (*it)->sym = moreStackNonSplit;
1131       ++it;
1132     }
1133   }
1134 }
1135 
1136 static bool enclosingPrologueAttempted(uint64_t offset,
1137                                        const DenseSet<Defined *> &prologues) {
1138   for (Defined *f : prologues)
1139     if (f->value <= offset && offset < f->value + f->size)
1140       return true;
1141   return false;
1142 }
1143 
1144 // If a function compiled for split stack calls a function not
1145 // compiled for split stack, then the caller needs its prologue
1146 // adjusted to ensure that the called function will have enough stack
1147 // available. Find those functions, and adjust their prologues.
1148 template <class ELFT>
1149 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1150                                                          uint8_t *end) {
1151   DenseSet<Defined *> prologues;
1152   SmallVector<Relocation *, 0> morestackCalls;
1153 
1154   for (Relocation &rel : relocations) {
1155     // Ignore calls into the split-stack api.
1156     if (rel.sym->getName().startswith("__morestack")) {
1157       if (rel.sym->getName().equals("__morestack"))
1158         morestackCalls.push_back(&rel);
1159       continue;
1160     }
1161 
1162     // A relocation to non-function isn't relevant. Sometimes
1163     // __morestack is not marked as a function, so this check comes
1164     // after the name check.
1165     if (rel.sym->type != STT_FUNC)
1166       continue;
1167 
1168     // If the callee's-file was compiled with split stack, nothing to do.  In
1169     // this context, a "Defined" symbol is one "defined by the binary currently
1170     // being produced". So an "undefined" symbol might be provided by a shared
1171     // library. It is not possible to tell how such symbols were compiled, so be
1172     // conservative.
1173     if (Defined *d = dyn_cast<Defined>(rel.sym))
1174       if (InputSection *isec = cast_or_null<InputSection>(d->section))
1175         if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1176           continue;
1177 
1178     if (enclosingPrologueAttempted(rel.offset, prologues))
1179       continue;
1180 
1181     if (Defined *f = getEnclosingFunction(rel.offset)) {
1182       prologues.insert(f);
1183       if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1184                                                    f->stOther))
1185         continue;
1186       if (!getFile<ELFT>()->someNoSplitStack)
1187         error(lld::toString(this) + ": " + f->getName() +
1188               " (with -fsplit-stack) calls " + rel.sym->getName() +
1189               " (without -fsplit-stack), but couldn't adjust its prologue");
1190     }
1191   }
1192 
1193   if (target->needsMoreStackNonSplit)
1194     switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1195 }
1196 
1197 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1198   if (LLVM_UNLIKELY(type == SHT_NOBITS))
1199     return;
1200   // If -r or --emit-relocs is given, then an InputSection
1201   // may be a relocation section.
1202   if (LLVM_UNLIKELY(type == SHT_RELA)) {
1203     copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>());
1204     return;
1205   }
1206   if (LLVM_UNLIKELY(type == SHT_REL)) {
1207     copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>());
1208     return;
1209   }
1210 
1211   // If -r is given, we may have a SHT_GROUP section.
1212   if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1213     copyShtGroup<ELFT>(buf);
1214     return;
1215   }
1216 
1217   // If this is a compressed section, uncompress section contents directly
1218   // to the buffer.
1219   if (uncompressedSize >= 0) {
1220     size_t size = uncompressedSize;
1221     if (Error e = compression::zlib::uncompress(rawData, buf, size))
1222       fatal(toString(this) +
1223             ": uncompress failed: " + llvm::toString(std::move(e)));
1224     uint8_t *bufEnd = buf + size;
1225     relocate<ELFT>(buf, bufEnd);
1226     return;
1227   }
1228 
1229   // Copy section contents from source object file to output file
1230   // and then apply relocations.
1231   memcpy(buf, rawData.data(), rawData.size());
1232   relocate<ELFT>(buf, buf + rawData.size());
1233 }
1234 
1235 void InputSection::replace(InputSection *other) {
1236   alignment = std::max(alignment, other->alignment);
1237 
1238   // When a section is replaced with another section that was allocated to
1239   // another partition, the replacement section (and its associated sections)
1240   // need to be placed in the main partition so that both partitions will be
1241   // able to access it.
1242   if (partition != other->partition) {
1243     partition = 1;
1244     for (InputSection *isec : dependentSections)
1245       isec->partition = 1;
1246   }
1247 
1248   other->repl = repl;
1249   other->markDead();
1250 }
1251 
1252 template <class ELFT>
1253 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1254                                const typename ELFT::Shdr &header,
1255                                StringRef name)
1256     : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1257 
1258 SyntheticSection *EhInputSection::getParent() const {
1259   return cast_or_null<SyntheticSection>(parent);
1260 }
1261 
1262 // Returns the index of the first relocation that points to a region between
1263 // Begin and Begin+Size.
1264 template <class IntTy, class RelTy>
1265 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1266                          unsigned &relocI) {
1267   // Start search from RelocI for fast access. That works because the
1268   // relocations are sorted in .eh_frame.
1269   for (unsigned n = rels.size(); relocI < n; ++relocI) {
1270     const RelTy &rel = rels[relocI];
1271     if (rel.r_offset < begin)
1272       continue;
1273 
1274     if (rel.r_offset < begin + size)
1275       return relocI;
1276     return -1;
1277   }
1278   return -1;
1279 }
1280 
1281 // .eh_frame is a sequence of CIE or FDE records.
1282 // This function splits an input section into records and returns them.
1283 template <class ELFT> void EhInputSection::split() {
1284   const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>();
1285   // getReloc expects the relocations to be sorted by r_offset. See the comment
1286   // in scanRelocs.
1287   if (rels.areRelocsRel()) {
1288     SmallVector<typename ELFT::Rel, 0> storage;
1289     split<ELFT>(sortRels(rels.rels, storage));
1290   } else {
1291     SmallVector<typename ELFT::Rela, 0> storage;
1292     split<ELFT>(sortRels(rels.relas, storage));
1293   }
1294 }
1295 
1296 template <class ELFT, class RelTy>
1297 void EhInputSection::split(ArrayRef<RelTy> rels) {
1298   ArrayRef<uint8_t> d = rawData;
1299   const char *msg = nullptr;
1300   unsigned relI = 0;
1301   while (!d.empty()) {
1302     if (d.size() < 4) {
1303       msg = "CIE/FDE too small";
1304       break;
1305     }
1306     uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data());
1307     // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1308     // but we do not support that format yet.
1309     if (size == UINT32_MAX) {
1310       msg = "CIE/FDE too large";
1311       break;
1312     }
1313     size += 4;
1314     if (size > d.size()) {
1315       msg = "CIE/FDE ends past the end of the section";
1316       break;
1317     }
1318 
1319     uint64_t off = d.data() - rawData.data();
1320     pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1321     d = d.slice(size);
1322   }
1323   if (msg)
1324     errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1325                 getObjMsg(d.data() - rawData.data()));
1326 }
1327 
1328 // Return the offset in an output section for a given input offset.
1329 uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1330   const EhSectionPiece &piece = partition_point(
1331       pieces, [=](EhSectionPiece p) { return p.inputOff <= offset; })[-1];
1332   if (piece.outputOff == -1) // invalid piece
1333     return offset - piece.inputOff;
1334   return piece.outputOff + (offset - piece.inputOff);
1335 }
1336 
1337 static size_t findNull(StringRef s, size_t entSize) {
1338   for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1339     const char *b = s.begin() + i;
1340     if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1341       return i;
1342   }
1343   llvm_unreachable("");
1344 }
1345 
1346 SyntheticSection *MergeInputSection::getParent() const {
1347   return cast_or_null<SyntheticSection>(parent);
1348 }
1349 
1350 // Split SHF_STRINGS section. Such section is a sequence of
1351 // null-terminated strings.
1352 void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1353   const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1354   const char *p = s.data(), *end = s.data() + s.size();
1355   if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
1356     fatal(toString(this) + ": string is not null terminated");
1357   if (entSize == 1) {
1358     // Optimize the common case.
1359     do {
1360       size_t size = strlen(p);
1361       pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1362       p += size + 1;
1363     } while (p != end);
1364   } else {
1365     do {
1366       size_t size = findNull(StringRef(p, end - p), entSize);
1367       pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1368       p += size + entSize;
1369     } while (p != end);
1370   }
1371 }
1372 
1373 // Split non-SHF_STRINGS section. Such section is a sequence of
1374 // fixed size records.
1375 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1376                                         size_t entSize) {
1377   size_t size = data.size();
1378   assert((size % entSize) == 0);
1379   const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1380 
1381   pieces.resize_for_overwrite(size / entSize);
1382   for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1383     pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live};
1384 }
1385 
1386 template <class ELFT>
1387 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1388                                      const typename ELFT::Shdr &header,
1389                                      StringRef name)
1390     : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1391 
1392 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1393                                      uint64_t entsize, ArrayRef<uint8_t> data,
1394                                      StringRef name)
1395     : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1396                        /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1397 
1398 // This function is called after we obtain a complete list of input sections
1399 // that need to be linked. This is responsible to split section contents
1400 // into small chunks for further processing.
1401 //
1402 // Note that this function is called from parallelForEach. This must be
1403 // thread-safe (i.e. no memory allocation from the pools).
1404 void MergeInputSection::splitIntoPieces() {
1405   assert(pieces.empty());
1406 
1407   if (flags & SHF_STRINGS)
1408     splitStrings(toStringRef(data()), entsize);
1409   else
1410     splitNonStrings(data(), entsize);
1411 }
1412 
1413 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1414   if (rawData.size() <= offset)
1415     fatal(toString(this) + ": offset is outside the section");
1416   return partition_point(
1417       pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1418 }
1419 
1420 // Return the offset in an output section for a given input offset.
1421 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1422   const SectionPiece &piece = getSectionPiece(offset);
1423   return piece.outputOff + (offset - piece.inputOff);
1424 }
1425 
1426 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1427                                     StringRef);
1428 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1429                                     StringRef);
1430 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1431                                     StringRef);
1432 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1433                                     StringRef);
1434 
1435 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1436 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1437 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1438 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1439 
1440 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const;
1441 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const;
1442 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const;
1443 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const;
1444 
1445 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1446                                               const ELF32LE::Shdr &, StringRef);
1447 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1448                                               const ELF32BE::Shdr &, StringRef);
1449 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1450                                               const ELF64LE::Shdr &, StringRef);
1451 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1452                                               const ELF64BE::Shdr &, StringRef);
1453 
1454 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1455                                         const ELF32LE::Shdr &, StringRef);
1456 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1457                                         const ELF32BE::Shdr &, StringRef);
1458 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1459                                         const ELF64LE::Shdr &, StringRef);
1460 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1461                                         const ELF64BE::Shdr &, StringRef);
1462 
1463 template void EhInputSection::split<ELF32LE>();
1464 template void EhInputSection::split<ELF32BE>();
1465 template void EhInputSection::split<ELF64LE>();
1466 template void EhInputSection::split<ELF64BE>();
1467