1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
11 
12 #include "Relocations.h"
13 #include "lld/Common/CommonLinkerContext.h"
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/CachedHashString.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/Compiler.h"
22 
23 namespace lld {
24 namespace elf {
25 
26 class InputFile;
27 class Symbol;
28 
29 class Defined;
30 struct Partition;
31 class SyntheticSection;
32 template <class ELFT> class ObjFile;
33 class OutputSection;
34 
35 LLVM_LIBRARY_VISIBILITY extern std::vector<Partition> partitions;
36 
37 // Returned by InputSectionBase::relsOrRelas. At least one member is empty.
38 template <class ELFT> struct RelsOrRelas {
39   ArrayRef<typename ELFT::Rel> rels;
40   ArrayRef<typename ELFT::Rela> relas;
41   bool areRelocsRel() const { return rels.size(); }
42 };
43 
44 // This is the base class of all sections that lld handles. Some are sections in
45 // input files, some are sections in the produced output file and some exist
46 // just as a convenience for implementing special ways of combining some
47 // sections.
48 class SectionBase {
49 public:
50   enum Kind { Regular, Synthetic, EHFrame, Merge, Output };
51 
52   Kind kind() const { return (Kind)sectionKind; }
53 
54   uint8_t sectionKind : 3;
55 
56   // The next two bit fields are only used by InputSectionBase, but we
57   // put them here so the struct packs better.
58 
59   uint8_t bss : 1;
60 
61   // Set for sections that should not be folded by ICF.
62   uint8_t keepUnique : 1;
63 
64   uint8_t partition = 1;
65   uint32_t type;
66   StringRef name;
67 
68   // The 1-indexed partition that this section is assigned to by the garbage
69   // collector, or 0 if this section is dead. Normally there is only one
70   // partition, so this will either be 0 or 1.
71   elf::Partition &getPartition() const;
72 
73   // These corresponds to the fields in Elf_Shdr.
74   uint64_t flags;
75   uint32_t addralign;
76   uint32_t entsize;
77   uint32_t link;
78   uint32_t info;
79 
80   OutputSection *getOutputSection();
81   const OutputSection *getOutputSection() const {
82     return const_cast<SectionBase *>(this)->getOutputSection();
83   }
84 
85   // Translate an offset in the input section to an offset in the output
86   // section.
87   uint64_t getOffset(uint64_t offset) const;
88 
89   uint64_t getVA(uint64_t offset = 0) const;
90 
91   bool isLive() const { return partition != 0; }
92   void markLive() { partition = 1; }
93   void markDead() { partition = 0; }
94 
95 protected:
96   constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
97                         uint32_t entsize, uint32_t addralign, uint32_t type,
98                         uint32_t info, uint32_t link)
99       : sectionKind(sectionKind), bss(false), keepUnique(false), type(type),
100         name(name), flags(flags), addralign(addralign), entsize(entsize),
101         link(link), info(info) {}
102 };
103 
104 struct RISCVRelaxAux;
105 
106 // This corresponds to a section of an input file.
107 class InputSectionBase : public SectionBase {
108 public:
109   template <class ELFT>
110   InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
111                    StringRef name, Kind sectionKind);
112 
113   InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
114                    uint64_t entsize, uint32_t link, uint32_t info,
115                    uint32_t addralign, ArrayRef<uint8_t> data, StringRef name,
116                    Kind sectionKind);
117 
118   static bool classof(const SectionBase *s) { return s->kind() != Output; }
119 
120   // The file which contains this section. Its dynamic type is always
121   // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
122   // its static type.
123   InputFile *file;
124 
125   // Input sections are part of an output section. Special sections
126   // like .eh_frame and merge sections are first combined into a
127   // synthetic section that is then added to an output section. In all
128   // cases this points one level up.
129   SectionBase *parent = nullptr;
130 
131   // Section index of the relocation section if exists.
132   uint32_t relSecIdx = 0;
133 
134   template <class ELFT> ObjFile<ELFT> *getFile() const {
135     return cast_or_null<ObjFile<ELFT>>(file);
136   }
137 
138   // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
139   // indicate the number of bytes which is not counted in the size. This should
140   // be reset to zero after uses.
141   uint32_t bytesDropped = 0;
142 
143   mutable bool compressed = false;
144 
145   // Whether the section needs to be padded with a NOP filler due to
146   // deleteFallThruJmpInsn.
147   bool nopFiller = false;
148 
149   void drop_back(unsigned num) {
150     assert(bytesDropped + num < 256);
151     bytesDropped += num;
152   }
153 
154   void push_back(uint64_t num) {
155     assert(bytesDropped >= num);
156     bytesDropped -= num;
157   }
158 
159   mutable const uint8_t *content_;
160   uint64_t size;
161 
162   void trim() {
163     if (bytesDropped) {
164       size -= bytesDropped;
165       bytesDropped = 0;
166     }
167   }
168 
169   ArrayRef<uint8_t> content() const {
170     return ArrayRef<uint8_t>(content_, size);
171   }
172   ArrayRef<uint8_t> contentMaybeDecompress() const {
173     if (compressed)
174       decompress();
175     return content();
176   }
177 
178   // The next member in the section group if this section is in a group. This is
179   // used by --gc-sections.
180   InputSectionBase *nextInSectionGroup = nullptr;
181 
182   template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
183 
184   // InputSections that are dependent on us (reverse dependency for GC)
185   llvm::TinyPtrVector<InputSection *> dependentSections;
186 
187   // Returns the size of this section (even if this is a common or BSS.)
188   size_t getSize() const;
189 
190   InputSection *getLinkOrderDep() const;
191 
192   // Get a symbol that encloses this offset from within the section. If type is
193   // not zero, return a symbol with the specified type.
194   Defined *getEnclosingSymbol(uint64_t offset, uint8_t type = 0) const;
195   Defined *getEnclosingFunction(uint64_t offset) const {
196     return getEnclosingSymbol(offset, llvm::ELF::STT_FUNC);
197   }
198 
199   // Returns a source location string. Used to construct an error message.
200   std::string getLocation(uint64_t offset) const;
201   std::string getSrcMsg(const Symbol &sym, uint64_t offset) const;
202   std::string getObjMsg(uint64_t offset) const;
203 
204   // Each section knows how to relocate itself. These functions apply
205   // relocations, assuming that Buf points to this section's copy in
206   // the mmap'ed output buffer.
207   template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
208   static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
209                                    int64_t A, uint64_t P, const Symbol &Sym,
210                                    RelExpr Expr);
211 
212   // The native ELF reloc data type is not very convenient to handle.
213   // So we convert ELF reloc records to our own records in Relocations.cpp.
214   // This vector contains such "cooked" relocations.
215   SmallVector<Relocation, 0> relocations;
216 
217   void addReloc(const Relocation &r) { relocations.push_back(r); }
218   MutableArrayRef<Relocation> relocs() { return relocations; }
219   ArrayRef<Relocation> relocs() const { return relocations; }
220 
221   union {
222     // These are modifiers to jump instructions that are necessary when basic
223     // block sections are enabled.  Basic block sections creates opportunities
224     // to relax jump instructions at basic block boundaries after reordering the
225     // basic blocks.
226     JumpInstrMod *jumpInstrMod = nullptr;
227 
228     // Auxiliary information for RISC-V linker relaxation. RISC-V does not use
229     // jumpInstrMod.
230     RISCVRelaxAux *relaxAux;
231 
232     // The compressed content size when `compressed` is true.
233     size_t compressedSize;
234   };
235 
236   // A function compiled with -fsplit-stack calling a function
237   // compiled without -fsplit-stack needs its prologue adjusted. Find
238   // such functions and adjust their prologues.  This is very similar
239   // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
240   // information.
241   template <typename ELFT>
242   void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
243 
244 
245   template <typename T> llvm::ArrayRef<T> getDataAs() const {
246     size_t s = content().size();
247     assert(s % sizeof(T) == 0);
248     return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T));
249   }
250 
251 protected:
252   template <typename ELFT>
253   void parseCompressedHeader();
254   void decompress() const;
255 };
256 
257 // SectionPiece represents a piece of splittable section contents.
258 // We allocate a lot of these and binary search on them. This means that they
259 // have to be as compact as possible, which is why we don't store the size (can
260 // be found by looking at the next one).
261 struct SectionPiece {
262   SectionPiece() = default;
263   SectionPiece(size_t off, uint32_t hash, bool live)
264       : inputOff(off), live(live), hash(hash >> 1) {}
265 
266   uint32_t inputOff;
267   uint32_t live : 1;
268   uint32_t hash : 31;
269   uint64_t outputOff = 0;
270 };
271 
272 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
273 
274 // This corresponds to a SHF_MERGE section of an input file.
275 class MergeInputSection : public InputSectionBase {
276 public:
277   template <class ELFT>
278   MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
279                     StringRef name);
280   MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
281                     ArrayRef<uint8_t> data, StringRef name);
282 
283   static bool classof(const SectionBase *s) { return s->kind() == Merge; }
284   void splitIntoPieces();
285 
286   // Translate an offset in the input section to an offset in the parent
287   // MergeSyntheticSection.
288   uint64_t getParentOffset(uint64_t offset) const;
289 
290   // Splittable sections are handled as a sequence of data
291   // rather than a single large blob of data.
292   SmallVector<SectionPiece, 0> pieces;
293 
294   // Returns I'th piece's data. This function is very hot when
295   // string merging is enabled, so we want to inline.
296   LLVM_ATTRIBUTE_ALWAYS_INLINE
297   llvm::CachedHashStringRef getData(size_t i) const {
298     size_t begin = pieces[i].inputOff;
299     size_t end =
300         (pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff;
301     return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash};
302   }
303 
304   // Returns the SectionPiece at a given input section offset.
305   SectionPiece &getSectionPiece(uint64_t offset);
306   const SectionPiece &getSectionPiece(uint64_t offset) const {
307     return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
308   }
309 
310   SyntheticSection *getParent() const {
311     return cast_or_null<SyntheticSection>(parent);
312   }
313 
314 private:
315   void splitStrings(StringRef s, size_t size);
316   void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
317 };
318 
319 struct EhSectionPiece {
320   EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
321                  unsigned firstRelocation)
322       : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
323 
324   ArrayRef<uint8_t> data() const {
325     return {sec->content().data() + this->inputOff, size};
326   }
327 
328   size_t inputOff;
329   ssize_t outputOff = -1;
330   InputSectionBase *sec;
331   uint32_t size;
332   unsigned firstRelocation;
333 };
334 
335 // This corresponds to a .eh_frame section of an input file.
336 class EhInputSection : public InputSectionBase {
337 public:
338   template <class ELFT>
339   EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
340                  StringRef name);
341   static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
342   template <class ELFT> void split();
343   template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
344 
345   // Splittable sections are handled as a sequence of data
346   // rather than a single large blob of data.
347   SmallVector<EhSectionPiece, 0> cies, fdes;
348 
349   SyntheticSection *getParent() const;
350   uint64_t getParentOffset(uint64_t offset) const;
351 };
352 
353 // This is a section that is added directly to an output section
354 // instead of needing special combination via a synthetic section. This
355 // includes all input sections with the exceptions of SHF_MERGE and
356 // .eh_frame. It also includes the synthetic sections themselves.
357 class InputSection : public InputSectionBase {
358 public:
359   InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign,
360                ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
361   template <class ELFT>
362   InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
363                StringRef name);
364 
365   static bool classof(const SectionBase *s) {
366     return s->kind() == SectionBase::Regular ||
367            s->kind() == SectionBase::Synthetic;
368   }
369 
370   // Write this section to a mmap'ed file, assuming Buf is pointing to
371   // beginning of the output section.
372   template <class ELFT> void writeTo(uint8_t *buf);
373 
374   OutputSection *getParent() const {
375     return reinterpret_cast<OutputSection *>(parent);
376   }
377 
378   // This variable has two usages. Initially, it represents an index in the
379   // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
380   // sections. After assignAddresses is called, it represents the offset from
381   // the beginning of the output section this section was assigned to.
382   uint64_t outSecOff = 0;
383 
384   InputSectionBase *getRelocatedSection() const;
385 
386   template <class ELFT, class RelTy>
387   void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
388 
389   // Points to the canonical section. If ICF folds two sections, repl pointer of
390   // one section points to the other.
391   InputSection *repl = this;
392 
393   // Used by ICF.
394   uint32_t eqClass[2] = {0, 0};
395 
396   // Called by ICF to merge two input sections.
397   void replace(InputSection *other);
398 
399   static InputSection discarded;
400 
401 private:
402   template <class ELFT, class RelTy> void copyRelocations(uint8_t *buf);
403 
404   template <class ELFT, class RelTy, class RelIt>
405   void copyRelocations(uint8_t *buf, llvm::iterator_range<RelIt> rels);
406 
407   template <class ELFT> void copyShtGroup(uint8_t *buf);
408 };
409 
410 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
411 
412 class SyntheticSection : public InputSection {
413 public:
414   SyntheticSection(uint64_t flags, uint32_t type, uint32_t addralign,
415                    StringRef name)
416       : InputSection(nullptr, flags, type, addralign, {}, name,
417                      InputSectionBase::Synthetic) {}
418 
419   virtual ~SyntheticSection() = default;
420   virtual size_t getSize() const = 0;
421   virtual bool updateAllocSize() { return false; }
422   // If the section has the SHF_ALLOC flag and the size may be changed if
423   // thunks are added, update the section size.
424   virtual bool isNeeded() const { return true; }
425   virtual void finalizeContents() {}
426   virtual void writeTo(uint8_t *buf) = 0;
427 
428   static bool classof(const SectionBase *sec) {
429     return sec->kind() == InputSectionBase::Synthetic;
430   }
431 };
432 
433 inline bool isDebugSection(const InputSectionBase &sec) {
434   return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
435          sec.name.starts_with(".debug");
436 }
437 
438 // The set of TOC entries (.toc + addend) for which we should not apply
439 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
440 // STT_SECTION symbol associated to the .toc input section.
441 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
442 
443 } // namespace elf
444 
445 std::string toString(const elf::InputSectionBase *);
446 } // namespace lld
447 
448 #endif
449