1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "lld/Common/Threads.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Endian.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 
47 namespace lld {
48 namespace elf {
49 LinkerScript *script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = location;
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - memRegion->origin;
107   if (newSize > memRegion->length)
108     error("section '" + secName + "' will not fit in region '" + regionName +
109           "': overflowed by " + Twine(newSize - memRegion->length) + " bytes");
110 }
111 
112 void LinkerScript::expandMemoryRegions(uint64_t size) {
113   if (ctx->memRegion)
114     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
115                        ctx->outSec->name);
116   // Only expand the LMARegion if it is different from memRegion.
117   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
118     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
119                        ctx->outSec->name);
120 }
121 
122 void LinkerScript::expandOutputSection(uint64_t size) {
123   ctx->outSec->size += size;
124   expandMemoryRegions(size);
125 }
126 
127 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
128   uint64_t val = e().getValue();
129   if (val < dot && inSec)
130     error(loc + ": unable to move location counter backward for: " +
131           ctx->outSec->name);
132 
133   // Update to location counter means update to section size.
134   if (inSec)
135     expandOutputSection(val - dot);
136 
137   dot = val;
138 }
139 
140 // Used for handling linker symbol assignments, for both finalizing
141 // their values and doing early declarations. Returns true if symbol
142 // should be defined from linker script.
143 static bool shouldDefineSym(SymbolAssignment *cmd) {
144   if (cmd->name == ".")
145     return false;
146 
147   if (!cmd->provide)
148     return true;
149 
150   // If a symbol was in PROVIDE(), we need to define it only
151   // when it is a referenced undefined symbol.
152   Symbol *b = symtab->find(cmd->name);
153   if (b && !b->isDefined())
154     return true;
155   return false;
156 }
157 
158 // Called by processSymbolAssignments() to assign definitions to
159 // linker-script-defined symbols.
160 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
161   if (!shouldDefineSym(cmd))
162     return;
163 
164   // Define a symbol.
165   ExprValue value = cmd->expression();
166   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
167   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
168 
169   // When this function is called, section addresses have not been
170   // fixed yet. So, we may or may not know the value of the RHS
171   // expression.
172   //
173   // For example, if an expression is `x = 42`, we know x is always 42.
174   // However, if an expression is `x = .`, there's no way to know its
175   // value at the moment.
176   //
177   // We want to set symbol values early if we can. This allows us to
178   // use symbols as variables in linker scripts. Doing so allows us to
179   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
180   uint64_t symValue = value.sec ? 0 : value.getValue();
181 
182   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE,
183                  symValue, 0, sec);
184 
185   Symbol *sym = symtab->insert(cmd->name);
186   sym->mergeProperties(newSym);
187   sym->replace(newSym);
188   cmd->sym = cast<Defined>(sym);
189 }
190 
191 // This function is called from LinkerScript::declareSymbols.
192 // It creates a placeholder symbol if needed.
193 static void declareSymbol(SymbolAssignment *cmd) {
194   if (!shouldDefineSym(cmd))
195     return;
196 
197   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
198   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
199                  nullptr);
200 
201   // We can't calculate final value right now.
202   Symbol *sym = symtab->insert(cmd->name);
203   sym->mergeProperties(newSym);
204   sym->replace(newSym);
205 
206   cmd->sym = cast<Defined>(sym);
207   cmd->provide = false;
208   sym->scriptDefined = true;
209 }
210 
211 using SymbolAssignmentMap =
212     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
213 
214 // Collect section/value pairs of linker-script-defined symbols. This is used to
215 // check whether symbol values converge.
216 static SymbolAssignmentMap
217 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
218   SymbolAssignmentMap ret;
219   for (BaseCommand *base : sectionCommands) {
220     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
221       if (cmd->sym) // sym is nullptr for dot.
222         ret.try_emplace(cmd->sym,
223                         std::make_pair(cmd->sym->section, cmd->sym->value));
224       continue;
225     }
226     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
227       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
228         if (cmd->sym)
229           ret.try_emplace(cmd->sym,
230                           std::make_pair(cmd->sym->section, cmd->sym->value));
231   }
232   return ret;
233 }
234 
235 // Returns the lexicographical smallest (for determinism) Defined whose
236 // section/value has changed.
237 static const Defined *
238 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
239   const Defined *changed = nullptr;
240   for (auto &it : oldValues) {
241     const Defined *sym = it.first;
242     if (std::make_pair(sym->section, sym->value) != it.second &&
243         (!changed || sym->getName() < changed->getName()))
244       changed = sym;
245   }
246   return changed;
247 }
248 
249 // This method is used to handle INSERT AFTER statement. Here we rebuild
250 // the list of script commands to mix sections inserted into.
251 void LinkerScript::processInsertCommands() {
252   std::vector<BaseCommand *> v;
253   auto insert = [&](std::vector<BaseCommand *> &from) {
254     v.insert(v.end(), from.begin(), from.end());
255     from.clear();
256   };
257 
258   for (BaseCommand *base : sectionCommands) {
259     if (auto *os = dyn_cast<OutputSection>(base)) {
260       insert(insertBeforeCommands[os->name]);
261       v.push_back(base);
262       insert(insertAfterCommands[os->name]);
263       continue;
264     }
265     v.push_back(base);
266   }
267 
268   for (auto &cmds : {insertBeforeCommands, insertAfterCommands})
269     for (const std::pair<StringRef, std::vector<BaseCommand *>> &p : cmds)
270       if (!p.second.empty())
271         error("unable to INSERT AFTER/BEFORE " + p.first +
272               ": section not defined");
273 
274   sectionCommands = std::move(v);
275 }
276 
277 // Symbols defined in script should not be inlined by LTO. At the same time
278 // we don't know their final values until late stages of link. Here we scan
279 // over symbol assignment commands and create placeholder symbols if needed.
280 void LinkerScript::declareSymbols() {
281   assert(!ctx);
282   for (BaseCommand *base : sectionCommands) {
283     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
284       declareSymbol(cmd);
285       continue;
286     }
287 
288     // If the output section directive has constraints,
289     // we can't say for sure if it is going to be included or not.
290     // Skip such sections for now. Improve the checks if we ever
291     // need symbols from that sections to be declared early.
292     auto *sec = cast<OutputSection>(base);
293     if (sec->constraint != ConstraintKind::NoConstraint)
294       continue;
295     for (BaseCommand *base2 : sec->sectionCommands)
296       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
297         declareSymbol(cmd);
298   }
299 }
300 
301 // This function is called from assignAddresses, while we are
302 // fixing the output section addresses. This function is supposed
303 // to set the final value for a given symbol assignment.
304 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
305   if (cmd->name == ".") {
306     setDot(cmd->expression, cmd->location, inSec);
307     return;
308   }
309 
310   if (!cmd->sym)
311     return;
312 
313   ExprValue v = cmd->expression();
314   if (v.isAbsolute()) {
315     cmd->sym->section = nullptr;
316     cmd->sym->value = v.getValue();
317   } else {
318     cmd->sym->section = v.sec;
319     cmd->sym->value = v.getSectionOffset();
320   }
321 }
322 
323 static std::string getFilename(InputFile *file) {
324   if (!file)
325     return "";
326   if (file->archiveName.empty())
327     return file->getName();
328   return (file->archiveName + "(" + file->getName() + ")").str();
329 }
330 
331 bool LinkerScript::shouldKeep(InputSectionBase *s) {
332   if (keptSections.empty())
333     return false;
334   std::string filename = getFilename(s->file);
335   for (InputSectionDescription *id : keptSections)
336     if (id->filePat.match(filename))
337       for (SectionPattern &p : id->sectionPatterns)
338         if (p.sectionPat.match(s->name))
339           return true;
340   return false;
341 }
342 
343 // A helper function for the SORT() command.
344 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
345                              ConstraintKind kind) {
346   if (kind == ConstraintKind::NoConstraint)
347     return true;
348 
349   bool isRW = llvm::any_of(
350       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
351 
352   return (isRW && kind == ConstraintKind::ReadWrite) ||
353          (!isRW && kind == ConstraintKind::ReadOnly);
354 }
355 
356 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
357                          SortSectionPolicy k) {
358   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
359     // ">" is not a mistake. Sections with larger alignments are placed
360     // before sections with smaller alignments in order to reduce the
361     // amount of padding necessary. This is compatible with GNU.
362     return a->alignment > b->alignment;
363   };
364   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
365     return a->name < b->name;
366   };
367   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
368     return getPriority(a->name) < getPriority(b->name);
369   };
370 
371   switch (k) {
372   case SortSectionPolicy::Default:
373   case SortSectionPolicy::None:
374     return;
375   case SortSectionPolicy::Alignment:
376     return llvm::stable_sort(vec, alignmentComparator);
377   case SortSectionPolicy::Name:
378     return llvm::stable_sort(vec, nameComparator);
379   case SortSectionPolicy::Priority:
380     return llvm::stable_sort(vec, priorityComparator);
381   }
382 }
383 
384 // Sort sections as instructed by SORT-family commands and --sort-section
385 // option. Because SORT-family commands can be nested at most two depth
386 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
387 // line option is respected even if a SORT command is given, the exact
388 // behavior we have here is a bit complicated. Here are the rules.
389 //
390 // 1. If two SORT commands are given, --sort-section is ignored.
391 // 2. If one SORT command is given, and if it is not SORT_NONE,
392 //    --sort-section is handled as an inner SORT command.
393 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
394 // 4. If no SORT command is given, sort according to --sort-section.
395 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
396                               const SectionPattern &pat) {
397   if (pat.sortOuter == SortSectionPolicy::None)
398     return;
399 
400   if (pat.sortInner == SortSectionPolicy::Default)
401     sortSections(vec, config->sortSection);
402   else
403     sortSections(vec, pat.sortInner);
404   sortSections(vec, pat.sortOuter);
405 }
406 
407 // Compute and remember which sections the InputSectionDescription matches.
408 std::vector<InputSectionBase *>
409 LinkerScript::computeInputSections(const InputSectionDescription *cmd) {
410   std::vector<InputSectionBase *> ret;
411 
412   // Collects all sections that satisfy constraints of Cmd.
413   for (const SectionPattern &pat : cmd->sectionPatterns) {
414     size_t sizeBefore = ret.size();
415 
416     for (InputSectionBase *sec : inputSections) {
417       if (!sec->isLive() || sec->parent)
418         continue;
419 
420       // For -emit-relocs we have to ignore entries like
421       //   .rela.dyn : { *(.rela.data) }
422       // which are common because they are in the default bfd script.
423       // We do not ignore SHT_REL[A] linker-synthesized sections here because
424       // want to support scripts that do custom layout for them.
425       if (isa<InputSection>(sec) &&
426           cast<InputSection>(sec)->getRelocatedSection())
427         continue;
428 
429       std::string filename = getFilename(sec->file);
430       if (!cmd->filePat.match(filename) ||
431           pat.excludedFilePat.match(filename) ||
432           !pat.sectionPat.match(sec->name))
433         continue;
434 
435       ret.push_back(sec);
436     }
437 
438     sortInputSections(
439         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
440   }
441   return ret;
442 }
443 
444 void LinkerScript::discard(InputSectionBase *s) {
445   if (s == in.shStrTab || s == mainPart->relrDyn)
446     error("discarding " + s->name + " section is not allowed");
447 
448   // You can discard .hash and .gnu.hash sections by linker scripts. Since
449   // they are synthesized sections, we need to handle them differently than
450   // other regular sections.
451   if (s == mainPart->gnuHashTab)
452     mainPart->gnuHashTab = nullptr;
453   if (s == mainPart->hashTab)
454     mainPart->hashTab = nullptr;
455 
456   s->markDead();
457   s->parent = nullptr;
458   for (InputSection *ds : s->dependentSections)
459     discard(ds);
460 }
461 
462 std::vector<InputSectionBase *>
463 LinkerScript::createInputSectionList(OutputSection &outCmd) {
464   std::vector<InputSectionBase *> ret;
465 
466   for (BaseCommand *base : outCmd.sectionCommands) {
467     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
468       cmd->sectionBases = computeInputSections(cmd);
469       for (InputSectionBase *s : cmd->sectionBases)
470         s->parent = &outCmd;
471       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
472     }
473   }
474   return ret;
475 }
476 
477 // Create output sections described by SECTIONS commands.
478 void LinkerScript::processSectionCommands() {
479   size_t i = 0;
480   for (BaseCommand *base : sectionCommands) {
481     if (auto *sec = dyn_cast<OutputSection>(base)) {
482       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
483 
484       // The output section name `/DISCARD/' is special.
485       // Any input section assigned to it is discarded.
486       if (sec->name == "/DISCARD/") {
487         for (InputSectionBase *s : v)
488           discard(s);
489         sec->sectionCommands.clear();
490         continue;
491       }
492 
493       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
494       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
495       // sections satisfy a given constraint. If not, a directive is handled
496       // as if it wasn't present from the beginning.
497       //
498       // Because we'll iterate over SectionCommands many more times, the easy
499       // way to "make it as if it wasn't present" is to make it empty.
500       if (!matchConstraints(v, sec->constraint)) {
501         for (InputSectionBase *s : v)
502           s->parent = nullptr;
503         sec->sectionCommands.clear();
504         continue;
505       }
506 
507       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
508       // is given, input sections are aligned to that value, whether the
509       // given value is larger or smaller than the original section alignment.
510       if (sec->subalignExpr) {
511         uint32_t subalign = sec->subalignExpr().getValue();
512         for (InputSectionBase *s : v)
513           s->alignment = subalign;
514       }
515 
516       // Set the partition field the same way OutputSection::recordSection()
517       // does. Partitions cannot be used with the SECTIONS command, so this is
518       // always 1.
519       sec->partition = 1;
520 
521       sec->sectionIndex = i++;
522     }
523   }
524 }
525 
526 void LinkerScript::processSymbolAssignments() {
527   // Dot outside an output section still represents a relative address, whose
528   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
529   // that fills the void outside a section. It has an index of one, which is
530   // indistinguishable from any other regular section index.
531   aether = make<OutputSection>("", 0, SHF_ALLOC);
532   aether->sectionIndex = 1;
533 
534   // ctx captures the local AddressState and makes it accessible deliberately.
535   // This is needed as there are some cases where we cannot just thread the
536   // current state through to a lambda function created by the script parser.
537   AddressState state;
538   ctx = &state;
539   ctx->outSec = aether;
540 
541   for (BaseCommand *base : sectionCommands) {
542     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
543       addSymbol(cmd);
544     else
545       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
546         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
547           addSymbol(cmd);
548   }
549 
550   ctx = nullptr;
551 }
552 
553 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
554                                  StringRef name) {
555   for (BaseCommand *base : vec)
556     if (auto *sec = dyn_cast<OutputSection>(base))
557       if (sec->name == name)
558         return sec;
559   return nullptr;
560 }
561 
562 static OutputSection *createSection(InputSectionBase *isec,
563                                     StringRef outsecName) {
564   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
565   sec->recordSection(isec);
566   return sec;
567 }
568 
569 static OutputSection *
570 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
571             InputSectionBase *isec, StringRef outsecName) {
572   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
573   // option is given. A section with SHT_GROUP defines a "section group", and
574   // its members have SHF_GROUP attribute. Usually these flags have already been
575   // stripped by InputFiles.cpp as section groups are processed and uniquified.
576   // However, for the -r option, we want to pass through all section groups
577   // as-is because adding/removing members or merging them with other groups
578   // change their semantics.
579   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
580     return createSection(isec, outsecName);
581 
582   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
583   // relocation sections .rela.foo and .rela.bar for example. Most tools do
584   // not allow multiple REL[A] sections for output section. Hence we
585   // should combine these relocation sections into single output.
586   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
587   // other REL[A] sections created by linker itself.
588   if (!isa<SyntheticSection>(isec) &&
589       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
590     auto *sec = cast<InputSection>(isec);
591     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
592 
593     if (out->relocationSection) {
594       out->relocationSection->recordSection(sec);
595       return nullptr;
596     }
597 
598     out->relocationSection = createSection(isec, outsecName);
599     return out->relocationSection;
600   }
601 
602   //  The ELF spec just says
603   // ----------------------------------------------------------------
604   // In the first phase, input sections that match in name, type and
605   // attribute flags should be concatenated into single sections.
606   // ----------------------------------------------------------------
607   //
608   // However, it is clear that at least some flags have to be ignored for
609   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
610   // ignored. We should not have two output .text sections just because one was
611   // in a group and another was not for example.
612   //
613   // It also seems that wording was a late addition and didn't get the
614   // necessary scrutiny.
615   //
616   // Merging sections with different flags is expected by some users. One
617   // reason is that if one file has
618   //
619   // int *const bar __attribute__((section(".foo"))) = (int *)0;
620   //
621   // gcc with -fPIC will produce a read only .foo section. But if another
622   // file has
623   //
624   // int zed;
625   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
626   //
627   // gcc with -fPIC will produce a read write section.
628   //
629   // Last but not least, when using linker script the merge rules are forced by
630   // the script. Unfortunately, linker scripts are name based. This means that
631   // expressions like *(.foo*) can refer to multiple input sections with
632   // different flags. We cannot put them in different output sections or we
633   // would produce wrong results for
634   //
635   // start = .; *(.foo.*) end = .; *(.bar)
636   //
637   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
638   // another. The problem is that there is no way to layout those output
639   // sections such that the .foo sections are the only thing between the start
640   // and end symbols.
641   //
642   // Given the above issues, we instead merge sections by name and error on
643   // incompatible types and flags.
644   TinyPtrVector<OutputSection *> &v = map[outsecName];
645   for (OutputSection *sec : v) {
646     if (sec->partition != isec->partition)
647       continue;
648 
649     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
650       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
651       // change their semantics, so we only merge them in -r links if they will
652       // end up being linked to the same output section. The casts are fine
653       // because everything in the map was created by the orphan placement code.
654       auto *firstIsec = cast<InputSectionBase>(
655           cast<InputSectionDescription>(sec->sectionCommands[0])
656               ->sectionBases[0]);
657       if (firstIsec->getLinkOrderDep()->getOutputSection() !=
658           isec->getLinkOrderDep()->getOutputSection())
659         continue;
660     }
661 
662     sec->recordSection(isec);
663     return nullptr;
664   }
665 
666   OutputSection *sec = createSection(isec, outsecName);
667   v.push_back(sec);
668   return sec;
669 }
670 
671 // Add sections that didn't match any sections command.
672 void LinkerScript::addOrphanSections() {
673   StringMap<TinyPtrVector<OutputSection *>> map;
674   std::vector<OutputSection *> v;
675 
676   std::function<void(InputSectionBase *)> add;
677   add = [&](InputSectionBase *s) {
678     if (s->isLive() && !s->parent) {
679       StringRef name = getOutputSectionName(s);
680 
681       if (config->orphanHandling == OrphanHandlingPolicy::Error)
682         error(toString(s) + " is being placed in '" + name + "'");
683       else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
684         warn(toString(s) + " is being placed in '" + name + "'");
685 
686       if (OutputSection *sec = findByName(sectionCommands, name)) {
687         sec->recordSection(s);
688       } else {
689         if (OutputSection *os = addInputSec(map, s, name))
690           v.push_back(os);
691         assert(isa<MergeInputSection>(s) ||
692                s->getOutputSection()->sectionIndex == UINT32_MAX);
693       }
694     }
695 
696     if (config->relocatable)
697       for (InputSectionBase *depSec : s->dependentSections)
698         if (depSec->flags & SHF_LINK_ORDER)
699           add(depSec);
700   };
701 
702   // For futher --emit-reloc handling code we need target output section
703   // to be created before we create relocation output section, so we want
704   // to create target sections first. We do not want priority handling
705   // for synthetic sections because them are special.
706   for (InputSectionBase *isec : inputSections) {
707     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
708     // sections because we need to know the parent's output section before we
709     // can select an output section for the SHF_LINK_ORDER section.
710     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
711       continue;
712 
713     if (auto *sec = dyn_cast<InputSection>(isec))
714       if (InputSectionBase *rel = sec->getRelocatedSection())
715         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
716           add(relIS);
717     add(isec);
718   }
719 
720   // If no SECTIONS command was given, we should insert sections commands
721   // before others, so that we can handle scripts which refers them,
722   // for example: "foo = ABSOLUTE(ADDR(.text)));".
723   // When SECTIONS command is present we just add all orphans to the end.
724   if (hasSectionsCommand)
725     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
726   else
727     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
728 }
729 
730 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
731   bool isTbss =
732       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
733   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
734   start = alignTo(start, alignment);
735   uint64_t end = start + size;
736 
737   if (isTbss)
738     ctx->threadBssOffset = end - dot;
739   else
740     dot = end;
741   return end;
742 }
743 
744 void LinkerScript::output(InputSection *s) {
745   assert(ctx->outSec == s->getParent());
746   uint64_t before = advance(0, 1);
747   uint64_t pos = advance(s->getSize(), s->alignment);
748   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
749 
750   // Update output section size after adding each section. This is so that
751   // SIZEOF works correctly in the case below:
752   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
753   expandOutputSection(pos - before);
754 }
755 
756 void LinkerScript::switchTo(OutputSection *sec) {
757   ctx->outSec = sec;
758 
759   uint64_t before = advance(0, 1);
760   ctx->outSec->addr = advance(0, ctx->outSec->alignment);
761   expandMemoryRegions(ctx->outSec->addr - before);
762 }
763 
764 // This function searches for a memory region to place the given output
765 // section in. If found, a pointer to the appropriate memory region is
766 // returned. Otherwise, a nullptr is returned.
767 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
768   // If a memory region name was specified in the output section command,
769   // then try to find that region first.
770   if (!sec->memoryRegionName.empty()) {
771     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
772       return m;
773     error("memory region '" + sec->memoryRegionName + "' not declared");
774     return nullptr;
775   }
776 
777   // If at least one memory region is defined, all sections must
778   // belong to some memory region. Otherwise, we don't need to do
779   // anything for memory regions.
780   if (memoryRegions.empty())
781     return nullptr;
782 
783   // See if a region can be found by matching section flags.
784   for (auto &pair : memoryRegions) {
785     MemoryRegion *m = pair.second;
786     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
787       return m;
788   }
789 
790   // Otherwise, no suitable region was found.
791   if (sec->flags & SHF_ALLOC)
792     error("no memory region specified for section '" + sec->name + "'");
793   return nullptr;
794 }
795 
796 static OutputSection *findFirstSection(PhdrEntry *load) {
797   for (OutputSection *sec : outputSections)
798     if (sec->ptLoad == load)
799       return sec;
800   return nullptr;
801 }
802 
803 // This function assigns offsets to input sections and an output section
804 // for a single sections command (e.g. ".text { *(.text); }").
805 void LinkerScript::assignOffsets(OutputSection *sec) {
806   if (!(sec->flags & SHF_ALLOC))
807     dot = 0;
808 
809   ctx->memRegion = sec->memRegion;
810   ctx->lmaRegion = sec->lmaRegion;
811   if (ctx->memRegion)
812     dot = ctx->memRegion->curPos;
813 
814   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
815     setDot(sec->addrExpr, sec->location, false);
816 
817   // If the address of the section has been moved forward by an explicit
818   // expression so that it now starts past the current curPos of the enclosing
819   // region, we need to expand the current region to account for the space
820   // between the previous section, if any, and the start of this section.
821   if (ctx->memRegion && ctx->memRegion->curPos < dot)
822     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
823                        ctx->memRegion->name, sec->name);
824 
825   switchTo(sec);
826 
827   if (sec->lmaExpr)
828     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
829 
830   if (MemoryRegion *mr = sec->lmaRegion)
831     ctx->lmaOffset = mr->curPos - dot;
832 
833   // If neither AT nor AT> is specified for an allocatable section, the linker
834   // will set the LMA such that the difference between VMA and LMA for the
835   // section is the same as the preceding output section in the same region
836   // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
837   // This, however, should only be done by the first "non-header" section
838   // in the segment.
839   if (PhdrEntry *l = ctx->outSec->ptLoad)
840     if (sec == findFirstSection(l))
841       l->lmaOffset = ctx->lmaOffset;
842 
843   // We can call this method multiple times during the creation of
844   // thunks and want to start over calculation each time.
845   sec->size = 0;
846 
847   // We visited SectionsCommands from processSectionCommands to
848   // layout sections. Now, we visit SectionsCommands again to fix
849   // section offsets.
850   for (BaseCommand *base : sec->sectionCommands) {
851     // This handles the assignments to symbol or to the dot.
852     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
853       cmd->addr = dot;
854       assignSymbol(cmd, true);
855       cmd->size = dot - cmd->addr;
856       continue;
857     }
858 
859     // Handle BYTE(), SHORT(), LONG(), or QUAD().
860     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
861       cmd->offset = dot - ctx->outSec->addr;
862       dot += cmd->size;
863       expandOutputSection(cmd->size);
864       continue;
865     }
866 
867     // Handle a single input section description command.
868     // It calculates and assigns the offsets for each section and also
869     // updates the output section size.
870     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
871       output(sec);
872   }
873 }
874 
875 static bool isDiscardable(OutputSection &sec) {
876   if (sec.name == "/DISCARD/")
877     return true;
878 
879   // We do not remove empty sections that are explicitly
880   // assigned to any segment.
881   if (!sec.phdrs.empty())
882     return false;
883 
884   // We do not want to remove OutputSections with expressions that reference
885   // symbols even if the OutputSection is empty. We want to ensure that the
886   // expressions can be evaluated and report an error if they cannot.
887   if (sec.expressionsUseSymbols)
888     return false;
889 
890   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
891   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
892   // to maintain the integrity of the other Expression.
893   if (sec.usedInExpression)
894     return false;
895 
896   for (BaseCommand *base : sec.sectionCommands) {
897     if (auto cmd = dyn_cast<SymbolAssignment>(base))
898       // Don't create empty output sections just for unreferenced PROVIDE
899       // symbols.
900       if (cmd->name != "." && !cmd->sym)
901         continue;
902 
903     if (!isa<InputSectionDescription>(*base))
904       return false;
905   }
906   return true;
907 }
908 
909 void LinkerScript::adjustSectionsBeforeSorting() {
910   // If the output section contains only symbol assignments, create a
911   // corresponding output section. The issue is what to do with linker script
912   // like ".foo : { symbol = 42; }". One option would be to convert it to
913   // "symbol = 42;". That is, move the symbol out of the empty section
914   // description. That seems to be what bfd does for this simple case. The
915   // problem is that this is not completely general. bfd will give up and
916   // create a dummy section too if there is a ". = . + 1" inside the section
917   // for example.
918   // Given that we want to create the section, we have to worry what impact
919   // it will have on the link. For example, if we just create a section with
920   // 0 for flags, it would change which PT_LOADs are created.
921   // We could remember that particular section is dummy and ignore it in
922   // other parts of the linker, but unfortunately there are quite a few places
923   // that would need to change:
924   //   * The program header creation.
925   //   * The orphan section placement.
926   //   * The address assignment.
927   // The other option is to pick flags that minimize the impact the section
928   // will have on the rest of the linker. That is why we copy the flags from
929   // the previous sections. Only a few flags are needed to keep the impact low.
930   uint64_t flags = SHF_ALLOC;
931 
932   for (BaseCommand *&cmd : sectionCommands) {
933     auto *sec = dyn_cast<OutputSection>(cmd);
934     if (!sec)
935       continue;
936 
937     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
938     if (sec->alignExpr)
939       sec->alignment =
940           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
941 
942     // The input section might have been removed (if it was an empty synthetic
943     // section), but we at least know the flags.
944     if (sec->hasInputSections)
945       flags = sec->flags;
946 
947     // We do not want to keep any special flags for output section
948     // in case it is empty.
949     bool isEmpty = getInputSections(sec).empty();
950     if (isEmpty)
951       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
952                             SHF_WRITE | SHF_EXECINSTR);
953 
954     if (isEmpty && isDiscardable(*sec)) {
955       sec->markDead();
956       cmd = nullptr;
957     }
958   }
959 
960   // It is common practice to use very generic linker scripts. So for any
961   // given run some of the output sections in the script will be empty.
962   // We could create corresponding empty output sections, but that would
963   // clutter the output.
964   // We instead remove trivially empty sections. The bfd linker seems even
965   // more aggressive at removing them.
966   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
967 }
968 
969 void LinkerScript::adjustSectionsAfterSorting() {
970   // Try and find an appropriate memory region to assign offsets in.
971   for (BaseCommand *base : sectionCommands) {
972     if (auto *sec = dyn_cast<OutputSection>(base)) {
973       if (!sec->lmaRegionName.empty()) {
974         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
975           sec->lmaRegion = m;
976         else
977           error("memory region '" + sec->lmaRegionName + "' not declared");
978       }
979       sec->memRegion = findMemoryRegion(sec);
980     }
981   }
982 
983   // If output section command doesn't specify any segments,
984   // and we haven't previously assigned any section to segment,
985   // then we simply assign section to the very first load segment.
986   // Below is an example of such linker script:
987   // PHDRS { seg PT_LOAD; }
988   // SECTIONS { .aaa : { *(.aaa) } }
989   std::vector<StringRef> defPhdrs;
990   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
991     return cmd.type == PT_LOAD;
992   });
993   if (firstPtLoad != phdrsCommands.end())
994     defPhdrs.push_back(firstPtLoad->name);
995 
996   // Walk the commands and propagate the program headers to commands that don't
997   // explicitly specify them.
998   for (BaseCommand *base : sectionCommands) {
999     auto *sec = dyn_cast<OutputSection>(base);
1000     if (!sec)
1001       continue;
1002 
1003     if (sec->phdrs.empty()) {
1004       // To match the bfd linker script behaviour, only propagate program
1005       // headers to sections that are allocated.
1006       if (sec->flags & SHF_ALLOC)
1007         sec->phdrs = defPhdrs;
1008     } else {
1009       defPhdrs = sec->phdrs;
1010     }
1011   }
1012 }
1013 
1014 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1015   // If there is no SECTIONS or if the linkerscript is explicit about program
1016   // headers, do our best to allocate them.
1017   if (!script->hasSectionsCommand || allocateHeaders)
1018     return 0;
1019   // Otherwise only allocate program headers if that would not add a page.
1020   return alignDown(min, config->maxPageSize);
1021 }
1022 
1023 // When the SECTIONS command is used, try to find an address for the file and
1024 // program headers output sections, which can be added to the first PT_LOAD
1025 // segment when program headers are created.
1026 //
1027 // We check if the headers fit below the first allocated section. If there isn't
1028 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1029 // and we'll also remove the PT_PHDR segment.
1030 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1031   uint64_t min = std::numeric_limits<uint64_t>::max();
1032   for (OutputSection *sec : outputSections)
1033     if (sec->flags & SHF_ALLOC)
1034       min = std::min<uint64_t>(min, sec->addr);
1035 
1036   auto it = llvm::find_if(
1037       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1038   if (it == phdrs.end())
1039     return;
1040   PhdrEntry *firstPTLoad = *it;
1041 
1042   bool hasExplicitHeaders =
1043       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1044         return cmd.hasPhdrs || cmd.hasFilehdr;
1045       });
1046   bool paged = !config->omagic && !config->nmagic;
1047   uint64_t headerSize = getHeaderSize();
1048   if ((paged || hasExplicitHeaders) &&
1049       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1050     min = alignDown(min - headerSize, config->maxPageSize);
1051     Out::elfHeader->addr = min;
1052     Out::programHeaders->addr = min + Out::elfHeader->size;
1053     return;
1054   }
1055 
1056   // Error if we were explicitly asked to allocate headers.
1057   if (hasExplicitHeaders)
1058     error("could not allocate headers");
1059 
1060   Out::elfHeader->ptLoad = nullptr;
1061   Out::programHeaders->ptLoad = nullptr;
1062   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1063 
1064   llvm::erase_if(phdrs,
1065                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1066 }
1067 
1068 LinkerScript::AddressState::AddressState() {
1069   for (auto &mri : script->memoryRegions) {
1070     MemoryRegion *mr = mri.second;
1071     mr->curPos = mr->origin;
1072   }
1073 }
1074 
1075 // Here we assign addresses as instructed by linker script SECTIONS
1076 // sub-commands. Doing that allows us to use final VA values, so here
1077 // we also handle rest commands like symbol assignments and ASSERTs.
1078 // Returns a symbol that has changed its section or value, or nullptr if no
1079 // symbol has changed.
1080 const Defined *LinkerScript::assignAddresses() {
1081   if (script->hasSectionsCommand) {
1082     // With a linker script, assignment of addresses to headers is covered by
1083     // allocateHeaders().
1084     dot = config->imageBase.getValueOr(0);
1085   } else {
1086     // Assign addresses to headers right now.
1087     dot = target->getImageBase();
1088     Out::elfHeader->addr = dot;
1089     Out::programHeaders->addr = dot + Out::elfHeader->size;
1090     dot += getHeaderSize();
1091   }
1092 
1093   auto deleter = std::make_unique<AddressState>();
1094   ctx = deleter.get();
1095   errorOnMissingSection = true;
1096   switchTo(aether);
1097 
1098   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1099   for (BaseCommand *base : sectionCommands) {
1100     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1101       cmd->addr = dot;
1102       assignSymbol(cmd, false);
1103       cmd->size = dot - cmd->addr;
1104       continue;
1105     }
1106     assignOffsets(cast<OutputSection>(base));
1107   }
1108 
1109   ctx = nullptr;
1110   return getChangedSymbolAssignment(oldValues);
1111 }
1112 
1113 // Creates program headers as instructed by PHDRS linker script command.
1114 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1115   std::vector<PhdrEntry *> ret;
1116 
1117   // Process PHDRS and FILEHDR keywords because they are not
1118   // real output sections and cannot be added in the following loop.
1119   for (const PhdrsCommand &cmd : phdrsCommands) {
1120     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1121 
1122     if (cmd.hasFilehdr)
1123       phdr->add(Out::elfHeader);
1124     if (cmd.hasPhdrs)
1125       phdr->add(Out::programHeaders);
1126 
1127     if (cmd.lmaExpr) {
1128       phdr->p_paddr = cmd.lmaExpr().getValue();
1129       phdr->hasLMA = true;
1130     }
1131     ret.push_back(phdr);
1132   }
1133 
1134   // Add output sections to program headers.
1135   for (OutputSection *sec : outputSections) {
1136     // Assign headers specified by linker script
1137     for (size_t id : getPhdrIndices(sec)) {
1138       ret[id]->add(sec);
1139       if (!phdrsCommands[id].flags.hasValue())
1140         ret[id]->p_flags |= sec->getPhdrFlags();
1141     }
1142   }
1143   return ret;
1144 }
1145 
1146 // Returns true if we should emit an .interp section.
1147 //
1148 // We usually do. But if PHDRS commands are given, and
1149 // no PT_INTERP is there, there's no place to emit an
1150 // .interp, so we don't do that in that case.
1151 bool LinkerScript::needsInterpSection() {
1152   if (phdrsCommands.empty())
1153     return true;
1154   for (PhdrsCommand &cmd : phdrsCommands)
1155     if (cmd.type == PT_INTERP)
1156       return true;
1157   return false;
1158 }
1159 
1160 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1161   if (name == ".") {
1162     if (ctx)
1163       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1164     error(loc + ": unable to get location counter value");
1165     return 0;
1166   }
1167 
1168   if (Symbol *sym = symtab->find(name)) {
1169     if (auto *ds = dyn_cast<Defined>(sym))
1170       return {ds->section, false, ds->value, loc};
1171     if (isa<SharedSymbol>(sym))
1172       if (!errorOnMissingSection)
1173         return {nullptr, false, 0, loc};
1174   }
1175 
1176   error(loc + ": symbol not found: " + name);
1177   return 0;
1178 }
1179 
1180 // Returns the index of the segment named Name.
1181 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1182                                      StringRef name) {
1183   for (size_t i = 0; i < vec.size(); ++i)
1184     if (vec[i].name == name)
1185       return i;
1186   return None;
1187 }
1188 
1189 // Returns indices of ELF headers containing specific section. Each index is a
1190 // zero based number of ELF header listed within PHDRS {} script block.
1191 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1192   std::vector<size_t> ret;
1193 
1194   for (StringRef s : cmd->phdrs) {
1195     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1196       ret.push_back(*idx);
1197     else if (s != "NONE")
1198       error(cmd->location + ": section header '" + s +
1199             "' is not listed in PHDRS");
1200   }
1201   return ret;
1202 }
1203 
1204 } // namespace elf
1205 } // namespace lld
1206