1 //===- OutputSections.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "OutputSections.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "LinkerScript.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/Arrays.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
20 #include "llvm/Support/Parallel.h"
21 #include "llvm/Support/Path.h"
22 #include "llvm/Support/TimeProfiler.h"
23 #if LLVM_ENABLE_ZLIB
24 #include <zlib.h>
25 #endif
26 
27 using namespace llvm;
28 using namespace llvm::dwarf;
29 using namespace llvm::object;
30 using namespace llvm::support::endian;
31 using namespace llvm::ELF;
32 using namespace lld;
33 using namespace lld::elf;
34 
35 uint8_t *Out::bufferStart;
36 PhdrEntry *Out::tlsPhdr;
37 OutputSection *Out::elfHeader;
38 OutputSection *Out::programHeaders;
39 OutputSection *Out::preinitArray;
40 OutputSection *Out::initArray;
41 OutputSection *Out::finiArray;
42 
43 SmallVector<OutputSection *, 0> elf::outputSections;
44 
45 uint32_t OutputSection::getPhdrFlags() const {
46   uint32_t ret = 0;
47   if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE))
48     ret |= PF_R;
49   if (flags & SHF_WRITE)
50     ret |= PF_W;
51   if (flags & SHF_EXECINSTR)
52     ret |= PF_X;
53   return ret;
54 }
55 
56 template <class ELFT>
57 void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) {
58   shdr->sh_entsize = entsize;
59   shdr->sh_addralign = alignment;
60   shdr->sh_type = type;
61   shdr->sh_offset = offset;
62   shdr->sh_flags = flags;
63   shdr->sh_info = info;
64   shdr->sh_link = link;
65   shdr->sh_addr = addr;
66   shdr->sh_size = size;
67   shdr->sh_name = shName;
68 }
69 
70 OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags)
71     : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type,
72                   /*Info*/ 0, /*Link*/ 0) {}
73 
74 // We allow sections of types listed below to merged into a
75 // single progbits section. This is typically done by linker
76 // scripts. Merging nobits and progbits will force disk space
77 // to be allocated for nobits sections. Other ones don't require
78 // any special treatment on top of progbits, so there doesn't
79 // seem to be a harm in merging them.
80 //
81 // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
82 // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
83 static bool canMergeToProgbits(unsigned type) {
84   return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY ||
85          type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY ||
86          type == SHT_NOTE ||
87          (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64);
88 }
89 
90 // Record that isec will be placed in the OutputSection. isec does not become
91 // permanent until finalizeInputSections() is called. The function should not be
92 // used after finalizeInputSections() is called. If you need to add an
93 // InputSection post finalizeInputSections(), then you must do the following:
94 //
95 // 1. Find or create an InputSectionDescription to hold InputSection.
96 // 2. Add the InputSection to the InputSectionDescription::sections.
97 // 3. Call commitSection(isec).
98 void OutputSection::recordSection(InputSectionBase *isec) {
99   partition = isec->partition;
100   isec->parent = this;
101   if (commands.empty() || !isa<InputSectionDescription>(commands.back()))
102     commands.push_back(make<InputSectionDescription>(""));
103   auto *isd = cast<InputSectionDescription>(commands.back());
104   isd->sectionBases.push_back(isec);
105 }
106 
107 // Update fields (type, flags, alignment, etc) according to the InputSection
108 // isec. Also check whether the InputSection flags and type are consistent with
109 // other InputSections.
110 void OutputSection::commitSection(InputSection *isec) {
111   if (LLVM_UNLIKELY(type != isec->type)) {
112     if (hasInputSections || typeIsSet) {
113       if (typeIsSet || !canMergeToProgbits(type) ||
114           !canMergeToProgbits(isec->type)) {
115         // Changing the type of a (NOLOAD) section is fishy, but some projects
116         // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597)
117         // traditionally rely on the behavior. Issue a warning to not break
118         // them. Other types get an error.
119         auto diagnose = type == SHT_NOBITS ? warn : errorOrWarn;
120         diagnose("section type mismatch for " + isec->name + "\n>>> " +
121                  toString(isec) + ": " +
122                  getELFSectionTypeName(config->emachine, isec->type) +
123                  "\n>>> output section " + name + ": " +
124                  getELFSectionTypeName(config->emachine, type));
125       }
126       if (!typeIsSet)
127         type = SHT_PROGBITS;
128     } else {
129       type = isec->type;
130     }
131   }
132   if (!hasInputSections) {
133     // If IS is the first section to be added to this section,
134     // initialize type, entsize and flags from isec.
135     hasInputSections = true;
136     entsize = isec->entsize;
137     flags = isec->flags;
138   } else {
139     // Otherwise, check if new type or flags are compatible with existing ones.
140     if ((flags ^ isec->flags) & SHF_TLS)
141       error("incompatible section flags for " + name + "\n>>> " +
142             toString(isec) + ": 0x" + utohexstr(isec->flags) +
143             "\n>>> output section " + name + ": 0x" + utohexstr(flags));
144   }
145 
146   isec->parent = this;
147   uint64_t andMask =
148       config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0;
149   uint64_t orMask = ~andMask;
150   uint64_t andFlags = (flags & isec->flags) & andMask;
151   uint64_t orFlags = (flags | isec->flags) & orMask;
152   flags = andFlags | orFlags;
153   if (nonAlloc)
154     flags &= ~(uint64_t)SHF_ALLOC;
155 
156   alignment = std::max(alignment, isec->alignment);
157 
158   // If this section contains a table of fixed-size entries, sh_entsize
159   // holds the element size. If it contains elements of different size we
160   // set sh_entsize to 0.
161   if (entsize != isec->entsize)
162     entsize = 0;
163 }
164 
165 static MergeSyntheticSection *createMergeSynthetic(StringRef name,
166                                                    uint32_t type,
167                                                    uint64_t flags,
168                                                    uint32_t alignment) {
169   if ((flags & SHF_STRINGS) && config->optimize >= 2)
170     return make<MergeTailSection>(name, type, flags, alignment);
171   return make<MergeNoTailSection>(name, type, flags, alignment);
172 }
173 
174 // This function scans over the InputSectionBase list sectionBases to create
175 // InputSectionDescription::sections.
176 //
177 // It removes MergeInputSections from the input section array and adds
178 // new synthetic sections at the location of the first input section
179 // that it replaces. It then finalizes each synthetic section in order
180 // to compute an output offset for each piece of each input section.
181 void OutputSection::finalizeInputSections() {
182   std::vector<MergeSyntheticSection *> mergeSections;
183   for (SectionCommand *cmd : commands) {
184     auto *isd = dyn_cast<InputSectionDescription>(cmd);
185     if (!isd)
186       continue;
187     isd->sections.reserve(isd->sectionBases.size());
188     for (InputSectionBase *s : isd->sectionBases) {
189       MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
190       if (!ms) {
191         isd->sections.push_back(cast<InputSection>(s));
192         continue;
193       }
194 
195       // We do not want to handle sections that are not alive, so just remove
196       // them instead of trying to merge.
197       if (!ms->isLive())
198         continue;
199 
200       auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
201         // While we could create a single synthetic section for two different
202         // values of Entsize, it is better to take Entsize into consideration.
203         //
204         // With a single synthetic section no two pieces with different Entsize
205         // could be equal, so we may as well have two sections.
206         //
207         // Using Entsize in here also allows us to propagate it to the synthetic
208         // section.
209         //
210         // SHF_STRINGS section with different alignments should not be merged.
211         return sec->flags == ms->flags && sec->entsize == ms->entsize &&
212                (sec->alignment == ms->alignment || !(sec->flags & SHF_STRINGS));
213       });
214       if (i == mergeSections.end()) {
215         MergeSyntheticSection *syn =
216             createMergeSynthetic(name, ms->type, ms->flags, ms->alignment);
217         mergeSections.push_back(syn);
218         i = std::prev(mergeSections.end());
219         syn->entsize = ms->entsize;
220         isd->sections.push_back(syn);
221       }
222       (*i)->addSection(ms);
223     }
224 
225     // sectionBases should not be used from this point onwards. Clear it to
226     // catch misuses.
227     isd->sectionBases.clear();
228 
229     // Some input sections may be removed from the list after ICF.
230     for (InputSection *s : isd->sections)
231       commitSection(s);
232   }
233   for (auto *ms : mergeSections)
234     ms->finalizeContents();
235 }
236 
237 static void sortByOrder(MutableArrayRef<InputSection *> in,
238                         llvm::function_ref<int(InputSectionBase *s)> order) {
239   std::vector<std::pair<int, InputSection *>> v;
240   for (InputSection *s : in)
241     v.push_back({order(s), s});
242   llvm::stable_sort(v, less_first());
243 
244   for (size_t i = 0; i < v.size(); ++i)
245     in[i] = v[i].second;
246 }
247 
248 uint64_t elf::getHeaderSize() {
249   if (config->oFormatBinary)
250     return 0;
251   return Out::elfHeader->size + Out::programHeaders->size;
252 }
253 
254 void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) {
255   assert(isLive());
256   for (SectionCommand *b : commands)
257     if (auto *isd = dyn_cast<InputSectionDescription>(b))
258       sortByOrder(isd->sections, order);
259 }
260 
261 static void nopInstrFill(uint8_t *buf, size_t size) {
262   if (size == 0)
263     return;
264   unsigned i = 0;
265   if (size == 0)
266     return;
267   std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs;
268   unsigned num = size / nopFiller.back().size();
269   for (unsigned c = 0; c < num; ++c) {
270     memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size());
271     i += nopFiller.back().size();
272   }
273   unsigned remaining = size - i;
274   if (!remaining)
275     return;
276   assert(nopFiller[remaining - 1].size() == remaining);
277   memcpy(buf + i, nopFiller[remaining - 1].data(), remaining);
278 }
279 
280 // Fill [Buf, Buf + Size) with Filler.
281 // This is used for linker script "=fillexp" command.
282 static void fill(uint8_t *buf, size_t size,
283                  const std::array<uint8_t, 4> &filler) {
284   size_t i = 0;
285   for (; i + 4 < size; i += 4)
286     memcpy(buf + i, filler.data(), 4);
287   memcpy(buf + i, filler.data(), size - i);
288 }
289 
290 #if LLVM_ENABLE_ZLIB
291 static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level,
292                                             int flush) {
293   // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
294   // data with no zlib header or trailer.
295   z_stream s = {};
296   deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
297   s.next_in = const_cast<uint8_t *>(in.data());
298   s.avail_in = in.size();
299 
300   // Allocate a buffer of half of the input size, and grow it by 1.5x if
301   // insufficient.
302   SmallVector<uint8_t, 0> out;
303   size_t pos = 0;
304   out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64));
305   do {
306     if (pos == out.size())
307       out.resize_for_overwrite(out.size() * 3 / 2);
308     s.next_out = out.data() + pos;
309     s.avail_out = out.size() - pos;
310     (void)deflate(&s, flush);
311     pos = s.next_out - out.data();
312   } while (s.avail_out == 0);
313   assert(s.avail_in == 0);
314 
315   out.truncate(pos);
316   deflateEnd(&s);
317   return out;
318 }
319 #endif
320 
321 // Compress section contents if this section contains debug info.
322 template <class ELFT> void OutputSection::maybeCompress() {
323 #if LLVM_ENABLE_ZLIB
324   using Elf_Chdr = typename ELFT::Chdr;
325 
326   // Compress only DWARF debug sections.
327   if (!config->compressDebugSections || (flags & SHF_ALLOC) ||
328       !name.startswith(".debug_") || size == 0)
329     return;
330 
331   llvm::TimeTraceScope timeScope("Compress debug sections");
332 
333   // Write uncompressed data to a temporary zero-initialized buffer.
334   auto buf = std::make_unique<uint8_t[]>(size);
335   writeTo<ELFT>(buf.get());
336   // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
337   // the fastest. If -O2 is given, we use level 6 to compress debug info more by
338   // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more
339   // compression) while they take significant amount of time (~2x), so level 6
340   // seems enough.
341   const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED;
342 
343   // Split input into 1-MiB shards.
344   constexpr size_t shardSize = 1 << 20;
345   auto shardsIn = split(makeArrayRef<uint8_t>(buf.get(), size), shardSize);
346   const size_t numShards = shardsIn.size();
347 
348   // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
349   // shards but the last to flush the output to a byte boundary to be
350   // concatenated with the next shard.
351   auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards);
352   auto shardsAdler = std::make_unique<uint32_t[]>(numShards);
353   parallelFor(0, numShards, [&](size_t i) {
354     shardsOut[i] = deflateShard(shardsIn[i], level,
355                                 i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH);
356     shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size());
357   });
358 
359   // Update section size and combine Alder-32 checksums.
360   uint32_t checksum = 1;       // Initial Adler-32 value
361   compressed.uncompressedSize = size;
362   size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header
363   for (size_t i = 0; i != numShards; ++i) {
364     size += shardsOut[i].size();
365     checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size());
366   }
367   size += 4; // checksum
368 
369   compressed.shards = std::move(shardsOut);
370   compressed.numShards = numShards;
371   compressed.checksum = checksum;
372   flags |= SHF_COMPRESSED;
373 #endif
374 }
375 
376 static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) {
377   if (size == 1)
378     *buf = data;
379   else if (size == 2)
380     write16(buf, data);
381   else if (size == 4)
382     write32(buf, data);
383   else if (size == 8)
384     write64(buf, data);
385   else
386     llvm_unreachable("unsupported Size argument");
387 }
388 
389 template <class ELFT> void OutputSection::writeTo(uint8_t *buf) {
390   llvm::TimeTraceScope timeScope("Write sections", name);
391   if (type == SHT_NOBITS)
392     return;
393 
394   // If --compress-debug-section is specified and if this is a debug section,
395   // we've already compressed section contents. If that's the case,
396   // just write it down.
397   if (compressed.shards) {
398     auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf);
399     chdr->ch_type = ELFCOMPRESS_ZLIB;
400     chdr->ch_size = compressed.uncompressedSize;
401     chdr->ch_addralign = alignment;
402     buf += sizeof(*chdr);
403 
404     // Compute shard offsets.
405     auto offsets = std::make_unique<size_t[]>(compressed.numShards);
406     offsets[0] = 2; // zlib header
407     for (size_t i = 1; i != compressed.numShards; ++i)
408       offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size();
409 
410     buf[0] = 0x78; // CMF
411     buf[1] = 0x01; // FLG: best speed
412     parallelFor(0, compressed.numShards, [&](size_t i) {
413       memcpy(buf + offsets[i], compressed.shards[i].data(),
414              compressed.shards[i].size());
415     });
416 
417     write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum);
418     return;
419   }
420 
421   // Write leading padding.
422   SmallVector<InputSection *, 0> storage;
423   ArrayRef<InputSection *> sections = getInputSections(*this, storage);
424   std::array<uint8_t, 4> filler = getFiller();
425   bool nonZeroFiller = read32(filler.data()) != 0;
426   if (nonZeroFiller)
427     fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler);
428 
429   parallelFor(0, sections.size(), [&](size_t i) {
430     InputSection *isec = sections[i];
431     if (auto *s = dyn_cast<SyntheticSection>(isec))
432       s->writeTo(buf + isec->outSecOff);
433     else
434       isec->writeTo<ELFT>(buf + isec->outSecOff);
435 
436     // Fill gaps between sections.
437     if (nonZeroFiller) {
438       uint8_t *start = buf + isec->outSecOff + isec->getSize();
439       uint8_t *end;
440       if (i + 1 == sections.size())
441         end = buf + size;
442       else
443         end = buf + sections[i + 1]->outSecOff;
444       if (isec->nopFiller) {
445         assert(target->nopInstrs);
446         nopInstrFill(start, end - start);
447       } else
448         fill(start, end - start, filler);
449     }
450   });
451 
452   // Linker scripts may have BYTE()-family commands with which you
453   // can write arbitrary bytes to the output. Process them if any.
454   for (SectionCommand *cmd : commands)
455     if (auto *data = dyn_cast<ByteCommand>(cmd))
456       writeInt(buf + data->offset, data->expression().getValue(), data->size);
457 }
458 
459 static void finalizeShtGroup(OutputSection *os, InputSection *section) {
460   // sh_link field for SHT_GROUP sections should contain the section index of
461   // the symbol table.
462   os->link = in.symTab->getParent()->sectionIndex;
463 
464   if (!section)
465     return;
466 
467   // sh_info then contain index of an entry in symbol table section which
468   // provides signature of the section group.
469   ArrayRef<Symbol *> symbols = section->file->getSymbols();
470   os->info = in.symTab->getSymbolIndex(symbols[section->info]);
471 
472   // Some group members may be combined or discarded, so we need to compute the
473   // new size. The content will be rewritten in InputSection::copyShtGroup.
474   DenseSet<uint32_t> seen;
475   ArrayRef<InputSectionBase *> sections = section->file->getSections();
476   for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1))
477     if (OutputSection *osec = sections[read32(&idx)]->getOutputSection())
478       seen.insert(osec->sectionIndex);
479   os->size = (1 + seen.size()) * sizeof(uint32_t);
480 }
481 
482 void OutputSection::finalize() {
483   InputSection *first = getFirstInputSection(this);
484 
485   if (flags & SHF_LINK_ORDER) {
486     // We must preserve the link order dependency of sections with the
487     // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
488     // need to translate the InputSection sh_link to the OutputSection sh_link,
489     // all InputSections in the OutputSection have the same dependency.
490     if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first))
491       link = ex->getLinkOrderDep()->getParent()->sectionIndex;
492     else if (first->flags & SHF_LINK_ORDER)
493       if (auto *d = first->getLinkOrderDep())
494         link = d->getParent()->sectionIndex;
495   }
496 
497   if (type == SHT_GROUP) {
498     finalizeShtGroup(this, first);
499     return;
500   }
501 
502   if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL))
503     return;
504 
505   // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
506   // Normally 'type' was changed by 'first' so 'first' should be non-null.
507   // However, if the output section is .rela.dyn, 'type' can be set by the empty
508   // synthetic .rela.plt and first can be null.
509   if (!first || isa<SyntheticSection>(first))
510     return;
511 
512   link = in.symTab->getParent()->sectionIndex;
513   // sh_info for SHT_REL[A] sections should contain the section header index of
514   // the section to which the relocation applies.
515   InputSectionBase *s = first->getRelocatedSection();
516   info = s->getOutputSection()->sectionIndex;
517   flags |= SHF_INFO_LINK;
518 }
519 
520 // Returns true if S is in one of the many forms the compiler driver may pass
521 // crtbegin files.
522 //
523 // Gcc uses any of crtbegin[<empty>|S|T].o.
524 // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.
525 
526 static bool isCrt(StringRef s, StringRef beginEnd) {
527   s = sys::path::filename(s);
528   if (!s.consume_back(".o"))
529     return false;
530   if (s.consume_front("clang_rt."))
531     return s.consume_front(beginEnd);
532   return s.consume_front(beginEnd) && s.size() <= 1;
533 }
534 
535 // .ctors and .dtors are sorted by this order:
536 //
537 // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
538 // 2. The section is named ".ctors" or ".dtors" (priority: 65536).
539 // 3. The section has an optional priority value in the form of ".ctors.N" or
540 //    ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
541 // 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
542 //
543 // For 2 and 3, the sections are sorted by priority from high to low, e.g.
544 // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336).  In GNU ld's
545 // internal linker scripts, the sorting is by string comparison which can
546 // achieve the same goal given the optional priority values are of the same
547 // length.
548 //
549 // In an ideal world, we don't need this function because .init_array and
550 // .ctors are duplicate features (and .init_array is newer.) However, there
551 // are too many real-world use cases of .ctors, so we had no choice to
552 // support that with this rather ad-hoc semantics.
553 static bool compCtors(const InputSection *a, const InputSection *b) {
554   bool beginA = isCrt(a->file->getName(), "crtbegin");
555   bool beginB = isCrt(b->file->getName(), "crtbegin");
556   if (beginA != beginB)
557     return beginA;
558   bool endA = isCrt(a->file->getName(), "crtend");
559   bool endB = isCrt(b->file->getName(), "crtend");
560   if (endA != endB)
561     return endB;
562   return getPriority(a->name) > getPriority(b->name);
563 }
564 
565 // Sorts input sections by the special rules for .ctors and .dtors.
566 // Unfortunately, the rules are different from the one for .{init,fini}_array.
567 // Read the comment above.
568 void OutputSection::sortCtorsDtors() {
569   assert(commands.size() == 1);
570   auto *isd = cast<InputSectionDescription>(commands[0]);
571   llvm::stable_sort(isd->sections, compCtors);
572 }
573 
574 // If an input string is in the form of "foo.N" where N is a number, return N
575 // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
576 // greater than the lowest priority.
577 int elf::getPriority(StringRef s) {
578   size_t pos = s.rfind('.');
579   if (pos == StringRef::npos)
580     return 65536;
581   int v = 65536;
582   if (to_integer(s.substr(pos + 1), v, 10) &&
583       (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors"))))
584     v = 65535 - v;
585   return v;
586 }
587 
588 InputSection *elf::getFirstInputSection(const OutputSection *os) {
589   for (SectionCommand *cmd : os->commands)
590     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
591       if (!isd->sections.empty())
592         return isd->sections[0];
593   return nullptr;
594 }
595 
596 ArrayRef<InputSection *>
597 elf::getInputSections(const OutputSection &os,
598                       SmallVector<InputSection *, 0> &storage) {
599   ArrayRef<InputSection *> ret;
600   storage.clear();
601   for (SectionCommand *cmd : os.commands) {
602     auto *isd = dyn_cast<InputSectionDescription>(cmd);
603     if (!isd)
604       continue;
605     if (ret.empty()) {
606       ret = isd->sections;
607     } else {
608       if (storage.empty())
609         storage.assign(ret.begin(), ret.end());
610       storage.insert(storage.end(), isd->sections.begin(), isd->sections.end());
611     }
612   }
613   return storage.empty() ? ret : makeArrayRef(storage);
614 }
615 
616 // Sorts input sections by section name suffixes, so that .foo.N comes
617 // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
618 // We want to keep the original order if the priorities are the same
619 // because the compiler keeps the original initialization order in a
620 // translation unit and we need to respect that.
621 // For more detail, read the section of the GCC's manual about init_priority.
622 void OutputSection::sortInitFini() {
623   // Sort sections by priority.
624   sort([](InputSectionBase *s) { return getPriority(s->name); });
625 }
626 
627 std::array<uint8_t, 4> OutputSection::getFiller() {
628   if (filler)
629     return *filler;
630   if (flags & SHF_EXECINSTR)
631     return target->trapInstr;
632   return {0, 0, 0, 0};
633 }
634 
635 void OutputSection::checkDynRelAddends(const uint8_t *bufStart) {
636   assert(config->writeAddends && config->checkDynamicRelocs);
637   assert(type == SHT_REL || type == SHT_RELA);
638   SmallVector<InputSection *, 0> storage;
639   ArrayRef<InputSection *> sections = getInputSections(*this, storage);
640   parallelFor(0, sections.size(), [&](size_t i) {
641     // When linking with -r or --emit-relocs we might also call this function
642     // for input .rel[a].<sec> sections which we simply pass through to the
643     // output. We skip over those and only look at the synthetic relocation
644     // sections created during linking.
645     const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]);
646     if (!sec)
647       return;
648     for (const DynamicReloc &rel : sec->relocs) {
649       int64_t addend = rel.addend;
650       const OutputSection *relOsec = rel.inputSec->getOutputSection();
651       assert(relOsec != nullptr && "missing output section for relocation");
652       const uint8_t *relocTarget =
653           bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec);
654       // For SHT_NOBITS the written addend is always zero.
655       int64_t writtenAddend =
656           relOsec->type == SHT_NOBITS
657               ? 0
658               : target->getImplicitAddend(relocTarget, rel.type);
659       if (addend != writtenAddend)
660         internalLinkerError(
661             getErrorLocation(relocTarget),
662             "wrote incorrect addend value 0x" + utohexstr(writtenAddend) +
663                 " instead of 0x" + utohexstr(addend) +
664                 " for dynamic relocation " + toString(rel.type) +
665                 " at offset 0x" + utohexstr(rel.getOffset()) +
666                 (rel.sym ? " against symbol " + toString(*rel.sym) : ""));
667     }
668   });
669 }
670 
671 template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
672 template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
673 template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
674 template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);
675 
676 template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf);
677 template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf);
678 template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf);
679 template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf);
680 
681 template void OutputSection::maybeCompress<ELF32LE>();
682 template void OutputSection::maybeCompress<ELF32BE>();
683 template void OutputSection::maybeCompress<ELF64LE>();
684 template void OutputSection::maybeCompress<ELF64BE>();
685