1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67 
68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (SectionCommand *cmd : script->sectionCommands)
70     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
71       if (assign->sym == &sym)
72         return assign->location;
73   return None;
74 }
75 
76 static std::string getDefinedLocation(const Symbol &sym) {
77   const char msg[] = "\n>>> defined in ";
78   if (sym.file)
79     return msg + toString(sym.file);
80   if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81     return msg + *loc;
82   return "";
83 }
84 
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>>               /home/alice/src/bar.o:(.text+0x1)
90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91                                uint64_t off) {
92   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93   std::string src = s.getSrcMsg(sym, off);
94   if (!src.empty())
95     msg += src + "\n>>>               ";
96   return msg + s.getObjMsg(off);
97 }
98 
99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100                            int64_t min, uint64_t max) {
101   ErrorPlace errPlace = getErrorPlace(loc);
102   std::string hint;
103   if (rel.sym && !rel.sym->isSection())
104     hint = "; references " + lld::toString(*rel.sym);
105   if (!errPlace.srcLoc.empty())
106     hint += "\n>>> referenced by " + errPlace.srcLoc;
107   if (rel.sym && !rel.sym->isSection())
108     hint += getDefinedLocation(*rel.sym);
109 
110   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
111     hint += "; consider recompiling with -fdebug-types-section to reduce size "
112             "of debug sections";
113 
114   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
115               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
116               ", " + Twine(max).str() + "]" + hint);
117 }
118 
119 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
120                            const Twine &msg) {
121   ErrorPlace errPlace = getErrorPlace(loc);
122   std::string hint;
123   if (!sym.getName().empty())
124     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
125   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
126               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
127               Twine(llvm::maxIntN(n)) + "]" + hint);
128 }
129 
130 // Build a bitmask with one bit set for each 64 subset of RelExpr.
131 static constexpr uint64_t buildMask() { return 0; }
132 
133 template <typename... Tails>
134 static constexpr uint64_t buildMask(int head, Tails... tails) {
135   return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
136          buildMask(tails...);
137 }
138 
139 // Return true if `Expr` is one of `Exprs`.
140 // There are more than 64 but less than 128 RelExprs, so we divide the set of
141 // exprs into [0, 64) and [64, 128) and represent each range as a constant
142 // 64-bit mask. Then we decide which mask to test depending on the value of
143 // expr and use a simple shift and bitwise-and to test for membership.
144 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
145   assert(0 <= expr && (int)expr < 128 &&
146          "RelExpr is too large for 128-bit mask!");
147 
148   if (expr >= 64)
149     return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
150   return (uint64_t(1) << expr) & buildMask(Exprs...);
151 }
152 
153 static RelType getMipsPairType(RelType type, bool isLocal) {
154   switch (type) {
155   case R_MIPS_HI16:
156     return R_MIPS_LO16;
157   case R_MIPS_GOT16:
158     // In case of global symbol, the R_MIPS_GOT16 relocation does not
159     // have a pair. Each global symbol has a unique entry in the GOT
160     // and a corresponding instruction with help of the R_MIPS_GOT16
161     // relocation loads an address of the symbol. In case of local
162     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
163     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
164     // relocations handle low 16 bits of the address. That allows
165     // to allocate only one GOT entry for every 64 KBytes of local data.
166     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
167   case R_MICROMIPS_GOT16:
168     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
169   case R_MIPS_PCHI16:
170     return R_MIPS_PCLO16;
171   case R_MICROMIPS_HI16:
172     return R_MICROMIPS_LO16;
173   default:
174     return R_MIPS_NONE;
175   }
176 }
177 
178 // True if non-preemptable symbol always has the same value regardless of where
179 // the DSO is loaded.
180 static bool isAbsolute(const Symbol &sym) {
181   if (sym.isUndefWeak())
182     return true;
183   if (const auto *dr = dyn_cast<Defined>(&sym))
184     return dr->section == nullptr; // Absolute symbol.
185   return false;
186 }
187 
188 static bool isAbsoluteValue(const Symbol &sym) {
189   return isAbsolute(sym) || sym.isTls();
190 }
191 
192 // Returns true if Expr refers a PLT entry.
193 static bool needsPlt(RelExpr expr) {
194   return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
195       expr);
196 }
197 
198 // Returns true if Expr refers a GOT entry. Note that this function
199 // returns false for TLS variables even though they need GOT, because
200 // TLS variables uses GOT differently than the regular variables.
201 static bool needsGot(RelExpr expr) {
202   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
203                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
204                R_AARCH64_GOT_PAGE>(expr);
205 }
206 
207 // True if this expression is of the form Sym - X, where X is a position in the
208 // file (PC, or GOT for example).
209 static bool isRelExpr(RelExpr expr) {
210   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
211                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
212                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
213 }
214 
215 
216 static RelExpr toPlt(RelExpr expr) {
217   switch (expr) {
218   case R_PPC64_CALL:
219     return R_PPC64_CALL_PLT;
220   case R_PC:
221     return R_PLT_PC;
222   case R_ABS:
223     return R_PLT;
224   default:
225     return expr;
226   }
227 }
228 
229 static RelExpr fromPlt(RelExpr expr) {
230   // We decided not to use a plt. Optimize a reference to the plt to a
231   // reference to the symbol itself.
232   switch (expr) {
233   case R_PLT_PC:
234   case R_PPC32_PLTREL:
235     return R_PC;
236   case R_PPC64_CALL_PLT:
237     return R_PPC64_CALL;
238   case R_PLT:
239     return R_ABS;
240   case R_PLT_GOTPLT:
241     return R_GOTPLTREL;
242   default:
243     return expr;
244   }
245 }
246 
247 // Returns true if a given shared symbol is in a read-only segment in a DSO.
248 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
249   using Elf_Phdr = typename ELFT::Phdr;
250 
251   // Determine if the symbol is read-only by scanning the DSO's program headers.
252   const SharedFile &file = ss.getFile();
253   for (const Elf_Phdr &phdr :
254        check(file.template getObj<ELFT>().program_headers()))
255     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
256         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
257         ss.value < phdr.p_vaddr + phdr.p_memsz)
258       return true;
259   return false;
260 }
261 
262 // Returns symbols at the same offset as a given symbol, including SS itself.
263 //
264 // If two or more symbols are at the same offset, and at least one of
265 // them are copied by a copy relocation, all of them need to be copied.
266 // Otherwise, they would refer to different places at runtime.
267 template <class ELFT>
268 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
269   using Elf_Sym = typename ELFT::Sym;
270 
271   SharedFile &file = ss.getFile();
272 
273   SmallSet<SharedSymbol *, 4> ret;
274   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
275     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
276         s.getType() == STT_TLS || s.st_value != ss.value)
277       continue;
278     StringRef name = check(s.getName(file.getStringTable()));
279     Symbol *sym = symtab->find(name);
280     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
281       ret.insert(alias);
282   }
283 
284   // The loop does not check SHT_GNU_verneed, so ret does not contain
285   // non-default version symbols. If ss has a non-default version, ret won't
286   // contain ss. Just add ss unconditionally. If a non-default version alias is
287   // separately copy relocated, it and ss will have different addresses.
288   // Fortunately this case is impractical and fails with GNU ld as well.
289   ret.insert(&ss);
290   return ret;
291 }
292 
293 // When a symbol is copy relocated or we create a canonical plt entry, it is
294 // effectively a defined symbol. In the case of copy relocation the symbol is
295 // in .bss and in the case of a canonical plt entry it is in .plt. This function
296 // replaces the existing symbol with a Defined pointing to the appropriate
297 // location.
298 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
299                                uint64_t size) {
300   Symbol old = sym;
301 
302   sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
303                       sym.type, value, size, &sec});
304 
305   sym.auxIdx = old.auxIdx;
306   sym.verdefIndex = old.verdefIndex;
307   sym.exportDynamic = true;
308   sym.isUsedInRegularObj = true;
309   // A copy relocated alias may need a GOT entry.
310   sym.needsGot = old.needsGot;
311 }
312 
313 // Reserve space in .bss or .bss.rel.ro for copy relocation.
314 //
315 // The copy relocation is pretty much a hack. If you use a copy relocation
316 // in your program, not only the symbol name but the symbol's size, RW/RO
317 // bit and alignment become part of the ABI. In addition to that, if the
318 // symbol has aliases, the aliases become part of the ABI. That's subtle,
319 // but if you violate that implicit ABI, that can cause very counter-
320 // intuitive consequences.
321 //
322 // So, what is the copy relocation? It's for linking non-position
323 // independent code to DSOs. In an ideal world, all references to data
324 // exported by DSOs should go indirectly through GOT. But if object files
325 // are compiled as non-PIC, all data references are direct. There is no
326 // way for the linker to transform the code to use GOT, as machine
327 // instructions are already set in stone in object files. This is where
328 // the copy relocation takes a role.
329 //
330 // A copy relocation instructs the dynamic linker to copy data from a DSO
331 // to a specified address (which is usually in .bss) at load-time. If the
332 // static linker (that's us) finds a direct data reference to a DSO
333 // symbol, it creates a copy relocation, so that the symbol can be
334 // resolved as if it were in .bss rather than in a DSO.
335 //
336 // As you can see in this function, we create a copy relocation for the
337 // dynamic linker, and the relocation contains not only symbol name but
338 // various other information about the symbol. So, such attributes become a
339 // part of the ABI.
340 //
341 // Note for application developers: I can give you a piece of advice if
342 // you are writing a shared library. You probably should export only
343 // functions from your library. You shouldn't export variables.
344 //
345 // As an example what can happen when you export variables without knowing
346 // the semantics of copy relocations, assume that you have an exported
347 // variable of type T. It is an ABI-breaking change to add new members at
348 // end of T even though doing that doesn't change the layout of the
349 // existing members. That's because the space for the new members are not
350 // reserved in .bss unless you recompile the main program. That means they
351 // are likely to overlap with other data that happens to be laid out next
352 // to the variable in .bss. This kind of issue is sometimes very hard to
353 // debug. What's a solution? Instead of exporting a variable V from a DSO,
354 // define an accessor getV().
355 template <class ELFT> static void addCopyRelSymbolImpl(SharedSymbol &ss) {
356   // Copy relocation against zero-sized symbol doesn't make sense.
357   uint64_t symSize = ss.getSize();
358   if (symSize == 0 || ss.alignment == 0)
359     fatal("cannot create a copy relocation for symbol " + toString(ss));
360 
361   // See if this symbol is in a read-only segment. If so, preserve the symbol's
362   // memory protection by reserving space in the .bss.rel.ro section.
363   bool isRO = isReadOnly<ELFT>(ss);
364   BssSection *sec =
365       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
366   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
367 
368   // At this point, sectionBases has been migrated to sections. Append sec to
369   // sections.
370   if (osec->commands.empty() ||
371       !isa<InputSectionDescription>(osec->commands.back()))
372     osec->commands.push_back(make<InputSectionDescription>(""));
373   auto *isd = cast<InputSectionDescription>(osec->commands.back());
374   isd->sections.push_back(sec);
375   osec->commitSection(sec);
376 
377   // Look through the DSO's dynamic symbol table for aliases and create a
378   // dynamic symbol for each one. This causes the copy relocation to correctly
379   // interpose any aliases.
380   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
381     replaceWithDefined(*sym, *sec, 0, sym->size);
382 
383   mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
384 }
385 
386 static void addCopyRelSymbol(SharedSymbol &ss) {
387   const SharedFile &file = ss.getFile();
388   switch (file.ekind) {
389   case ELF32LEKind:
390     addCopyRelSymbolImpl<ELF32LE>(ss);
391     break;
392   case ELF32BEKind:
393     addCopyRelSymbolImpl<ELF32BE>(ss);
394     break;
395   case ELF64LEKind:
396     addCopyRelSymbolImpl<ELF64LE>(ss);
397     break;
398   case ELF64BEKind:
399     addCopyRelSymbolImpl<ELF64BE>(ss);
400     break;
401   default:
402     llvm_unreachable("");
403   }
404 }
405 
406 // .eh_frame sections are mergeable input sections, so their input
407 // offsets are not linearly mapped to output section. For each input
408 // offset, we need to find a section piece containing the offset and
409 // add the piece's base address to the input offset to compute the
410 // output offset. That isn't cheap.
411 //
412 // This class is to speed up the offset computation. When we process
413 // relocations, we access offsets in the monotonically increasing
414 // order. So we can optimize for that access pattern.
415 //
416 // For sections other than .eh_frame, this class doesn't do anything.
417 namespace {
418 class OffsetGetter {
419 public:
420   explicit OffsetGetter(InputSectionBase &sec) {
421     if (auto *eh = dyn_cast<EhInputSection>(&sec))
422       pieces = eh->pieces;
423   }
424 
425   // Translates offsets in input sections to offsets in output sections.
426   // Given offset must increase monotonically. We assume that Piece is
427   // sorted by inputOff.
428   uint64_t get(uint64_t off) {
429     if (pieces.empty())
430       return off;
431 
432     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
433       ++i;
434     if (i == pieces.size())
435       fatal(".eh_frame: relocation is not in any piece");
436 
437     // Pieces must be contiguous, so there must be no holes in between.
438     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
439 
440     // Offset -1 means that the piece is dead (i.e. garbage collected).
441     if (pieces[i].outputOff == -1)
442       return -1;
443     return pieces[i].outputOff + off - pieces[i].inputOff;
444   }
445 
446 private:
447   ArrayRef<EhSectionPiece> pieces;
448   size_t i = 0;
449 };
450 
451 // This class encapsulates states needed to scan relocations for one
452 // InputSectionBase.
453 class RelocationScanner {
454 public:
455   explicit RelocationScanner(InputSectionBase &sec)
456       : sec(sec), getter(sec), config(elf::config.get()), target(*elf::target) {
457   }
458   template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
459 
460 private:
461   InputSectionBase &sec;
462   OffsetGetter getter;
463   const Configuration *const config;
464   const TargetInfo &target;
465 
466   // End of relocations, used by Mips/PPC64.
467   const void *end = nullptr;
468 
469   template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
470   template <class ELFT, class RelTy>
471   int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
472   template <class ELFT, class RelTy>
473   int64_t computeAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
474   bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
475                                 uint64_t relOff) const;
476   void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
477                   int64_t addend) const;
478   template <class ELFT, class RelTy> void scanOne(RelTy *&i);
479 };
480 } // namespace
481 
482 // MIPS has an odd notion of "paired" relocations to calculate addends.
483 // For example, if a relocation is of R_MIPS_HI16, there must be a
484 // R_MIPS_LO16 relocation after that, and an addend is calculated using
485 // the two relocations.
486 template <class ELFT, class RelTy>
487 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
488                                              bool isLocal) const {
489   if (expr == R_MIPS_GOTREL && isLocal)
490     return sec.getFile<ELFT>()->mipsGp0;
491 
492   // The ABI says that the paired relocation is used only for REL.
493   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
494   if (RelTy::IsRela)
495     return 0;
496 
497   RelType type = rel.getType(config->isMips64EL);
498   uint32_t pairTy = getMipsPairType(type, isLocal);
499   if (pairTy == R_MIPS_NONE)
500     return 0;
501 
502   const uint8_t *buf = sec.data().data();
503   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
504 
505   // To make things worse, paired relocations might not be contiguous in
506   // the relocation table, so we need to do linear search. *sigh*
507   for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
508     if (ri->getType(config->isMips64EL) == pairTy &&
509         ri->getSymbol(config->isMips64EL) == symIndex)
510       return target.getImplicitAddend(buf + ri->r_offset, pairTy);
511 
512   warn("can't find matching " + toString(pairTy) + " relocation for " +
513        toString(type));
514   return 0;
515 }
516 
517 // Returns an addend of a given relocation. If it is RELA, an addend
518 // is in a relocation itself. If it is REL, we need to read it from an
519 // input section.
520 template <class ELFT, class RelTy>
521 int64_t RelocationScanner::computeAddend(const RelTy &rel, RelExpr expr,
522                                          bool isLocal) const {
523   int64_t addend;
524   RelType type = rel.getType(config->isMips64EL);
525 
526   if (RelTy::IsRela) {
527     addend = getAddend<ELFT>(rel);
528   } else {
529     const uint8_t *buf = sec.data().data();
530     addend = target.getImplicitAddend(buf + rel.r_offset, type);
531   }
532 
533   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
534     addend += getPPC64TocBase();
535   if (config->emachine == EM_MIPS)
536     addend += computeMipsAddend<ELFT>(rel, expr, isLocal);
537 
538   return addend;
539 }
540 
541 // Custom error message if Sym is defined in a discarded section.
542 template <class ELFT>
543 static std::string maybeReportDiscarded(Undefined &sym) {
544   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
545   if (!file || !sym.discardedSecIdx ||
546       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
547     return "";
548   ArrayRef<typename ELFT::Shdr> objSections =
549       file->template getELFShdrs<ELFT>();
550 
551   std::string msg;
552   if (sym.type == ELF::STT_SECTION) {
553     msg = "relocation refers to a discarded section: ";
554     msg += CHECK(
555         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
556   } else {
557     msg = "relocation refers to a symbol in a discarded section: " +
558           toString(sym);
559   }
560   msg += "\n>>> defined in " + toString(file);
561 
562   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
563   if (elfSec.sh_type != SHT_GROUP)
564     return msg;
565 
566   // If the discarded section is a COMDAT.
567   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
568   if (const InputFile *prevailing =
569           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
570     msg += "\n>>> section group signature: " + signature.str() +
571            "\n>>> prevailing definition is in " + toString(prevailing);
572   return msg;
573 }
574 
575 // Undefined diagnostics are collected in a vector and emitted once all of
576 // them are known, so that some postprocessing on the list of undefined symbols
577 // can happen before lld emits diagnostics.
578 struct UndefinedDiag {
579   Undefined *sym;
580   struct Loc {
581     InputSectionBase *sec;
582     uint64_t offset;
583   };
584   std::vector<Loc> locs;
585   bool isWarning;
586 };
587 
588 static std::vector<UndefinedDiag> undefs;
589 
590 // Check whether the definition name def is a mangled function name that matches
591 // the reference name ref.
592 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
593   llvm::ItaniumPartialDemangler d;
594   std::string name = def.str();
595   if (d.partialDemangle(name.c_str()))
596     return false;
597   char *buf = d.getFunctionName(nullptr, nullptr);
598   if (!buf)
599     return false;
600   bool ret = ref == buf;
601   free(buf);
602   return ret;
603 }
604 
605 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
606 // the suggested symbol, which is either in the symbol table, or in the same
607 // file of sym.
608 static const Symbol *getAlternativeSpelling(const Undefined &sym,
609                                             std::string &pre_hint,
610                                             std::string &post_hint) {
611   DenseMap<StringRef, const Symbol *> map;
612   if (sym.file && sym.file->kind() == InputFile::ObjKind) {
613     auto *file = cast<ELFFileBase>(sym.file);
614     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
615     // will give an error. Don't suggest an alternative spelling.
616     if (file && sym.discardedSecIdx != 0 &&
617         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
618       return nullptr;
619 
620     // Build a map of local defined symbols.
621     for (const Symbol *s : sym.file->getSymbols())
622       if (s->isLocal() && s->isDefined() && !s->getName().empty())
623         map.try_emplace(s->getName(), s);
624   }
625 
626   auto suggest = [&](StringRef newName) -> const Symbol * {
627     // If defined locally.
628     if (const Symbol *s = map.lookup(newName))
629       return s;
630 
631     // If in the symbol table and not undefined.
632     if (const Symbol *s = symtab->find(newName))
633       if (!s->isUndefined())
634         return s;
635 
636     return nullptr;
637   };
638 
639   // This loop enumerates all strings of Levenshtein distance 1 as typo
640   // correction candidates and suggests the one that exists as a non-undefined
641   // symbol.
642   StringRef name = sym.getName();
643   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
644     // Insert a character before name[i].
645     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
646     for (char c = '0'; c <= 'z'; ++c) {
647       newName[i] = c;
648       if (const Symbol *s = suggest(newName))
649         return s;
650     }
651     if (i == e)
652       break;
653 
654     // Substitute name[i].
655     newName = std::string(name);
656     for (char c = '0'; c <= 'z'; ++c) {
657       newName[i] = c;
658       if (const Symbol *s = suggest(newName))
659         return s;
660     }
661 
662     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
663     // common.
664     if (i + 1 < e) {
665       newName[i] = name[i + 1];
666       newName[i + 1] = name[i];
667       if (const Symbol *s = suggest(newName))
668         return s;
669     }
670 
671     // Delete name[i].
672     newName = (name.substr(0, i) + name.substr(i + 1)).str();
673     if (const Symbol *s = suggest(newName))
674       return s;
675   }
676 
677   // Case mismatch, e.g. Foo vs FOO.
678   for (auto &it : map)
679     if (name.equals_insensitive(it.first))
680       return it.second;
681   for (Symbol *sym : symtab->symbols())
682     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
683       return sym;
684 
685   // The reference may be a mangled name while the definition is not. Suggest a
686   // missing extern "C".
687   if (name.startswith("_Z")) {
688     std::string buf = name.str();
689     llvm::ItaniumPartialDemangler d;
690     if (!d.partialDemangle(buf.c_str()))
691       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
692         const Symbol *s = suggest(buf);
693         free(buf);
694         if (s) {
695           pre_hint = ": extern \"C\" ";
696           return s;
697         }
698       }
699   } else {
700     const Symbol *s = nullptr;
701     for (auto &it : map)
702       if (canSuggestExternCForCXX(name, it.first)) {
703         s = it.second;
704         break;
705       }
706     if (!s)
707       for (Symbol *sym : symtab->symbols())
708         if (canSuggestExternCForCXX(name, sym->getName())) {
709           s = sym;
710           break;
711         }
712     if (s) {
713       pre_hint = " to declare ";
714       post_hint = " as extern \"C\"?";
715       return s;
716     }
717   }
718 
719   return nullptr;
720 }
721 
722 template <class ELFT>
723 static void reportUndefinedSymbol(const UndefinedDiag &undef,
724                                   bool correctSpelling) {
725   Undefined &sym = *undef.sym;
726 
727   auto visibility = [&]() -> std::string {
728     switch (sym.visibility) {
729     case STV_INTERNAL:
730       return "internal ";
731     case STV_HIDDEN:
732       return "hidden ";
733     case STV_PROTECTED:
734       return "protected ";
735     default:
736       return "";
737     }
738   };
739 
740   std::string msg = maybeReportDiscarded<ELFT>(sym);
741   if (msg.empty())
742     msg = "undefined " + visibility() + "symbol: " + toString(sym);
743 
744   const size_t maxUndefReferences = 3;
745   size_t i = 0;
746   for (UndefinedDiag::Loc l : undef.locs) {
747     if (i >= maxUndefReferences)
748       break;
749     InputSectionBase &sec = *l.sec;
750     uint64_t offset = l.offset;
751 
752     msg += "\n>>> referenced by ";
753     std::string src = sec.getSrcMsg(sym, offset);
754     if (!src.empty())
755       msg += src + "\n>>>               ";
756     msg += sec.getObjMsg(offset);
757     i++;
758   }
759 
760   if (i < undef.locs.size())
761     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
762                .str();
763 
764   if (correctSpelling) {
765     std::string pre_hint = ": ", post_hint;
766     if (const Symbol *corrected =
767             getAlternativeSpelling(sym, pre_hint, post_hint)) {
768       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
769       if (corrected->file)
770         msg += "\n>>> defined in: " + toString(corrected->file);
771     }
772   }
773 
774   if (sym.getName().startswith("_ZTV"))
775     msg +=
776         "\n>>> the vtable symbol may be undefined because the class is missing "
777         "its key function (see https://lld.llvm.org/missingkeyfunction)";
778   if (config->gcSections && config->zStartStopGC &&
779       sym.getName().startswith("__start_")) {
780     msg += "\n>>> the encapsulation symbol needs to be retained under "
781            "--gc-sections properly; consider -z nostart-stop-gc "
782            "(see https://lld.llvm.org/ELF/start-stop-gc)";
783   }
784 
785   if (undef.isWarning)
786     warn(msg);
787   else
788     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
789 }
790 
791 template <class ELFT> void elf::reportUndefinedSymbols() {
792   // Find the first "undefined symbol" diagnostic for each diagnostic, and
793   // collect all "referenced from" lines at the first diagnostic.
794   DenseMap<Symbol *, UndefinedDiag *> firstRef;
795   for (UndefinedDiag &undef : undefs) {
796     assert(undef.locs.size() == 1);
797     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
798       canon->locs.push_back(undef.locs[0]);
799       undef.locs.clear();
800     } else
801       firstRef[undef.sym] = &undef;
802   }
803 
804   // Enable spell corrector for the first 2 diagnostics.
805   for (auto it : enumerate(undefs))
806     if (!it.value().locs.empty())
807       reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
808   undefs.clear();
809 }
810 
811 // Report an undefined symbol if necessary.
812 // Returns true if the undefined symbol will produce an error message.
813 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
814                                  uint64_t offset) {
815   // If versioned, issue an error (even if the symbol is weak) because we don't
816   // know the defining filename which is required to construct a Verneed entry.
817   if (sym.hasVersionSuffix) {
818     undefs.push_back({&sym, {{&sec, offset}}, false});
819     return true;
820   }
821   if (sym.isWeak())
822     return false;
823 
824   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
825   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
826     return false;
827 
828   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
829   // which references a switch table in a discarded .rodata/.text section. The
830   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
831   // spec says references from outside the group to a STB_LOCAL symbol are not
832   // allowed. Work around the bug.
833   //
834   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
835   // because .LC0-.LTOC is not representable if the two labels are in different
836   // .got2
837   if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
838     return false;
839 
840   bool isWarning =
841       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
842       config->noinhibitExec;
843   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
844   return !isWarning;
845 }
846 
847 // MIPS N32 ABI treats series of successive relocations with the same offset
848 // as a single relocation. The similar approach used by N64 ABI, but this ABI
849 // packs all relocations into the single relocation record. Here we emulate
850 // this for the N32 ABI. Iterate over relocation with the same offset and put
851 // theirs types into the single bit-set.
852 template <class RelTy>
853 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
854   RelType type = 0;
855   uint64_t offset = rel->r_offset;
856 
857   int n = 0;
858   while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
859     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
860   return type;
861 }
862 
863 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
864                              Symbol &sym, int64_t addend, RelExpr expr,
865                              RelType type) {
866   Partition &part = isec.getPartition();
867 
868   // Add a relative relocation. If relrDyn section is enabled, and the
869   // relocation offset is guaranteed to be even, add the relocation to
870   // the relrDyn section, otherwise add it to the relaDyn section.
871   // relrDyn sections don't support odd offsets. Also, relrDyn sections
872   // don't store the addend values, so we must write it to the relocated
873   // address.
874   if (part.relrDyn && isec.alignment >= 2 && offsetInSec % 2 == 0) {
875     isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
876     part.relrDyn->relocs.push_back({&isec, offsetInSec});
877     return;
878   }
879   part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
880                                  addend, type, expr);
881 }
882 
883 template <class PltSection, class GotPltSection>
884 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
885                         RelocationBaseSection &rel, RelType type, Symbol &sym) {
886   plt.addEntry(sym);
887   gotPlt.addEntry(sym);
888   rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
889                 sym.isPreemptible ? DynamicReloc::AgainstSymbol
890                                   : DynamicReloc::AddendOnlyWithTargetVA,
891                 sym, 0, R_ABS});
892 }
893 
894 static void addGotEntry(Symbol &sym) {
895   in.got->addEntry(sym);
896   uint64_t off = sym.getGotOffset();
897 
898   // If preemptible, emit a GLOB_DAT relocation.
899   if (sym.isPreemptible) {
900     mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
901                                  DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
902     return;
903   }
904 
905   // Otherwise, the value is either a link-time constant or the load base
906   // plus a constant.
907   if (!config->isPic || isAbsolute(sym))
908     in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym});
909   else
910     addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
911 }
912 
913 static void addTpOffsetGotEntry(Symbol &sym) {
914   in.got->addEntry(sym);
915   uint64_t off = sym.getGotOffset();
916   if (!sym.isPreemptible && !config->isPic) {
917     in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym});
918     return;
919   }
920   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
921       target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
922 }
923 
924 // Return true if we can define a symbol in the executable that
925 // contains the value/function of a symbol defined in a shared
926 // library.
927 static bool canDefineSymbolInExecutable(Symbol &sym) {
928   // If the symbol has default visibility the symbol defined in the
929   // executable will preempt it.
930   // Note that we want the visibility of the shared symbol itself, not
931   // the visibility of the symbol in the output file we are producing. That is
932   // why we use Sym.stOther.
933   if ((sym.stOther & 0x3) == STV_DEFAULT)
934     return true;
935 
936   // If we are allowed to break address equality of functions, defining
937   // a plt entry will allow the program to call the function in the
938   // .so, but the .so and the executable will no agree on the address
939   // of the function. Similar logic for objects.
940   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
941           (sym.isObject() && config->ignoreDataAddressEquality));
942 }
943 
944 // Returns true if a given relocation can be computed at link-time.
945 // This only handles relocation types expected in processRelocAux.
946 //
947 // For instance, we know the offset from a relocation to its target at
948 // link-time if the relocation is PC-relative and refers a
949 // non-interposable function in the same executable. This function
950 // will return true for such relocation.
951 //
952 // If this function returns false, that means we need to emit a
953 // dynamic relocation so that the relocation will be fixed at load-time.
954 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
955                                                  const Symbol &sym,
956                                                  uint64_t relOff) const {
957   // These expressions always compute a constant
958   if (oneof<R_GOTPLT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL,
959             R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
960             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
961             R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
962             R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
963     return true;
964 
965   // These never do, except if the entire file is position dependent or if
966   // only the low bits are used.
967   if (e == R_GOT || e == R_PLT)
968     return target.usesOnlyLowPageBits(type) || !config->isPic;
969 
970   if (sym.isPreemptible)
971     return false;
972   if (!config->isPic)
973     return true;
974 
975   // The size of a non preemptible symbol is a constant.
976   if (e == R_SIZE)
977     return true;
978 
979   // For the target and the relocation, we want to know if they are
980   // absolute or relative.
981   bool absVal = isAbsoluteValue(sym);
982   bool relE = isRelExpr(e);
983   if (absVal && !relE)
984     return true;
985   if (!absVal && relE)
986     return true;
987   if (!absVal && !relE)
988     return target.usesOnlyLowPageBits(type);
989 
990   assert(absVal && relE);
991 
992   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
993   // in PIC mode. This is a little strange, but it allows us to link function
994   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
995   // Normally such a call will be guarded with a comparison, which will load a
996   // zero from the GOT.
997   if (sym.isUndefWeak())
998     return true;
999 
1000   // We set the final symbols values for linker script defined symbols later.
1001   // They always can be computed as a link time constant.
1002   if (sym.scriptDefined)
1003       return true;
1004 
1005   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1006         toString(sym) + getLocation(sec, sym, relOff));
1007   return true;
1008 }
1009 
1010 // The reason we have to do this early scan is as follows
1011 // * To mmap the output file, we need to know the size
1012 // * For that, we need to know how many dynamic relocs we will have.
1013 // It might be possible to avoid this by outputting the file with write:
1014 // * Write the allocated output sections, computing addresses.
1015 // * Apply relocations, recording which ones require a dynamic reloc.
1016 // * Write the dynamic relocations.
1017 // * Write the rest of the file.
1018 // This would have some drawbacks. For example, we would only know if .rela.dyn
1019 // is needed after applying relocations. If it is, it will go after rw and rx
1020 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1021 // complicates things for the dynamic linker and means we would have to reserve
1022 // space for the extra PT_LOAD even if we end up not using it.
1023 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1024                                    Symbol &sym, int64_t addend) const {
1025   // If the relocation is known to be a link-time constant, we know no dynamic
1026   // relocation will be created, pass the control to relocateAlloc() or
1027   // relocateNonAlloc() to resolve it.
1028   //
1029   // The behavior of an undefined weak reference is implementation defined. For
1030   // non-link-time constants, we resolve relocations statically (let
1031   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1032   // relocations for -pie and -shared.
1033   //
1034   // The general expectation of -no-pie static linking is that there is no
1035   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1036   // -shared matches the spirit of its -z undefs default. -pie has freedom on
1037   // choices, and we choose dynamic relocations to be consistent with the
1038   // handling of GOT-generating relocations.
1039   if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1040       (!config->isPic && sym.isUndefWeak())) {
1041     sec.relocations.push_back({expr, type, offset, addend, &sym});
1042     return;
1043   }
1044 
1045   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1046   if (canWrite) {
1047     RelType rel = target.getDynRel(type);
1048     if (expr == R_GOT || (rel == target.symbolicRel && !sym.isPreemptible)) {
1049       addRelativeReloc(sec, offset, sym, addend, expr, type);
1050       return;
1051     } else if (rel != 0) {
1052       if (config->emachine == EM_MIPS && rel == target.symbolicRel)
1053         rel = target.relativeRel;
1054       sec.getPartition().relaDyn->addSymbolReloc(rel, sec, offset, sym, addend,
1055                                                  type);
1056 
1057       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1058       // While regular ABI uses dynamic relocations to fill up GOT entries
1059       // MIPS ABI requires dynamic linker to fills up GOT entries using
1060       // specially sorted dynamic symbol table. This affects even dynamic
1061       // relocations against symbols which do not require GOT entries
1062       // creation explicitly, i.e. do not have any GOT-relocations. So if
1063       // a preemptible symbol has a dynamic relocation we anyway have
1064       // to create a GOT entry for it.
1065       // If a non-preemptible symbol has a dynamic relocation against it,
1066       // dynamic linker takes it st_value, adds offset and writes down
1067       // result of the dynamic relocation. In case of preemptible symbol
1068       // dynamic linker performs symbol resolution, writes the symbol value
1069       // to the GOT entry and reads the GOT entry when it needs to perform
1070       // a dynamic relocation.
1071       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1072       if (config->emachine == EM_MIPS)
1073         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1074       return;
1075     }
1076   }
1077 
1078   // When producing an executable, we can perform copy relocations (for
1079   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1080   if (!config->shared) {
1081     if (!canDefineSymbolInExecutable(sym)) {
1082       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1083                   getLocation(sec, sym, offset));
1084       return;
1085     }
1086 
1087     if (sym.isObject()) {
1088       // Produce a copy relocation.
1089       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1090         if (!config->zCopyreloc)
1091           error("unresolvable relocation " + toString(type) +
1092                 " against symbol '" + toString(*ss) +
1093                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1094                 getLocation(sec, sym, offset));
1095         sym.needsCopy = true;
1096       }
1097       sec.relocations.push_back({expr, type, offset, addend, &sym});
1098       return;
1099     }
1100 
1101     // This handles a non PIC program call to function in a shared library. In
1102     // an ideal world, we could just report an error saying the relocation can
1103     // overflow at runtime. In the real world with glibc, crt1.o has a
1104     // R_X86_64_PC32 pointing to libc.so.
1105     //
1106     // The general idea on how to handle such cases is to create a PLT entry and
1107     // use that as the function value.
1108     //
1109     // For the static linking part, we just return a plt expr and everything
1110     // else will use the PLT entry as the address.
1111     //
1112     // The remaining problem is making sure pointer equality still works. We
1113     // need the help of the dynamic linker for that. We let it know that we have
1114     // a direct reference to a so symbol by creating an undefined symbol with a
1115     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1116     // the value of the symbol we created. This is true even for got entries, so
1117     // pointer equality is maintained. To avoid an infinite loop, the only entry
1118     // that points to the real function is a dedicated got entry used by the
1119     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1120     // R_386_JMP_SLOT, etc).
1121 
1122     // For position independent executable on i386, the plt entry requires ebx
1123     // to be set. This causes two problems:
1124     // * If some code has a direct reference to a function, it was probably
1125     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1126     // * If a library definition gets preempted to the executable, it will have
1127     //   the wrong ebx value.
1128     if (sym.isFunc()) {
1129       if (config->pie && config->emachine == EM_386)
1130         errorOrWarn("symbol '" + toString(sym) +
1131                     "' cannot be preempted; recompile with -fPIE" +
1132                     getLocation(sec, sym, offset));
1133       sym.needsCopy = true;
1134       sym.needsPlt = true;
1135       sec.relocations.push_back({expr, type, offset, addend, &sym});
1136       return;
1137     }
1138   }
1139 
1140   errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1141               (sym.getName().empty() ? "local symbol"
1142                                      : "symbol '" + toString(sym) + "'") +
1143               "; recompile with -fPIC" + getLocation(sec, sym, offset));
1144 }
1145 
1146 // This function is similar to the `handleTlsRelocation`. MIPS does not
1147 // support any relaxations for TLS relocations so by factoring out MIPS
1148 // handling in to the separate function we can simplify the code and do not
1149 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1150 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1151 // without dynamic relocations.
1152 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1153                                         InputSectionBase &c, uint64_t offset,
1154                                         int64_t addend, RelExpr expr) {
1155   if (expr == R_MIPS_TLSLD) {
1156     in.mipsGot->addTlsIndex(*c.file);
1157     c.relocations.push_back({expr, type, offset, addend, &sym});
1158     return 1;
1159   }
1160   if (expr == R_MIPS_TLSGD) {
1161     in.mipsGot->addDynTlsEntry(*c.file, sym);
1162     c.relocations.push_back({expr, type, offset, addend, &sym});
1163     return 1;
1164   }
1165   return 0;
1166 }
1167 
1168 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1169 // require the generation of a pair of GOT entries that have associated dynamic
1170 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1171 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1172 // symbol in TLS block.
1173 //
1174 // Returns the number of relocations processed.
1175 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1176                                     InputSectionBase &c, uint64_t offset,
1177                                     int64_t addend, RelExpr expr) {
1178   if (!sym.isTls())
1179     return 0;
1180 
1181   if (config->emachine == EM_MIPS)
1182     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1183 
1184   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1185             R_TLSDESC_GOTPLT>(expr) &&
1186       config->shared) {
1187     if (expr != R_TLSDESC_CALL) {
1188       sym.needsTlsDesc = true;
1189       c.relocations.push_back({expr, type, offset, addend, &sym});
1190     }
1191     return 1;
1192   }
1193 
1194   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
1195   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1196   // relaxation as well.
1197   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1198                      config->emachine != EM_HEXAGON &&
1199                      config->emachine != EM_RISCV &&
1200                      !c.file->ppc64DisableTLSRelax;
1201 
1202   // If we are producing an executable and the symbol is non-preemptable, it
1203   // must be defined and the code sequence can be relaxed to use Local-Exec.
1204   //
1205   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1206   // we can omit the DTPMOD dynamic relocations and resolve them at link time
1207   // because them are always 1. This may be necessary for static linking as
1208   // DTPMOD may not be expected at load time.
1209   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1210 
1211   // Local Dynamic is for access to module local TLS variables, while still
1212   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1213   // module index, with a special value of 0 for the current module. GOT[e1] is
1214   // unused. There only needs to be one module index entry.
1215   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1216           expr)) {
1217     // Local-Dynamic relocs can be relaxed to Local-Exec.
1218     if (toExecRelax) {
1219       c.relocations.push_back(
1220           {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
1221            addend, &sym});
1222       return target->getTlsGdRelaxSkip(type);
1223     }
1224     if (expr == R_TLSLD_HINT)
1225       return 1;
1226     sym.needsTlsLd = true;
1227     c.relocations.push_back({expr, type, offset, addend, &sym});
1228     return 1;
1229   }
1230 
1231   // Local-Dynamic relocs can be relaxed to Local-Exec.
1232   if (expr == R_DTPREL) {
1233     if (toExecRelax)
1234       expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1235     c.relocations.push_back({expr, type, offset, addend, &sym});
1236     return 1;
1237   }
1238 
1239   // Local-Dynamic sequence where offset of tls variable relative to dynamic
1240   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1241   if (expr == R_TLSLD_GOT_OFF) {
1242     sym.needsGotDtprel = true;
1243     c.relocations.push_back({expr, type, offset, addend, &sym});
1244     return 1;
1245   }
1246 
1247   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1248             R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1249     if (!toExecRelax) {
1250       sym.needsTlsGd = true;
1251       c.relocations.push_back({expr, type, offset, addend, &sym});
1252       return 1;
1253     }
1254 
1255     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1256     // depending on the symbol being locally defined or not.
1257     if (sym.isPreemptible) {
1258       sym.needsTlsGdToIe = true;
1259       c.relocations.push_back(
1260           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
1261            addend, &sym});
1262     } else {
1263       c.relocations.push_back(
1264           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
1265            addend, &sym});
1266     }
1267     return target->getTlsGdRelaxSkip(type);
1268   }
1269 
1270   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1271             R_TLSIE_HINT>(expr)) {
1272     // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1273     // defined.
1274     if (toExecRelax && isLocalInExecutable) {
1275       c.relocations.push_back(
1276           {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1277     } else if (expr != R_TLSIE_HINT) {
1278       sym.needsTlsIe = true;
1279       // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1280       if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1281         addRelativeReloc(c, offset, sym, addend, expr, type);
1282       else
1283         c.relocations.push_back({expr, type, offset, addend, &sym});
1284     }
1285     return 1;
1286   }
1287 
1288   return 0;
1289 }
1290 
1291 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1292   const RelTy &rel = *i;
1293   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1294   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1295   RelType type;
1296 
1297   // Deal with MIPS oddity.
1298   if (config->mipsN32Abi) {
1299     type = getMipsN32RelType(i);
1300   } else {
1301     type = rel.getType(config->isMips64EL);
1302     ++i;
1303   }
1304 
1305   // Get an offset in an output section this relocation is applied to.
1306   uint64_t offset = getter.get(rel.r_offset);
1307   if (offset == uint64_t(-1))
1308     return;
1309 
1310   // Error if the target symbol is undefined. Symbol index 0 may be used by
1311   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1312   if (sym.isUndefined() && symIndex != 0 &&
1313       maybeReportUndefined(cast<Undefined>(sym), sec, offset))
1314     return;
1315 
1316   const uint8_t *relocatedAddr = sec.data().begin() + offset;
1317   RelExpr expr = target.getRelExpr(type, sym, relocatedAddr);
1318 
1319   // Ignore R_*_NONE and other marker relocations.
1320   if (expr == R_NONE)
1321     return;
1322 
1323   // Read an addend.
1324   int64_t addend = computeAddend<ELFT>(rel, expr, sym.isLocal());
1325 
1326   if (config->emachine == EM_PPC64) {
1327     // We can separate the small code model relocations into 2 categories:
1328     // 1) Those that access the compiler generated .toc sections.
1329     // 2) Those that access the linker allocated got entries.
1330     // lld allocates got entries to symbols on demand. Since we don't try to
1331     // sort the got entries in any way, we don't have to track which objects
1332     // have got-based small code model relocs. The .toc sections get placed
1333     // after the end of the linker allocated .got section and we do sort those
1334     // so sections addressed with small code model relocations come first.
1335     if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1336       sec.file->ppc64SmallCodeModelTocRelocs = true;
1337 
1338     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1339     // InputSectionBase::relocateAlloc().
1340     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1341         cast<Defined>(sym).section->name == ".toc")
1342       ppc64noTocRelax.insert({&sym, addend});
1343 
1344     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1345         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1346       if (i == end) {
1347         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1348                     "relocation" +
1349                     getLocation(sec, sym, offset));
1350         return;
1351       }
1352 
1353       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1354       // so we can discern it later from the toc-case.
1355       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1356         ++offset;
1357     }
1358   }
1359 
1360   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1361   // uses their addresses, we need GOT or GOTPLT to be created.
1362   //
1363   // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1364   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1365             R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1366     in.gotPlt->hasGotPltOffRel = true;
1367   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1368                    R_PPC64_RELAX_TOC>(expr)) {
1369     in.got->hasGotOffRel = true;
1370   }
1371 
1372   // Process TLS relocations, including relaxing TLS relocations. Note that
1373   // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1374   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1375     if (config->shared) {
1376       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1377                   " cannot be used with -shared" +
1378                   getLocation(sec, sym, offset));
1379       return;
1380     }
1381   } else if (unsigned processed =
1382                  handleTlsRelocation(type, sym, sec, offset, addend, expr)) {
1383     i += (processed - 1);
1384     return;
1385   }
1386 
1387   // Relax relocations.
1388   //
1389   // If we know that a PLT entry will be resolved within the same ELF module, we
1390   // can skip PLT access and directly jump to the destination function. For
1391   // example, if we are linking a main executable, all dynamic symbols that can
1392   // be resolved within the executable will actually be resolved that way at
1393   // runtime, because the main executable is always at the beginning of a search
1394   // list. We can leverage that fact.
1395   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1396     if (expr != R_GOT_PC) {
1397       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1398       // stub type. It should be ignored if optimized to R_PC.
1399       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1400         addend &= ~0x8000;
1401       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1402       // call __tls_get_addr even if the symbol is non-preemptible.
1403       if (!(config->emachine == EM_HEXAGON &&
1404            (type == R_HEX_GD_PLT_B22_PCREL ||
1405             type == R_HEX_GD_PLT_B22_PCREL_X ||
1406             type == R_HEX_GD_PLT_B32_PCREL_X)))
1407       expr = fromPlt(expr);
1408     } else if (!isAbsoluteValue(sym)) {
1409       expr = target.adjustGotPcExpr(type, addend, relocatedAddr);
1410     }
1411   }
1412 
1413   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1414   // direct relocation on through.
1415   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1416     sym.exportDynamic = true;
1417     mainPart->relaDyn->addSymbolReloc(type, sec, offset, sym, addend, type);
1418     return;
1419   }
1420 
1421   if (needsGot(expr)) {
1422     if (config->emachine == EM_MIPS) {
1423       // MIPS ABI has special rules to process GOT entries and doesn't
1424       // require relocation entries for them. A special case is TLS
1425       // relocations. In that case dynamic loader applies dynamic
1426       // relocations to initialize TLS GOT entries.
1427       // See "Global Offset Table" in Chapter 5 in the following document
1428       // for detailed description:
1429       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1430       in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1431     } else {
1432       sym.needsGot = true;
1433     }
1434   } else if (needsPlt(expr)) {
1435     sym.needsPlt = true;
1436   } else {
1437     sym.hasDirectReloc = true;
1438   }
1439 
1440   processAux(expr, type, offset, sym, addend);
1441 }
1442 
1443 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1444 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1445 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1446 // instructions are generated by very old IBM XL compilers. Work around the
1447 // issue by disabling GD/LD to IE/LE relaxation.
1448 template <class RelTy>
1449 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1450   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1451   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1452     return;
1453   bool hasGDLD = false;
1454   for (const RelTy &rel : rels) {
1455     RelType type = rel.getType(false);
1456     switch (type) {
1457     case R_PPC64_TLSGD:
1458     case R_PPC64_TLSLD:
1459       return; // Found a marker
1460     case R_PPC64_GOT_TLSGD16:
1461     case R_PPC64_GOT_TLSGD16_HA:
1462     case R_PPC64_GOT_TLSGD16_HI:
1463     case R_PPC64_GOT_TLSGD16_LO:
1464     case R_PPC64_GOT_TLSLD16:
1465     case R_PPC64_GOT_TLSLD16_HA:
1466     case R_PPC64_GOT_TLSLD16_HI:
1467     case R_PPC64_GOT_TLSLD16_LO:
1468       hasGDLD = true;
1469       break;
1470     }
1471   }
1472   if (hasGDLD) {
1473     sec.file->ppc64DisableTLSRelax = true;
1474     warn(toString(sec.file) +
1475          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1476          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1477   }
1478 }
1479 
1480 template <class ELFT, class RelTy>
1481 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1482   // Not all relocations end up in Sec.Relocations, but a lot do.
1483   sec.relocations.reserve(rels.size());
1484 
1485   if (config->emachine == EM_PPC64)
1486     checkPPC64TLSRelax<RelTy>(sec, rels);
1487 
1488   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1489   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1490   // script), the relocations may be unordered.
1491   SmallVector<RelTy, 0> storage;
1492   if (isa<EhInputSection>(sec))
1493     rels = sortRels(rels, storage);
1494 
1495   end = static_cast<const void *>(rels.end());
1496   for (auto i = rels.begin(); i != end;)
1497     scanOne<ELFT>(i);
1498 
1499   // Sort relocations by offset for more efficient searching for
1500   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1501   if (config->emachine == EM_RISCV ||
1502       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1503     llvm::stable_sort(sec.relocations,
1504                       [](const Relocation &lhs, const Relocation &rhs) {
1505                         return lhs.offset < rhs.offset;
1506                       });
1507 }
1508 
1509 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1510   RelocationScanner scanner(s);
1511   const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1512   if (rels.areRelocsRel())
1513     scanner.template scan<ELFT>(rels.rels);
1514   else
1515     scanner.template scan<ELFT>(rels.relas);
1516 }
1517 
1518 static bool handleNonPreemptibleIfunc(Symbol &sym) {
1519   // Handle a reference to a non-preemptible ifunc. These are special in a
1520   // few ways:
1521   //
1522   // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1523   //   a fixed value. But assuming that all references to the ifunc are
1524   //   GOT-generating or PLT-generating, the handling of an ifunc is
1525   //   relatively straightforward. We create a PLT entry in Iplt, which is
1526   //   usually at the end of .plt, which makes an indirect call using a
1527   //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1528   //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1529   //   which is usually at the end of .rela.plt. Unlike most relocations in
1530   //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1531   //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1532   //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1533   //   .got.plt without requiring a separate GOT entry.
1534   //
1535   // - Despite the fact that an ifunc does not have a fixed value, compilers
1536   //   that are not passed -fPIC will assume that they do, and will emit
1537   //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1538   //   symbol. This means that if a direct relocation to the symbol is
1539   //   seen, the linker must set a value for the symbol, and this value must
1540   //   be consistent no matter what type of reference is made to the symbol.
1541   //   This can be done by creating a PLT entry for the symbol in the way
1542   //   described above and making it canonical, that is, making all references
1543   //   point to the PLT entry instead of the resolver. In lld we also store
1544   //   the address of the PLT entry in the dynamic symbol table, which means
1545   //   that the symbol will also have the same value in other modules.
1546   //   Because the value loaded from the GOT needs to be consistent with
1547   //   the value computed using a direct relocation, a non-preemptible ifunc
1548   //   may end up with two GOT entries, one in .got.plt that points to the
1549   //   address returned by the resolver and is used only by the PLT entry,
1550   //   and another in .got that points to the PLT entry and is used by
1551   //   GOT-generating relocations.
1552   //
1553   // - The fact that these symbols do not have a fixed value makes them an
1554   //   exception to the general rule that a statically linked executable does
1555   //   not require any form of dynamic relocation. To handle these relocations
1556   //   correctly, the IRELATIVE relocations are stored in an array which a
1557   //   statically linked executable's startup code must enumerate using the
1558   //   linker-defined symbols __rela?_iplt_{start,end}.
1559   if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1560     return false;
1561   // Skip unreferenced non-preemptible ifunc.
1562   if (!(sym.needsGot || sym.needsPlt || sym.hasDirectReloc))
1563     return true;
1564 
1565   sym.isInIplt = true;
1566 
1567   // Create an Iplt and the associated IRELATIVE relocation pointing to the
1568   // original section/value pairs. For non-GOT non-PLT relocation case below, we
1569   // may alter section/value, so create a copy of the symbol to make
1570   // section/value fixed.
1571   auto *directSym = makeDefined(cast<Defined>(sym));
1572   directSym->allocateAux();
1573   addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1574               *directSym);
1575   sym.allocateAux();
1576   symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1577 
1578   if (sym.hasDirectReloc) {
1579     // Change the value to the IPLT and redirect all references to it.
1580     auto &d = cast<Defined>(sym);
1581     d.section = in.iplt.get();
1582     d.value = d.getPltIdx() * target->ipltEntrySize;
1583     d.size = 0;
1584     // It's important to set the symbol type here so that dynamic loaders
1585     // don't try to call the PLT as if it were an ifunc resolver.
1586     d.type = STT_FUNC;
1587 
1588     if (sym.needsGot)
1589       addGotEntry(sym);
1590   } else if (sym.needsGot) {
1591     // Redirect GOT accesses to point to the Igot.
1592     sym.gotInIgot = true;
1593   }
1594   return true;
1595 }
1596 
1597 void elf::postScanRelocations() {
1598   auto fn = [](Symbol &sym) {
1599     if (handleNonPreemptibleIfunc(sym))
1600       return;
1601     if (!sym.needsDynReloc())
1602       return;
1603     sym.allocateAux();
1604 
1605     if (sym.needsGot)
1606       addGotEntry(sym);
1607     if (sym.needsPlt)
1608       addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1609     if (sym.needsCopy) {
1610       if (sym.isObject()) {
1611         addCopyRelSymbol(cast<SharedSymbol>(sym));
1612         // needsCopy is cleared for sym and its aliases so that in later
1613         // iterations aliases won't cause redundant copies.
1614         assert(!sym.needsCopy);
1615       } else {
1616         assert(sym.isFunc() && sym.needsPlt);
1617         if (!sym.isDefined()) {
1618           replaceWithDefined(sym, *in.plt,
1619                              target->pltHeaderSize +
1620                                  target->pltEntrySize * sym.getPltIdx(),
1621                              0);
1622           sym.needsCopy = true;
1623           if (config->emachine == EM_PPC) {
1624             // PPC32 canonical PLT entries are at the beginning of .glink
1625             cast<Defined>(sym).value = in.plt->headerSize;
1626             in.plt->headerSize += 16;
1627             cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1628           }
1629         }
1630       }
1631     }
1632 
1633     if (!sym.isTls())
1634       return;
1635     bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1636 
1637     if (sym.needsTlsDesc) {
1638       in.got->addTlsDescEntry(sym);
1639       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1640           target->tlsDescRel, *in.got, in.got->getTlsDescOffset(sym), sym,
1641           target->tlsDescRel);
1642     }
1643     if (sym.needsTlsGd) {
1644       in.got->addDynTlsEntry(sym);
1645       uint64_t off = in.got->getGlobalDynOffset(sym);
1646       if (isLocalInExecutable)
1647         // Write one to the GOT slot.
1648         in.got->relocations.push_back(
1649             {R_ADDEND, target->symbolicRel, off, 1, &sym});
1650       else
1651         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *in.got,
1652                                           off, sym);
1653 
1654       // If the symbol is preemptible we need the dynamic linker to write
1655       // the offset too.
1656       uint64_t offsetOff = off + config->wordsize;
1657       if (sym.isPreemptible)
1658         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *in.got,
1659                                           offsetOff, sym);
1660       else
1661         in.got->relocations.push_back(
1662             {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1663     }
1664     if (sym.needsTlsGdToIe) {
1665       in.got->addEntry(sym);
1666       mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *in.got,
1667                                         sym.getGotOffset(), sym);
1668     }
1669 
1670     if (sym.needsTlsLd && in.got->addTlsIndex()) {
1671       if (isLocalInExecutable)
1672         in.got->relocations.push_back(
1673             {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
1674       else
1675         mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, in.got.get(),
1676                                      in.got->getTlsIndexOff()});
1677     }
1678     if (sym.needsGotDtprel) {
1679       in.got->addEntry(sym);
1680       in.got->relocations.push_back(
1681           {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1682     }
1683 
1684     if (sym.needsTlsIe && !sym.needsTlsGdToIe)
1685       addTpOffsetGotEntry(sym);
1686   };
1687 
1688   assert(symAux.empty());
1689   for (Symbol *sym : symtab->symbols())
1690     fn(*sym);
1691 
1692   // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1693   // handling. They don't need regular PLT.
1694   for (ELFFileBase *file : objectFiles)
1695     for (Symbol *sym : file->getLocalSymbols())
1696       fn(*sym);
1697 }
1698 
1699 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1700   // std::merge requires a strict weak ordering.
1701   if (a->outSecOff < b->outSecOff)
1702     return true;
1703 
1704   if (a->outSecOff == b->outSecOff) {
1705     auto *ta = dyn_cast<ThunkSection>(a);
1706     auto *tb = dyn_cast<ThunkSection>(b);
1707 
1708     // Check if Thunk is immediately before any specific Target
1709     // InputSection for example Mips LA25 Thunks.
1710     if (ta && ta->getTargetInputSection() == b)
1711       return true;
1712 
1713     // Place Thunk Sections without specific targets before
1714     // non-Thunk Sections.
1715     if (ta && !tb && !ta->getTargetInputSection())
1716       return true;
1717   }
1718 
1719   return false;
1720 }
1721 
1722 // Call Fn on every executable InputSection accessed via the linker script
1723 // InputSectionDescription::Sections.
1724 static void forEachInputSectionDescription(
1725     ArrayRef<OutputSection *> outputSections,
1726     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1727   for (OutputSection *os : outputSections) {
1728     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1729       continue;
1730     for (SectionCommand *bc : os->commands)
1731       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1732         fn(os, isd);
1733   }
1734 }
1735 
1736 // Thunk Implementation
1737 //
1738 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1739 // of code that the linker inserts inbetween a caller and a callee. The thunks
1740 // are added at link time rather than compile time as the decision on whether
1741 // a thunk is needed, such as the caller and callee being out of range, can only
1742 // be made at link time.
1743 //
1744 // It is straightforward to tell given the current state of the program when a
1745 // thunk is needed for a particular call. The more difficult part is that
1746 // the thunk needs to be placed in the program such that the caller can reach
1747 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1748 // the program alters addresses, which can mean more thunks etc.
1749 //
1750 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1751 // The decision to have a ThunkSection act as a container means that we can
1752 // more easily handle the most common case of a single block of contiguous
1753 // Thunks by inserting just a single ThunkSection.
1754 //
1755 // The implementation of Thunks in lld is split across these areas
1756 // Relocations.cpp : Framework for creating and placing thunks
1757 // Thunks.cpp : The code generated for each supported thunk
1758 // Target.cpp : Target specific hooks that the framework uses to decide when
1759 //              a thunk is used
1760 // Synthetic.cpp : Implementation of ThunkSection
1761 // Writer.cpp : Iteratively call framework until no more Thunks added
1762 //
1763 // Thunk placement requirements:
1764 // Mips LA25 thunks. These must be placed immediately before the callee section
1765 // We can assume that the caller is in range of the Thunk. These are modelled
1766 // by Thunks that return the section they must precede with
1767 // getTargetInputSection().
1768 //
1769 // ARM interworking and range extension thunks. These thunks must be placed
1770 // within range of the caller. All implemented ARM thunks can always reach the
1771 // callee as they use an indirect jump via a register that has no range
1772 // restrictions.
1773 //
1774 // Thunk placement algorithm:
1775 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1776 // getTargetInputSection().
1777 //
1778 // For thunks that must be placed within range of the caller there are many
1779 // possible choices given that the maximum range from the caller is usually
1780 // much larger than the average InputSection size. Desirable properties include:
1781 // - Maximize reuse of thunks by multiple callers
1782 // - Minimize number of ThunkSections to simplify insertion
1783 // - Handle impact of already added Thunks on addresses
1784 // - Simple to understand and implement
1785 //
1786 // In lld for the first pass, we pre-create one or more ThunkSections per
1787 // InputSectionDescription at Target specific intervals. A ThunkSection is
1788 // placed so that the estimated end of the ThunkSection is within range of the
1789 // start of the InputSectionDescription or the previous ThunkSection. For
1790 // example:
1791 // InputSectionDescription
1792 // Section 0
1793 // ...
1794 // Section N
1795 // ThunkSection 0
1796 // Section N + 1
1797 // ...
1798 // Section N + K
1799 // Thunk Section 1
1800 //
1801 // The intention is that we can add a Thunk to a ThunkSection that is well
1802 // spaced enough to service a number of callers without having to do a lot
1803 // of work. An important principle is that it is not an error if a Thunk cannot
1804 // be placed in a pre-created ThunkSection; when this happens we create a new
1805 // ThunkSection placed next to the caller. This allows us to handle the vast
1806 // majority of thunks simply, but also handle rare cases where the branch range
1807 // is smaller than the target specific spacing.
1808 //
1809 // The algorithm is expected to create all the thunks that are needed in a
1810 // single pass, with a small number of programs needing a second pass due to
1811 // the insertion of thunks in the first pass increasing the offset between
1812 // callers and callees that were only just in range.
1813 //
1814 // A consequence of allowing new ThunkSections to be created outside of the
1815 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1816 // range in pass K, are out of range in some pass > K due to the insertion of
1817 // more Thunks in between the caller and callee. When this happens we retarget
1818 // the relocation back to the original target and create another Thunk.
1819 
1820 // Remove ThunkSections that are empty, this should only be the initial set
1821 // precreated on pass 0.
1822 
1823 // Insert the Thunks for OutputSection OS into their designated place
1824 // in the Sections vector, and recalculate the InputSection output section
1825 // offsets.
1826 // This may invalidate any output section offsets stored outside of InputSection
1827 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1828   forEachInputSectionDescription(
1829       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1830         if (isd->thunkSections.empty())
1831           return;
1832 
1833         // Remove any zero sized precreated Thunks.
1834         llvm::erase_if(isd->thunkSections,
1835                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1836                          return ts.first->getSize() == 0;
1837                        });
1838 
1839         // ISD->ThunkSections contains all created ThunkSections, including
1840         // those inserted in previous passes. Extract the Thunks created this
1841         // pass and order them in ascending outSecOff.
1842         std::vector<ThunkSection *> newThunks;
1843         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1844           if (ts.second == pass)
1845             newThunks.push_back(ts.first);
1846         llvm::stable_sort(newThunks,
1847                           [](const ThunkSection *a, const ThunkSection *b) {
1848                             return a->outSecOff < b->outSecOff;
1849                           });
1850 
1851         // Merge sorted vectors of Thunks and InputSections by outSecOff
1852         SmallVector<InputSection *, 0> tmp;
1853         tmp.reserve(isd->sections.size() + newThunks.size());
1854 
1855         std::merge(isd->sections.begin(), isd->sections.end(),
1856                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1857                    mergeCmp);
1858 
1859         isd->sections = std::move(tmp);
1860       });
1861 }
1862 
1863 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1864 // is in range of Src. An ISD maps to a range of InputSections described by a
1865 // linker script section pattern such as { .text .text.* }.
1866 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1867                                            InputSection *isec,
1868                                            InputSectionDescription *isd,
1869                                            const Relocation &rel,
1870                                            uint64_t src) {
1871   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1872     ThunkSection *ts = tp.first;
1873     uint64_t tsBase = os->addr + ts->outSecOff + rel.addend;
1874     uint64_t tsLimit = tsBase + ts->getSize() + rel.addend;
1875     if (target->inBranchRange(rel.type, src,
1876                               (src > tsLimit) ? tsBase : tsLimit))
1877       return ts;
1878   }
1879 
1880   // No suitable ThunkSection exists. This can happen when there is a branch
1881   // with lower range than the ThunkSection spacing or when there are too
1882   // many Thunks. Create a new ThunkSection as close to the InputSection as
1883   // possible. Error if InputSection is so large we cannot place ThunkSection
1884   // anywhere in Range.
1885   uint64_t thunkSecOff = isec->outSecOff;
1886   if (!target->inBranchRange(rel.type, src,
1887                              os->addr + thunkSecOff + rel.addend)) {
1888     thunkSecOff = isec->outSecOff + isec->getSize();
1889     if (!target->inBranchRange(rel.type, src,
1890                                os->addr + thunkSecOff + rel.addend))
1891       fatal("InputSection too large for range extension thunk " +
1892             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1893   }
1894   return addThunkSection(os, isd, thunkSecOff);
1895 }
1896 
1897 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1898 // precedes its Target.
1899 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1900   ThunkSection *ts = thunkedSections.lookup(isec);
1901   if (ts)
1902     return ts;
1903 
1904   // Find InputSectionRange within Target Output Section (TOS) that the
1905   // InputSection (IS) that we need to precede is in.
1906   OutputSection *tos = isec->getParent();
1907   for (SectionCommand *bc : tos->commands) {
1908     auto *isd = dyn_cast<InputSectionDescription>(bc);
1909     if (!isd || isd->sections.empty())
1910       continue;
1911 
1912     InputSection *first = isd->sections.front();
1913     InputSection *last = isd->sections.back();
1914 
1915     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1916       continue;
1917 
1918     ts = addThunkSection(tos, isd, isec->outSecOff);
1919     thunkedSections[isec] = ts;
1920     return ts;
1921   }
1922 
1923   return nullptr;
1924 }
1925 
1926 // Create one or more ThunkSections per OS that can be used to place Thunks.
1927 // We attempt to place the ThunkSections using the following desirable
1928 // properties:
1929 // - Within range of the maximum number of callers
1930 // - Minimise the number of ThunkSections
1931 //
1932 // We follow a simple but conservative heuristic to place ThunkSections at
1933 // offsets that are multiples of a Target specific branch range.
1934 // For an InputSectionDescription that is smaller than the range, a single
1935 // ThunkSection at the end of the range will do.
1936 //
1937 // For an InputSectionDescription that is more than twice the size of the range,
1938 // we place the last ThunkSection at range bytes from the end of the
1939 // InputSectionDescription in order to increase the likelihood that the
1940 // distance from a thunk to its target will be sufficiently small to
1941 // allow for the creation of a short thunk.
1942 void ThunkCreator::createInitialThunkSections(
1943     ArrayRef<OutputSection *> outputSections) {
1944   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1945 
1946   forEachInputSectionDescription(
1947       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1948         if (isd->sections.empty())
1949           return;
1950 
1951         uint32_t isdBegin = isd->sections.front()->outSecOff;
1952         uint32_t isdEnd =
1953             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1954         uint32_t lastThunkLowerBound = -1;
1955         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1956           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1957 
1958         uint32_t isecLimit;
1959         uint32_t prevIsecLimit = isdBegin;
1960         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1961 
1962         for (const InputSection *isec : isd->sections) {
1963           isecLimit = isec->outSecOff + isec->getSize();
1964           if (isecLimit > thunkUpperBound) {
1965             addThunkSection(os, isd, prevIsecLimit);
1966             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1967           }
1968           if (isecLimit > lastThunkLowerBound)
1969             break;
1970           prevIsecLimit = isecLimit;
1971         }
1972         addThunkSection(os, isd, isecLimit);
1973       });
1974 }
1975 
1976 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1977                                             InputSectionDescription *isd,
1978                                             uint64_t off) {
1979   auto *ts = make<ThunkSection>(os, off);
1980   ts->partition = os->partition;
1981   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1982       !isd->sections.empty()) {
1983     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1984     // thunks we disturb the base addresses of sections placed after the thunks
1985     // this makes patches we have generated redundant, and may cause us to
1986     // generate more patches as different instructions are now in sensitive
1987     // locations. When we generate more patches we may force more branches to
1988     // go out of range, causing more thunks to be generated. In pathological
1989     // cases this can cause the address dependent content pass not to converge.
1990     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1991     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1992     // which means that adding Thunks to the section does not invalidate
1993     // errata patches for following code.
1994     // Rounding up the size to 4KiB has consequences for code-size and can
1995     // trip up linker script defined assertions. For example the linux kernel
1996     // has an assertion that what LLD represents as an InputSectionDescription
1997     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1998     // We use the heuristic of rounding up the size when both of the following
1999     // conditions are true:
2000     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2001     //     accounts for the case where no single InputSectionDescription is
2002     //     larger than the OutputSection size. This is conservative but simple.
2003     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2004     //     any assertion failures that an InputSectionDescription is < 4 KiB
2005     //     in size.
2006     uint64_t isdSize = isd->sections.back()->outSecOff +
2007                        isd->sections.back()->getSize() -
2008                        isd->sections.front()->outSecOff;
2009     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2010       ts->roundUpSizeForErrata = true;
2011   }
2012   isd->thunkSections.push_back({ts, pass});
2013   return ts;
2014 }
2015 
2016 static bool isThunkSectionCompatible(InputSection *source,
2017                                      SectionBase *target) {
2018   // We can't reuse thunks in different loadable partitions because they might
2019   // not be loaded. But partition 1 (the main partition) will always be loaded.
2020   if (source->partition != target->partition)
2021     return target->partition == 1;
2022   return true;
2023 }
2024 
2025 static int64_t getPCBias(RelType type) {
2026   if (config->emachine != EM_ARM)
2027     return 0;
2028   switch (type) {
2029   case R_ARM_THM_JUMP19:
2030   case R_ARM_THM_JUMP24:
2031   case R_ARM_THM_CALL:
2032     return 4;
2033   default:
2034     return 8;
2035   }
2036 }
2037 
2038 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2039                                                 Relocation &rel, uint64_t src) {
2040   std::vector<Thunk *> *thunkVec = nullptr;
2041   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2042   // out in the relocation addend. We compensate for the PC bias so that
2043   // an Arm and Thumb relocation to the same destination get the same keyAddend,
2044   // which is usually 0.
2045   const int64_t pcBias = getPCBias(rel.type);
2046   const int64_t keyAddend = rel.addend + pcBias;
2047 
2048   // We use a ((section, offset), addend) pair to find the thunk position if
2049   // possible so that we create only one thunk for aliased symbols or ICFed
2050   // sections. There may be multiple relocations sharing the same (section,
2051   // offset + addend) pair. We may revert the relocation back to its original
2052   // non-Thunk target, so we cannot fold offset + addend.
2053   if (auto *d = dyn_cast<Defined>(rel.sym))
2054     if (!d->isInPlt() && d->section)
2055       thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2056                                                     keyAddend}];
2057   if (!thunkVec)
2058     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2059 
2060   // Check existing Thunks for Sym to see if they can be reused
2061   for (Thunk *t : *thunkVec)
2062     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2063         t->isCompatibleWith(*isec, rel) &&
2064         target->inBranchRange(rel.type, src,
2065                               t->getThunkTargetSym()->getVA(-pcBias)))
2066       return std::make_pair(t, false);
2067 
2068   // No existing compatible Thunk in range, create a new one
2069   Thunk *t = addThunk(*isec, rel);
2070   thunkVec->push_back(t);
2071   return std::make_pair(t, true);
2072 }
2073 
2074 // Return true if the relocation target is an in range Thunk.
2075 // Return false if the relocation is not to a Thunk. If the relocation target
2076 // was originally to a Thunk, but is no longer in range we revert the
2077 // relocation back to its original non-Thunk target.
2078 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2079   if (Thunk *t = thunks.lookup(rel.sym)) {
2080     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2081       return true;
2082     rel.sym = &t->destination;
2083     rel.addend = t->addend;
2084     if (rel.sym->isInPlt())
2085       rel.expr = toPlt(rel.expr);
2086   }
2087   return false;
2088 }
2089 
2090 // Process all relocations from the InputSections that have been assigned
2091 // to InputSectionDescriptions and redirect through Thunks if needed. The
2092 // function should be called iteratively until it returns false.
2093 //
2094 // PreConditions:
2095 // All InputSections that may need a Thunk are reachable from
2096 // OutputSectionCommands.
2097 //
2098 // All OutputSections have an address and all InputSections have an offset
2099 // within the OutputSection.
2100 //
2101 // The offsets between caller (relocation place) and callee
2102 // (relocation target) will not be modified outside of createThunks().
2103 //
2104 // PostConditions:
2105 // If return value is true then ThunkSections have been inserted into
2106 // OutputSections. All relocations that needed a Thunk based on the information
2107 // available to createThunks() on entry have been redirected to a Thunk. Note
2108 // that adding Thunks changes offsets between caller and callee so more Thunks
2109 // may be required.
2110 //
2111 // If return value is false then no more Thunks are needed, and createThunks has
2112 // made no changes. If the target requires range extension thunks, currently
2113 // ARM, then any future change in offset between caller and callee risks a
2114 // relocation out of range error.
2115 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2116   bool addressesChanged = false;
2117 
2118   if (pass == 0 && target->getThunkSectionSpacing())
2119     createInitialThunkSections(outputSections);
2120 
2121   // Create all the Thunks and insert them into synthetic ThunkSections. The
2122   // ThunkSections are later inserted back into InputSectionDescriptions.
2123   // We separate the creation of ThunkSections from the insertion of the
2124   // ThunkSections as ThunkSections are not always inserted into the same
2125   // InputSectionDescription as the caller.
2126   forEachInputSectionDescription(
2127       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2128         for (InputSection *isec : isd->sections)
2129           for (Relocation &rel : isec->relocations) {
2130             uint64_t src = isec->getVA(rel.offset);
2131 
2132             // If we are a relocation to an existing Thunk, check if it is
2133             // still in range. If not then Rel will be altered to point to its
2134             // original target so another Thunk can be generated.
2135             if (pass > 0 && normalizeExistingThunk(rel, src))
2136               continue;
2137 
2138             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2139                                     *rel.sym, rel.addend))
2140               continue;
2141 
2142             Thunk *t;
2143             bool isNew;
2144             std::tie(t, isNew) = getThunk(isec, rel, src);
2145 
2146             if (isNew) {
2147               // Find or create a ThunkSection for the new Thunk
2148               ThunkSection *ts;
2149               if (auto *tis = t->getTargetInputSection())
2150                 ts = getISThunkSec(tis);
2151               else
2152                 ts = getISDThunkSec(os, isec, isd, rel, src);
2153               ts->addThunk(t);
2154               thunks[t->getThunkTargetSym()] = t;
2155             }
2156 
2157             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2158             rel.sym = t->getThunkTargetSym();
2159             rel.expr = fromPlt(rel.expr);
2160 
2161             // On AArch64 and PPC, a jump/call relocation may be encoded as
2162             // STT_SECTION + non-zero addend, clear the addend after
2163             // redirection.
2164             if (config->emachine != EM_MIPS)
2165               rel.addend = -getPCBias(rel.type);
2166           }
2167 
2168         for (auto &p : isd->thunkSections)
2169           addressesChanged |= p.first->assignOffsets();
2170       });
2171 
2172   for (auto &p : thunkedSections)
2173     addressesChanged |= p.second->assignOffsets();
2174 
2175   // Merge all created synthetic ThunkSections back into OutputSection
2176   mergeThunks(outputSections);
2177   ++pass;
2178   return addressesChanged;
2179 }
2180 
2181 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2182 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2183 // __tls_get_addr.
2184 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2185 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2186   bool needTlsSymbol = false;
2187   forEachInputSectionDescription(
2188       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2189         for (InputSection *isec : isd->sections)
2190           for (Relocation &rel : isec->relocations)
2191             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2192               needTlsSymbol = true;
2193               return;
2194             }
2195       });
2196   return needTlsSymbol;
2197 }
2198 
2199 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2200   Symbol *sym = symtab->find("__tls_get_addr");
2201   if (!sym)
2202     return;
2203   bool needEntry = true;
2204   forEachInputSectionDescription(
2205       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2206         for (InputSection *isec : isd->sections)
2207           for (Relocation &rel : isec->relocations)
2208             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2209               if (needEntry) {
2210                 sym->allocateAux();
2211                 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2212                             *sym);
2213                 needEntry = false;
2214               }
2215               rel.sym = sym;
2216             }
2217       });
2218 }
2219 
2220 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2221 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2222 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2223 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2224 template void elf::reportUndefinedSymbols<ELF32LE>();
2225 template void elf::reportUndefinedSymbols<ELF32BE>();
2226 template void elf::reportUndefinedSymbols<ELF64LE>();
2227 template void elf::reportUndefinedSymbols<ELF64BE>();
2228