1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include <algorithm>
59 
60 using namespace llvm;
61 using namespace llvm::ELF;
62 using namespace llvm::object;
63 using namespace llvm::support::endian;
64 using namespace lld;
65 using namespace lld::elf;
66 
67 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
68   for (SectionCommand *cmd : script->sectionCommands)
69     if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
70       if (assign->sym == &sym)
71         return assign->location;
72   return None;
73 }
74 
75 static std::string getDefinedLocation(const Symbol &sym) {
76   const char msg[] = "\n>>> defined in ";
77   if (sym.file)
78     return msg + toString(sym.file);
79   if (Optional<std::string> loc = getLinkerScriptLocation(sym))
80     return msg + *loc;
81   return "";
82 }
83 
84 // Construct a message in the following format.
85 //
86 // >>> defined in /home/alice/src/foo.o
87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
88 // >>>               /home/alice/src/bar.o:(.text+0x1)
89 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
90                                uint64_t off) {
91   std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
92   std::string src = s.getSrcMsg(sym, off);
93   if (!src.empty())
94     msg += src + "\n>>>               ";
95   return msg + s.getObjMsg(off);
96 }
97 
98 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
99                            int64_t min, uint64_t max) {
100   ErrorPlace errPlace = getErrorPlace(loc);
101   std::string hint;
102   if (rel.sym && !rel.sym->isSection())
103     hint = "; references " + lld::toString(*rel.sym);
104   if (!errPlace.srcLoc.empty())
105     hint += "\n>>> referenced by " + errPlace.srcLoc;
106   if (rel.sym && !rel.sym->isSection())
107     hint += getDefinedLocation(*rel.sym);
108 
109   if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
110     hint += "; consider recompiling with -fdebug-types-section to reduce size "
111             "of debug sections";
112 
113   errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
114               " out of range: " + v.str() + " is not in [" + Twine(min).str() +
115               ", " + Twine(max).str() + "]" + hint);
116 }
117 
118 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
119                            const Twine &msg) {
120   ErrorPlace errPlace = getErrorPlace(loc);
121   std::string hint;
122   if (!sym.getName().empty())
123     hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
124   errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
125               " is not in [" + Twine(llvm::minIntN(n)) + ", " +
126               Twine(llvm::maxIntN(n)) + "]" + hint);
127 }
128 
129 // Build a bitmask with one bit set for each 64 subset of RelExpr.
130 static constexpr uint64_t buildMask() { return 0; }
131 
132 template <typename... Tails>
133 static constexpr uint64_t buildMask(int head, Tails... tails) {
134   return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
135          buildMask(tails...);
136 }
137 
138 // Return true if `Expr` is one of `Exprs`.
139 // There are more than 64 but less than 128 RelExprs, so we divide the set of
140 // exprs into [0, 64) and [64, 128) and represent each range as a constant
141 // 64-bit mask. Then we decide which mask to test depending on the value of
142 // expr and use a simple shift and bitwise-and to test for membership.
143 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
144   assert(0 <= expr && (int)expr < 128 &&
145          "RelExpr is too large for 128-bit mask!");
146 
147   if (expr >= 64)
148     return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
149   return (uint64_t(1) << expr) & buildMask(Exprs...);
150 }
151 
152 static RelType getMipsPairType(RelType type, bool isLocal) {
153   switch (type) {
154   case R_MIPS_HI16:
155     return R_MIPS_LO16;
156   case R_MIPS_GOT16:
157     // In case of global symbol, the R_MIPS_GOT16 relocation does not
158     // have a pair. Each global symbol has a unique entry in the GOT
159     // and a corresponding instruction with help of the R_MIPS_GOT16
160     // relocation loads an address of the symbol. In case of local
161     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
162     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
163     // relocations handle low 16 bits of the address. That allows
164     // to allocate only one GOT entry for every 64 KBytes of local data.
165     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
166   case R_MICROMIPS_GOT16:
167     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
168   case R_MIPS_PCHI16:
169     return R_MIPS_PCLO16;
170   case R_MICROMIPS_HI16:
171     return R_MICROMIPS_LO16;
172   default:
173     return R_MIPS_NONE;
174   }
175 }
176 
177 // True if non-preemptable symbol always has the same value regardless of where
178 // the DSO is loaded.
179 static bool isAbsolute(const Symbol &sym) {
180   if (sym.isUndefWeak())
181     return true;
182   if (const auto *dr = dyn_cast<Defined>(&sym))
183     return dr->section == nullptr; // Absolute symbol.
184   return false;
185 }
186 
187 static bool isAbsoluteValue(const Symbol &sym) {
188   return isAbsolute(sym) || sym.isTls();
189 }
190 
191 // Returns true if Expr refers a PLT entry.
192 static bool needsPlt(RelExpr expr) {
193   return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
194       expr);
195 }
196 
197 // Returns true if Expr refers a GOT entry. Note that this function
198 // returns false for TLS variables even though they need GOT, because
199 // TLS variables uses GOT differently than the regular variables.
200 static bool needsGot(RelExpr expr) {
201   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
202                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
203                R_AARCH64_GOT_PAGE>(expr);
204 }
205 
206 // True if this expression is of the form Sym - X, where X is a position in the
207 // file (PC, or GOT for example).
208 static bool isRelExpr(RelExpr expr) {
209   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
210                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
211                R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
212 }
213 
214 
215 static RelExpr toPlt(RelExpr expr) {
216   switch (expr) {
217   case R_PPC64_CALL:
218     return R_PPC64_CALL_PLT;
219   case R_PC:
220     return R_PLT_PC;
221   case R_ABS:
222     return R_PLT;
223   default:
224     return expr;
225   }
226 }
227 
228 static RelExpr fromPlt(RelExpr expr) {
229   // We decided not to use a plt. Optimize a reference to the plt to a
230   // reference to the symbol itself.
231   switch (expr) {
232   case R_PLT_PC:
233   case R_PPC32_PLTREL:
234     return R_PC;
235   case R_PPC64_CALL_PLT:
236     return R_PPC64_CALL;
237   case R_PLT:
238     return R_ABS;
239   case R_PLT_GOTPLT:
240     return R_GOTPLTREL;
241   default:
242     return expr;
243   }
244 }
245 
246 // Returns true if a given shared symbol is in a read-only segment in a DSO.
247 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
248   using Elf_Phdr = typename ELFT::Phdr;
249 
250   // Determine if the symbol is read-only by scanning the DSO's program headers.
251   const auto &file = cast<SharedFile>(*ss.file);
252   for (const Elf_Phdr &phdr :
253        check(file.template getObj<ELFT>().program_headers()))
254     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
255         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
256         ss.value < phdr.p_vaddr + phdr.p_memsz)
257       return true;
258   return false;
259 }
260 
261 // Returns symbols at the same offset as a given symbol, including SS itself.
262 //
263 // If two or more symbols are at the same offset, and at least one of
264 // them are copied by a copy relocation, all of them need to be copied.
265 // Otherwise, they would refer to different places at runtime.
266 template <class ELFT>
267 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
268   using Elf_Sym = typename ELFT::Sym;
269 
270   const auto &file = cast<SharedFile>(*ss.file);
271 
272   SmallSet<SharedSymbol *, 4> ret;
273   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
274     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
275         s.getType() == STT_TLS || s.st_value != ss.value)
276       continue;
277     StringRef name = check(s.getName(file.getStringTable()));
278     Symbol *sym = symtab->find(name);
279     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
280       ret.insert(alias);
281   }
282 
283   // The loop does not check SHT_GNU_verneed, so ret does not contain
284   // non-default version symbols. If ss has a non-default version, ret won't
285   // contain ss. Just add ss unconditionally. If a non-default version alias is
286   // separately copy relocated, it and ss will have different addresses.
287   // Fortunately this case is impractical and fails with GNU ld as well.
288   ret.insert(&ss);
289   return ret;
290 }
291 
292 // When a symbol is copy relocated or we create a canonical plt entry, it is
293 // effectively a defined symbol. In the case of copy relocation the symbol is
294 // in .bss and in the case of a canonical plt entry it is in .plt. This function
295 // replaces the existing symbol with a Defined pointing to the appropriate
296 // location.
297 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
298                                uint64_t size) {
299   Symbol old = sym;
300 
301   sym.replace(Defined{sym.file, StringRef(), sym.binding, sym.stOther,
302                       sym.type, value, size, &sec});
303 
304   sym.auxIdx = old.auxIdx;
305   sym.verdefIndex = old.verdefIndex;
306   sym.exportDynamic = true;
307   sym.isUsedInRegularObj = true;
308   // A copy relocated alias may need a GOT entry.
309   sym.needsGot = old.needsGot;
310 }
311 
312 // Reserve space in .bss or .bss.rel.ro for copy relocation.
313 //
314 // The copy relocation is pretty much a hack. If you use a copy relocation
315 // in your program, not only the symbol name but the symbol's size, RW/RO
316 // bit and alignment become part of the ABI. In addition to that, if the
317 // symbol has aliases, the aliases become part of the ABI. That's subtle,
318 // but if you violate that implicit ABI, that can cause very counter-
319 // intuitive consequences.
320 //
321 // So, what is the copy relocation? It's for linking non-position
322 // independent code to DSOs. In an ideal world, all references to data
323 // exported by DSOs should go indirectly through GOT. But if object files
324 // are compiled as non-PIC, all data references are direct. There is no
325 // way for the linker to transform the code to use GOT, as machine
326 // instructions are already set in stone in object files. This is where
327 // the copy relocation takes a role.
328 //
329 // A copy relocation instructs the dynamic linker to copy data from a DSO
330 // to a specified address (which is usually in .bss) at load-time. If the
331 // static linker (that's us) finds a direct data reference to a DSO
332 // symbol, it creates a copy relocation, so that the symbol can be
333 // resolved as if it were in .bss rather than in a DSO.
334 //
335 // As you can see in this function, we create a copy relocation for the
336 // dynamic linker, and the relocation contains not only symbol name but
337 // various other information about the symbol. So, such attributes become a
338 // part of the ABI.
339 //
340 // Note for application developers: I can give you a piece of advice if
341 // you are writing a shared library. You probably should export only
342 // functions from your library. You shouldn't export variables.
343 //
344 // As an example what can happen when you export variables without knowing
345 // the semantics of copy relocations, assume that you have an exported
346 // variable of type T. It is an ABI-breaking change to add new members at
347 // end of T even though doing that doesn't change the layout of the
348 // existing members. That's because the space for the new members are not
349 // reserved in .bss unless you recompile the main program. That means they
350 // are likely to overlap with other data that happens to be laid out next
351 // to the variable in .bss. This kind of issue is sometimes very hard to
352 // debug. What's a solution? Instead of exporting a variable V from a DSO,
353 // define an accessor getV().
354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
355   // Copy relocation against zero-sized symbol doesn't make sense.
356   uint64_t symSize = ss.getSize();
357   if (symSize == 0 || ss.alignment == 0)
358     fatal("cannot create a copy relocation for symbol " + toString(ss));
359 
360   // See if this symbol is in a read-only segment. If so, preserve the symbol's
361   // memory protection by reserving space in the .bss.rel.ro section.
362   bool isRO = isReadOnly<ELFT>(ss);
363   BssSection *sec =
364       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
365   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
366 
367   // At this point, sectionBases has been migrated to sections. Append sec to
368   // sections.
369   if (osec->commands.empty() ||
370       !isa<InputSectionDescription>(osec->commands.back()))
371     osec->commands.push_back(make<InputSectionDescription>(""));
372   auto *isd = cast<InputSectionDescription>(osec->commands.back());
373   isd->sections.push_back(sec);
374   osec->commitSection(sec);
375 
376   // Look through the DSO's dynamic symbol table for aliases and create a
377   // dynamic symbol for each one. This causes the copy relocation to correctly
378   // interpose any aliases.
379   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
380     replaceWithDefined(*sym, *sec, 0, sym->size);
381 
382   mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
383 }
384 
385 // .eh_frame sections are mergeable input sections, so their input
386 // offsets are not linearly mapped to output section. For each input
387 // offset, we need to find a section piece containing the offset and
388 // add the piece's base address to the input offset to compute the
389 // output offset. That isn't cheap.
390 //
391 // This class is to speed up the offset computation. When we process
392 // relocations, we access offsets in the monotonically increasing
393 // order. So we can optimize for that access pattern.
394 //
395 // For sections other than .eh_frame, this class doesn't do anything.
396 namespace {
397 class OffsetGetter {
398 public:
399   explicit OffsetGetter(InputSectionBase &sec) {
400     if (auto *eh = dyn_cast<EhInputSection>(&sec))
401       pieces = eh->pieces;
402   }
403 
404   // Translates offsets in input sections to offsets in output sections.
405   // Given offset must increase monotonically. We assume that Piece is
406   // sorted by inputOff.
407   uint64_t get(uint64_t off) {
408     if (pieces.empty())
409       return off;
410 
411     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
412       ++i;
413     if (i == pieces.size())
414       fatal(".eh_frame: relocation is not in any piece");
415 
416     // Pieces must be contiguous, so there must be no holes in between.
417     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
418 
419     // Offset -1 means that the piece is dead (i.e. garbage collected).
420     if (pieces[i].outputOff == -1)
421       return -1;
422     return pieces[i].outputOff + off - pieces[i].inputOff;
423   }
424 
425 private:
426   ArrayRef<EhSectionPiece> pieces;
427   size_t i = 0;
428 };
429 
430 // This class encapsulates states needed to scan relocations for one
431 // InputSectionBase.
432 class RelocationScanner {
433 public:
434   explicit RelocationScanner(InputSectionBase &sec)
435       : sec(sec), getter(sec), config(elf::config.get()), target(*elf::target) {
436   }
437   template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
438 
439 private:
440   InputSectionBase &sec;
441   OffsetGetter getter;
442   const Configuration *const config;
443   const TargetInfo &target;
444 
445   // End of relocations, used by Mips/PPC64.
446   const void *end = nullptr;
447 
448   template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
449   template <class ELFT, class RelTy>
450   int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
451   template <class ELFT, class RelTy>
452   int64_t computeAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
453   bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
454                                 uint64_t relOff) const;
455   void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
456                   int64_t addend) const;
457   template <class ELFT, class RelTy> void scanOne(RelTy *&i);
458 };
459 } // namespace
460 
461 // MIPS has an odd notion of "paired" relocations to calculate addends.
462 // For example, if a relocation is of R_MIPS_HI16, there must be a
463 // R_MIPS_LO16 relocation after that, and an addend is calculated using
464 // the two relocations.
465 template <class ELFT, class RelTy>
466 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
467                                              bool isLocal) const {
468   if (expr == R_MIPS_GOTREL && isLocal)
469     return sec.getFile<ELFT>()->mipsGp0;
470 
471   // The ABI says that the paired relocation is used only for REL.
472   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
473   if (RelTy::IsRela)
474     return 0;
475 
476   RelType type = rel.getType(config->isMips64EL);
477   uint32_t pairTy = getMipsPairType(type, isLocal);
478   if (pairTy == R_MIPS_NONE)
479     return 0;
480 
481   const uint8_t *buf = sec.rawData.data();
482   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
483 
484   // To make things worse, paired relocations might not be contiguous in
485   // the relocation table, so we need to do linear search. *sigh*
486   for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
487     if (ri->getType(config->isMips64EL) == pairTy &&
488         ri->getSymbol(config->isMips64EL) == symIndex)
489       return target.getImplicitAddend(buf + ri->r_offset, pairTy);
490 
491   warn("can't find matching " + toString(pairTy) + " relocation for " +
492        toString(type));
493   return 0;
494 }
495 
496 // Returns an addend of a given relocation. If it is RELA, an addend
497 // is in a relocation itself. If it is REL, we need to read it from an
498 // input section.
499 template <class ELFT, class RelTy>
500 int64_t RelocationScanner::computeAddend(const RelTy &rel, RelExpr expr,
501                                          bool isLocal) const {
502   int64_t addend;
503   RelType type = rel.getType(config->isMips64EL);
504 
505   if (RelTy::IsRela) {
506     addend = getAddend<ELFT>(rel);
507   } else {
508     const uint8_t *buf = sec.rawData.data();
509     addend = target.getImplicitAddend(buf + rel.r_offset, type);
510   }
511 
512   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
513     addend += getPPC64TocBase();
514   if (config->emachine == EM_MIPS)
515     addend += computeMipsAddend<ELFT>(rel, expr, isLocal);
516 
517   return addend;
518 }
519 
520 // Custom error message if Sym is defined in a discarded section.
521 template <class ELFT>
522 static std::string maybeReportDiscarded(Undefined &sym) {
523   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
524   if (!file || !sym.discardedSecIdx ||
525       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
526     return "";
527   ArrayRef<typename ELFT::Shdr> objSections =
528       file->template getELFShdrs<ELFT>();
529 
530   std::string msg;
531   if (sym.type == ELF::STT_SECTION) {
532     msg = "relocation refers to a discarded section: ";
533     msg += CHECK(
534         file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
535   } else {
536     msg = "relocation refers to a symbol in a discarded section: " +
537           toString(sym);
538   }
539   msg += "\n>>> defined in " + toString(file);
540 
541   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
542   if (elfSec.sh_type != SHT_GROUP)
543     return msg;
544 
545   // If the discarded section is a COMDAT.
546   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
547   if (const InputFile *prevailing =
548           symtab->comdatGroups.lookup(CachedHashStringRef(signature))) {
549     msg += "\n>>> section group signature: " + signature.str() +
550            "\n>>> prevailing definition is in " + toString(prevailing);
551     if (sym.nonPrevailing) {
552       msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
553              "binding and the symbol in a non-prevailing group had STB_GLOBAL "
554              "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
555              "signature is not supported";
556     }
557   }
558   return msg;
559 }
560 
561 namespace {
562 // Undefined diagnostics are collected in a vector and emitted once all of
563 // them are known, so that some postprocessing on the list of undefined symbols
564 // can happen before lld emits diagnostics.
565 struct UndefinedDiag {
566   Undefined *sym;
567   struct Loc {
568     InputSectionBase *sec;
569     uint64_t offset;
570   };
571   std::vector<Loc> locs;
572   bool isWarning;
573 };
574 
575 std::vector<UndefinedDiag> undefs;
576 }
577 
578 // Check whether the definition name def is a mangled function name that matches
579 // the reference name ref.
580 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
581   llvm::ItaniumPartialDemangler d;
582   std::string name = def.str();
583   if (d.partialDemangle(name.c_str()))
584     return false;
585   char *buf = d.getFunctionName(nullptr, nullptr);
586   if (!buf)
587     return false;
588   bool ret = ref == buf;
589   free(buf);
590   return ret;
591 }
592 
593 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
594 // the suggested symbol, which is either in the symbol table, or in the same
595 // file of sym.
596 static const Symbol *getAlternativeSpelling(const Undefined &sym,
597                                             std::string &pre_hint,
598                                             std::string &post_hint) {
599   DenseMap<StringRef, const Symbol *> map;
600   if (sym.file && sym.file->kind() == InputFile::ObjKind) {
601     auto *file = cast<ELFFileBase>(sym.file);
602     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
603     // will give an error. Don't suggest an alternative spelling.
604     if (file && sym.discardedSecIdx != 0 &&
605         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
606       return nullptr;
607 
608     // Build a map of local defined symbols.
609     for (const Symbol *s : sym.file->getSymbols())
610       if (s->isLocal() && s->isDefined() && !s->getName().empty())
611         map.try_emplace(s->getName(), s);
612   }
613 
614   auto suggest = [&](StringRef newName) -> const Symbol * {
615     // If defined locally.
616     if (const Symbol *s = map.lookup(newName))
617       return s;
618 
619     // If in the symbol table and not undefined.
620     if (const Symbol *s = symtab->find(newName))
621       if (!s->isUndefined())
622         return s;
623 
624     return nullptr;
625   };
626 
627   // This loop enumerates all strings of Levenshtein distance 1 as typo
628   // correction candidates and suggests the one that exists as a non-undefined
629   // symbol.
630   StringRef name = sym.getName();
631   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
632     // Insert a character before name[i].
633     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
634     for (char c = '0'; c <= 'z'; ++c) {
635       newName[i] = c;
636       if (const Symbol *s = suggest(newName))
637         return s;
638     }
639     if (i == e)
640       break;
641 
642     // Substitute name[i].
643     newName = std::string(name);
644     for (char c = '0'; c <= 'z'; ++c) {
645       newName[i] = c;
646       if (const Symbol *s = suggest(newName))
647         return s;
648     }
649 
650     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
651     // common.
652     if (i + 1 < e) {
653       newName[i] = name[i + 1];
654       newName[i + 1] = name[i];
655       if (const Symbol *s = suggest(newName))
656         return s;
657     }
658 
659     // Delete name[i].
660     newName = (name.substr(0, i) + name.substr(i + 1)).str();
661     if (const Symbol *s = suggest(newName))
662       return s;
663   }
664 
665   // Case mismatch, e.g. Foo vs FOO.
666   for (auto &it : map)
667     if (name.equals_insensitive(it.first))
668       return it.second;
669   for (Symbol *sym : symtab->symbols())
670     if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
671       return sym;
672 
673   // The reference may be a mangled name while the definition is not. Suggest a
674   // missing extern "C".
675   if (name.startswith("_Z")) {
676     std::string buf = name.str();
677     llvm::ItaniumPartialDemangler d;
678     if (!d.partialDemangle(buf.c_str()))
679       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
680         const Symbol *s = suggest(buf);
681         free(buf);
682         if (s) {
683           pre_hint = ": extern \"C\" ";
684           return s;
685         }
686       }
687   } else {
688     const Symbol *s = nullptr;
689     for (auto &it : map)
690       if (canSuggestExternCForCXX(name, it.first)) {
691         s = it.second;
692         break;
693       }
694     if (!s)
695       for (Symbol *sym : symtab->symbols())
696         if (canSuggestExternCForCXX(name, sym->getName())) {
697           s = sym;
698           break;
699         }
700     if (s) {
701       pre_hint = " to declare ";
702       post_hint = " as extern \"C\"?";
703       return s;
704     }
705   }
706 
707   return nullptr;
708 }
709 
710 static void reportUndefinedSymbol(const UndefinedDiag &undef,
711                                   bool correctSpelling) {
712   Undefined &sym = *undef.sym;
713 
714   auto visibility = [&]() -> std::string {
715     switch (sym.visibility) {
716     case STV_INTERNAL:
717       return "internal ";
718     case STV_HIDDEN:
719       return "hidden ";
720     case STV_PROTECTED:
721       return "protected ";
722     default:
723       return "";
724     }
725   };
726 
727   std::string msg;
728   switch (config->ekind) {
729   case ELF32LEKind:
730     msg = maybeReportDiscarded<ELF32LE>(sym);
731     break;
732   case ELF32BEKind:
733     msg = maybeReportDiscarded<ELF32BE>(sym);
734     break;
735   case ELF64LEKind:
736     msg = maybeReportDiscarded<ELF64LE>(sym);
737     break;
738   case ELF64BEKind:
739     msg = maybeReportDiscarded<ELF64BE>(sym);
740     break;
741   default:
742     llvm_unreachable("");
743   }
744   if (msg.empty())
745     msg = "undefined " + visibility() + "symbol: " + toString(sym);
746 
747   const size_t maxUndefReferences = 3;
748   size_t i = 0;
749   for (UndefinedDiag::Loc l : undef.locs) {
750     if (i >= maxUndefReferences)
751       break;
752     InputSectionBase &sec = *l.sec;
753     uint64_t offset = l.offset;
754 
755     msg += "\n>>> referenced by ";
756     std::string src = sec.getSrcMsg(sym, offset);
757     if (!src.empty())
758       msg += src + "\n>>>               ";
759     msg += sec.getObjMsg(offset);
760     i++;
761   }
762 
763   if (i < undef.locs.size())
764     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
765                .str();
766 
767   if (correctSpelling) {
768     std::string pre_hint = ": ", post_hint;
769     if (const Symbol *corrected =
770             getAlternativeSpelling(sym, pre_hint, post_hint)) {
771       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
772       if (corrected->file)
773         msg += "\n>>> defined in: " + toString(corrected->file);
774     }
775   }
776 
777   if (sym.getName().startswith("_ZTV"))
778     msg +=
779         "\n>>> the vtable symbol may be undefined because the class is missing "
780         "its key function (see https://lld.llvm.org/missingkeyfunction)";
781   if (config->gcSections && config->zStartStopGC &&
782       sym.getName().startswith("__start_")) {
783     msg += "\n>>> the encapsulation symbol needs to be retained under "
784            "--gc-sections properly; consider -z nostart-stop-gc "
785            "(see https://lld.llvm.org/ELF/start-stop-gc)";
786   }
787 
788   if (undef.isWarning)
789     warn(msg);
790   else
791     error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
792 }
793 
794 void elf::reportUndefinedSymbols() {
795   // Find the first "undefined symbol" diagnostic for each diagnostic, and
796   // collect all "referenced from" lines at the first diagnostic.
797   DenseMap<Symbol *, UndefinedDiag *> firstRef;
798   for (UndefinedDiag &undef : undefs) {
799     assert(undef.locs.size() == 1);
800     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
801       canon->locs.push_back(undef.locs[0]);
802       undef.locs.clear();
803     } else
804       firstRef[undef.sym] = &undef;
805   }
806 
807   // Enable spell corrector for the first 2 diagnostics.
808   for (auto it : enumerate(undefs))
809     if (!it.value().locs.empty())
810       reportUndefinedSymbol(it.value(), it.index() < 2);
811   undefs.clear();
812 }
813 
814 // Report an undefined symbol if necessary.
815 // Returns true if the undefined symbol will produce an error message.
816 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
817                                  uint64_t offset) {
818   // If versioned, issue an error (even if the symbol is weak) because we don't
819   // know the defining filename which is required to construct a Verneed entry.
820   if (sym.hasVersionSuffix) {
821     undefs.push_back({&sym, {{&sec, offset}}, false});
822     return true;
823   }
824   if (sym.isWeak())
825     return false;
826 
827   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
828   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
829     return false;
830 
831   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
832   // which references a switch table in a discarded .rodata/.text section. The
833   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
834   // spec says references from outside the group to a STB_LOCAL symbol are not
835   // allowed. Work around the bug.
836   //
837   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
838   // because .LC0-.LTOC is not representable if the two labels are in different
839   // .got2
840   if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
841     return false;
842 
843   bool isWarning =
844       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
845       config->noinhibitExec;
846   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
847   return !isWarning;
848 }
849 
850 // MIPS N32 ABI treats series of successive relocations with the same offset
851 // as a single relocation. The similar approach used by N64 ABI, but this ABI
852 // packs all relocations into the single relocation record. Here we emulate
853 // this for the N32 ABI. Iterate over relocation with the same offset and put
854 // theirs types into the single bit-set.
855 template <class RelTy>
856 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
857   RelType type = 0;
858   uint64_t offset = rel->r_offset;
859 
860   int n = 0;
861   while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
862     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
863   return type;
864 }
865 
866 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
867                              Symbol &sym, int64_t addend, RelExpr expr,
868                              RelType type) {
869   Partition &part = isec.getPartition();
870 
871   // Add a relative relocation. If relrDyn section is enabled, and the
872   // relocation offset is guaranteed to be even, add the relocation to
873   // the relrDyn section, otherwise add it to the relaDyn section.
874   // relrDyn sections don't support odd offsets. Also, relrDyn sections
875   // don't store the addend values, so we must write it to the relocated
876   // address.
877   if (part.relrDyn && isec.alignment >= 2 && offsetInSec % 2 == 0) {
878     isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
879     part.relrDyn->relocs.push_back({&isec, offsetInSec});
880     return;
881   }
882   part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
883                                  addend, type, expr);
884 }
885 
886 template <class PltSection, class GotPltSection>
887 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
888                         RelocationBaseSection &rel, RelType type, Symbol &sym) {
889   plt.addEntry(sym);
890   gotPlt.addEntry(sym);
891   rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
892                 sym.isPreemptible ? DynamicReloc::AgainstSymbol
893                                   : DynamicReloc::AddendOnlyWithTargetVA,
894                 sym, 0, R_ABS});
895 }
896 
897 static void addGotEntry(Symbol &sym) {
898   in.got->addEntry(sym);
899   uint64_t off = sym.getGotOffset();
900 
901   // If preemptible, emit a GLOB_DAT relocation.
902   if (sym.isPreemptible) {
903     mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
904                                  DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
905     return;
906   }
907 
908   // Otherwise, the value is either a link-time constant or the load base
909   // plus a constant.
910   if (!config->isPic || isAbsolute(sym))
911     in.got->relocations.push_back({R_ABS, target->symbolicRel, off, 0, &sym});
912   else
913     addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
914 }
915 
916 static void addTpOffsetGotEntry(Symbol &sym) {
917   in.got->addEntry(sym);
918   uint64_t off = sym.getGotOffset();
919   if (!sym.isPreemptible && !config->isPic) {
920     in.got->relocations.push_back({R_TPREL, target->symbolicRel, off, 0, &sym});
921     return;
922   }
923   mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
924       target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
925 }
926 
927 // Return true if we can define a symbol in the executable that
928 // contains the value/function of a symbol defined in a shared
929 // library.
930 static bool canDefineSymbolInExecutable(Symbol &sym) {
931   // If the symbol has default visibility the symbol defined in the
932   // executable will preempt it.
933   // Note that we want the visibility of the shared symbol itself, not
934   // the visibility of the symbol in the output file we are producing. That is
935   // why we use Sym.stOther.
936   if ((sym.stOther & 0x3) == STV_DEFAULT)
937     return true;
938 
939   // If we are allowed to break address equality of functions, defining
940   // a plt entry will allow the program to call the function in the
941   // .so, but the .so and the executable will no agree on the address
942   // of the function. Similar logic for objects.
943   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
944           (sym.isObject() && config->ignoreDataAddressEquality));
945 }
946 
947 // Returns true if a given relocation can be computed at link-time.
948 // This only handles relocation types expected in processAux.
949 //
950 // For instance, we know the offset from a relocation to its target at
951 // link-time if the relocation is PC-relative and refers a
952 // non-interposable function in the same executable. This function
953 // will return true for such relocation.
954 //
955 // If this function returns false, that means we need to emit a
956 // dynamic relocation so that the relocation will be fixed at load-time.
957 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
958                                                  const Symbol &sym,
959                                                  uint64_t relOff) const {
960   // These expressions always compute a constant
961   if (oneof<R_GOTPLT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL,
962             R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
963             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
964             R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
965             R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
966     return true;
967 
968   // These never do, except if the entire file is position dependent or if
969   // only the low bits are used.
970   if (e == R_GOT || e == R_PLT)
971     return target.usesOnlyLowPageBits(type) || !config->isPic;
972 
973   if (sym.isPreemptible)
974     return false;
975   if (!config->isPic)
976     return true;
977 
978   // The size of a non preemptible symbol is a constant.
979   if (e == R_SIZE)
980     return true;
981 
982   // For the target and the relocation, we want to know if they are
983   // absolute or relative.
984   bool absVal = isAbsoluteValue(sym);
985   bool relE = isRelExpr(e);
986   if (absVal && !relE)
987     return true;
988   if (!absVal && relE)
989     return true;
990   if (!absVal && !relE)
991     return target.usesOnlyLowPageBits(type);
992 
993   assert(absVal && relE);
994 
995   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
996   // in PIC mode. This is a little strange, but it allows us to link function
997   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
998   // Normally such a call will be guarded with a comparison, which will load a
999   // zero from the GOT.
1000   if (sym.isUndefWeak())
1001     return true;
1002 
1003   // We set the final symbols values for linker script defined symbols later.
1004   // They always can be computed as a link time constant.
1005   if (sym.scriptDefined)
1006       return true;
1007 
1008   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1009         toString(sym) + getLocation(sec, sym, relOff));
1010   return true;
1011 }
1012 
1013 // The reason we have to do this early scan is as follows
1014 // * To mmap the output file, we need to know the size
1015 // * For that, we need to know how many dynamic relocs we will have.
1016 // It might be possible to avoid this by outputting the file with write:
1017 // * Write the allocated output sections, computing addresses.
1018 // * Apply relocations, recording which ones require a dynamic reloc.
1019 // * Write the dynamic relocations.
1020 // * Write the rest of the file.
1021 // This would have some drawbacks. For example, we would only know if .rela.dyn
1022 // is needed after applying relocations. If it is, it will go after rw and rx
1023 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1024 // complicates things for the dynamic linker and means we would have to reserve
1025 // space for the extra PT_LOAD even if we end up not using it.
1026 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1027                                    Symbol &sym, int64_t addend) const {
1028   // If the relocation is known to be a link-time constant, we know no dynamic
1029   // relocation will be created, pass the control to relocateAlloc() or
1030   // relocateNonAlloc() to resolve it.
1031   //
1032   // The behavior of an undefined weak reference is implementation defined. For
1033   // non-link-time constants, we resolve relocations statically (let
1034   // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1035   // relocations for -pie and -shared.
1036   //
1037   // The general expectation of -no-pie static linking is that there is no
1038   // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1039   // -shared matches the spirit of its -z undefs default. -pie has freedom on
1040   // choices, and we choose dynamic relocations to be consistent with the
1041   // handling of GOT-generating relocations.
1042   if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1043       (!config->isPic && sym.isUndefWeak())) {
1044     sec.relocations.push_back({expr, type, offset, addend, &sym});
1045     return;
1046   }
1047 
1048   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1049   if (canWrite) {
1050     RelType rel = target.getDynRel(type);
1051     if (expr == R_GOT || (rel == target.symbolicRel && !sym.isPreemptible)) {
1052       addRelativeReloc(sec, offset, sym, addend, expr, type);
1053       return;
1054     } else if (rel != 0) {
1055       if (config->emachine == EM_MIPS && rel == target.symbolicRel)
1056         rel = target.relativeRel;
1057       sec.getPartition().relaDyn->addSymbolReloc(rel, sec, offset, sym, addend,
1058                                                  type);
1059 
1060       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1061       // While regular ABI uses dynamic relocations to fill up GOT entries
1062       // MIPS ABI requires dynamic linker to fills up GOT entries using
1063       // specially sorted dynamic symbol table. This affects even dynamic
1064       // relocations against symbols which do not require GOT entries
1065       // creation explicitly, i.e. do not have any GOT-relocations. So if
1066       // a preemptible symbol has a dynamic relocation we anyway have
1067       // to create a GOT entry for it.
1068       // If a non-preemptible symbol has a dynamic relocation against it,
1069       // dynamic linker takes it st_value, adds offset and writes down
1070       // result of the dynamic relocation. In case of preemptible symbol
1071       // dynamic linker performs symbol resolution, writes the symbol value
1072       // to the GOT entry and reads the GOT entry when it needs to perform
1073       // a dynamic relocation.
1074       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1075       if (config->emachine == EM_MIPS)
1076         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1077       return;
1078     }
1079   }
1080 
1081   // When producing an executable, we can perform copy relocations (for
1082   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1083   if (!config->shared) {
1084     if (!canDefineSymbolInExecutable(sym)) {
1085       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1086                   getLocation(sec, sym, offset));
1087       return;
1088     }
1089 
1090     if (sym.isObject()) {
1091       // Produce a copy relocation.
1092       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1093         if (!config->zCopyreloc)
1094           error("unresolvable relocation " + toString(type) +
1095                 " against symbol '" + toString(*ss) +
1096                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1097                 getLocation(sec, sym, offset));
1098         sym.needsCopy = true;
1099       }
1100       sec.relocations.push_back({expr, type, offset, addend, &sym});
1101       return;
1102     }
1103 
1104     // This handles a non PIC program call to function in a shared library. In
1105     // an ideal world, we could just report an error saying the relocation can
1106     // overflow at runtime. In the real world with glibc, crt1.o has a
1107     // R_X86_64_PC32 pointing to libc.so.
1108     //
1109     // The general idea on how to handle such cases is to create a PLT entry and
1110     // use that as the function value.
1111     //
1112     // For the static linking part, we just return a plt expr and everything
1113     // else will use the PLT entry as the address.
1114     //
1115     // The remaining problem is making sure pointer equality still works. We
1116     // need the help of the dynamic linker for that. We let it know that we have
1117     // a direct reference to a so symbol by creating an undefined symbol with a
1118     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1119     // the value of the symbol we created. This is true even for got entries, so
1120     // pointer equality is maintained. To avoid an infinite loop, the only entry
1121     // that points to the real function is a dedicated got entry used by the
1122     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1123     // R_386_JMP_SLOT, etc).
1124 
1125     // For position independent executable on i386, the plt entry requires ebx
1126     // to be set. This causes two problems:
1127     // * If some code has a direct reference to a function, it was probably
1128     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1129     // * If a library definition gets preempted to the executable, it will have
1130     //   the wrong ebx value.
1131     if (sym.isFunc()) {
1132       if (config->pie && config->emachine == EM_386)
1133         errorOrWarn("symbol '" + toString(sym) +
1134                     "' cannot be preempted; recompile with -fPIE" +
1135                     getLocation(sec, sym, offset));
1136       sym.needsCopy = true;
1137       sym.needsPlt = true;
1138       sec.relocations.push_back({expr, type, offset, addend, &sym});
1139       return;
1140     }
1141   }
1142 
1143   errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1144               (sym.getName().empty() ? "local symbol"
1145                                      : "symbol '" + toString(sym) + "'") +
1146               "; recompile with -fPIC" + getLocation(sec, sym, offset));
1147 }
1148 
1149 // This function is similar to the `handleTlsRelocation`. MIPS does not
1150 // support any relaxations for TLS relocations so by factoring out MIPS
1151 // handling in to the separate function we can simplify the code and do not
1152 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1153 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1154 // without dynamic relocations.
1155 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1156                                         InputSectionBase &c, uint64_t offset,
1157                                         int64_t addend, RelExpr expr) {
1158   if (expr == R_MIPS_TLSLD) {
1159     in.mipsGot->addTlsIndex(*c.file);
1160     c.relocations.push_back({expr, type, offset, addend, &sym});
1161     return 1;
1162   }
1163   if (expr == R_MIPS_TLSGD) {
1164     in.mipsGot->addDynTlsEntry(*c.file, sym);
1165     c.relocations.push_back({expr, type, offset, addend, &sym});
1166     return 1;
1167   }
1168   return 0;
1169 }
1170 
1171 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1172 // require the generation of a pair of GOT entries that have associated dynamic
1173 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1174 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1175 // symbol in TLS block.
1176 //
1177 // Returns the number of relocations processed.
1178 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1179                                     InputSectionBase &c, uint64_t offset,
1180                                     int64_t addend, RelExpr expr) {
1181   if (!sym.isTls())
1182     return 0;
1183 
1184   if (config->emachine == EM_MIPS)
1185     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1186 
1187   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1188             R_TLSDESC_GOTPLT>(expr) &&
1189       config->shared) {
1190     if (expr != R_TLSDESC_CALL) {
1191       sym.needsTlsDesc = true;
1192       c.relocations.push_back({expr, type, offset, addend, &sym});
1193     }
1194     return 1;
1195   }
1196 
1197   // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation.  For
1198   // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1199   // relaxation as well.
1200   bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1201                      config->emachine != EM_HEXAGON &&
1202                      config->emachine != EM_RISCV &&
1203                      !c.file->ppc64DisableTLSRelax;
1204 
1205   // If we are producing an executable and the symbol is non-preemptable, it
1206   // must be defined and the code sequence can be relaxed to use Local-Exec.
1207   //
1208   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1209   // we can omit the DTPMOD dynamic relocations and resolve them at link time
1210   // because them are always 1. This may be necessary for static linking as
1211   // DTPMOD may not be expected at load time.
1212   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1213 
1214   // Local Dynamic is for access to module local TLS variables, while still
1215   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1216   // module index, with a special value of 0 for the current module. GOT[e1] is
1217   // unused. There only needs to be one module index entry.
1218   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1219           expr)) {
1220     // Local-Dynamic relocs can be relaxed to Local-Exec.
1221     if (toExecRelax) {
1222       c.relocations.push_back(
1223           {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
1224            addend, &sym});
1225       return target->getTlsGdRelaxSkip(type);
1226     }
1227     if (expr == R_TLSLD_HINT)
1228       return 1;
1229     config->needsTlsLd = true;
1230     c.relocations.push_back({expr, type, offset, addend, &sym});
1231     return 1;
1232   }
1233 
1234   // Local-Dynamic relocs can be relaxed to Local-Exec.
1235   if (expr == R_DTPREL) {
1236     if (toExecRelax)
1237       expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1238     c.relocations.push_back({expr, type, offset, addend, &sym});
1239     return 1;
1240   }
1241 
1242   // Local-Dynamic sequence where offset of tls variable relative to dynamic
1243   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1244   if (expr == R_TLSLD_GOT_OFF) {
1245     sym.needsGotDtprel = true;
1246     c.relocations.push_back({expr, type, offset, addend, &sym});
1247     return 1;
1248   }
1249 
1250   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1251             R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1252     if (!toExecRelax) {
1253       sym.needsTlsGd = true;
1254       c.relocations.push_back({expr, type, offset, addend, &sym});
1255       return 1;
1256     }
1257 
1258     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1259     // depending on the symbol being locally defined or not.
1260     if (sym.isPreemptible) {
1261       sym.needsTlsGdToIe = true;
1262       c.relocations.push_back(
1263           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
1264            addend, &sym});
1265     } else {
1266       c.relocations.push_back(
1267           {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
1268            addend, &sym});
1269     }
1270     return target->getTlsGdRelaxSkip(type);
1271   }
1272 
1273   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1274             R_TLSIE_HINT>(expr)) {
1275     // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1276     // defined.
1277     if (toExecRelax && isLocalInExecutable) {
1278       c.relocations.push_back(
1279           {R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1280     } else if (expr != R_TLSIE_HINT) {
1281       sym.needsTlsIe = true;
1282       // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1283       if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1284         addRelativeReloc(c, offset, sym, addend, expr, type);
1285       else
1286         c.relocations.push_back({expr, type, offset, addend, &sym});
1287     }
1288     return 1;
1289   }
1290 
1291   return 0;
1292 }
1293 
1294 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1295   const RelTy &rel = *i;
1296   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1297   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1298   RelType type;
1299 
1300   // Deal with MIPS oddity.
1301   if (config->mipsN32Abi) {
1302     type = getMipsN32RelType(i);
1303   } else {
1304     type = rel.getType(config->isMips64EL);
1305     ++i;
1306   }
1307 
1308   // Get an offset in an output section this relocation is applied to.
1309   uint64_t offset = getter.get(rel.r_offset);
1310   if (offset == uint64_t(-1))
1311     return;
1312 
1313   // Error if the target symbol is undefined. Symbol index 0 may be used by
1314   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1315   if (sym.isUndefined() && symIndex != 0 &&
1316       maybeReportUndefined(cast<Undefined>(sym), sec, offset))
1317     return;
1318 
1319   const uint8_t *relocatedAddr = sec.rawData.begin() + offset;
1320   RelExpr expr = target.getRelExpr(type, sym, relocatedAddr);
1321 
1322   // Ignore R_*_NONE and other marker relocations.
1323   if (expr == R_NONE)
1324     return;
1325 
1326   // Read an addend.
1327   int64_t addend = computeAddend<ELFT>(rel, expr, sym.isLocal());
1328 
1329   if (config->emachine == EM_PPC64) {
1330     // We can separate the small code model relocations into 2 categories:
1331     // 1) Those that access the compiler generated .toc sections.
1332     // 2) Those that access the linker allocated got entries.
1333     // lld allocates got entries to symbols on demand. Since we don't try to
1334     // sort the got entries in any way, we don't have to track which objects
1335     // have got-based small code model relocs. The .toc sections get placed
1336     // after the end of the linker allocated .got section and we do sort those
1337     // so sections addressed with small code model relocations come first.
1338     if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1339       sec.file->ppc64SmallCodeModelTocRelocs = true;
1340 
1341     // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1342     // InputSectionBase::relocateAlloc().
1343     if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1344         cast<Defined>(sym).section->name == ".toc")
1345       ppc64noTocRelax.insert({&sym, addend});
1346 
1347     if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1348         (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1349       if (i == end) {
1350         errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1351                     "relocation" +
1352                     getLocation(sec, sym, offset));
1353         return;
1354       }
1355 
1356       // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1357       // so we can discern it later from the toc-case.
1358       if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1359         ++offset;
1360     }
1361   }
1362 
1363   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1364   // uses their addresses, we need GOT or GOTPLT to be created.
1365   //
1366   // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1367   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1368             R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1369     in.gotPlt->hasGotPltOffRel = true;
1370   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1371                    R_PPC64_RELAX_TOC>(expr)) {
1372     in.got->hasGotOffRel = true;
1373   }
1374 
1375   // Process TLS relocations, including relaxing TLS relocations. Note that
1376   // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1377   if (expr == R_TPREL || expr == R_TPREL_NEG) {
1378     if (config->shared) {
1379       errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1380                   " cannot be used with -shared" +
1381                   getLocation(sec, sym, offset));
1382       return;
1383     }
1384   } else if (unsigned processed =
1385                  handleTlsRelocation(type, sym, sec, offset, addend, expr)) {
1386     i += (processed - 1);
1387     return;
1388   }
1389 
1390   // Relax relocations.
1391   //
1392   // If we know that a PLT entry will be resolved within the same ELF module, we
1393   // can skip PLT access and directly jump to the destination function. For
1394   // example, if we are linking a main executable, all dynamic symbols that can
1395   // be resolved within the executable will actually be resolved that way at
1396   // runtime, because the main executable is always at the beginning of a search
1397   // list. We can leverage that fact.
1398   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1399     if (expr != R_GOT_PC) {
1400       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1401       // stub type. It should be ignored if optimized to R_PC.
1402       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1403         addend &= ~0x8000;
1404       // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1405       // call __tls_get_addr even if the symbol is non-preemptible.
1406       if (!(config->emachine == EM_HEXAGON &&
1407            (type == R_HEX_GD_PLT_B22_PCREL ||
1408             type == R_HEX_GD_PLT_B22_PCREL_X ||
1409             type == R_HEX_GD_PLT_B32_PCREL_X)))
1410       expr = fromPlt(expr);
1411     } else if (!isAbsoluteValue(sym)) {
1412       expr = target.adjustGotPcExpr(type, addend, relocatedAddr);
1413     }
1414   }
1415 
1416   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1417   // direct relocation on through.
1418   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1419     sym.exportDynamic = true;
1420     mainPart->relaDyn->addSymbolReloc(type, sec, offset, sym, addend, type);
1421     return;
1422   }
1423 
1424   if (needsGot(expr)) {
1425     if (config->emachine == EM_MIPS) {
1426       // MIPS ABI has special rules to process GOT entries and doesn't
1427       // require relocation entries for them. A special case is TLS
1428       // relocations. In that case dynamic loader applies dynamic
1429       // relocations to initialize TLS GOT entries.
1430       // See "Global Offset Table" in Chapter 5 in the following document
1431       // for detailed description:
1432       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1433       in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1434     } else {
1435       sym.needsGot = true;
1436     }
1437   } else if (needsPlt(expr)) {
1438     sym.needsPlt = true;
1439   } else {
1440     sym.hasDirectReloc = true;
1441   }
1442 
1443   processAux(expr, type, offset, sym, addend);
1444 }
1445 
1446 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1447 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1448 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1449 // instructions are generated by very old IBM XL compilers. Work around the
1450 // issue by disabling GD/LD to IE/LE relaxation.
1451 template <class RelTy>
1452 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1453   // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1454   if (!sec.file || sec.file->ppc64DisableTLSRelax)
1455     return;
1456   bool hasGDLD = false;
1457   for (const RelTy &rel : rels) {
1458     RelType type = rel.getType(false);
1459     switch (type) {
1460     case R_PPC64_TLSGD:
1461     case R_PPC64_TLSLD:
1462       return; // Found a marker
1463     case R_PPC64_GOT_TLSGD16:
1464     case R_PPC64_GOT_TLSGD16_HA:
1465     case R_PPC64_GOT_TLSGD16_HI:
1466     case R_PPC64_GOT_TLSGD16_LO:
1467     case R_PPC64_GOT_TLSLD16:
1468     case R_PPC64_GOT_TLSLD16_HA:
1469     case R_PPC64_GOT_TLSLD16_HI:
1470     case R_PPC64_GOT_TLSLD16_LO:
1471       hasGDLD = true;
1472       break;
1473     }
1474   }
1475   if (hasGDLD) {
1476     sec.file->ppc64DisableTLSRelax = true;
1477     warn(toString(sec.file) +
1478          ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1479          "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1480   }
1481 }
1482 
1483 template <class ELFT, class RelTy>
1484 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1485   // Not all relocations end up in Sec.Relocations, but a lot do.
1486   sec.relocations.reserve(rels.size());
1487 
1488   if (config->emachine == EM_PPC64)
1489     checkPPC64TLSRelax<RelTy>(sec, rels);
1490 
1491   // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1492   // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1493   // script), the relocations may be unordered.
1494   SmallVector<RelTy, 0> storage;
1495   if (isa<EhInputSection>(sec))
1496     rels = sortRels(rels, storage);
1497 
1498   end = static_cast<const void *>(rels.end());
1499   for (auto i = rels.begin(); i != end;)
1500     scanOne<ELFT>(i);
1501 
1502   // Sort relocations by offset for more efficient searching for
1503   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1504   if (config->emachine == EM_RISCV ||
1505       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1506     llvm::stable_sort(sec.relocations,
1507                       [](const Relocation &lhs, const Relocation &rhs) {
1508                         return lhs.offset < rhs.offset;
1509                       });
1510 }
1511 
1512 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1513   RelocationScanner scanner(s);
1514   const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1515   if (rels.areRelocsRel())
1516     scanner.template scan<ELFT>(rels.rels);
1517   else
1518     scanner.template scan<ELFT>(rels.relas);
1519 }
1520 
1521 static bool handleNonPreemptibleIfunc(Symbol &sym) {
1522   // Handle a reference to a non-preemptible ifunc. These are special in a
1523   // few ways:
1524   //
1525   // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1526   //   a fixed value. But assuming that all references to the ifunc are
1527   //   GOT-generating or PLT-generating, the handling of an ifunc is
1528   //   relatively straightforward. We create a PLT entry in Iplt, which is
1529   //   usually at the end of .plt, which makes an indirect call using a
1530   //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1531   //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1532   //   which is usually at the end of .rela.plt. Unlike most relocations in
1533   //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1534   //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1535   //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1536   //   .got.plt without requiring a separate GOT entry.
1537   //
1538   // - Despite the fact that an ifunc does not have a fixed value, compilers
1539   //   that are not passed -fPIC will assume that they do, and will emit
1540   //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1541   //   symbol. This means that if a direct relocation to the symbol is
1542   //   seen, the linker must set a value for the symbol, and this value must
1543   //   be consistent no matter what type of reference is made to the symbol.
1544   //   This can be done by creating a PLT entry for the symbol in the way
1545   //   described above and making it canonical, that is, making all references
1546   //   point to the PLT entry instead of the resolver. In lld we also store
1547   //   the address of the PLT entry in the dynamic symbol table, which means
1548   //   that the symbol will also have the same value in other modules.
1549   //   Because the value loaded from the GOT needs to be consistent with
1550   //   the value computed using a direct relocation, a non-preemptible ifunc
1551   //   may end up with two GOT entries, one in .got.plt that points to the
1552   //   address returned by the resolver and is used only by the PLT entry,
1553   //   and another in .got that points to the PLT entry and is used by
1554   //   GOT-generating relocations.
1555   //
1556   // - The fact that these symbols do not have a fixed value makes them an
1557   //   exception to the general rule that a statically linked executable does
1558   //   not require any form of dynamic relocation. To handle these relocations
1559   //   correctly, the IRELATIVE relocations are stored in an array which a
1560   //   statically linked executable's startup code must enumerate using the
1561   //   linker-defined symbols __rela?_iplt_{start,end}.
1562   if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1563     return false;
1564   // Skip unreferenced non-preemptible ifunc.
1565   if (!(sym.needsGot || sym.needsPlt || sym.hasDirectReloc))
1566     return true;
1567 
1568   sym.isInIplt = true;
1569 
1570   // Create an Iplt and the associated IRELATIVE relocation pointing to the
1571   // original section/value pairs. For non-GOT non-PLT relocation case below, we
1572   // may alter section/value, so create a copy of the symbol to make
1573   // section/value fixed.
1574   auto *directSym = makeDefined(cast<Defined>(sym));
1575   directSym->allocateAux();
1576   addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1577               *directSym);
1578   sym.allocateAux();
1579   symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1580 
1581   if (sym.hasDirectReloc) {
1582     // Change the value to the IPLT and redirect all references to it.
1583     auto &d = cast<Defined>(sym);
1584     d.section = in.iplt.get();
1585     d.value = d.getPltIdx() * target->ipltEntrySize;
1586     d.size = 0;
1587     // It's important to set the symbol type here so that dynamic loaders
1588     // don't try to call the PLT as if it were an ifunc resolver.
1589     d.type = STT_FUNC;
1590 
1591     if (sym.needsGot)
1592       addGotEntry(sym);
1593   } else if (sym.needsGot) {
1594     // Redirect GOT accesses to point to the Igot.
1595     sym.gotInIgot = true;
1596   }
1597   return true;
1598 }
1599 
1600 void elf::postScanRelocations() {
1601   auto fn = [](Symbol &sym) {
1602     if (handleNonPreemptibleIfunc(sym))
1603       return;
1604     if (!sym.needsDynReloc())
1605       return;
1606     sym.allocateAux();
1607 
1608     if (sym.needsGot)
1609       addGotEntry(sym);
1610     if (sym.needsPlt)
1611       addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1612     if (sym.needsCopy) {
1613       if (sym.isObject()) {
1614         invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1615         // needsCopy is cleared for sym and its aliases so that in later
1616         // iterations aliases won't cause redundant copies.
1617         assert(!sym.needsCopy);
1618       } else {
1619         assert(sym.isFunc() && sym.needsPlt);
1620         if (!sym.isDefined()) {
1621           replaceWithDefined(sym, *in.plt,
1622                              target->pltHeaderSize +
1623                                  target->pltEntrySize * sym.getPltIdx(),
1624                              0);
1625           sym.needsCopy = true;
1626           if (config->emachine == EM_PPC) {
1627             // PPC32 canonical PLT entries are at the beginning of .glink
1628             cast<Defined>(sym).value = in.plt->headerSize;
1629             in.plt->headerSize += 16;
1630             cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1631           }
1632         }
1633       }
1634     }
1635 
1636     if (!sym.isTls())
1637       return;
1638     bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1639 
1640     if (sym.needsTlsDesc) {
1641       in.got->addTlsDescEntry(sym);
1642       mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1643           target->tlsDescRel, *in.got, in.got->getTlsDescOffset(sym), sym,
1644           target->tlsDescRel);
1645     }
1646     if (sym.needsTlsGd) {
1647       in.got->addDynTlsEntry(sym);
1648       uint64_t off = in.got->getGlobalDynOffset(sym);
1649       if (isLocalInExecutable)
1650         // Write one to the GOT slot.
1651         in.got->relocations.push_back(
1652             {R_ADDEND, target->symbolicRel, off, 1, &sym});
1653       else
1654         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *in.got,
1655                                           off, sym);
1656 
1657       // If the symbol is preemptible we need the dynamic linker to write
1658       // the offset too.
1659       uint64_t offsetOff = off + config->wordsize;
1660       if (sym.isPreemptible)
1661         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *in.got,
1662                                           offsetOff, sym);
1663       else
1664         in.got->relocations.push_back(
1665             {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1666     }
1667     if (sym.needsTlsGdToIe) {
1668       in.got->addEntry(sym);
1669       mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *in.got,
1670                                         sym.getGotOffset(), sym);
1671     }
1672     if (sym.needsGotDtprel) {
1673       in.got->addEntry(sym);
1674       in.got->relocations.push_back(
1675           {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1676     }
1677 
1678     if (sym.needsTlsIe && !sym.needsTlsGdToIe)
1679       addTpOffsetGotEntry(sym);
1680   };
1681 
1682   if (config->needsTlsLd && in.got->addTlsIndex()) {
1683     static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1684     if (config->shared)
1685       mainPart->relaDyn->addReloc(
1686           {target->tlsModuleIndexRel, in.got.get(), in.got->getTlsIndexOff()});
1687     else
1688       in.got->relocations.push_back(
1689           {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &dummy});
1690   }
1691 
1692   assert(symAux.empty());
1693   for (Symbol *sym : symtab->symbols())
1694     fn(*sym);
1695 
1696   // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1697   // handling. They don't need regular PLT.
1698   for (ELFFileBase *file : ctx->objectFiles)
1699     for (Symbol *sym : file->getLocalSymbols())
1700       fn(*sym);
1701 }
1702 
1703 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1704   // std::merge requires a strict weak ordering.
1705   if (a->outSecOff < b->outSecOff)
1706     return true;
1707 
1708   if (a->outSecOff == b->outSecOff) {
1709     auto *ta = dyn_cast<ThunkSection>(a);
1710     auto *tb = dyn_cast<ThunkSection>(b);
1711 
1712     // Check if Thunk is immediately before any specific Target
1713     // InputSection for example Mips LA25 Thunks.
1714     if (ta && ta->getTargetInputSection() == b)
1715       return true;
1716 
1717     // Place Thunk Sections without specific targets before
1718     // non-Thunk Sections.
1719     if (ta && !tb && !ta->getTargetInputSection())
1720       return true;
1721   }
1722 
1723   return false;
1724 }
1725 
1726 // Call Fn on every executable InputSection accessed via the linker script
1727 // InputSectionDescription::Sections.
1728 static void forEachInputSectionDescription(
1729     ArrayRef<OutputSection *> outputSections,
1730     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1731   for (OutputSection *os : outputSections) {
1732     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1733       continue;
1734     for (SectionCommand *bc : os->commands)
1735       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1736         fn(os, isd);
1737   }
1738 }
1739 
1740 // Thunk Implementation
1741 //
1742 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1743 // of code that the linker inserts inbetween a caller and a callee. The thunks
1744 // are added at link time rather than compile time as the decision on whether
1745 // a thunk is needed, such as the caller and callee being out of range, can only
1746 // be made at link time.
1747 //
1748 // It is straightforward to tell given the current state of the program when a
1749 // thunk is needed for a particular call. The more difficult part is that
1750 // the thunk needs to be placed in the program such that the caller can reach
1751 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1752 // the program alters addresses, which can mean more thunks etc.
1753 //
1754 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1755 // The decision to have a ThunkSection act as a container means that we can
1756 // more easily handle the most common case of a single block of contiguous
1757 // Thunks by inserting just a single ThunkSection.
1758 //
1759 // The implementation of Thunks in lld is split across these areas
1760 // Relocations.cpp : Framework for creating and placing thunks
1761 // Thunks.cpp : The code generated for each supported thunk
1762 // Target.cpp : Target specific hooks that the framework uses to decide when
1763 //              a thunk is used
1764 // Synthetic.cpp : Implementation of ThunkSection
1765 // Writer.cpp : Iteratively call framework until no more Thunks added
1766 //
1767 // Thunk placement requirements:
1768 // Mips LA25 thunks. These must be placed immediately before the callee section
1769 // We can assume that the caller is in range of the Thunk. These are modelled
1770 // by Thunks that return the section they must precede with
1771 // getTargetInputSection().
1772 //
1773 // ARM interworking and range extension thunks. These thunks must be placed
1774 // within range of the caller. All implemented ARM thunks can always reach the
1775 // callee as they use an indirect jump via a register that has no range
1776 // restrictions.
1777 //
1778 // Thunk placement algorithm:
1779 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1780 // getTargetInputSection().
1781 //
1782 // For thunks that must be placed within range of the caller there are many
1783 // possible choices given that the maximum range from the caller is usually
1784 // much larger than the average InputSection size. Desirable properties include:
1785 // - Maximize reuse of thunks by multiple callers
1786 // - Minimize number of ThunkSections to simplify insertion
1787 // - Handle impact of already added Thunks on addresses
1788 // - Simple to understand and implement
1789 //
1790 // In lld for the first pass, we pre-create one or more ThunkSections per
1791 // InputSectionDescription at Target specific intervals. A ThunkSection is
1792 // placed so that the estimated end of the ThunkSection is within range of the
1793 // start of the InputSectionDescription or the previous ThunkSection. For
1794 // example:
1795 // InputSectionDescription
1796 // Section 0
1797 // ...
1798 // Section N
1799 // ThunkSection 0
1800 // Section N + 1
1801 // ...
1802 // Section N + K
1803 // Thunk Section 1
1804 //
1805 // The intention is that we can add a Thunk to a ThunkSection that is well
1806 // spaced enough to service a number of callers without having to do a lot
1807 // of work. An important principle is that it is not an error if a Thunk cannot
1808 // be placed in a pre-created ThunkSection; when this happens we create a new
1809 // ThunkSection placed next to the caller. This allows us to handle the vast
1810 // majority of thunks simply, but also handle rare cases where the branch range
1811 // is smaller than the target specific spacing.
1812 //
1813 // The algorithm is expected to create all the thunks that are needed in a
1814 // single pass, with a small number of programs needing a second pass due to
1815 // the insertion of thunks in the first pass increasing the offset between
1816 // callers and callees that were only just in range.
1817 //
1818 // A consequence of allowing new ThunkSections to be created outside of the
1819 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1820 // range in pass K, are out of range in some pass > K due to the insertion of
1821 // more Thunks in between the caller and callee. When this happens we retarget
1822 // the relocation back to the original target and create another Thunk.
1823 
1824 // Remove ThunkSections that are empty, this should only be the initial set
1825 // precreated on pass 0.
1826 
1827 // Insert the Thunks for OutputSection OS into their designated place
1828 // in the Sections vector, and recalculate the InputSection output section
1829 // offsets.
1830 // This may invalidate any output section offsets stored outside of InputSection
1831 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1832   forEachInputSectionDescription(
1833       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1834         if (isd->thunkSections.empty())
1835           return;
1836 
1837         // Remove any zero sized precreated Thunks.
1838         llvm::erase_if(isd->thunkSections,
1839                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1840                          return ts.first->getSize() == 0;
1841                        });
1842 
1843         // ISD->ThunkSections contains all created ThunkSections, including
1844         // those inserted in previous passes. Extract the Thunks created this
1845         // pass and order them in ascending outSecOff.
1846         std::vector<ThunkSection *> newThunks;
1847         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1848           if (ts.second == pass)
1849             newThunks.push_back(ts.first);
1850         llvm::stable_sort(newThunks,
1851                           [](const ThunkSection *a, const ThunkSection *b) {
1852                             return a->outSecOff < b->outSecOff;
1853                           });
1854 
1855         // Merge sorted vectors of Thunks and InputSections by outSecOff
1856         SmallVector<InputSection *, 0> tmp;
1857         tmp.reserve(isd->sections.size() + newThunks.size());
1858 
1859         std::merge(isd->sections.begin(), isd->sections.end(),
1860                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1861                    mergeCmp);
1862 
1863         isd->sections = std::move(tmp);
1864       });
1865 }
1866 
1867 static int64_t getPCBias(RelType type) {
1868   if (config->emachine != EM_ARM)
1869     return 0;
1870   switch (type) {
1871   case R_ARM_THM_JUMP19:
1872   case R_ARM_THM_JUMP24:
1873   case R_ARM_THM_CALL:
1874     return 4;
1875   default:
1876     return 8;
1877   }
1878 }
1879 
1880 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1881 // is in range of Src. An ISD maps to a range of InputSections described by a
1882 // linker script section pattern such as { .text .text.* }.
1883 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1884                                            InputSection *isec,
1885                                            InputSectionDescription *isd,
1886                                            const Relocation &rel,
1887                                            uint64_t src) {
1888   // See the comment in getThunk for -pcBias below.
1889   const int64_t pcBias = getPCBias(rel.type);
1890   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1891     ThunkSection *ts = tp.first;
1892     uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
1893     uint64_t tsLimit = tsBase + ts->getSize();
1894     if (target->inBranchRange(rel.type, src,
1895                               (src > tsLimit) ? tsBase : tsLimit))
1896       return ts;
1897   }
1898 
1899   // No suitable ThunkSection exists. This can happen when there is a branch
1900   // with lower range than the ThunkSection spacing or when there are too
1901   // many Thunks. Create a new ThunkSection as close to the InputSection as
1902   // possible. Error if InputSection is so large we cannot place ThunkSection
1903   // anywhere in Range.
1904   uint64_t thunkSecOff = isec->outSecOff;
1905   if (!target->inBranchRange(rel.type, src,
1906                              os->addr + thunkSecOff + rel.addend)) {
1907     thunkSecOff = isec->outSecOff + isec->getSize();
1908     if (!target->inBranchRange(rel.type, src,
1909                                os->addr + thunkSecOff + rel.addend))
1910       fatal("InputSection too large for range extension thunk " +
1911             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1912   }
1913   return addThunkSection(os, isd, thunkSecOff);
1914 }
1915 
1916 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1917 // precedes its Target.
1918 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1919   ThunkSection *ts = thunkedSections.lookup(isec);
1920   if (ts)
1921     return ts;
1922 
1923   // Find InputSectionRange within Target Output Section (TOS) that the
1924   // InputSection (IS) that we need to precede is in.
1925   OutputSection *tos = isec->getParent();
1926   for (SectionCommand *bc : tos->commands) {
1927     auto *isd = dyn_cast<InputSectionDescription>(bc);
1928     if (!isd || isd->sections.empty())
1929       continue;
1930 
1931     InputSection *first = isd->sections.front();
1932     InputSection *last = isd->sections.back();
1933 
1934     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1935       continue;
1936 
1937     ts = addThunkSection(tos, isd, isec->outSecOff);
1938     thunkedSections[isec] = ts;
1939     return ts;
1940   }
1941 
1942   return nullptr;
1943 }
1944 
1945 // Create one or more ThunkSections per OS that can be used to place Thunks.
1946 // We attempt to place the ThunkSections using the following desirable
1947 // properties:
1948 // - Within range of the maximum number of callers
1949 // - Minimise the number of ThunkSections
1950 //
1951 // We follow a simple but conservative heuristic to place ThunkSections at
1952 // offsets that are multiples of a Target specific branch range.
1953 // For an InputSectionDescription that is smaller than the range, a single
1954 // ThunkSection at the end of the range will do.
1955 //
1956 // For an InputSectionDescription that is more than twice the size of the range,
1957 // we place the last ThunkSection at range bytes from the end of the
1958 // InputSectionDescription in order to increase the likelihood that the
1959 // distance from a thunk to its target will be sufficiently small to
1960 // allow for the creation of a short thunk.
1961 void ThunkCreator::createInitialThunkSections(
1962     ArrayRef<OutputSection *> outputSections) {
1963   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1964 
1965   forEachInputSectionDescription(
1966       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1967         if (isd->sections.empty())
1968           return;
1969 
1970         uint32_t isdBegin = isd->sections.front()->outSecOff;
1971         uint32_t isdEnd =
1972             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1973         uint32_t lastThunkLowerBound = -1;
1974         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1975           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1976 
1977         uint32_t isecLimit;
1978         uint32_t prevIsecLimit = isdBegin;
1979         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1980 
1981         for (const InputSection *isec : isd->sections) {
1982           isecLimit = isec->outSecOff + isec->getSize();
1983           if (isecLimit > thunkUpperBound) {
1984             addThunkSection(os, isd, prevIsecLimit);
1985             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1986           }
1987           if (isecLimit > lastThunkLowerBound)
1988             break;
1989           prevIsecLimit = isecLimit;
1990         }
1991         addThunkSection(os, isd, isecLimit);
1992       });
1993 }
1994 
1995 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1996                                             InputSectionDescription *isd,
1997                                             uint64_t off) {
1998   auto *ts = make<ThunkSection>(os, off);
1999   ts->partition = os->partition;
2000   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2001       !isd->sections.empty()) {
2002     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2003     // thunks we disturb the base addresses of sections placed after the thunks
2004     // this makes patches we have generated redundant, and may cause us to
2005     // generate more patches as different instructions are now in sensitive
2006     // locations. When we generate more patches we may force more branches to
2007     // go out of range, causing more thunks to be generated. In pathological
2008     // cases this can cause the address dependent content pass not to converge.
2009     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2010     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2011     // which means that adding Thunks to the section does not invalidate
2012     // errata patches for following code.
2013     // Rounding up the size to 4KiB has consequences for code-size and can
2014     // trip up linker script defined assertions. For example the linux kernel
2015     // has an assertion that what LLD represents as an InputSectionDescription
2016     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2017     // We use the heuristic of rounding up the size when both of the following
2018     // conditions are true:
2019     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2020     //     accounts for the case where no single InputSectionDescription is
2021     //     larger than the OutputSection size. This is conservative but simple.
2022     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2023     //     any assertion failures that an InputSectionDescription is < 4 KiB
2024     //     in size.
2025     uint64_t isdSize = isd->sections.back()->outSecOff +
2026                        isd->sections.back()->getSize() -
2027                        isd->sections.front()->outSecOff;
2028     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2029       ts->roundUpSizeForErrata = true;
2030   }
2031   isd->thunkSections.push_back({ts, pass});
2032   return ts;
2033 }
2034 
2035 static bool isThunkSectionCompatible(InputSection *source,
2036                                      SectionBase *target) {
2037   // We can't reuse thunks in different loadable partitions because they might
2038   // not be loaded. But partition 1 (the main partition) will always be loaded.
2039   if (source->partition != target->partition)
2040     return target->partition == 1;
2041   return true;
2042 }
2043 
2044 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2045                                                 Relocation &rel, uint64_t src) {
2046   std::vector<Thunk *> *thunkVec = nullptr;
2047   // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2048   // out in the relocation addend. We compensate for the PC bias so that
2049   // an Arm and Thumb relocation to the same destination get the same keyAddend,
2050   // which is usually 0.
2051   const int64_t pcBias = getPCBias(rel.type);
2052   const int64_t keyAddend = rel.addend + pcBias;
2053 
2054   // We use a ((section, offset), addend) pair to find the thunk position if
2055   // possible so that we create only one thunk for aliased symbols or ICFed
2056   // sections. There may be multiple relocations sharing the same (section,
2057   // offset + addend) pair. We may revert the relocation back to its original
2058   // non-Thunk target, so we cannot fold offset + addend.
2059   if (auto *d = dyn_cast<Defined>(rel.sym))
2060     if (!d->isInPlt() && d->section)
2061       thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2062                                                     keyAddend}];
2063   if (!thunkVec)
2064     thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2065 
2066   // Check existing Thunks for Sym to see if they can be reused
2067   for (Thunk *t : *thunkVec)
2068     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2069         t->isCompatibleWith(*isec, rel) &&
2070         target->inBranchRange(rel.type, src,
2071                               t->getThunkTargetSym()->getVA(-pcBias)))
2072       return std::make_pair(t, false);
2073 
2074   // No existing compatible Thunk in range, create a new one
2075   Thunk *t = addThunk(*isec, rel);
2076   thunkVec->push_back(t);
2077   return std::make_pair(t, true);
2078 }
2079 
2080 // Return true if the relocation target is an in range Thunk.
2081 // Return false if the relocation is not to a Thunk. If the relocation target
2082 // was originally to a Thunk, but is no longer in range we revert the
2083 // relocation back to its original non-Thunk target.
2084 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2085   if (Thunk *t = thunks.lookup(rel.sym)) {
2086     if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2087       return true;
2088     rel.sym = &t->destination;
2089     rel.addend = t->addend;
2090     if (rel.sym->isInPlt())
2091       rel.expr = toPlt(rel.expr);
2092   }
2093   return false;
2094 }
2095 
2096 // Process all relocations from the InputSections that have been assigned
2097 // to InputSectionDescriptions and redirect through Thunks if needed. The
2098 // function should be called iteratively until it returns false.
2099 //
2100 // PreConditions:
2101 // All InputSections that may need a Thunk are reachable from
2102 // OutputSectionCommands.
2103 //
2104 // All OutputSections have an address and all InputSections have an offset
2105 // within the OutputSection.
2106 //
2107 // The offsets between caller (relocation place) and callee
2108 // (relocation target) will not be modified outside of createThunks().
2109 //
2110 // PostConditions:
2111 // If return value is true then ThunkSections have been inserted into
2112 // OutputSections. All relocations that needed a Thunk based on the information
2113 // available to createThunks() on entry have been redirected to a Thunk. Note
2114 // that adding Thunks changes offsets between caller and callee so more Thunks
2115 // may be required.
2116 //
2117 // If return value is false then no more Thunks are needed, and createThunks has
2118 // made no changes. If the target requires range extension thunks, currently
2119 // ARM, then any future change in offset between caller and callee risks a
2120 // relocation out of range error.
2121 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
2122   bool addressesChanged = false;
2123 
2124   if (pass == 0 && target->getThunkSectionSpacing())
2125     createInitialThunkSections(outputSections);
2126 
2127   // Create all the Thunks and insert them into synthetic ThunkSections. The
2128   // ThunkSections are later inserted back into InputSectionDescriptions.
2129   // We separate the creation of ThunkSections from the insertion of the
2130   // ThunkSections as ThunkSections are not always inserted into the same
2131   // InputSectionDescription as the caller.
2132   forEachInputSectionDescription(
2133       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2134         for (InputSection *isec : isd->sections)
2135           for (Relocation &rel : isec->relocations) {
2136             uint64_t src = isec->getVA(rel.offset);
2137 
2138             // If we are a relocation to an existing Thunk, check if it is
2139             // still in range. If not then Rel will be altered to point to its
2140             // original target so another Thunk can be generated.
2141             if (pass > 0 && normalizeExistingThunk(rel, src))
2142               continue;
2143 
2144             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2145                                     *rel.sym, rel.addend))
2146               continue;
2147 
2148             Thunk *t;
2149             bool isNew;
2150             std::tie(t, isNew) = getThunk(isec, rel, src);
2151 
2152             if (isNew) {
2153               // Find or create a ThunkSection for the new Thunk
2154               ThunkSection *ts;
2155               if (auto *tis = t->getTargetInputSection())
2156                 ts = getISThunkSec(tis);
2157               else
2158                 ts = getISDThunkSec(os, isec, isd, rel, src);
2159               ts->addThunk(t);
2160               thunks[t->getThunkTargetSym()] = t;
2161             }
2162 
2163             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2164             rel.sym = t->getThunkTargetSym();
2165             rel.expr = fromPlt(rel.expr);
2166 
2167             // On AArch64 and PPC, a jump/call relocation may be encoded as
2168             // STT_SECTION + non-zero addend, clear the addend after
2169             // redirection.
2170             if (config->emachine != EM_MIPS)
2171               rel.addend = -getPCBias(rel.type);
2172           }
2173 
2174         for (auto &p : isd->thunkSections)
2175           addressesChanged |= p.first->assignOffsets();
2176       });
2177 
2178   for (auto &p : thunkedSections)
2179     addressesChanged |= p.second->assignOffsets();
2180 
2181   // Merge all created synthetic ThunkSections back into OutputSection
2182   mergeThunks(outputSections);
2183   ++pass;
2184   return addressesChanged;
2185 }
2186 
2187 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2188 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2189 // __tls_get_addr.
2190 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2191 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2192   bool needTlsSymbol = false;
2193   forEachInputSectionDescription(
2194       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2195         for (InputSection *isec : isd->sections)
2196           for (Relocation &rel : isec->relocations)
2197             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2198               needTlsSymbol = true;
2199               return;
2200             }
2201       });
2202   return needTlsSymbol;
2203 }
2204 
2205 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2206   Symbol *sym = symtab->find("__tls_get_addr");
2207   if (!sym)
2208     return;
2209   bool needEntry = true;
2210   forEachInputSectionDescription(
2211       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2212         for (InputSection *isec : isd->sections)
2213           for (Relocation &rel : isec->relocations)
2214             if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2215               if (needEntry) {
2216                 sym->allocateAux();
2217                 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2218                             *sym);
2219                 needEntry = false;
2220               }
2221               rel.sym = sym;
2222             }
2223       });
2224 }
2225 
2226 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2227 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2228 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2229 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2230