1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 //  - create GOT/PLT entries
29 //  - create new relocations in .dynsym to let the dynamic linker resolve
30 //    them at runtime (since ELF supports dynamic linking, not all
31 //    relocations can be resolved at link-time)
32 //  - create COPY relocs and reserve space in .bss
33 //  - replace expensive relocs (in terms of runtime cost) with cheap ones
34 //  - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42 
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 
66 namespace lld {
67 namespace elf {
68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69   for (BaseCommand *base : script->sectionCommands)
70     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71       if (cmd->sym == &sym)
72         return cmd->location;
73   return None;
74 }
75 
76 // Construct a message in the following format.
77 //
78 // >>> defined in /home/alice/src/foo.o
79 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
80 // >>>               /home/alice/src/bar.o:(.text+0x1)
81 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
82                                uint64_t off) {
83   std::string msg = "\n>>> defined in ";
84   if (sym.file)
85     msg += toString(sym.file);
86   else if (Optional<std::string> loc = getLinkerScriptLocation(sym))
87     msg += *loc;
88 
89   msg += "\n>>> referenced by ";
90   std::string src = s.getSrcMsg(sym, off);
91   if (!src.empty())
92     msg += src + "\n>>>               ";
93   return msg + s.getObjMsg(off);
94 }
95 
96 namespace {
97 // Build a bitmask with one bit set for each RelExpr.
98 //
99 // Constexpr function arguments can't be used in static asserts, so we
100 // use template arguments to build the mask.
101 // But function template partial specializations don't exist (needed
102 // for base case of the recursion), so we need a dummy struct.
103 template <RelExpr... Exprs> struct RelExprMaskBuilder {
104   static inline uint64_t build() { return 0; }
105 };
106 
107 // Specialization for recursive case.
108 template <RelExpr Head, RelExpr... Tail>
109 struct RelExprMaskBuilder<Head, Tail...> {
110   static inline uint64_t build() {
111     static_assert(0 <= Head && Head < 64,
112                   "RelExpr is too large for 64-bit mask!");
113     return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
114   }
115 };
116 } // namespace
117 
118 // Return true if `Expr` is one of `Exprs`.
119 // There are fewer than 64 RelExpr's, so we can represent any set of
120 // RelExpr's as a constant bit mask and test for membership with a
121 // couple cheap bitwise operations.
122 template <RelExpr... Exprs> bool oneof(RelExpr expr) {
123   assert(0 <= expr && (int)expr < 64 &&
124          "RelExpr is too large for 64-bit mask!");
125   return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
126 }
127 
128 // This function is similar to the `handleTlsRelocation`. MIPS does not
129 // support any relaxations for TLS relocations so by factoring out MIPS
130 // handling in to the separate function we can simplify the code and do not
131 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
132 // Mips has a custom MipsGotSection that handles the writing of GOT entries
133 // without dynamic relocations.
134 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
135                                         InputSectionBase &c, uint64_t offset,
136                                         int64_t addend, RelExpr expr) {
137   if (expr == R_MIPS_TLSLD) {
138     in.mipsGot->addTlsIndex(*c.file);
139     c.relocations.push_back({expr, type, offset, addend, &sym});
140     return 1;
141   }
142   if (expr == R_MIPS_TLSGD) {
143     in.mipsGot->addDynTlsEntry(*c.file, sym);
144     c.relocations.push_back({expr, type, offset, addend, &sym});
145     return 1;
146   }
147   return 0;
148 }
149 
150 // Notes about General Dynamic and Local Dynamic TLS models below. They may
151 // require the generation of a pair of GOT entries that have associated dynamic
152 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
153 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
154 // symbol in TLS block.
155 //
156 // Returns the number of relocations processed.
157 template <class ELFT>
158 static unsigned
159 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
160                     typename ELFT::uint offset, int64_t addend, RelExpr expr) {
161   if (!sym.isTls())
162     return 0;
163 
164   if (config->emachine == EM_MIPS)
165     return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
166 
167   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
168           expr) &&
169       config->shared) {
170     if (in.got->addDynTlsEntry(sym)) {
171       uint64_t off = in.got->getGlobalDynOffset(sym);
172       mainPart->relaDyn->addReloc(
173           {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
174     }
175     if (expr != R_TLSDESC_CALL)
176       c.relocations.push_back({expr, type, offset, addend, &sym});
177     return 1;
178   }
179 
180   bool canRelax = config->emachine != EM_ARM &&
181                   config->emachine != EM_HEXAGON &&
182                   config->emachine != EM_RISCV;
183 
184   // If we are producing an executable and the symbol is non-preemptable, it
185   // must be defined and the code sequence can be relaxed to use Local-Exec.
186   //
187   // ARM and RISC-V do not support any relaxations for TLS relocations, however,
188   // we can omit the DTPMOD dynamic relocations and resolve them at link time
189   // because them are always 1. This may be necessary for static linking as
190   // DTPMOD may not be expected at load time.
191   bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
192 
193   // Local Dynamic is for access to module local TLS variables, while still
194   // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
195   // module index, with a special value of 0 for the current module. GOT[e1] is
196   // unused. There only needs to be one module index entry.
197   if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
198           expr)) {
199     // Local-Dynamic relocs can be relaxed to Local-Exec.
200     if (canRelax && !config->shared) {
201       c.relocations.push_back(
202           {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
203            offset, addend, &sym});
204       return target->getTlsGdRelaxSkip(type);
205     }
206     if (expr == R_TLSLD_HINT)
207       return 1;
208     if (in.got->addTlsIndex()) {
209       if (isLocalInExecutable)
210         in.got->relocations.push_back(
211             {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
212       else
213         mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
214                                 in.got->getTlsIndexOff(), nullptr);
215     }
216     c.relocations.push_back({expr, type, offset, addend, &sym});
217     return 1;
218   }
219 
220   // Local-Dynamic relocs can be relaxed to Local-Exec.
221   if (expr == R_DTPREL && !config->shared) {
222     c.relocations.push_back(
223         {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_LD_TO_LE), type,
224          offset, addend, &sym});
225     return 1;
226   }
227 
228   // Local-Dynamic sequence where offset of tls variable relative to dynamic
229   // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
230   if (expr == R_TLSLD_GOT_OFF) {
231     if (!sym.isInGot()) {
232       in.got->addEntry(sym);
233       uint64_t off = sym.getGotOffset();
234       in.got->relocations.push_back(
235           {R_ABS, target->tlsOffsetRel, off, 0, &sym});
236     }
237     c.relocations.push_back({expr, type, offset, addend, &sym});
238     return 1;
239   }
240 
241   if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
242             R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
243     if (!canRelax || config->shared) {
244       if (in.got->addDynTlsEntry(sym)) {
245         uint64_t off = in.got->getGlobalDynOffset(sym);
246 
247         if (isLocalInExecutable)
248           // Write one to the GOT slot.
249           in.got->relocations.push_back(
250               {R_ADDEND, target->symbolicRel, off, 1, &sym});
251         else
252           mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);
253 
254         // If the symbol is preemptible we need the dynamic linker to write
255         // the offset too.
256         uint64_t offsetOff = off + config->wordsize;
257         if (sym.isPreemptible)
258           mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
259                                   &sym);
260         else
261           in.got->relocations.push_back(
262               {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
263       }
264       c.relocations.push_back({expr, type, offset, addend, &sym});
265       return 1;
266     }
267 
268     // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
269     // depending on the symbol being locally defined or not.
270     if (sym.isPreemptible) {
271       c.relocations.push_back(
272           {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_IE), type,
273            offset, addend, &sym});
274       if (!sym.isInGot()) {
275         in.got->addEntry(sym);
276         mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
277                                 &sym);
278       }
279     } else {
280       c.relocations.push_back(
281           {target->adjustRelaxExpr(type, nullptr, R_RELAX_TLS_GD_TO_LE), type,
282            offset, addend, &sym});
283     }
284     return target->getTlsGdRelaxSkip(type);
285   }
286 
287   // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
288   // defined.
289   if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
290             R_TLSIE_HINT>(expr) &&
291       canRelax && isLocalInExecutable) {
292     c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
293     return 1;
294   }
295 
296   if (expr == R_TLSIE_HINT)
297     return 1;
298   return 0;
299 }
300 
301 static RelType getMipsPairType(RelType type, bool isLocal) {
302   switch (type) {
303   case R_MIPS_HI16:
304     return R_MIPS_LO16;
305   case R_MIPS_GOT16:
306     // In case of global symbol, the R_MIPS_GOT16 relocation does not
307     // have a pair. Each global symbol has a unique entry in the GOT
308     // and a corresponding instruction with help of the R_MIPS_GOT16
309     // relocation loads an address of the symbol. In case of local
310     // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
311     // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
312     // relocations handle low 16 bits of the address. That allows
313     // to allocate only one GOT entry for every 64 KBytes of local data.
314     return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
315   case R_MICROMIPS_GOT16:
316     return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
317   case R_MIPS_PCHI16:
318     return R_MIPS_PCLO16;
319   case R_MICROMIPS_HI16:
320     return R_MICROMIPS_LO16;
321   default:
322     return R_MIPS_NONE;
323   }
324 }
325 
326 // True if non-preemptable symbol always has the same value regardless of where
327 // the DSO is loaded.
328 static bool isAbsolute(const Symbol &sym) {
329   if (sym.isUndefWeak())
330     return true;
331   if (const auto *dr = dyn_cast<Defined>(&sym))
332     return dr->section == nullptr; // Absolute symbol.
333   return false;
334 }
335 
336 static bool isAbsoluteValue(const Symbol &sym) {
337   return isAbsolute(sym) || sym.isTls();
338 }
339 
340 // Returns true if Expr refers a PLT entry.
341 static bool needsPlt(RelExpr expr) {
342   return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
343 }
344 
345 // Returns true if Expr refers a GOT entry. Note that this function
346 // returns false for TLS variables even though they need GOT, because
347 // TLS variables uses GOT differently than the regular variables.
348 static bool needsGot(RelExpr expr) {
349   return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
350                R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>(
351       expr);
352 }
353 
354 // True if this expression is of the form Sym - X, where X is a position in the
355 // file (PC, or GOT for example).
356 static bool isRelExpr(RelExpr expr) {
357   return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
358                R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
359                R_RISCV_PC_INDIRECT>(expr);
360 }
361 
362 // Returns true if a given relocation can be computed at link-time.
363 //
364 // For instance, we know the offset from a relocation to its target at
365 // link-time if the relocation is PC-relative and refers a
366 // non-interposable function in the same executable. This function
367 // will return true for such relocation.
368 //
369 // If this function returns false, that means we need to emit a
370 // dynamic relocation so that the relocation will be fixed at load-time.
371 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
372                                      InputSectionBase &s, uint64_t relOff) {
373   // These expressions always compute a constant
374   if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
375             R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
376             R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
377             R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
378             R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
379             R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
380             R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>(
381           e))
382     return true;
383 
384   // These never do, except if the entire file is position dependent or if
385   // only the low bits are used.
386   if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
387     return target->usesOnlyLowPageBits(type) || !config->isPic;
388 
389   if (sym.isPreemptible)
390     return false;
391   if (!config->isPic)
392     return true;
393 
394   // The size of a non preemptible symbol is a constant.
395   if (e == R_SIZE)
396     return true;
397 
398   // For the target and the relocation, we want to know if they are
399   // absolute or relative.
400   bool absVal = isAbsoluteValue(sym);
401   bool relE = isRelExpr(e);
402   if (absVal && !relE)
403     return true;
404   if (!absVal && relE)
405     return true;
406   if (!absVal && !relE)
407     return target->usesOnlyLowPageBits(type);
408 
409   assert(absVal && relE);
410 
411   // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
412   // in PIC mode. This is a little strange, but it allows us to link function
413   // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
414   // Normally such a call will be guarded with a comparison, which will load a
415   // zero from the GOT.
416   if (sym.isUndefWeak())
417     return true;
418 
419   // We set the final symbols values for linker script defined symbols later.
420   // They always can be computed as a link time constant.
421   if (sym.scriptDefined)
422       return true;
423 
424   error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
425         toString(sym) + getLocation(s, sym, relOff));
426   return true;
427 }
428 
429 static RelExpr toPlt(RelExpr expr) {
430   switch (expr) {
431   case R_PPC64_CALL:
432     return R_PPC64_CALL_PLT;
433   case R_PC:
434     return R_PLT_PC;
435   case R_ABS:
436     return R_PLT;
437   default:
438     return expr;
439   }
440 }
441 
442 static RelExpr fromPlt(RelExpr expr) {
443   // We decided not to use a plt. Optimize a reference to the plt to a
444   // reference to the symbol itself.
445   switch (expr) {
446   case R_PLT_PC:
447   case R_PPC32_PLTREL:
448     return R_PC;
449   case R_PPC64_CALL_PLT:
450     return R_PPC64_CALL;
451   case R_PLT:
452     return R_ABS;
453   default:
454     return expr;
455   }
456 }
457 
458 // Returns true if a given shared symbol is in a read-only segment in a DSO.
459 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
460   using Elf_Phdr = typename ELFT::Phdr;
461 
462   // Determine if the symbol is read-only by scanning the DSO's program headers.
463   const SharedFile &file = ss.getFile();
464   for (const Elf_Phdr &phdr :
465        check(file.template getObj<ELFT>().program_headers()))
466     if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
467         !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
468         ss.value < phdr.p_vaddr + phdr.p_memsz)
469       return true;
470   return false;
471 }
472 
473 // Returns symbols at the same offset as a given symbol, including SS itself.
474 //
475 // If two or more symbols are at the same offset, and at least one of
476 // them are copied by a copy relocation, all of them need to be copied.
477 // Otherwise, they would refer to different places at runtime.
478 template <class ELFT>
479 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
480   using Elf_Sym = typename ELFT::Sym;
481 
482   SharedFile &file = ss.getFile();
483 
484   SmallSet<SharedSymbol *, 4> ret;
485   for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
486     if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
487         s.getType() == STT_TLS || s.st_value != ss.value)
488       continue;
489     StringRef name = check(s.getName(file.getStringTable()));
490     Symbol *sym = symtab->find(name);
491     if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
492       ret.insert(alias);
493   }
494   return ret;
495 }
496 
497 // When a symbol is copy relocated or we create a canonical plt entry, it is
498 // effectively a defined symbol. In the case of copy relocation the symbol is
499 // in .bss and in the case of a canonical plt entry it is in .plt. This function
500 // replaces the existing symbol with a Defined pointing to the appropriate
501 // location.
502 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
503                                uint64_t size) {
504   Symbol old = sym;
505 
506   sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
507                       sym.type, value, size, sec});
508 
509   sym.pltIndex = old.pltIndex;
510   sym.gotIndex = old.gotIndex;
511   sym.verdefIndex = old.verdefIndex;
512   sym.exportDynamic = true;
513   sym.isUsedInRegularObj = true;
514 }
515 
516 // Reserve space in .bss or .bss.rel.ro for copy relocation.
517 //
518 // The copy relocation is pretty much a hack. If you use a copy relocation
519 // in your program, not only the symbol name but the symbol's size, RW/RO
520 // bit and alignment become part of the ABI. In addition to that, if the
521 // symbol has aliases, the aliases become part of the ABI. That's subtle,
522 // but if you violate that implicit ABI, that can cause very counter-
523 // intuitive consequences.
524 //
525 // So, what is the copy relocation? It's for linking non-position
526 // independent code to DSOs. In an ideal world, all references to data
527 // exported by DSOs should go indirectly through GOT. But if object files
528 // are compiled as non-PIC, all data references are direct. There is no
529 // way for the linker to transform the code to use GOT, as machine
530 // instructions are already set in stone in object files. This is where
531 // the copy relocation takes a role.
532 //
533 // A copy relocation instructs the dynamic linker to copy data from a DSO
534 // to a specified address (which is usually in .bss) at load-time. If the
535 // static linker (that's us) finds a direct data reference to a DSO
536 // symbol, it creates a copy relocation, so that the symbol can be
537 // resolved as if it were in .bss rather than in a DSO.
538 //
539 // As you can see in this function, we create a copy relocation for the
540 // dynamic linker, and the relocation contains not only symbol name but
541 // various other information about the symbol. So, such attributes become a
542 // part of the ABI.
543 //
544 // Note for application developers: I can give you a piece of advice if
545 // you are writing a shared library. You probably should export only
546 // functions from your library. You shouldn't export variables.
547 //
548 // As an example what can happen when you export variables without knowing
549 // the semantics of copy relocations, assume that you have an exported
550 // variable of type T. It is an ABI-breaking change to add new members at
551 // end of T even though doing that doesn't change the layout of the
552 // existing members. That's because the space for the new members are not
553 // reserved in .bss unless you recompile the main program. That means they
554 // are likely to overlap with other data that happens to be laid out next
555 // to the variable in .bss. This kind of issue is sometimes very hard to
556 // debug. What's a solution? Instead of exporting a variable V from a DSO,
557 // define an accessor getV().
558 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
559   // Copy relocation against zero-sized symbol doesn't make sense.
560   uint64_t symSize = ss.getSize();
561   if (symSize == 0 || ss.alignment == 0)
562     fatal("cannot create a copy relocation for symbol " + toString(ss));
563 
564   // See if this symbol is in a read-only segment. If so, preserve the symbol's
565   // memory protection by reserving space in the .bss.rel.ro section.
566   bool isRO = isReadOnly<ELFT>(ss);
567   BssSection *sec =
568       make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
569   OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
570 
571   // At this point, sectionBases has been migrated to sections. Append sec to
572   // sections.
573   if (osec->sectionCommands.empty() ||
574       !isa<InputSectionDescription>(osec->sectionCommands.back()))
575     osec->sectionCommands.push_back(make<InputSectionDescription>(""));
576   auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
577   isd->sections.push_back(sec);
578   osec->commitSection(sec);
579 
580   // Look through the DSO's dynamic symbol table for aliases and create a
581   // dynamic symbol for each one. This causes the copy relocation to correctly
582   // interpose any aliases.
583   for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
584     replaceWithDefined(*sym, sec, 0, sym->size);
585 
586   mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
587 }
588 
589 // MIPS has an odd notion of "paired" relocations to calculate addends.
590 // For example, if a relocation is of R_MIPS_HI16, there must be a
591 // R_MIPS_LO16 relocation after that, and an addend is calculated using
592 // the two relocations.
593 template <class ELFT, class RelTy>
594 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
595                                  InputSectionBase &sec, RelExpr expr,
596                                  bool isLocal) {
597   if (expr == R_MIPS_GOTREL && isLocal)
598     return sec.getFile<ELFT>()->mipsGp0;
599 
600   // The ABI says that the paired relocation is used only for REL.
601   // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
602   if (RelTy::IsRela)
603     return 0;
604 
605   RelType type = rel.getType(config->isMips64EL);
606   uint32_t pairTy = getMipsPairType(type, isLocal);
607   if (pairTy == R_MIPS_NONE)
608     return 0;
609 
610   const uint8_t *buf = sec.data().data();
611   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
612 
613   // To make things worse, paired relocations might not be contiguous in
614   // the relocation table, so we need to do linear search. *sigh*
615   for (const RelTy *ri = &rel; ri != end; ++ri)
616     if (ri->getType(config->isMips64EL) == pairTy &&
617         ri->getSymbol(config->isMips64EL) == symIndex)
618       return target->getImplicitAddend(buf + ri->r_offset, pairTy);
619 
620   warn("can't find matching " + toString(pairTy) + " relocation for " +
621        toString(type));
622   return 0;
623 }
624 
625 // Returns an addend of a given relocation. If it is RELA, an addend
626 // is in a relocation itself. If it is REL, we need to read it from an
627 // input section.
628 template <class ELFT, class RelTy>
629 static int64_t computeAddend(const RelTy &rel, const RelTy *end,
630                              InputSectionBase &sec, RelExpr expr,
631                              bool isLocal) {
632   int64_t addend;
633   RelType type = rel.getType(config->isMips64EL);
634 
635   if (RelTy::IsRela) {
636     addend = getAddend<ELFT>(rel);
637   } else {
638     const uint8_t *buf = sec.data().data();
639     addend = target->getImplicitAddend(buf + rel.r_offset, type);
640   }
641 
642   if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
643     addend += getPPC64TocBase();
644   if (config->emachine == EM_MIPS)
645     addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
646 
647   return addend;
648 }
649 
650 // Custom error message if Sym is defined in a discarded section.
651 template <class ELFT>
652 static std::string maybeReportDiscarded(Undefined &sym) {
653   auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
654   if (!file || !sym.discardedSecIdx ||
655       file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
656     return "";
657   ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
658       CHECK(file->getObj().sections(), file);
659 
660   std::string msg;
661   if (sym.type == ELF::STT_SECTION) {
662     msg = "relocation refers to a discarded section: ";
663     msg += CHECK(
664         file->getObj().getSectionName(&objSections[sym.discardedSecIdx]), file);
665   } else {
666     msg = "relocation refers to a symbol in a discarded section: " +
667           toString(sym);
668   }
669   msg += "\n>>> defined in " + toString(file);
670 
671   Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
672   if (elfSec.sh_type != SHT_GROUP)
673     return msg;
674 
675   // If the discarded section is a COMDAT.
676   StringRef signature = file->getShtGroupSignature(objSections, elfSec);
677   if (const InputFile *prevailing =
678           symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
679     msg += "\n>>> section group signature: " + signature.str() +
680            "\n>>> prevailing definition is in " + toString(prevailing);
681   return msg;
682 }
683 
684 // Undefined diagnostics are collected in a vector and emitted once all of
685 // them are known, so that some postprocessing on the list of undefined symbols
686 // can happen before lld emits diagnostics.
687 struct UndefinedDiag {
688   Symbol *sym;
689   struct Loc {
690     InputSectionBase *sec;
691     uint64_t offset;
692   };
693   std::vector<Loc> locs;
694   bool isWarning;
695 };
696 
697 static std::vector<UndefinedDiag> undefs;
698 
699 // Check whether the definition name def is a mangled function name that matches
700 // the reference name ref.
701 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
702   llvm::ItaniumPartialDemangler d;
703   std::string name = def.str();
704   if (d.partialDemangle(name.c_str()))
705     return false;
706   char *buf = d.getFunctionName(nullptr, nullptr);
707   if (!buf)
708     return false;
709   bool ret = ref == buf;
710   free(buf);
711   return ret;
712 }
713 
714 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
715 // the suggested symbol, which is either in the symbol table, or in the same
716 // file of sym.
717 template <class ELFT>
718 static const Symbol *getAlternativeSpelling(const Undefined &sym,
719                                             std::string &pre_hint,
720                                             std::string &post_hint) {
721   DenseMap<StringRef, const Symbol *> map;
722   if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
723     // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
724     // will give an error. Don't suggest an alternative spelling.
725     if (file && sym.discardedSecIdx != 0 &&
726         file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
727       return nullptr;
728 
729     // Build a map of local defined symbols.
730     for (const Symbol *s : sym.file->getSymbols())
731       if (s->isLocal() && s->isDefined())
732         map.try_emplace(s->getName(), s);
733   }
734 
735   auto suggest = [&](StringRef newName) -> const Symbol * {
736     // If defined locally.
737     if (const Symbol *s = map.lookup(newName))
738       return s;
739 
740     // If in the symbol table and not undefined.
741     if (const Symbol *s = symtab->find(newName))
742       if (!s->isUndefined())
743         return s;
744 
745     return nullptr;
746   };
747 
748   // This loop enumerates all strings of Levenshtein distance 1 as typo
749   // correction candidates and suggests the one that exists as a non-undefined
750   // symbol.
751   StringRef name = sym.getName();
752   for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
753     // Insert a character before name[i].
754     std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
755     for (char c = '0'; c <= 'z'; ++c) {
756       newName[i] = c;
757       if (const Symbol *s = suggest(newName))
758         return s;
759     }
760     if (i == e)
761       break;
762 
763     // Substitute name[i].
764     newName = name;
765     for (char c = '0'; c <= 'z'; ++c) {
766       newName[i] = c;
767       if (const Symbol *s = suggest(newName))
768         return s;
769     }
770 
771     // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
772     // common.
773     if (i + 1 < e) {
774       newName[i] = name[i + 1];
775       newName[i + 1] = name[i];
776       if (const Symbol *s = suggest(newName))
777         return s;
778     }
779 
780     // Delete name[i].
781     newName = (name.substr(0, i) + name.substr(i + 1)).str();
782     if (const Symbol *s = suggest(newName))
783       return s;
784   }
785 
786   // Case mismatch, e.g. Foo vs FOO.
787   for (auto &it : map)
788     if (name.equals_lower(it.first))
789       return it.second;
790   for (Symbol *sym : symtab->symbols())
791     if (!sym->isUndefined() && name.equals_lower(sym->getName()))
792       return sym;
793 
794   // The reference may be a mangled name while the definition is not. Suggest a
795   // missing extern "C".
796   if (name.startswith("_Z")) {
797     std::string buf = name.str();
798     llvm::ItaniumPartialDemangler d;
799     if (!d.partialDemangle(buf.c_str()))
800       if (char *buf = d.getFunctionName(nullptr, nullptr)) {
801         const Symbol *s = suggest(buf);
802         free(buf);
803         if (s) {
804           pre_hint = ": extern \"C\" ";
805           return s;
806         }
807       }
808   } else {
809     const Symbol *s = nullptr;
810     for (auto &it : map)
811       if (canSuggestExternCForCXX(name, it.first)) {
812         s = it.second;
813         break;
814       }
815     if (!s)
816       for (Symbol *sym : symtab->symbols())
817         if (canSuggestExternCForCXX(name, sym->getName())) {
818           s = sym;
819           break;
820         }
821     if (s) {
822       pre_hint = " to declare ";
823       post_hint = " as extern \"C\"?";
824       return s;
825     }
826   }
827 
828   return nullptr;
829 }
830 
831 template <class ELFT>
832 static void reportUndefinedSymbol(const UndefinedDiag &undef,
833                                   bool correctSpelling) {
834   Symbol &sym = *undef.sym;
835 
836   auto visibility = [&]() -> std::string {
837     switch (sym.visibility) {
838     case STV_INTERNAL:
839       return "internal ";
840     case STV_HIDDEN:
841       return "hidden ";
842     case STV_PROTECTED:
843       return "protected ";
844     default:
845       return "";
846     }
847   };
848 
849   std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
850   if (msg.empty())
851     msg = "undefined " + visibility() + "symbol: " + toString(sym);
852 
853   const size_t maxUndefReferences = 10;
854   size_t i = 0;
855   for (UndefinedDiag::Loc l : undef.locs) {
856     if (i >= maxUndefReferences)
857       break;
858     InputSectionBase &sec = *l.sec;
859     uint64_t offset = l.offset;
860 
861     msg += "\n>>> referenced by ";
862     std::string src = sec.getSrcMsg(sym, offset);
863     if (!src.empty())
864       msg += src + "\n>>>               ";
865     msg += sec.getObjMsg(offset);
866     i++;
867   }
868 
869   if (i < undef.locs.size())
870     msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
871                .str();
872 
873   if (correctSpelling) {
874     std::string pre_hint = ": ", post_hint;
875     if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
876             cast<Undefined>(sym), pre_hint, post_hint)) {
877       msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
878       if (corrected->file)
879         msg += "\n>>> defined in: " + toString(corrected->file);
880     }
881   }
882 
883   if (sym.getName().startswith("_ZTV"))
884     msg += "\nthe vtable symbol may be undefined because the class is missing "
885            "its key function (see https://lld.llvm.org/missingkeyfunction)";
886 
887   if (undef.isWarning)
888     warn(msg);
889   else
890     error(msg);
891 }
892 
893 template <class ELFT> void reportUndefinedSymbols() {
894   // Find the first "undefined symbol" diagnostic for each diagnostic, and
895   // collect all "referenced from" lines at the first diagnostic.
896   DenseMap<Symbol *, UndefinedDiag *> firstRef;
897   for (UndefinedDiag &undef : undefs) {
898     assert(undef.locs.size() == 1);
899     if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
900       canon->locs.push_back(undef.locs[0]);
901       undef.locs.clear();
902     } else
903       firstRef[undef.sym] = &undef;
904   }
905 
906   // Enable spell corrector for the first 2 diagnostics.
907   for (auto it : enumerate(undefs))
908     if (!it.value().locs.empty())
909       reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
910   undefs.clear();
911 }
912 
913 // Report an undefined symbol if necessary.
914 // Returns true if the undefined symbol will produce an error message.
915 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
916                                  uint64_t offset) {
917   if (!sym.isUndefined() || sym.isWeak())
918     return false;
919 
920   bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
921   if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
922     return false;
923 
924   // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
925   // which references a switch table in a discarded .rodata/.text section. The
926   // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
927   // spec says references from outside the group to a STB_LOCAL symbol are not
928   // allowed. Work around the bug.
929   //
930   // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
931   // because .LC0-.LTOC is not representable if the two labels are in different
932   // .got2
933   if (cast<Undefined>(sym).discardedSecIdx != 0 &&
934       (sec.name == ".got2" || sec.name == ".toc"))
935     return false;
936 
937   bool isWarning =
938       (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
939       config->noinhibitExec;
940   undefs.push_back({&sym, {{&sec, offset}}, isWarning});
941   return !isWarning;
942 }
943 
944 // MIPS N32 ABI treats series of successive relocations with the same offset
945 // as a single relocation. The similar approach used by N64 ABI, but this ABI
946 // packs all relocations into the single relocation record. Here we emulate
947 // this for the N32 ABI. Iterate over relocation with the same offset and put
948 // theirs types into the single bit-set.
949 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
950   RelType type = 0;
951   uint64_t offset = rel->r_offset;
952 
953   int n = 0;
954   while (rel != end && rel->r_offset == offset)
955     type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
956   return type;
957 }
958 
959 // .eh_frame sections are mergeable input sections, so their input
960 // offsets are not linearly mapped to output section. For each input
961 // offset, we need to find a section piece containing the offset and
962 // add the piece's base address to the input offset to compute the
963 // output offset. That isn't cheap.
964 //
965 // This class is to speed up the offset computation. When we process
966 // relocations, we access offsets in the monotonically increasing
967 // order. So we can optimize for that access pattern.
968 //
969 // For sections other than .eh_frame, this class doesn't do anything.
970 namespace {
971 class OffsetGetter {
972 public:
973   explicit OffsetGetter(InputSectionBase &sec) {
974     if (auto *eh = dyn_cast<EhInputSection>(&sec))
975       pieces = eh->pieces;
976   }
977 
978   // Translates offsets in input sections to offsets in output sections.
979   // Given offset must increase monotonically. We assume that Piece is
980   // sorted by inputOff.
981   uint64_t get(uint64_t off) {
982     if (pieces.empty())
983       return off;
984 
985     while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
986       ++i;
987     if (i == pieces.size())
988       fatal(".eh_frame: relocation is not in any piece");
989 
990     // Pieces must be contiguous, so there must be no holes in between.
991     assert(pieces[i].inputOff <= off && "Relocation not in any piece");
992 
993     // Offset -1 means that the piece is dead (i.e. garbage collected).
994     if (pieces[i].outputOff == -1)
995       return -1;
996     return pieces[i].outputOff + off - pieces[i].inputOff;
997   }
998 
999 private:
1000   ArrayRef<EhSectionPiece> pieces;
1001   size_t i = 0;
1002 };
1003 } // namespace
1004 
1005 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1006                              Symbol *sym, int64_t addend, RelExpr expr,
1007                              RelType type) {
1008   Partition &part = isec->getPartition();
1009 
1010   // Add a relative relocation. If relrDyn section is enabled, and the
1011   // relocation offset is guaranteed to be even, add the relocation to
1012   // the relrDyn section, otherwise add it to the relaDyn section.
1013   // relrDyn sections don't support odd offsets. Also, relrDyn sections
1014   // don't store the addend values, so we must write it to the relocated
1015   // address.
1016   if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1017     isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1018     part.relrDyn->relocs.push_back({isec, offsetInSec});
1019     return;
1020   }
1021   part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
1022                          expr, type);
1023 }
1024 
1025 template <class PltSection, class GotPltSection>
1026 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1027                         RelocationBaseSection *rel, RelType type, Symbol &sym) {
1028   plt->addEntry(sym);
1029   gotPlt->addEntry(sym);
1030   rel->addReloc(
1031       {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
1032 }
1033 
1034 static void addGotEntry(Symbol &sym) {
1035   in.got->addEntry(sym);
1036 
1037   RelExpr expr = sym.isTls() ? R_TLS : R_ABS;
1038   uint64_t off = sym.getGotOffset();
1039 
1040   // If a GOT slot value can be calculated at link-time, which is now,
1041   // we can just fill that out.
1042   //
1043   // (We don't actually write a value to a GOT slot right now, but we
1044   // add a static relocation to a Relocations vector so that
1045   // InputSection::relocate will do the work for us. We may be able
1046   // to just write a value now, but it is a TODO.)
1047   bool isLinkTimeConstant =
1048       !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1049   if (isLinkTimeConstant) {
1050     in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1051     return;
1052   }
1053 
1054   // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1055   // the GOT slot will be fixed at load-time.
1056   if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
1057     addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
1058     return;
1059   }
1060   mainPart->relaDyn->addReloc(
1061       sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
1062       sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
1063 }
1064 
1065 // Return true if we can define a symbol in the executable that
1066 // contains the value/function of a symbol defined in a shared
1067 // library.
1068 static bool canDefineSymbolInExecutable(Symbol &sym) {
1069   // If the symbol has default visibility the symbol defined in the
1070   // executable will preempt it.
1071   // Note that we want the visibility of the shared symbol itself, not
1072   // the visibility of the symbol in the output file we are producing. That is
1073   // why we use Sym.stOther.
1074   if ((sym.stOther & 0x3) == STV_DEFAULT)
1075     return true;
1076 
1077   // If we are allowed to break address equality of functions, defining
1078   // a plt entry will allow the program to call the function in the
1079   // .so, but the .so and the executable will no agree on the address
1080   // of the function. Similar logic for objects.
1081   return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1082           (sym.isObject() && config->ignoreDataAddressEquality));
1083 }
1084 
1085 // The reason we have to do this early scan is as follows
1086 // * To mmap the output file, we need to know the size
1087 // * For that, we need to know how many dynamic relocs we will have.
1088 // It might be possible to avoid this by outputting the file with write:
1089 // * Write the allocated output sections, computing addresses.
1090 // * Apply relocations, recording which ones require a dynamic reloc.
1091 // * Write the dynamic relocations.
1092 // * Write the rest of the file.
1093 // This would have some drawbacks. For example, we would only know if .rela.dyn
1094 // is needed after applying relocations. If it is, it will go after rw and rx
1095 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1096 // complicates things for the dynamic linker and means we would have to reserve
1097 // space for the extra PT_LOAD even if we end up not using it.
1098 template <class ELFT, class RelTy>
1099 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1100                             uint64_t offset, Symbol &sym, const RelTy &rel,
1101                             int64_t addend) {
1102   // If the relocation is known to be a link-time constant, we know no dynamic
1103   // relocation will be created, pass the control to relocateAlloc() or
1104   // relocateNonAlloc() to resolve it.
1105   //
1106   // The behavior of an undefined weak reference is implementation defined. If
1107   // the relocation is to a weak undef, and we are producing an executable, let
1108   // relocate{,Non}Alloc() resolve it.
1109   if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1110       (!config->shared && sym.isUndefWeak())) {
1111     sec.relocations.push_back({expr, type, offset, addend, &sym});
1112     return;
1113   }
1114 
1115   bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1116   if (canWrite) {
1117     RelType rel = target->getDynRel(type);
1118     if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1119       addRelativeReloc(&sec, offset, &sym, addend, expr, type);
1120       return;
1121     } else if (rel != 0) {
1122       if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1123         rel = target->relativeRel;
1124       sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
1125                                            R_ADDEND, type);
1126 
1127       // MIPS ABI turns using of GOT and dynamic relocations inside out.
1128       // While regular ABI uses dynamic relocations to fill up GOT entries
1129       // MIPS ABI requires dynamic linker to fills up GOT entries using
1130       // specially sorted dynamic symbol table. This affects even dynamic
1131       // relocations against symbols which do not require GOT entries
1132       // creation explicitly, i.e. do not have any GOT-relocations. So if
1133       // a preemptible symbol has a dynamic relocation we anyway have
1134       // to create a GOT entry for it.
1135       // If a non-preemptible symbol has a dynamic relocation against it,
1136       // dynamic linker takes it st_value, adds offset and writes down
1137       // result of the dynamic relocation. In case of preemptible symbol
1138       // dynamic linker performs symbol resolution, writes the symbol value
1139       // to the GOT entry and reads the GOT entry when it needs to perform
1140       // a dynamic relocation.
1141       // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1142       if (config->emachine == EM_MIPS)
1143         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1144       return;
1145     }
1146   }
1147 
1148   // When producing an executable, we can perform copy relocations (for
1149   // STT_OBJECT) and canonical PLT (for STT_FUNC).
1150   if (!config->shared) {
1151     if (!canDefineSymbolInExecutable(sym)) {
1152       errorOrWarn("cannot preempt symbol: " + toString(sym) +
1153                   getLocation(sec, sym, offset));
1154       return;
1155     }
1156 
1157     if (sym.isObject()) {
1158       // Produce a copy relocation.
1159       if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1160         if (!config->zCopyreloc)
1161           error("unresolvable relocation " + toString(type) +
1162                 " against symbol '" + toString(*ss) +
1163                 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1164                 getLocation(sec, sym, offset));
1165         addCopyRelSymbol<ELFT>(*ss);
1166       }
1167       sec.relocations.push_back({expr, type, offset, addend, &sym});
1168       return;
1169     }
1170 
1171     // This handles a non PIC program call to function in a shared library. In
1172     // an ideal world, we could just report an error saying the relocation can
1173     // overflow at runtime. In the real world with glibc, crt1.o has a
1174     // R_X86_64_PC32 pointing to libc.so.
1175     //
1176     // The general idea on how to handle such cases is to create a PLT entry and
1177     // use that as the function value.
1178     //
1179     // For the static linking part, we just return a plt expr and everything
1180     // else will use the PLT entry as the address.
1181     //
1182     // The remaining problem is making sure pointer equality still works. We
1183     // need the help of the dynamic linker for that. We let it know that we have
1184     // a direct reference to a so symbol by creating an undefined symbol with a
1185     // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1186     // the value of the symbol we created. This is true even for got entries, so
1187     // pointer equality is maintained. To avoid an infinite loop, the only entry
1188     // that points to the real function is a dedicated got entry used by the
1189     // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1190     // R_386_JMP_SLOT, etc).
1191 
1192     // For position independent executable on i386, the plt entry requires ebx
1193     // to be set. This causes two problems:
1194     // * If some code has a direct reference to a function, it was probably
1195     //   compiled without -fPIE/-fPIC and doesn't maintain ebx.
1196     // * If a library definition gets preempted to the executable, it will have
1197     //   the wrong ebx value.
1198     if (sym.isFunc()) {
1199       if (config->pie && config->emachine == EM_386)
1200         errorOrWarn("symbol '" + toString(sym) +
1201                     "' cannot be preempted; recompile with -fPIE" +
1202                     getLocation(sec, sym, offset));
1203       if (!sym.isInPlt())
1204         addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1205       if (!sym.isDefined()) {
1206         replaceWithDefined(
1207             sym, in.plt,
1208             target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1209         if (config->emachine == EM_PPC) {
1210           // PPC32 canonical PLT entries are at the beginning of .glink
1211           cast<Defined>(sym).value = in.plt->headerSize;
1212           in.plt->headerSize += 16;
1213           cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1214         }
1215       }
1216       sym.needsPltAddr = true;
1217       sec.relocations.push_back({expr, type, offset, addend, &sym});
1218       return;
1219     }
1220   }
1221 
1222   if (config->isPic) {
1223     if (!canWrite && !isRelExpr(expr))
1224       errorOrWarn(
1225           "can't create dynamic relocation " + toString(type) + " against " +
1226           (sym.getName().empty() ? "local symbol"
1227                                  : "symbol: " + toString(sym)) +
1228           " in readonly segment; recompile object files with -fPIC "
1229           "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1230           getLocation(sec, sym, offset));
1231     else
1232       errorOrWarn(
1233           "relocation " + toString(type) + " cannot be used against " +
1234           (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1235           "; recompile with -fPIC" + getLocation(sec, sym, offset));
1236     return;
1237   }
1238 
1239   errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1240               getLocation(sec, sym, offset));
1241 }
1242 
1243 template <class ELFT, class RelTy>
1244 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1245                       RelTy *end) {
1246   const RelTy &rel = *i;
1247   uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1248   Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1249   RelType type;
1250 
1251   // Deal with MIPS oddity.
1252   if (config->mipsN32Abi) {
1253     type = getMipsN32RelType(i, end);
1254   } else {
1255     type = rel.getType(config->isMips64EL);
1256     ++i;
1257   }
1258 
1259   // Get an offset in an output section this relocation is applied to.
1260   uint64_t offset = getOffset.get(rel.r_offset);
1261   if (offset == uint64_t(-1))
1262     return;
1263 
1264   // Error if the target symbol is undefined. Symbol index 0 may be used by
1265   // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1266   if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1267     return;
1268 
1269   const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1270   RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1271 
1272   // Ignore R_*_NONE and other marker relocations.
1273   if (expr == R_NONE)
1274     return;
1275 
1276   // We can separate the small code model relocations into 2 categories:
1277   // 1) Those that access the compiler generated .toc sections.
1278   // 2) Those that access the linker allocated got entries.
1279   // lld allocates got entries to symbols on demand. Since we don't try to sort
1280   // the got entries in any way, we don't have to track which objects have
1281   // got-based small code model relocs. The .toc sections get placed after the
1282   // end of the linker allocated .got section and we do sort those so sections
1283   // addressed with small code model relocations come first.
1284   if (config->emachine == EM_PPC64 && isPPC64SmallCodeModelTocReloc(type))
1285     sec.file->ppc64SmallCodeModelTocRelocs = true;
1286 
1287   if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
1288     warn("using ifunc symbols when text relocations are allowed may produce "
1289          "a binary that will segfault, if the object file is linked with "
1290          "old version of glibc (glibc 2.28 and earlier). If this applies to "
1291          "you, consider recompiling the object files without -fPIC and "
1292          "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
1293          "turn off this warning." +
1294          getLocation(sec, sym, offset));
1295   }
1296 
1297   // Read an addend.
1298   int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1299 
1300   // Relax relocations.
1301   //
1302   // If we know that a PLT entry will be resolved within the same ELF module, we
1303   // can skip PLT access and directly jump to the destination function. For
1304   // example, if we are linking a main executable, all dynamic symbols that can
1305   // be resolved within the executable will actually be resolved that way at
1306   // runtime, because the main executable is always at the beginning of a search
1307   // list. We can leverage that fact.
1308   if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1309     if (expr == R_GOT_PC && !isAbsoluteValue(sym)) {
1310       expr = target->adjustRelaxExpr(type, relocatedAddr, expr);
1311     } else {
1312       // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1313       // stub type. It should be ignored if optimized to R_PC.
1314       if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1315         addend &= ~0x8000;
1316       expr = fromPlt(expr);
1317     }
1318   }
1319 
1320   // If the relocation does not emit a GOT or GOTPLT entry but its computation
1321   // uses their addresses, we need GOT or GOTPLT to be created.
1322   //
1323   // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1324   if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1325     in.gotPlt->hasGotPltOffRel = true;
1326   } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1327                  expr)) {
1328     in.got->hasGotOffRel = true;
1329   }
1330 
1331   // Process some TLS relocations, including relaxing TLS relocations.
1332   // Note that this function does not handle all TLS relocations.
1333   if (unsigned processed =
1334           handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) {
1335     i += (processed - 1);
1336     return;
1337   }
1338 
1339   // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1340   // direct relocation on through.
1341   if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1342     sym.exportDynamic = true;
1343     mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
1344     return;
1345   }
1346 
1347   // Non-preemptible ifuncs require special handling. First, handle the usual
1348   // case where the symbol isn't one of these.
1349   if (!sym.isGnuIFunc() || sym.isPreemptible) {
1350     // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1351     if (needsPlt(expr) && !sym.isInPlt())
1352       addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1353 
1354     // Create a GOT slot if a relocation needs GOT.
1355     if (needsGot(expr)) {
1356       if (config->emachine == EM_MIPS) {
1357         // MIPS ABI has special rules to process GOT entries and doesn't
1358         // require relocation entries for them. A special case is TLS
1359         // relocations. In that case dynamic loader applies dynamic
1360         // relocations to initialize TLS GOT entries.
1361         // See "Global Offset Table" in Chapter 5 in the following document
1362         // for detailed description:
1363         // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1364         in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1365       } else if (!sym.isInGot()) {
1366         addGotEntry(sym);
1367       }
1368     }
1369   } else {
1370     // Handle a reference to a non-preemptible ifunc. These are special in a
1371     // few ways:
1372     //
1373     // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1374     //   a fixed value. But assuming that all references to the ifunc are
1375     //   GOT-generating or PLT-generating, the handling of an ifunc is
1376     //   relatively straightforward. We create a PLT entry in Iplt, which is
1377     //   usually at the end of .plt, which makes an indirect call using a
1378     //   matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1379     //   The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1380     //   which is usually at the end of .rela.plt. Unlike most relocations in
1381     //   .rela.plt, which may be evaluated lazily without -z now, dynamic
1382     //   loaders evaluate IRELATIVE relocs eagerly, which means that for
1383     //   IRELATIVE relocs only, GOT-generating relocations can point directly to
1384     //   .got.plt without requiring a separate GOT entry.
1385     //
1386     // - Despite the fact that an ifunc does not have a fixed value, compilers
1387     //   that are not passed -fPIC will assume that they do, and will emit
1388     //   direct (non-GOT-generating, non-PLT-generating) relocations to the
1389     //   symbol. This means that if a direct relocation to the symbol is
1390     //   seen, the linker must set a value for the symbol, and this value must
1391     //   be consistent no matter what type of reference is made to the symbol.
1392     //   This can be done by creating a PLT entry for the symbol in the way
1393     //   described above and making it canonical, that is, making all references
1394     //   point to the PLT entry instead of the resolver. In lld we also store
1395     //   the address of the PLT entry in the dynamic symbol table, which means
1396     //   that the symbol will also have the same value in other modules.
1397     //   Because the value loaded from the GOT needs to be consistent with
1398     //   the value computed using a direct relocation, a non-preemptible ifunc
1399     //   may end up with two GOT entries, one in .got.plt that points to the
1400     //   address returned by the resolver and is used only by the PLT entry,
1401     //   and another in .got that points to the PLT entry and is used by
1402     //   GOT-generating relocations.
1403     //
1404     // - The fact that these symbols do not have a fixed value makes them an
1405     //   exception to the general rule that a statically linked executable does
1406     //   not require any form of dynamic relocation. To handle these relocations
1407     //   correctly, the IRELATIVE relocations are stored in an array which a
1408     //   statically linked executable's startup code must enumerate using the
1409     //   linker-defined symbols __rela?_iplt_{start,end}.
1410     if (!sym.isInPlt()) {
1411       // Create PLT and GOTPLT slots for the symbol.
1412       sym.isInIplt = true;
1413 
1414       // Create a copy of the symbol to use as the target of the IRELATIVE
1415       // relocation in the igotPlt. This is in case we make the PLT canonical
1416       // later, which would overwrite the original symbol.
1417       //
1418       // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1419       // that's really needed to create the IRELATIVE is the section and value,
1420       // so ideally we should just need to copy those.
1421       auto *directSym = make<Defined>(cast<Defined>(sym));
1422       addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1423                   *directSym);
1424       sym.pltIndex = directSym->pltIndex;
1425     }
1426     if (needsGot(expr)) {
1427       // Redirect GOT accesses to point to the Igot.
1428       //
1429       // This field is also used to keep track of whether we ever needed a GOT
1430       // entry. If we did and we make the PLT canonical later, we'll need to
1431       // create a GOT entry pointing to the PLT entry for Sym.
1432       sym.gotInIgot = true;
1433     } else if (!needsPlt(expr)) {
1434       // Make the ifunc's PLT entry canonical by changing the value of its
1435       // symbol to redirect all references to point to it.
1436       auto &d = cast<Defined>(sym);
1437       d.section = in.iplt;
1438       d.value = sym.pltIndex * target->ipltEntrySize;
1439       d.size = 0;
1440       // It's important to set the symbol type here so that dynamic loaders
1441       // don't try to call the PLT as if it were an ifunc resolver.
1442       d.type = STT_FUNC;
1443 
1444       if (sym.gotInIgot) {
1445         // We previously encountered a GOT generating reference that we
1446         // redirected to the Igot. Now that the PLT entry is canonical we must
1447         // clear the redirection to the Igot and add a GOT entry. As we've
1448         // changed the symbol type to STT_FUNC future GOT generating references
1449         // will naturally use this GOT entry.
1450         //
1451         // We don't need to worry about creating a MIPS GOT here because ifuncs
1452         // aren't a thing on MIPS.
1453         sym.gotInIgot = false;
1454         addGotEntry(sym);
1455       }
1456     }
1457   }
1458 
1459   processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1460 }
1461 
1462 template <class ELFT, class RelTy>
1463 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1464   OffsetGetter getOffset(sec);
1465 
1466   // Not all relocations end up in Sec.Relocations, but a lot do.
1467   sec.relocations.reserve(rels.size());
1468 
1469   for (auto i = rels.begin(), end = rels.end(); i != end;)
1470     scanReloc<ELFT>(sec, getOffset, i, end);
1471 
1472   // Sort relocations by offset for more efficient searching for
1473   // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1474   if (config->emachine == EM_RISCV ||
1475       (config->emachine == EM_PPC64 && sec.name == ".toc"))
1476     llvm::stable_sort(sec.relocations,
1477                       [](const Relocation &lhs, const Relocation &rhs) {
1478                         return lhs.offset < rhs.offset;
1479                       });
1480 }
1481 
1482 template <class ELFT> void scanRelocations(InputSectionBase &s) {
1483   if (s.areRelocsRela)
1484     scanRelocs<ELFT>(s, s.relas<ELFT>());
1485   else
1486     scanRelocs<ELFT>(s, s.rels<ELFT>());
1487 }
1488 
1489 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1490   // std::merge requires a strict weak ordering.
1491   if (a->outSecOff < b->outSecOff)
1492     return true;
1493 
1494   if (a->outSecOff == b->outSecOff) {
1495     auto *ta = dyn_cast<ThunkSection>(a);
1496     auto *tb = dyn_cast<ThunkSection>(b);
1497 
1498     // Check if Thunk is immediately before any specific Target
1499     // InputSection for example Mips LA25 Thunks.
1500     if (ta && ta->getTargetInputSection() == b)
1501       return true;
1502 
1503     // Place Thunk Sections without specific targets before
1504     // non-Thunk Sections.
1505     if (ta && !tb && !ta->getTargetInputSection())
1506       return true;
1507   }
1508 
1509   return false;
1510 }
1511 
1512 // Call Fn on every executable InputSection accessed via the linker script
1513 // InputSectionDescription::Sections.
1514 static void forEachInputSectionDescription(
1515     ArrayRef<OutputSection *> outputSections,
1516     llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1517   for (OutputSection *os : outputSections) {
1518     if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1519       continue;
1520     for (BaseCommand *bc : os->sectionCommands)
1521       if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1522         fn(os, isd);
1523   }
1524 }
1525 
1526 // Thunk Implementation
1527 //
1528 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1529 // of code that the linker inserts inbetween a caller and a callee. The thunks
1530 // are added at link time rather than compile time as the decision on whether
1531 // a thunk is needed, such as the caller and callee being out of range, can only
1532 // be made at link time.
1533 //
1534 // It is straightforward to tell given the current state of the program when a
1535 // thunk is needed for a particular call. The more difficult part is that
1536 // the thunk needs to be placed in the program such that the caller can reach
1537 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1538 // the program alters addresses, which can mean more thunks etc.
1539 //
1540 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1541 // The decision to have a ThunkSection act as a container means that we can
1542 // more easily handle the most common case of a single block of contiguous
1543 // Thunks by inserting just a single ThunkSection.
1544 //
1545 // The implementation of Thunks in lld is split across these areas
1546 // Relocations.cpp : Framework for creating and placing thunks
1547 // Thunks.cpp : The code generated for each supported thunk
1548 // Target.cpp : Target specific hooks that the framework uses to decide when
1549 //              a thunk is used
1550 // Synthetic.cpp : Implementation of ThunkSection
1551 // Writer.cpp : Iteratively call framework until no more Thunks added
1552 //
1553 // Thunk placement requirements:
1554 // Mips LA25 thunks. These must be placed immediately before the callee section
1555 // We can assume that the caller is in range of the Thunk. These are modelled
1556 // by Thunks that return the section they must precede with
1557 // getTargetInputSection().
1558 //
1559 // ARM interworking and range extension thunks. These thunks must be placed
1560 // within range of the caller. All implemented ARM thunks can always reach the
1561 // callee as they use an indirect jump via a register that has no range
1562 // restrictions.
1563 //
1564 // Thunk placement algorithm:
1565 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1566 // getTargetInputSection().
1567 //
1568 // For thunks that must be placed within range of the caller there are many
1569 // possible choices given that the maximum range from the caller is usually
1570 // much larger than the average InputSection size. Desirable properties include:
1571 // - Maximize reuse of thunks by multiple callers
1572 // - Minimize number of ThunkSections to simplify insertion
1573 // - Handle impact of already added Thunks on addresses
1574 // - Simple to understand and implement
1575 //
1576 // In lld for the first pass, we pre-create one or more ThunkSections per
1577 // InputSectionDescription at Target specific intervals. A ThunkSection is
1578 // placed so that the estimated end of the ThunkSection is within range of the
1579 // start of the InputSectionDescription or the previous ThunkSection. For
1580 // example:
1581 // InputSectionDescription
1582 // Section 0
1583 // ...
1584 // Section N
1585 // ThunkSection 0
1586 // Section N + 1
1587 // ...
1588 // Section N + K
1589 // Thunk Section 1
1590 //
1591 // The intention is that we can add a Thunk to a ThunkSection that is well
1592 // spaced enough to service a number of callers without having to do a lot
1593 // of work. An important principle is that it is not an error if a Thunk cannot
1594 // be placed in a pre-created ThunkSection; when this happens we create a new
1595 // ThunkSection placed next to the caller. This allows us to handle the vast
1596 // majority of thunks simply, but also handle rare cases where the branch range
1597 // is smaller than the target specific spacing.
1598 //
1599 // The algorithm is expected to create all the thunks that are needed in a
1600 // single pass, with a small number of programs needing a second pass due to
1601 // the insertion of thunks in the first pass increasing the offset between
1602 // callers and callees that were only just in range.
1603 //
1604 // A consequence of allowing new ThunkSections to be created outside of the
1605 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1606 // range in pass K, are out of range in some pass > K due to the insertion of
1607 // more Thunks in between the caller and callee. When this happens we retarget
1608 // the relocation back to the original target and create another Thunk.
1609 
1610 // Remove ThunkSections that are empty, this should only be the initial set
1611 // precreated on pass 0.
1612 
1613 // Insert the Thunks for OutputSection OS into their designated place
1614 // in the Sections vector, and recalculate the InputSection output section
1615 // offsets.
1616 // This may invalidate any output section offsets stored outside of InputSection
1617 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1618   forEachInputSectionDescription(
1619       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1620         if (isd->thunkSections.empty())
1621           return;
1622 
1623         // Remove any zero sized precreated Thunks.
1624         llvm::erase_if(isd->thunkSections,
1625                        [](const std::pair<ThunkSection *, uint32_t> &ts) {
1626                          return ts.first->getSize() == 0;
1627                        });
1628 
1629         // ISD->ThunkSections contains all created ThunkSections, including
1630         // those inserted in previous passes. Extract the Thunks created this
1631         // pass and order them in ascending outSecOff.
1632         std::vector<ThunkSection *> newThunks;
1633         for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1634           if (ts.second == pass)
1635             newThunks.push_back(ts.first);
1636         llvm::stable_sort(newThunks,
1637                           [](const ThunkSection *a, const ThunkSection *b) {
1638                             return a->outSecOff < b->outSecOff;
1639                           });
1640 
1641         // Merge sorted vectors of Thunks and InputSections by outSecOff
1642         std::vector<InputSection *> tmp;
1643         tmp.reserve(isd->sections.size() + newThunks.size());
1644 
1645         std::merge(isd->sections.begin(), isd->sections.end(),
1646                    newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1647                    mergeCmp);
1648 
1649         isd->sections = std::move(tmp);
1650       });
1651 }
1652 
1653 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1654 // is in range of Src. An ISD maps to a range of InputSections described by a
1655 // linker script section pattern such as { .text .text.* }.
1656 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
1657                                            InputSectionDescription *isd,
1658                                            uint32_t type, uint64_t src) {
1659   for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1660     ThunkSection *ts = tp.first;
1661     uint64_t tsBase = os->addr + ts->outSecOff;
1662     uint64_t tsLimit = tsBase + ts->getSize();
1663     if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
1664       return ts;
1665   }
1666 
1667   // No suitable ThunkSection exists. This can happen when there is a branch
1668   // with lower range than the ThunkSection spacing or when there are too
1669   // many Thunks. Create a new ThunkSection as close to the InputSection as
1670   // possible. Error if InputSection is so large we cannot place ThunkSection
1671   // anywhere in Range.
1672   uint64_t thunkSecOff = isec->outSecOff;
1673   if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
1674     thunkSecOff = isec->outSecOff + isec->getSize();
1675     if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
1676       fatal("InputSection too large for range extension thunk " +
1677             isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1678   }
1679   return addThunkSection(os, isd, thunkSecOff);
1680 }
1681 
1682 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1683 // precedes its Target.
1684 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1685   ThunkSection *ts = thunkedSections.lookup(isec);
1686   if (ts)
1687     return ts;
1688 
1689   // Find InputSectionRange within Target Output Section (TOS) that the
1690   // InputSection (IS) that we need to precede is in.
1691   OutputSection *tos = isec->getParent();
1692   for (BaseCommand *bc : tos->sectionCommands) {
1693     auto *isd = dyn_cast<InputSectionDescription>(bc);
1694     if (!isd || isd->sections.empty())
1695       continue;
1696 
1697     InputSection *first = isd->sections.front();
1698     InputSection *last = isd->sections.back();
1699 
1700     if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1701       continue;
1702 
1703     ts = addThunkSection(tos, isd, isec->outSecOff);
1704     thunkedSections[isec] = ts;
1705     return ts;
1706   }
1707 
1708   return nullptr;
1709 }
1710 
1711 // Create one or more ThunkSections per OS that can be used to place Thunks.
1712 // We attempt to place the ThunkSections using the following desirable
1713 // properties:
1714 // - Within range of the maximum number of callers
1715 // - Minimise the number of ThunkSections
1716 //
1717 // We follow a simple but conservative heuristic to place ThunkSections at
1718 // offsets that are multiples of a Target specific branch range.
1719 // For an InputSectionDescription that is smaller than the range, a single
1720 // ThunkSection at the end of the range will do.
1721 //
1722 // For an InputSectionDescription that is more than twice the size of the range,
1723 // we place the last ThunkSection at range bytes from the end of the
1724 // InputSectionDescription in order to increase the likelihood that the
1725 // distance from a thunk to its target will be sufficiently small to
1726 // allow for the creation of a short thunk.
1727 void ThunkCreator::createInitialThunkSections(
1728     ArrayRef<OutputSection *> outputSections) {
1729   uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1730 
1731   forEachInputSectionDescription(
1732       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1733         if (isd->sections.empty())
1734           return;
1735 
1736         uint32_t isdBegin = isd->sections.front()->outSecOff;
1737         uint32_t isdEnd =
1738             isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1739         uint32_t lastThunkLowerBound = -1;
1740         if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1741           lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1742 
1743         uint32_t isecLimit;
1744         uint32_t prevIsecLimit = isdBegin;
1745         uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1746 
1747         for (const InputSection *isec : isd->sections) {
1748           isecLimit = isec->outSecOff + isec->getSize();
1749           if (isecLimit > thunkUpperBound) {
1750             addThunkSection(os, isd, prevIsecLimit);
1751             thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1752           }
1753           if (isecLimit > lastThunkLowerBound)
1754             break;
1755           prevIsecLimit = isecLimit;
1756         }
1757         addThunkSection(os, isd, isecLimit);
1758       });
1759 }
1760 
1761 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1762                                             InputSectionDescription *isd,
1763                                             uint64_t off) {
1764   auto *ts = make<ThunkSection>(os, off);
1765   ts->partition = os->partition;
1766   if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1767       !isd->sections.empty()) {
1768     // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1769     // thunks we disturb the base addresses of sections placed after the thunks
1770     // this makes patches we have generated redundant, and may cause us to
1771     // generate more patches as different instructions are now in sensitive
1772     // locations. When we generate more patches we may force more branches to
1773     // go out of range, causing more thunks to be generated. In pathological
1774     // cases this can cause the address dependent content pass not to converge.
1775     // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1776     // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1777     // which means that adding Thunks to the section does not invalidate
1778     // errata patches for following code.
1779     // Rounding up the size to 4KiB has consequences for code-size and can
1780     // trip up linker script defined assertions. For example the linux kernel
1781     // has an assertion that what LLD represents as an InputSectionDescription
1782     // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1783     // We use the heuristic of rounding up the size when both of the following
1784     // conditions are true:
1785     // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1786     //     accounts for the case where no single InputSectionDescription is
1787     //     larger than the OutputSection size. This is conservative but simple.
1788     // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1789     //     any assertion failures that an InputSectionDescription is < 4 KiB
1790     //     in size.
1791     uint64_t isdSize = isd->sections.back()->outSecOff +
1792                        isd->sections.back()->getSize() -
1793                        isd->sections.front()->outSecOff;
1794     if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1795       ts->roundUpSizeForErrata = true;
1796   }
1797   isd->thunkSections.push_back({ts, pass});
1798   return ts;
1799 }
1800 
1801 static bool isThunkSectionCompatible(InputSection *source,
1802                                      SectionBase *target) {
1803   // We can't reuse thunks in different loadable partitions because they might
1804   // not be loaded. But partition 1 (the main partition) will always be loaded.
1805   if (source->partition != target->partition)
1806     return target->partition == 1;
1807   return true;
1808 }
1809 
1810 static int64_t getPCBias(RelType type) {
1811   if (config->emachine != EM_ARM)
1812     return 0;
1813   switch (type) {
1814   case R_ARM_THM_JUMP19:
1815   case R_ARM_THM_JUMP24:
1816   case R_ARM_THM_CALL:
1817     return 4;
1818   default:
1819     return 8;
1820   }
1821 }
1822 
1823 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1824                                                 Relocation &rel, uint64_t src) {
1825   std::vector<Thunk *> *thunkVec = nullptr;
1826   int64_t addend = rel.addend + getPCBias(rel.type);
1827 
1828   // We use a ((section, offset), addend) pair to find the thunk position if
1829   // possible so that we create only one thunk for aliased symbols or ICFed
1830   // sections. There may be multiple relocations sharing the same (section,
1831   // offset + addend) pair. We may revert the relocation back to its original
1832   // non-Thunk target, so we cannot fold offset + addend.
1833   if (auto *d = dyn_cast<Defined>(rel.sym))
1834     if (!d->isInPlt() && d->section)
1835       thunkVec = &thunkedSymbolsBySectionAndAddend[{
1836           {d->section->repl, d->value}, addend}];
1837   if (!thunkVec)
1838     thunkVec = &thunkedSymbols[{rel.sym, addend}];
1839 
1840   // Check existing Thunks for Sym to see if they can be reused
1841   for (Thunk *t : *thunkVec)
1842     if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1843         t->isCompatibleWith(*isec, rel) &&
1844         target->inBranchRange(rel.type, src,
1845                               t->getThunkTargetSym()->getVA(rel.addend) +
1846                                   getPCBias(rel.type)))
1847       return std::make_pair(t, false);
1848 
1849   // No existing compatible Thunk in range, create a new one
1850   Thunk *t = addThunk(*isec, rel);
1851   thunkVec->push_back(t);
1852   return std::make_pair(t, true);
1853 }
1854 
1855 // Return true if the relocation target is an in range Thunk.
1856 // Return false if the relocation is not to a Thunk. If the relocation target
1857 // was originally to a Thunk, but is no longer in range we revert the
1858 // relocation back to its original non-Thunk target.
1859 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
1860   if (Thunk *t = thunks.lookup(rel.sym)) {
1861     if (target->inBranchRange(rel.type, src,
1862                               rel.sym->getVA(rel.addend) + getPCBias(rel.type)))
1863       return true;
1864     rel.sym = &t->destination;
1865     rel.addend = t->addend;
1866     if (rel.sym->isInPlt())
1867       rel.expr = toPlt(rel.expr);
1868   }
1869   return false;
1870 }
1871 
1872 // Process all relocations from the InputSections that have been assigned
1873 // to InputSectionDescriptions and redirect through Thunks if needed. The
1874 // function should be called iteratively until it returns false.
1875 //
1876 // PreConditions:
1877 // All InputSections that may need a Thunk are reachable from
1878 // OutputSectionCommands.
1879 //
1880 // All OutputSections have an address and all InputSections have an offset
1881 // within the OutputSection.
1882 //
1883 // The offsets between caller (relocation place) and callee
1884 // (relocation target) will not be modified outside of createThunks().
1885 //
1886 // PostConditions:
1887 // If return value is true then ThunkSections have been inserted into
1888 // OutputSections. All relocations that needed a Thunk based on the information
1889 // available to createThunks() on entry have been redirected to a Thunk. Note
1890 // that adding Thunks changes offsets between caller and callee so more Thunks
1891 // may be required.
1892 //
1893 // If return value is false then no more Thunks are needed, and createThunks has
1894 // made no changes. If the target requires range extension thunks, currently
1895 // ARM, then any future change in offset between caller and callee risks a
1896 // relocation out of range error.
1897 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
1898   bool addressesChanged = false;
1899 
1900   if (pass == 0 && target->getThunkSectionSpacing())
1901     createInitialThunkSections(outputSections);
1902 
1903   // Create all the Thunks and insert them into synthetic ThunkSections. The
1904   // ThunkSections are later inserted back into InputSectionDescriptions.
1905   // We separate the creation of ThunkSections from the insertion of the
1906   // ThunkSections as ThunkSections are not always inserted into the same
1907   // InputSectionDescription as the caller.
1908   forEachInputSectionDescription(
1909       outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1910         for (InputSection *isec : isd->sections)
1911           for (Relocation &rel : isec->relocations) {
1912             uint64_t src = isec->getVA(rel.offset);
1913 
1914             // If we are a relocation to an existing Thunk, check if it is
1915             // still in range. If not then Rel will be altered to point to its
1916             // original target so another Thunk can be generated.
1917             if (pass > 0 && normalizeExistingThunk(rel, src))
1918               continue;
1919 
1920             if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
1921                                     *rel.sym, rel.addend))
1922               continue;
1923 
1924             Thunk *t;
1925             bool isNew;
1926             std::tie(t, isNew) = getThunk(isec, rel, src);
1927 
1928             if (isNew) {
1929               // Find or create a ThunkSection for the new Thunk
1930               ThunkSection *ts;
1931               if (auto *tis = t->getTargetInputSection())
1932                 ts = getISThunkSec(tis);
1933               else
1934                 ts = getISDThunkSec(os, isec, isd, rel.type, src);
1935               ts->addThunk(t);
1936               thunks[t->getThunkTargetSym()] = t;
1937             }
1938 
1939             // Redirect relocation to Thunk, we never go via the PLT to a Thunk
1940             rel.sym = t->getThunkTargetSym();
1941             rel.expr = fromPlt(rel.expr);
1942 
1943             // On AArch64 and PPC, a jump/call relocation may be encoded as
1944             // STT_SECTION + non-zero addend, clear the addend after
1945             // redirection.
1946             if (config->emachine != EM_MIPS)
1947               rel.addend = -getPCBias(rel.type);
1948           }
1949 
1950         for (auto &p : isd->thunkSections)
1951           addressesChanged |= p.first->assignOffsets();
1952       });
1953 
1954   for (auto &p : thunkedSections)
1955     addressesChanged |= p.second->assignOffsets();
1956 
1957   // Merge all created synthetic ThunkSections back into OutputSection
1958   mergeThunks(outputSections);
1959   ++pass;
1960   return addressesChanged;
1961 }
1962 
1963 template void scanRelocations<ELF32LE>(InputSectionBase &);
1964 template void scanRelocations<ELF32BE>(InputSectionBase &);
1965 template void scanRelocations<ELF64LE>(InputSectionBase &);
1966 template void scanRelocations<ELF64BE>(InputSectionBase &);
1967 template void reportUndefinedSymbols<ELF32LE>();
1968 template void reportUndefinedSymbols<ELF32BE>();
1969 template void reportUndefinedSymbols<ELF64LE>();
1970 template void reportUndefinedSymbols<ELF64BE>();
1971 
1972 } // namespace elf
1973 } // namespace lld
1974