xref: /freebsd/contrib/llvm-project/lld/ELF/Symbols.h (revision 10ff414c)
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15 
16 #include "InputFiles.h"
17 #include "InputSection.h"
18 #include "lld/Common/LLVM.h"
19 #include "lld/Common/Strings.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/Object/Archive.h"
22 #include "llvm/Object/ELF.h"
23 
24 namespace lld {
25 // Returns a string representation for a symbol for diagnostics.
26 std::string toString(const elf::Symbol &);
27 
28 // There are two different ways to convert an Archive::Symbol to a string:
29 // One for Microsoft name mangling and one for Itanium name mangling.
30 // Call the functions toCOFFString and toELFString, not just toString.
31 std::string toELFString(const llvm::object::Archive::Symbol &);
32 
33 namespace elf {
34 class CommonSymbol;
35 class Defined;
36 class InputFile;
37 class LazyArchive;
38 class LazyObject;
39 class SharedSymbol;
40 class Symbol;
41 class Undefined;
42 
43 // This is a StringRef-like container that doesn't run strlen().
44 //
45 // ELF string tables contain a lot of null-terminated strings. Most of them
46 // are not necessary for the linker because they are names of local symbols,
47 // and the linker doesn't use local symbol names for name resolution. So, we
48 // use this class to represents strings read from string tables.
49 struct StringRefZ {
50   StringRefZ(const char *s) : data(s), size(-1) {}
51   StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
52 
53   const char *data;
54   const uint32_t size;
55 };
56 
57 // The base class for real symbol classes.
58 class Symbol {
59 public:
60   enum Kind {
61     PlaceholderKind,
62     DefinedKind,
63     CommonKind,
64     SharedKind,
65     UndefinedKind,
66     LazyArchiveKind,
67     LazyObjectKind,
68   };
69 
70   Kind kind() const { return static_cast<Kind>(symbolKind); }
71 
72   // The file from which this symbol was created.
73   InputFile *file;
74 
75 protected:
76   const char *nameData;
77   mutable uint32_t nameSize;
78 
79 public:
80   uint32_t dynsymIndex = 0;
81   uint32_t gotIndex = -1;
82   uint32_t pltIndex = -1;
83 
84   uint32_t globalDynIndex = -1;
85 
86   // This field is a index to the symbol's version definition.
87   uint32_t verdefIndex = -1;
88 
89   // Version definition index.
90   uint16_t versionId;
91 
92   // Symbol binding. This is not overwritten by replace() to track
93   // changes during resolution. In particular:
94   //  - An undefined weak is still weak when it resolves to a shared library.
95   //  - An undefined weak will not fetch archive members, but we have to
96   //    remember it is weak.
97   uint8_t binding;
98 
99   // The following fields have the same meaning as the ELF symbol attributes.
100   uint8_t type;    // symbol type
101   uint8_t stOther; // st_other field value
102 
103   uint8_t symbolKind;
104 
105   // Symbol visibility. This is the computed minimum visibility of all
106   // observed non-DSO symbols.
107   uint8_t visibility : 2;
108 
109   // True if the symbol was used for linking and thus need to be added to the
110   // output file's symbol table. This is true for all symbols except for
111   // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
112   // are unreferenced except by other bitcode objects.
113   uint8_t isUsedInRegularObj : 1;
114 
115   // Used by a Defined symbol with protected or default visibility, to record
116   // whether it is required to be exported into .dynsym. This is set when any of
117   // the following conditions hold:
118   //
119   // - If there is an interposable symbol from a DSO.
120   // - If -shared or --export-dynamic is specified, any symbol in an object
121   //   file/bitcode sets this property, unless suppressed by LTO
122   //   canBeOmittedFromSymbolTable().
123   uint8_t exportDynamic : 1;
124 
125   // True if the symbol is in the --dynamic-list file. A Defined symbol with
126   // protected or default visibility with this property is required to be
127   // exported into .dynsym.
128   uint8_t inDynamicList : 1;
129 
130   // False if LTO shouldn't inline whatever this symbol points to. If a symbol
131   // is overwritten after LTO, LTO shouldn't inline the symbol because it
132   // doesn't know the final contents of the symbol.
133   uint8_t canInline : 1;
134 
135   // Used to track if there has been at least one undefined reference to the
136   // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
137   // if the first undefined reference from a non-shared object is weak.
138   //
139   // This is also used to retain __wrap_foo when foo is referenced.
140   uint8_t referenced : 1;
141 
142   // True if this symbol is specified by --trace-symbol option.
143   uint8_t traced : 1;
144 
145   inline void replace(const Symbol &newSym);
146 
147   bool includeInDynsym() const;
148   uint8_t computeBinding() const;
149   bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
150 
151   bool isUndefined() const { return symbolKind == UndefinedKind; }
152   bool isCommon() const { return symbolKind == CommonKind; }
153   bool isDefined() const { return symbolKind == DefinedKind; }
154   bool isShared() const { return symbolKind == SharedKind; }
155   bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
156 
157   bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
158 
159   bool isLazy() const {
160     return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
161   }
162 
163   // True if this is an undefined weak symbol. This only works once
164   // all input files have been added.
165   bool isUndefWeak() const {
166     // See comment on lazy symbols for details.
167     return isWeak() && (isUndefined() || isLazy());
168   }
169 
170   StringRef getName() const {
171     if (nameSize == (uint32_t)-1)
172       nameSize = strlen(nameData);
173     return {nameData, nameSize};
174   }
175 
176   void setName(StringRef s) {
177     nameData = s.data();
178     nameSize = s.size();
179   }
180 
181   void parseSymbolVersion();
182 
183   // Get the NUL-terminated version suffix ("", "@...", or "@@...").
184   //
185   // For @@, the name has been truncated by insert(). For @, the name has been
186   // truncated by Symbol::parseSymbolVersion().
187   const char *getVersionSuffix() const {
188     (void)getName();
189     return nameData + nameSize;
190   }
191 
192   bool isInGot() const { return gotIndex != -1U; }
193   bool isInPlt() const { return pltIndex != -1U; }
194 
195   uint64_t getVA(int64_t addend = 0) const;
196 
197   uint64_t getGotOffset() const;
198   uint64_t getGotVA() const;
199   uint64_t getGotPltOffset() const;
200   uint64_t getGotPltVA() const;
201   uint64_t getPltVA() const;
202   uint64_t getSize() const;
203   OutputSection *getOutputSection() const;
204 
205   // The following two functions are used for symbol resolution.
206   //
207   // You are expected to call mergeProperties for all symbols in input
208   // files so that attributes that are attached to names rather than
209   // indivisual symbol (such as visibility) are merged together.
210   //
211   // Every time you read a new symbol from an input, you are supposed
212   // to call resolve() with the new symbol. That function replaces
213   // "this" object as a result of name resolution if the new symbol is
214   // more appropriate to be included in the output.
215   //
216   // For example, if "this" is an undefined symbol and a new symbol is
217   // a defined symbol, "this" is replaced with the new symbol.
218   void mergeProperties(const Symbol &other);
219   void resolve(const Symbol &other);
220 
221   // If this is a lazy symbol, fetch an input file and add the symbol
222   // in the file to the symbol table. Calling this function on
223   // non-lazy object causes a runtime error.
224   void fetch() const;
225 
226 private:
227   static bool isExportDynamic(Kind k, uint8_t visibility) {
228     if (k == SharedKind)
229       return visibility == llvm::ELF::STV_DEFAULT;
230     return config->shared || config->exportDynamic;
231   }
232 
233   void resolveUndefined(const Undefined &other);
234   void resolveCommon(const CommonSymbol &other);
235   void resolveDefined(const Defined &other);
236   template <class LazyT> void resolveLazy(const LazyT &other);
237   void resolveShared(const SharedSymbol &other);
238 
239   int compare(const Symbol *other) const;
240 
241   inline size_t getSymbolSize() const;
242 
243 protected:
244   Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
245          uint8_t stOther, uint8_t type)
246       : file(file), nameData(name.data), nameSize(name.size), binding(binding),
247         type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
248         isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
249         exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
250         canInline(false), referenced(false), traced(false), needsPltAddr(false),
251         isInIplt(false), gotInIgot(false), isPreemptible(false),
252         used(!config->gcSections), needsTocRestore(false),
253         scriptDefined(false) {}
254 
255 public:
256   // True the symbol should point to its PLT entry.
257   // For SharedSymbol only.
258   uint8_t needsPltAddr : 1;
259 
260   // True if this symbol is in the Iplt sub-section of the Plt and the Igot
261   // sub-section of the .got.plt or .got.
262   uint8_t isInIplt : 1;
263 
264   // True if this symbol needs a GOT entry and its GOT entry is actually in
265   // Igot. This will be true only for certain non-preemptible ifuncs.
266   uint8_t gotInIgot : 1;
267 
268   // True if this symbol is preemptible at load time.
269   uint8_t isPreemptible : 1;
270 
271   // True if an undefined or shared symbol is used from a live section.
272   //
273   // NOTE: In Writer.cpp the field is used to mark local defined symbols
274   // which are referenced by relocations when -r or --emit-relocs is given.
275   uint8_t used : 1;
276 
277   // True if a call to this symbol needs to be followed by a restore of the
278   // PPC64 toc pointer.
279   uint8_t needsTocRestore : 1;
280 
281   // True if this symbol is defined by a linker script.
282   uint8_t scriptDefined : 1;
283 
284   // The partition whose dynamic symbol table contains this symbol's definition.
285   uint8_t partition = 1;
286 
287   bool isSection() const { return type == llvm::ELF::STT_SECTION; }
288   bool isTls() const { return type == llvm::ELF::STT_TLS; }
289   bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
290   bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
291   bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
292   bool isFile() const { return type == llvm::ELF::STT_FILE; }
293 };
294 
295 // Represents a symbol that is defined in the current output file.
296 class Defined : public Symbol {
297 public:
298   Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
299           uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
300       : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
301         size(size), section(section) {}
302 
303   static bool classof(const Symbol *s) { return s->isDefined(); }
304 
305   uint64_t value;
306   uint64_t size;
307   SectionBase *section;
308 };
309 
310 // Represents a common symbol.
311 //
312 // On Unix, it is traditionally allowed to write variable definitions
313 // without initialization expressions (such as "int foo;") to header
314 // files. Such definition is called "tentative definition".
315 //
316 // Using tentative definition is usually considered a bad practice
317 // because you should write only declarations (such as "extern int
318 // foo;") to header files. Nevertheless, the linker and the compiler
319 // have to do something to support bad code by allowing duplicate
320 // definitions for this particular case.
321 //
322 // Common symbols represent variable definitions without initializations.
323 // The compiler creates common symbols when it sees variable definitions
324 // without initialization (you can suppress this behavior and let the
325 // compiler create a regular defined symbol by -fno-common).
326 //
327 // The linker allows common symbols to be replaced by regular defined
328 // symbols. If there are remaining common symbols after name resolution is
329 // complete, they are converted to regular defined symbols in a .bss
330 // section. (Therefore, the later passes don't see any CommonSymbols.)
331 class CommonSymbol : public Symbol {
332 public:
333   CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
334                uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
335       : Symbol(CommonKind, file, name, binding, stOther, type),
336         alignment(alignment), size(size) {}
337 
338   static bool classof(const Symbol *s) { return s->isCommon(); }
339 
340   uint32_t alignment;
341   uint64_t size;
342 };
343 
344 class Undefined : public Symbol {
345 public:
346   Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
347             uint8_t type, uint32_t discardedSecIdx = 0)
348       : Symbol(UndefinedKind, file, name, binding, stOther, type),
349         discardedSecIdx(discardedSecIdx) {}
350 
351   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
352 
353   // The section index if in a discarded section, 0 otherwise.
354   uint32_t discardedSecIdx;
355 };
356 
357 class SharedSymbol : public Symbol {
358 public:
359   static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
360 
361   SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
362                uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
363                uint32_t alignment, uint32_t verdefIndex)
364       : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
365         size(size), alignment(alignment) {
366     this->verdefIndex = verdefIndex;
367     // GNU ifunc is a mechanism to allow user-supplied functions to
368     // resolve PLT slot values at load-time. This is contrary to the
369     // regular symbol resolution scheme in which symbols are resolved just
370     // by name. Using this hook, you can program how symbols are solved
371     // for you program. For example, you can make "memcpy" to be resolved
372     // to a SSE-enabled version of memcpy only when a machine running the
373     // program supports the SSE instruction set.
374     //
375     // Naturally, such symbols should always be called through their PLT
376     // slots. What GNU ifunc symbols point to are resolver functions, and
377     // calling them directly doesn't make sense (unless you are writing a
378     // loader).
379     //
380     // For DSO symbols, we always call them through PLT slots anyway.
381     // So there's no difference between GNU ifunc and regular function
382     // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
383     if (this->type == llvm::ELF::STT_GNU_IFUNC)
384       this->type = llvm::ELF::STT_FUNC;
385   }
386 
387   SharedFile &getFile() const { return *cast<SharedFile>(file); }
388 
389   uint64_t value; // st_value
390   uint64_t size;  // st_size
391   uint32_t alignment;
392 };
393 
394 // LazyArchive and LazyObject represent a symbols that is not yet in the link,
395 // but we know where to find it if needed. If the resolver finds both Undefined
396 // and Lazy for the same name, it will ask the Lazy to load a file.
397 //
398 // A special complication is the handling of weak undefined symbols. They should
399 // not load a file, but we have to remember we have seen both the weak undefined
400 // and the lazy. We represent that with a lazy symbol with a weak binding. This
401 // means that code looking for undefined symbols normally also has to take lazy
402 // symbols into consideration.
403 
404 // This class represents a symbol defined in an archive file. It is
405 // created from an archive file header, and it knows how to load an
406 // object file from an archive to replace itself with a defined
407 // symbol.
408 class LazyArchive : public Symbol {
409 public:
410   LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
411       : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
412                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
413         sym(s) {}
414 
415   static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
416 
417   MemoryBufferRef getMemberBuffer();
418 
419   const llvm::object::Archive::Symbol sym;
420 };
421 
422 // LazyObject symbols represents symbols in object files between
423 // --start-lib and --end-lib options.
424 class LazyObject : public Symbol {
425 public:
426   LazyObject(InputFile &file, StringRef name)
427       : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
428                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
429 
430   static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
431 };
432 
433 // Some linker-generated symbols need to be created as
434 // Defined symbols.
435 struct ElfSym {
436   // __bss_start
437   static Defined *bss;
438 
439   // etext and _etext
440   static Defined *etext1;
441   static Defined *etext2;
442 
443   // edata and _edata
444   static Defined *edata1;
445   static Defined *edata2;
446 
447   // end and _end
448   static Defined *end1;
449   static Defined *end2;
450 
451   // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
452   // be at some offset from the base of the .got section, usually 0 or
453   // the end of the .got.
454   static Defined *globalOffsetTable;
455 
456   // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
457   static Defined *mipsGp;
458   static Defined *mipsGpDisp;
459   static Defined *mipsLocalGp;
460 
461   // __rel{,a}_iplt_{start,end} symbols.
462   static Defined *relaIpltStart;
463   static Defined *relaIpltEnd;
464 
465   // __global_pointer$ for RISC-V.
466   static Defined *riscvGlobalPointer;
467 
468   // _TLS_MODULE_BASE_ on targets that support TLSDESC.
469   static Defined *tlsModuleBase;
470 };
471 
472 // A buffer class that is large enough to hold any Symbol-derived
473 // object. We allocate memory using this class and instantiate a symbol
474 // using the placement new.
475 union SymbolUnion {
476   alignas(Defined) char a[sizeof(Defined)];
477   alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
478   alignas(Undefined) char c[sizeof(Undefined)];
479   alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
480   alignas(LazyArchive) char e[sizeof(LazyArchive)];
481   alignas(LazyObject) char f[sizeof(LazyObject)];
482 };
483 
484 // It is important to keep the size of SymbolUnion small for performance and
485 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined
486 // on a 64-bit system.
487 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
488 
489 template <typename T> struct AssertSymbol {
490   static_assert(std::is_trivially_destructible<T>(),
491                 "Symbol types must be trivially destructible");
492   static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
493   static_assert(alignof(T) <= alignof(SymbolUnion),
494                 "SymbolUnion not aligned enough");
495 };
496 
497 static inline void assertSymbols() {
498   AssertSymbol<Defined>();
499   AssertSymbol<CommonSymbol>();
500   AssertSymbol<Undefined>();
501   AssertSymbol<SharedSymbol>();
502   AssertSymbol<LazyArchive>();
503   AssertSymbol<LazyObject>();
504 }
505 
506 void printTraceSymbol(const Symbol *sym);
507 
508 size_t Symbol::getSymbolSize() const {
509   switch (kind()) {
510   case CommonKind:
511     return sizeof(CommonSymbol);
512   case DefinedKind:
513     return sizeof(Defined);
514   case LazyArchiveKind:
515     return sizeof(LazyArchive);
516   case LazyObjectKind:
517     return sizeof(LazyObject);
518   case SharedKind:
519     return sizeof(SharedSymbol);
520   case UndefinedKind:
521     return sizeof(Undefined);
522   case PlaceholderKind:
523     return sizeof(Symbol);
524   }
525   llvm_unreachable("unknown symbol kind");
526 }
527 
528 // replace() replaces "this" object with a given symbol by memcpy'ing
529 // it over to "this". This function is called as a result of name
530 // resolution, e.g. to replace an undefind symbol with a defined symbol.
531 void Symbol::replace(const Symbol &newSym) {
532   using llvm::ELF::STT_TLS;
533 
534   // st_value of STT_TLS represents the assigned offset, not the actual address
535   // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be
536   // referenced by special TLS relocations. It is usually an error if a STT_TLS
537   // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two
538   // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a
539   // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a
540   // STT_NOTYPE lazy symbol.
541   if (symbolKind != PlaceholderKind && !newSym.isLazy() &&
542       (type == STT_TLS) != (newSym.type == STT_TLS) &&
543       type != llvm::ELF::STT_NOTYPE)
544     error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
545           toString(newSym.file) + "\n>>> defined in " + toString(file));
546 
547   Symbol old = *this;
548   memcpy(this, &newSym, newSym.getSymbolSize());
549 
550   // old may be a placeholder. The referenced fields must be initialized in
551   // SymbolTable::insert.
552   versionId = old.versionId;
553   visibility = old.visibility;
554   isUsedInRegularObj = old.isUsedInRegularObj;
555   exportDynamic = old.exportDynamic;
556   inDynamicList = old.inDynamicList;
557   canInline = old.canInline;
558   referenced = old.referenced;
559   traced = old.traced;
560   isPreemptible = old.isPreemptible;
561   scriptDefined = old.scriptDefined;
562   partition = old.partition;
563 
564   // Symbol length is computed lazily. If we already know a symbol length,
565   // propagate it.
566   if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
567     nameSize = old.nameSize;
568 
569   // Print out a log message if --trace-symbol was specified.
570   // This is for debugging.
571   if (traced)
572     printTraceSymbol(this);
573 }
574 
575 void maybeWarnUnorderableSymbol(const Symbol *sym);
576 bool computeIsPreemptible(const Symbol &sym);
577 void reportBackrefs();
578 
579 // A mapping from a symbol to an InputFile referencing it backward. Used by
580 // --warn-backrefs.
581 extern llvm::DenseMap<const Symbol *,
582                       std::pair<const InputFile *, const InputFile *>>
583     backwardReferences;
584 
585 } // namespace elf
586 } // namespace lld
587 
588 #endif
589