1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "DWARF.h"
19 #include "EhFrame.h"
20 #include "InputFiles.h"
21 #include "LinkerScript.h"
22 #include "OutputSections.h"
23 #include "SymbolTable.h"
24 #include "Symbols.h"
25 #include "Target.h"
26 #include "Thunks.h"
27 #include "Writer.h"
28 #include "lld/Common/CommonLinkerContext.h"
29 #include "lld/Common/DWARF.h"
30 #include "lld/Common/Strings.h"
31 #include "lld/Common/Version.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/LEB128.h"
40 #include "llvm/Support/Parallel.h"
41 #include "llvm/Support/TimeProfiler.h"
42 #include <cstdlib>
43 
44 using namespace llvm;
45 using namespace llvm::dwarf;
46 using namespace llvm::ELF;
47 using namespace llvm::object;
48 using namespace llvm::support;
49 using namespace lld;
50 using namespace lld::elf;
51 
52 using llvm::support::endian::read32le;
53 using llvm::support::endian::write32le;
54 using llvm::support::endian::write64le;
55 
56 constexpr size_t MergeNoTailSection::numShards;
57 
58 static uint64_t readUint(uint8_t *buf) {
59   return config->is64 ? read64(buf) : read32(buf);
60 }
61 
62 static void writeUint(uint8_t *buf, uint64_t val) {
63   if (config->is64)
64     write64(buf, val);
65   else
66     write32(buf, val);
67 }
68 
69 // Returns an LLD version string.
70 static ArrayRef<uint8_t> getVersion() {
71   // Check LLD_VERSION first for ease of testing.
72   // You can get consistent output by using the environment variable.
73   // This is only for testing.
74   StringRef s = getenv("LLD_VERSION");
75   if (s.empty())
76     s = saver().save(Twine("Linker: ") + getLLDVersion());
77 
78   // +1 to include the terminating '\0'.
79   return {(const uint8_t *)s.data(), s.size() + 1};
80 }
81 
82 // Creates a .comment section containing LLD version info.
83 // With this feature, you can identify LLD-generated binaries easily
84 // by "readelf --string-dump .comment <file>".
85 // The returned object is a mergeable string section.
86 MergeInputSection *elf::createCommentSection() {
87   auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88                                       getVersion(), ".comment");
89   sec->splitIntoPieces();
90   return sec;
91 }
92 
93 // .MIPS.abiflags section.
94 template <class ELFT>
95 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
96     : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
97       flags(flags) {
98   this->entsize = sizeof(Elf_Mips_ABIFlags);
99 }
100 
101 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
102   memcpy(buf, &flags, sizeof(flags));
103 }
104 
105 template <class ELFT>
106 std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
107   Elf_Mips_ABIFlags flags = {};
108   bool create = false;
109 
110   for (InputSectionBase *sec : ctx.inputSections) {
111     if (sec->type != SHT_MIPS_ABIFLAGS)
112       continue;
113     sec->markDead();
114     create = true;
115 
116     std::string filename = toString(sec->file);
117     const size_t size = sec->content().size();
118     // Older version of BFD (such as the default FreeBSD linker) concatenate
119     // .MIPS.abiflags instead of merging. To allow for this case (or potential
120     // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
121     if (size < sizeof(Elf_Mips_ABIFlags)) {
122       error(filename + ": invalid size of .MIPS.abiflags section: got " +
123             Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
124       return nullptr;
125     }
126     auto *s =
127         reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
128     if (s->version != 0) {
129       error(filename + ": unexpected .MIPS.abiflags version " +
130             Twine(s->version));
131       return nullptr;
132     }
133 
134     // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
135     // select the highest number of ISA/Rev/Ext.
136     flags.isa_level = std::max(flags.isa_level, s->isa_level);
137     flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
138     flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
139     flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
140     flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
141     flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
142     flags.ases |= s->ases;
143     flags.flags1 |= s->flags1;
144     flags.flags2 |= s->flags2;
145     flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
146   };
147 
148   if (create)
149     return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
150   return nullptr;
151 }
152 
153 // .MIPS.options section.
154 template <class ELFT>
155 MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
156     : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
157       reginfo(reginfo) {
158   this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
159 }
160 
161 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
162   auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
163   options->kind = ODK_REGINFO;
164   options->size = getSize();
165 
166   if (!config->relocatable)
167     reginfo.ri_gp_value = in.mipsGot->getGp();
168   memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
169 }
170 
171 template <class ELFT>
172 std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
173   // N64 ABI only.
174   if (!ELFT::Is64Bits)
175     return nullptr;
176 
177   SmallVector<InputSectionBase *, 0> sections;
178   for (InputSectionBase *sec : ctx.inputSections)
179     if (sec->type == SHT_MIPS_OPTIONS)
180       sections.push_back(sec);
181 
182   if (sections.empty())
183     return nullptr;
184 
185   Elf_Mips_RegInfo reginfo = {};
186   for (InputSectionBase *sec : sections) {
187     sec->markDead();
188 
189     std::string filename = toString(sec->file);
190     ArrayRef<uint8_t> d = sec->content();
191 
192     while (!d.empty()) {
193       if (d.size() < sizeof(Elf_Mips_Options)) {
194         error(filename + ": invalid size of .MIPS.options section");
195         break;
196       }
197 
198       auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
199       if (opt->kind == ODK_REGINFO) {
200         reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
201         sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
202         break;
203       }
204 
205       if (!opt->size)
206         fatal(filename + ": zero option descriptor size");
207       d = d.slice(opt->size);
208     }
209   };
210 
211   return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
212 }
213 
214 // MIPS .reginfo section.
215 template <class ELFT>
216 MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
217     : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
218       reginfo(reginfo) {
219   this->entsize = sizeof(Elf_Mips_RegInfo);
220 }
221 
222 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
223   if (!config->relocatable)
224     reginfo.ri_gp_value = in.mipsGot->getGp();
225   memcpy(buf, &reginfo, sizeof(reginfo));
226 }
227 
228 template <class ELFT>
229 std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
230   // Section should be alive for O32 and N32 ABIs only.
231   if (ELFT::Is64Bits)
232     return nullptr;
233 
234   SmallVector<InputSectionBase *, 0> sections;
235   for (InputSectionBase *sec : ctx.inputSections)
236     if (sec->type == SHT_MIPS_REGINFO)
237       sections.push_back(sec);
238 
239   if (sections.empty())
240     return nullptr;
241 
242   Elf_Mips_RegInfo reginfo = {};
243   for (InputSectionBase *sec : sections) {
244     sec->markDead();
245 
246     if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
247       error(toString(sec->file) + ": invalid size of .reginfo section");
248       return nullptr;
249     }
250 
251     auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
252     reginfo.ri_gprmask |= r->ri_gprmask;
253     sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
254   };
255 
256   return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
257 }
258 
259 InputSection *elf::createInterpSection() {
260   // StringSaver guarantees that the returned string ends with '\0'.
261   StringRef s = saver().save(config->dynamicLinker);
262   ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
263 
264   return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
265                             ".interp");
266 }
267 
268 Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
269                                 uint64_t size, InputSectionBase &section) {
270   Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
271                            value, size, &section);
272   if (in.symTab)
273     in.symTab->addSymbol(s);
274 
275   if (config->emachine == EM_ARM && !config->isLE && config->armBe8 &&
276       (section.flags & SHF_EXECINSTR))
277     // Adding Linker generated mapping symbols to the arm specific mapping
278     // symbols list.
279     addArmSyntheticSectionMappingSymbol(s);
280 
281   return s;
282 }
283 
284 static size_t getHashSize() {
285   switch (config->buildId) {
286   case BuildIdKind::Fast:
287     return 8;
288   case BuildIdKind::Md5:
289   case BuildIdKind::Uuid:
290     return 16;
291   case BuildIdKind::Sha1:
292     return 20;
293   case BuildIdKind::Hexstring:
294     return config->buildIdVector.size();
295   default:
296     llvm_unreachable("unknown BuildIdKind");
297   }
298 }
299 
300 // This class represents a linker-synthesized .note.gnu.property section.
301 //
302 // In x86 and AArch64, object files may contain feature flags indicating the
303 // features that they have used. The flags are stored in a .note.gnu.property
304 // section.
305 //
306 // lld reads the sections from input files and merges them by computing AND of
307 // the flags. The result is written as a new .note.gnu.property section.
308 //
309 // If the flag is zero (which indicates that the intersection of the feature
310 // sets is empty, or some input files didn't have .note.gnu.property sections),
311 // we don't create this section.
312 GnuPropertySection::GnuPropertySection()
313     : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
314                        config->wordsize, ".note.gnu.property") {}
315 
316 void GnuPropertySection::writeTo(uint8_t *buf) {
317   uint32_t featureAndType = config->emachine == EM_AARCH64
318                                 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
319                                 : GNU_PROPERTY_X86_FEATURE_1_AND;
320 
321   write32(buf, 4);                                   // Name size
322   write32(buf + 4, config->is64 ? 16 : 12);          // Content size
323   write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
324   memcpy(buf + 12, "GNU", 4);                        // Name string
325   write32(buf + 16, featureAndType);                 // Feature type
326   write32(buf + 20, 4);                              // Feature size
327   write32(buf + 24, config->andFeatures);            // Feature flags
328   if (config->is64)
329     write32(buf + 28, 0); // Padding
330 }
331 
332 size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
333 
334 BuildIdSection::BuildIdSection()
335     : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
336       hashSize(getHashSize()) {}
337 
338 void BuildIdSection::writeTo(uint8_t *buf) {
339   write32(buf, 4);                      // Name size
340   write32(buf + 4, hashSize);           // Content size
341   write32(buf + 8, NT_GNU_BUILD_ID);    // Type
342   memcpy(buf + 12, "GNU", 4);           // Name string
343   hashBuf = buf + 16;
344 }
345 
346 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
347   assert(buf.size() == hashSize);
348   memcpy(hashBuf, buf.data(), hashSize);
349 }
350 
351 BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
352     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
353   this->bss = true;
354   this->size = size;
355 }
356 
357 EhFrameSection::EhFrameSection()
358     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
359 
360 // Search for an existing CIE record or create a new one.
361 // CIE records from input object files are uniquified by their contents
362 // and where their relocations point to.
363 template <class ELFT, class RelTy>
364 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
365   Symbol *personality = nullptr;
366   unsigned firstRelI = cie.firstRelocation;
367   if (firstRelI != (unsigned)-1)
368     personality =
369         &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
370 
371   // Search for an existing CIE by CIE contents/relocation target pair.
372   CieRecord *&rec = cieMap[{cie.data(), personality}];
373 
374   // If not found, create a new one.
375   if (!rec) {
376     rec = make<CieRecord>();
377     rec->cie = &cie;
378     cieRecords.push_back(rec);
379   }
380   return rec;
381 }
382 
383 // There is one FDE per function. Returns a non-null pointer to the function
384 // symbol if the given FDE points to a live function.
385 template <class ELFT, class RelTy>
386 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
387   auto *sec = cast<EhInputSection>(fde.sec);
388   unsigned firstRelI = fde.firstRelocation;
389 
390   // An FDE should point to some function because FDEs are to describe
391   // functions. That's however not always the case due to an issue of
392   // ld.gold with -r. ld.gold may discard only functions and leave their
393   // corresponding FDEs, which results in creating bad .eh_frame sections.
394   // To deal with that, we ignore such FDEs.
395   if (firstRelI == (unsigned)-1)
396     return nullptr;
397 
398   const RelTy &rel = rels[firstRelI];
399   Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
400 
401   // FDEs for garbage-collected or merged-by-ICF sections, or sections in
402   // another partition, are dead.
403   if (auto *d = dyn_cast<Defined>(&b))
404     if (!d->folded && d->section && d->section->partition == partition)
405       return d;
406   return nullptr;
407 }
408 
409 // .eh_frame is a sequence of CIE or FDE records. In general, there
410 // is one CIE record per input object file which is followed by
411 // a list of FDEs. This function searches an existing CIE or create a new
412 // one and associates FDEs to the CIE.
413 template <class ELFT, class RelTy>
414 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
415   offsetToCie.clear();
416   for (EhSectionPiece &cie : sec->cies)
417     offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
418   for (EhSectionPiece &fde : sec->fdes) {
419     uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
420     CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
421     if (!rec)
422       fatal(toString(sec) + ": invalid CIE reference");
423 
424     if (!isFdeLive<ELFT>(fde, rels))
425       continue;
426     rec->fdes.push_back(&fde);
427     numFdes++;
428   }
429 }
430 
431 template <class ELFT>
432 void EhFrameSection::addSectionAux(EhInputSection *sec) {
433   if (!sec->isLive())
434     return;
435   const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
436   if (rels.areRelocsRel())
437     addRecords<ELFT>(sec, rels.rels);
438   else
439     addRecords<ELFT>(sec, rels.relas);
440 }
441 
442 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
443 // EhFrameSection::addRecords().
444 template <class ELFT, class RelTy>
445 void EhFrameSection::iterateFDEWithLSDAAux(
446     EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
447     llvm::function_ref<void(InputSection &)> fn) {
448   for (EhSectionPiece &cie : sec.cies)
449     if (hasLSDA(cie))
450       ciesWithLSDA.insert(cie.inputOff);
451   for (EhSectionPiece &fde : sec.fdes) {
452     uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
453     if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
454       continue;
455 
456     // The CIE has a LSDA argument. Call fn with d's section.
457     if (Defined *d = isFdeLive<ELFT>(fde, rels))
458       if (auto *s = dyn_cast_or_null<InputSection>(d->section))
459         fn(*s);
460   }
461 }
462 
463 template <class ELFT>
464 void EhFrameSection::iterateFDEWithLSDA(
465     llvm::function_ref<void(InputSection &)> fn) {
466   DenseSet<size_t> ciesWithLSDA;
467   for (EhInputSection *sec : sections) {
468     ciesWithLSDA.clear();
469     const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
470     if (rels.areRelocsRel())
471       iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
472     else
473       iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
474   }
475 }
476 
477 static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
478   memcpy(buf, d.data(), d.size());
479   // Fix the size field. -4 since size does not include the size field itself.
480   write32(buf, d.size() - 4);
481 }
482 
483 void EhFrameSection::finalizeContents() {
484   assert(!this->size); // Not finalized.
485 
486   switch (config->ekind) {
487   case ELFNoneKind:
488     llvm_unreachable("invalid ekind");
489   case ELF32LEKind:
490     for (EhInputSection *sec : sections)
491       addSectionAux<ELF32LE>(sec);
492     break;
493   case ELF32BEKind:
494     for (EhInputSection *sec : sections)
495       addSectionAux<ELF32BE>(sec);
496     break;
497   case ELF64LEKind:
498     for (EhInputSection *sec : sections)
499       addSectionAux<ELF64LE>(sec);
500     break;
501   case ELF64BEKind:
502     for (EhInputSection *sec : sections)
503       addSectionAux<ELF64BE>(sec);
504     break;
505   }
506 
507   size_t off = 0;
508   for (CieRecord *rec : cieRecords) {
509     rec->cie->outputOff = off;
510     off += rec->cie->size;
511 
512     for (EhSectionPiece *fde : rec->fdes) {
513       fde->outputOff = off;
514       off += fde->size;
515     }
516   }
517 
518   // The LSB standard does not allow a .eh_frame section with zero
519   // Call Frame Information records. glibc unwind-dw2-fde.c
520   // classify_object_over_fdes expects there is a CIE record length 0 as a
521   // terminator. Thus we add one unconditionally.
522   off += 4;
523 
524   this->size = off;
525 }
526 
527 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
528 // to get an FDE from an address to which FDE is applied. This function
529 // returns a list of such pairs.
530 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
531   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
532   SmallVector<FdeData, 0> ret;
533 
534   uint64_t va = getPartition().ehFrameHdr->getVA();
535   for (CieRecord *rec : cieRecords) {
536     uint8_t enc = getFdeEncoding(rec->cie);
537     for (EhSectionPiece *fde : rec->fdes) {
538       uint64_t pc = getFdePc(buf, fde->outputOff, enc);
539       uint64_t fdeVA = getParent()->addr + fde->outputOff;
540       if (!isInt<32>(pc - va))
541         fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
542               Twine::utohexstr(pc - va));
543       ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
544     }
545   }
546 
547   // Sort the FDE list by their PC and uniqueify. Usually there is only
548   // one FDE for a PC (i.e. function), but if ICF merges two functions
549   // into one, there can be more than one FDEs pointing to the address.
550   auto less = [](const FdeData &a, const FdeData &b) {
551     return a.pcRel < b.pcRel;
552   };
553   llvm::stable_sort(ret, less);
554   auto eq = [](const FdeData &a, const FdeData &b) {
555     return a.pcRel == b.pcRel;
556   };
557   ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
558 
559   return ret;
560 }
561 
562 static uint64_t readFdeAddr(uint8_t *buf, int size) {
563   switch (size) {
564   case DW_EH_PE_udata2:
565     return read16(buf);
566   case DW_EH_PE_sdata2:
567     return (int16_t)read16(buf);
568   case DW_EH_PE_udata4:
569     return read32(buf);
570   case DW_EH_PE_sdata4:
571     return (int32_t)read32(buf);
572   case DW_EH_PE_udata8:
573   case DW_EH_PE_sdata8:
574     return read64(buf);
575   case DW_EH_PE_absptr:
576     return readUint(buf);
577   }
578   fatal("unknown FDE size encoding");
579 }
580 
581 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
582 // We need it to create .eh_frame_hdr section.
583 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
584                                   uint8_t enc) const {
585   // The starting address to which this FDE applies is
586   // stored at FDE + 8 byte.
587   size_t off = fdeOff + 8;
588   uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
589   if ((enc & 0x70) == DW_EH_PE_absptr)
590     return addr;
591   if ((enc & 0x70) == DW_EH_PE_pcrel)
592     return addr + getParent()->addr + off;
593   fatal("unknown FDE size relative encoding");
594 }
595 
596 void EhFrameSection::writeTo(uint8_t *buf) {
597   // Write CIE and FDE records.
598   for (CieRecord *rec : cieRecords) {
599     size_t cieOffset = rec->cie->outputOff;
600     writeCieFde(buf + cieOffset, rec->cie->data());
601 
602     for (EhSectionPiece *fde : rec->fdes) {
603       size_t off = fde->outputOff;
604       writeCieFde(buf + off, fde->data());
605 
606       // FDE's second word should have the offset to an associated CIE.
607       // Write it.
608       write32(buf + off + 4, off + 4 - cieOffset);
609     }
610   }
611 
612   // Apply relocations. .eh_frame section contents are not contiguous
613   // in the output buffer, but relocateAlloc() still works because
614   // getOffset() takes care of discontiguous section pieces.
615   for (EhInputSection *s : sections)
616     target->relocateAlloc(*s, buf);
617 
618   if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
619     getPartition().ehFrameHdr->write();
620 }
621 
622 GotSection::GotSection()
623     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
624                        target->gotEntrySize, ".got") {
625   numEntries = target->gotHeaderEntriesNum;
626 }
627 
628 void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
629 void GotSection::addEntry(Symbol &sym) {
630   assert(sym.auxIdx == symAux.size() - 1);
631   symAux.back().gotIdx = numEntries++;
632 }
633 
634 bool GotSection::addTlsDescEntry(Symbol &sym) {
635   assert(sym.auxIdx == symAux.size() - 1);
636   symAux.back().tlsDescIdx = numEntries;
637   numEntries += 2;
638   return true;
639 }
640 
641 bool GotSection::addDynTlsEntry(Symbol &sym) {
642   assert(sym.auxIdx == symAux.size() - 1);
643   symAux.back().tlsGdIdx = numEntries;
644   // Global Dynamic TLS entries take two GOT slots.
645   numEntries += 2;
646   return true;
647 }
648 
649 // Reserves TLS entries for a TLS module ID and a TLS block offset.
650 // In total it takes two GOT slots.
651 bool GotSection::addTlsIndex() {
652   if (tlsIndexOff != uint32_t(-1))
653     return false;
654   tlsIndexOff = numEntries * config->wordsize;
655   numEntries += 2;
656   return true;
657 }
658 
659 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
660   return sym.getTlsDescIdx() * config->wordsize;
661 }
662 
663 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
664   return getVA() + getTlsDescOffset(sym);
665 }
666 
667 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
668   return this->getVA() + b.getTlsGdIdx() * config->wordsize;
669 }
670 
671 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
672   return b.getTlsGdIdx() * config->wordsize;
673 }
674 
675 void GotSection::finalizeContents() {
676   if (config->emachine == EM_PPC64 &&
677       numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
678     size = 0;
679   else
680     size = numEntries * config->wordsize;
681 }
682 
683 bool GotSection::isNeeded() const {
684   // Needed if the GOT symbol is used or the number of entries is more than just
685   // the header. A GOT with just the header may not be needed.
686   return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
687 }
688 
689 void GotSection::writeTo(uint8_t *buf) {
690   // On PPC64 .got may be needed but empty. Skip the write.
691   if (size == 0)
692     return;
693   target->writeGotHeader(buf);
694   target->relocateAlloc(*this, buf);
695 }
696 
697 static uint64_t getMipsPageAddr(uint64_t addr) {
698   return (addr + 0x8000) & ~0xffff;
699 }
700 
701 static uint64_t getMipsPageCount(uint64_t size) {
702   return (size + 0xfffe) / 0xffff + 1;
703 }
704 
705 MipsGotSection::MipsGotSection()
706     : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
707                        ".got") {}
708 
709 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
710                               RelExpr expr) {
711   FileGot &g = getGot(file);
712   if (expr == R_MIPS_GOT_LOCAL_PAGE) {
713     if (const OutputSection *os = sym.getOutputSection())
714       g.pagesMap.insert({os, {}});
715     else
716       g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
717   } else if (sym.isTls())
718     g.tls.insert({&sym, 0});
719   else if (sym.isPreemptible && expr == R_ABS)
720     g.relocs.insert({&sym, 0});
721   else if (sym.isPreemptible)
722     g.global.insert({&sym, 0});
723   else if (expr == R_MIPS_GOT_OFF32)
724     g.local32.insert({{&sym, addend}, 0});
725   else
726     g.local16.insert({{&sym, addend}, 0});
727 }
728 
729 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
730   getGot(file).dynTlsSymbols.insert({&sym, 0});
731 }
732 
733 void MipsGotSection::addTlsIndex(InputFile &file) {
734   getGot(file).dynTlsSymbols.insert({nullptr, 0});
735 }
736 
737 size_t MipsGotSection::FileGot::getEntriesNum() const {
738   return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
739          tls.size() + dynTlsSymbols.size() * 2;
740 }
741 
742 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
743   size_t num = 0;
744   for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
745     num += p.second.count;
746   return num;
747 }
748 
749 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
750   size_t count = getPageEntriesNum() + local16.size() + global.size();
751   // If there are relocation-only entries in the GOT, TLS entries
752   // are allocated after them. TLS entries should be addressable
753   // by 16-bit index so count both reloc-only and TLS entries.
754   if (!tls.empty() || !dynTlsSymbols.empty())
755     count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
756   return count;
757 }
758 
759 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
760   if (f.mipsGotIndex == uint32_t(-1)) {
761     gots.emplace_back();
762     gots.back().file = &f;
763     f.mipsGotIndex = gots.size() - 1;
764   }
765   return gots[f.mipsGotIndex];
766 }
767 
768 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
769                                             const Symbol &sym,
770                                             int64_t addend) const {
771   const FileGot &g = gots[f->mipsGotIndex];
772   uint64_t index = 0;
773   if (const OutputSection *outSec = sym.getOutputSection()) {
774     uint64_t secAddr = getMipsPageAddr(outSec->addr);
775     uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
776     index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
777   } else {
778     index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
779   }
780   return index * config->wordsize;
781 }
782 
783 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
784                                            int64_t addend) const {
785   const FileGot &g = gots[f->mipsGotIndex];
786   Symbol *sym = const_cast<Symbol *>(&s);
787   if (sym->isTls())
788     return g.tls.lookup(sym) * config->wordsize;
789   if (sym->isPreemptible)
790     return g.global.lookup(sym) * config->wordsize;
791   return g.local16.lookup({sym, addend}) * config->wordsize;
792 }
793 
794 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
795   const FileGot &g = gots[f->mipsGotIndex];
796   return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
797 }
798 
799 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
800                                             const Symbol &s) const {
801   const FileGot &g = gots[f->mipsGotIndex];
802   Symbol *sym = const_cast<Symbol *>(&s);
803   return g.dynTlsSymbols.lookup(sym) * config->wordsize;
804 }
805 
806 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
807   if (gots.empty())
808     return nullptr;
809   const FileGot &primGot = gots.front();
810   if (!primGot.global.empty())
811     return primGot.global.front().first;
812   if (!primGot.relocs.empty())
813     return primGot.relocs.front().first;
814   return nullptr;
815 }
816 
817 unsigned MipsGotSection::getLocalEntriesNum() const {
818   if (gots.empty())
819     return headerEntriesNum;
820   return headerEntriesNum + gots.front().getPageEntriesNum() +
821          gots.front().local16.size();
822 }
823 
824 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
825   FileGot tmp = dst;
826   set_union(tmp.pagesMap, src.pagesMap);
827   set_union(tmp.local16, src.local16);
828   set_union(tmp.global, src.global);
829   set_union(tmp.relocs, src.relocs);
830   set_union(tmp.tls, src.tls);
831   set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
832 
833   size_t count = isPrimary ? headerEntriesNum : 0;
834   count += tmp.getIndexedEntriesNum();
835 
836   if (count * config->wordsize > config->mipsGotSize)
837     return false;
838 
839   std::swap(tmp, dst);
840   return true;
841 }
842 
843 void MipsGotSection::finalizeContents() { updateAllocSize(); }
844 
845 bool MipsGotSection::updateAllocSize() {
846   size = headerEntriesNum * config->wordsize;
847   for (const FileGot &g : gots)
848     size += g.getEntriesNum() * config->wordsize;
849   return false;
850 }
851 
852 void MipsGotSection::build() {
853   if (gots.empty())
854     return;
855 
856   std::vector<FileGot> mergedGots(1);
857 
858   // For each GOT move non-preemptible symbols from the `Global`
859   // to `Local16` list. Preemptible symbol might become non-preemptible
860   // one if, for example, it gets a related copy relocation.
861   for (FileGot &got : gots) {
862     for (auto &p: got.global)
863       if (!p.first->isPreemptible)
864         got.local16.insert({{p.first, 0}, 0});
865     got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
866       return !p.first->isPreemptible;
867     });
868   }
869 
870   // For each GOT remove "reloc-only" entry if there is "global"
871   // entry for the same symbol. And add local entries which indexed
872   // using 32-bit value at the end of 16-bit entries.
873   for (FileGot &got : gots) {
874     got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
875       return got.global.count(p.first);
876     });
877     set_union(got.local16, got.local32);
878     got.local32.clear();
879   }
880 
881   // Evaluate number of "reloc-only" entries in the resulting GOT.
882   // To do that put all unique "reloc-only" and "global" entries
883   // from all GOTs to the future primary GOT.
884   FileGot *primGot = &mergedGots.front();
885   for (FileGot &got : gots) {
886     set_union(primGot->relocs, got.global);
887     set_union(primGot->relocs, got.relocs);
888     got.relocs.clear();
889   }
890 
891   // Evaluate number of "page" entries in each GOT.
892   for (FileGot &got : gots) {
893     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
894          got.pagesMap) {
895       const OutputSection *os = p.first;
896       uint64_t secSize = 0;
897       for (SectionCommand *cmd : os->commands) {
898         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
899           for (InputSection *isec : isd->sections) {
900             uint64_t off = alignToPowerOf2(secSize, isec->addralign);
901             secSize = off + isec->getSize();
902           }
903       }
904       p.second.count = getMipsPageCount(secSize);
905     }
906   }
907 
908   // Merge GOTs. Try to join as much as possible GOTs but do not exceed
909   // maximum GOT size. At first, try to fill the primary GOT because
910   // the primary GOT can be accessed in the most effective way. If it
911   // is not possible, try to fill the last GOT in the list, and finally
912   // create a new GOT if both attempts failed.
913   for (FileGot &srcGot : gots) {
914     InputFile *file = srcGot.file;
915     if (tryMergeGots(mergedGots.front(), srcGot, true)) {
916       file->mipsGotIndex = 0;
917     } else {
918       // If this is the first time we failed to merge with the primary GOT,
919       // MergedGots.back() will also be the primary GOT. We must make sure not
920       // to try to merge again with isPrimary=false, as otherwise, if the
921       // inputs are just right, we could allow the primary GOT to become 1 or 2
922       // words bigger due to ignoring the header size.
923       if (mergedGots.size() == 1 ||
924           !tryMergeGots(mergedGots.back(), srcGot, false)) {
925         mergedGots.emplace_back();
926         std::swap(mergedGots.back(), srcGot);
927       }
928       file->mipsGotIndex = mergedGots.size() - 1;
929     }
930   }
931   std::swap(gots, mergedGots);
932 
933   // Reduce number of "reloc-only" entries in the primary GOT
934   // by subtracting "global" entries in the primary GOT.
935   primGot = &gots.front();
936   primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
937     return primGot->global.count(p.first);
938   });
939 
940   // Calculate indexes for each GOT entry.
941   size_t index = headerEntriesNum;
942   for (FileGot &got : gots) {
943     got.startIndex = &got == primGot ? 0 : index;
944     for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
945          got.pagesMap) {
946       // For each output section referenced by GOT page relocations calculate
947       // and save into pagesMap an upper bound of MIPS GOT entries required
948       // to store page addresses of local symbols. We assume the worst case -
949       // each 64kb page of the output section has at least one GOT relocation
950       // against it. And take in account the case when the section intersects
951       // page boundaries.
952       p.second.firstIndex = index;
953       index += p.second.count;
954     }
955     for (auto &p: got.local16)
956       p.second = index++;
957     for (auto &p: got.global)
958       p.second = index++;
959     for (auto &p: got.relocs)
960       p.second = index++;
961     for (auto &p: got.tls)
962       p.second = index++;
963     for (auto &p: got.dynTlsSymbols) {
964       p.second = index;
965       index += 2;
966     }
967   }
968 
969   // Update SymbolAux::gotIdx field to use this
970   // value later in the `sortMipsSymbols` function.
971   for (auto &p : primGot->global) {
972     if (p.first->auxIdx == 0)
973       p.first->allocateAux();
974     symAux.back().gotIdx = p.second;
975   }
976   for (auto &p : primGot->relocs) {
977     if (p.first->auxIdx == 0)
978       p.first->allocateAux();
979     symAux.back().gotIdx = p.second;
980   }
981 
982   // Create dynamic relocations.
983   for (FileGot &got : gots) {
984     // Create dynamic relocations for TLS entries.
985     for (std::pair<Symbol *, size_t> &p : got.tls) {
986       Symbol *s = p.first;
987       uint64_t offset = p.second * config->wordsize;
988       // When building a shared library we still need a dynamic relocation
989       // for the TP-relative offset as we don't know how much other data will
990       // be allocated before us in the static TLS block.
991       if (s->isPreemptible || config->shared)
992         mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
993                                      DynamicReloc::AgainstSymbolWithTargetVA,
994                                      *s, 0, R_ABS});
995     }
996     for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
997       Symbol *s = p.first;
998       uint64_t offset = p.second * config->wordsize;
999       if (s == nullptr) {
1000         if (!config->shared)
1001           continue;
1002         mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
1003       } else {
1004         // When building a shared library we still need a dynamic relocation
1005         // for the module index. Therefore only checking for
1006         // S->isPreemptible is not sufficient (this happens e.g. for
1007         // thread-locals that have been marked as local through a linker script)
1008         if (!s->isPreemptible && !config->shared)
1009           continue;
1010         mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1011                                           offset, *s);
1012         // However, we can skip writing the TLS offset reloc for non-preemptible
1013         // symbols since it is known even in shared libraries
1014         if (!s->isPreemptible)
1015           continue;
1016         offset += config->wordsize;
1017         mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1018                                           *s);
1019       }
1020     }
1021 
1022     // Do not create dynamic relocations for non-TLS
1023     // entries in the primary GOT.
1024     if (&got == primGot)
1025       continue;
1026 
1027     // Dynamic relocations for "global" entries.
1028     for (const std::pair<Symbol *, size_t> &p : got.global) {
1029       uint64_t offset = p.second * config->wordsize;
1030       mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1031                                         *p.first);
1032     }
1033     if (!config->isPic)
1034       continue;
1035     // Dynamic relocations for "local" entries in case of PIC.
1036     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1037          got.pagesMap) {
1038       size_t pageCount = l.second.count;
1039       for (size_t pi = 0; pi < pageCount; ++pi) {
1040         uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1041         mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1042                                      int64_t(pi * 0x10000)});
1043       }
1044     }
1045     for (const std::pair<GotEntry, size_t> &p : got.local16) {
1046       uint64_t offset = p.second * config->wordsize;
1047       mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1048                                    DynamicReloc::AddendOnlyWithTargetVA,
1049                                    *p.first.first, p.first.second, R_ABS});
1050     }
1051   }
1052 }
1053 
1054 bool MipsGotSection::isNeeded() const {
1055   // We add the .got section to the result for dynamic MIPS target because
1056   // its address and properties are mentioned in the .dynamic section.
1057   return !config->relocatable;
1058 }
1059 
1060 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1061   // For files without related GOT or files refer a primary GOT
1062   // returns "common" _gp value. For secondary GOTs calculate
1063   // individual _gp values.
1064   if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1065     return ElfSym::mipsGp->getVA(0);
1066   return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1067 }
1068 
1069 void MipsGotSection::writeTo(uint8_t *buf) {
1070   // Set the MSB of the second GOT slot. This is not required by any
1071   // MIPS ABI documentation, though.
1072   //
1073   // There is a comment in glibc saying that "The MSB of got[1] of a
1074   // gnu object is set to identify gnu objects," and in GNU gold it
1075   // says "the second entry will be used by some runtime loaders".
1076   // But how this field is being used is unclear.
1077   //
1078   // We are not really willing to mimic other linkers behaviors
1079   // without understanding why they do that, but because all files
1080   // generated by GNU tools have this special GOT value, and because
1081   // we've been doing this for years, it is probably a safe bet to
1082   // keep doing this for now. We really need to revisit this to see
1083   // if we had to do this.
1084   writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1085   for (const FileGot &g : gots) {
1086     auto write = [&](size_t i, const Symbol *s, int64_t a) {
1087       uint64_t va = a;
1088       if (s)
1089         va = s->getVA(a);
1090       writeUint(buf + i * config->wordsize, va);
1091     };
1092     // Write 'page address' entries to the local part of the GOT.
1093     for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1094          g.pagesMap) {
1095       size_t pageCount = l.second.count;
1096       uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1097       for (size_t pi = 0; pi < pageCount; ++pi)
1098         write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1099     }
1100     // Local, global, TLS, reloc-only  entries.
1101     // If TLS entry has a corresponding dynamic relocations, leave it
1102     // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1103     // To calculate the adjustments use offsets for thread-local storage.
1104     // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1105     for (const std::pair<GotEntry, size_t> &p : g.local16)
1106       write(p.second, p.first.first, p.first.second);
1107     // Write VA to the primary GOT only. For secondary GOTs that
1108     // will be done by REL32 dynamic relocations.
1109     if (&g == &gots.front())
1110       for (const std::pair<Symbol *, size_t> &p : g.global)
1111         write(p.second, p.first, 0);
1112     for (const std::pair<Symbol *, size_t> &p : g.relocs)
1113       write(p.second, p.first, 0);
1114     for (const std::pair<Symbol *, size_t> &p : g.tls)
1115       write(p.second, p.first,
1116             p.first->isPreemptible || config->shared ? 0 : -0x7000);
1117     for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1118       if (p.first == nullptr && !config->shared)
1119         write(p.second, nullptr, 1);
1120       else if (p.first && !p.first->isPreemptible) {
1121         // If we are emitting a shared library with relocations we mustn't write
1122         // anything to the GOT here. When using Elf_Rel relocations the value
1123         // one will be treated as an addend and will cause crashes at runtime
1124         if (!config->shared)
1125           write(p.second, nullptr, 1);
1126         write(p.second + 1, p.first, -0x8000);
1127       }
1128     }
1129   }
1130 }
1131 
1132 // On PowerPC the .plt section is used to hold the table of function addresses
1133 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1134 // section. I don't know why we have a BSS style type for the section but it is
1135 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1136 GotPltSection::GotPltSection()
1137     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1138                        ".got.plt") {
1139   if (config->emachine == EM_PPC) {
1140     name = ".plt";
1141   } else if (config->emachine == EM_PPC64) {
1142     type = SHT_NOBITS;
1143     name = ".plt";
1144   }
1145 }
1146 
1147 void GotPltSection::addEntry(Symbol &sym) {
1148   assert(sym.auxIdx == symAux.size() - 1 &&
1149          symAux.back().pltIdx == entries.size());
1150   entries.push_back(&sym);
1151 }
1152 
1153 size_t GotPltSection::getSize() const {
1154   return (target->gotPltHeaderEntriesNum + entries.size()) *
1155          target->gotEntrySize;
1156 }
1157 
1158 void GotPltSection::writeTo(uint8_t *buf) {
1159   target->writeGotPltHeader(buf);
1160   buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1161   for (const Symbol *b : entries) {
1162     target->writeGotPlt(buf, *b);
1163     buf += target->gotEntrySize;
1164   }
1165 }
1166 
1167 bool GotPltSection::isNeeded() const {
1168   // We need to emit GOTPLT even if it's empty if there's a relocation relative
1169   // to it.
1170   return !entries.empty() || hasGotPltOffRel;
1171 }
1172 
1173 static StringRef getIgotPltName() {
1174   // On ARM the IgotPltSection is part of the GotSection.
1175   if (config->emachine == EM_ARM)
1176     return ".got";
1177 
1178   // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1179   // needs to be named the same.
1180   if (config->emachine == EM_PPC64)
1181     return ".plt";
1182 
1183   return ".got.plt";
1184 }
1185 
1186 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1187 // with the IgotPltSection.
1188 IgotPltSection::IgotPltSection()
1189     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1190                        config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1191                        target->gotEntrySize, getIgotPltName()) {}
1192 
1193 void IgotPltSection::addEntry(Symbol &sym) {
1194   assert(symAux.back().pltIdx == entries.size());
1195   entries.push_back(&sym);
1196 }
1197 
1198 size_t IgotPltSection::getSize() const {
1199   return entries.size() * target->gotEntrySize;
1200 }
1201 
1202 void IgotPltSection::writeTo(uint8_t *buf) {
1203   for (const Symbol *b : entries) {
1204     target->writeIgotPlt(buf, *b);
1205     buf += target->gotEntrySize;
1206   }
1207 }
1208 
1209 StringTableSection::StringTableSection(StringRef name, bool dynamic)
1210     : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1211       dynamic(dynamic) {
1212   // ELF string tables start with a NUL byte.
1213   strings.push_back("");
1214   stringMap.try_emplace(CachedHashStringRef(""), 0);
1215   size = 1;
1216 }
1217 
1218 // Adds a string to the string table. If `hashIt` is true we hash and check for
1219 // duplicates. It is optional because the name of global symbols are already
1220 // uniqued and hashing them again has a big cost for a small value: uniquing
1221 // them with some other string that happens to be the same.
1222 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1223   if (hashIt) {
1224     auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1225     if (!r.second)
1226       return r.first->second;
1227   }
1228   if (s.empty())
1229     return 0;
1230   unsigned ret = this->size;
1231   this->size = this->size + s.size() + 1;
1232   strings.push_back(s);
1233   return ret;
1234 }
1235 
1236 void StringTableSection::writeTo(uint8_t *buf) {
1237   for (StringRef s : strings) {
1238     memcpy(buf, s.data(), s.size());
1239     buf[s.size()] = '\0';
1240     buf += s.size() + 1;
1241   }
1242 }
1243 
1244 // Returns the number of entries in .gnu.version_d: the number of
1245 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1246 // Note that we don't support vd_cnt > 1 yet.
1247 static unsigned getVerDefNum() {
1248   return namedVersionDefs().size() + 1;
1249 }
1250 
1251 template <class ELFT>
1252 DynamicSection<ELFT>::DynamicSection()
1253     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1254                        ".dynamic") {
1255   this->entsize = ELFT::Is64Bits ? 16 : 8;
1256 
1257   // .dynamic section is not writable on MIPS and on Fuchsia OS
1258   // which passes -z rodynamic.
1259   // See "Special Section" in Chapter 4 in the following document:
1260   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1261   if (config->emachine == EM_MIPS || config->zRodynamic)
1262     this->flags = SHF_ALLOC;
1263 }
1264 
1265 // The output section .rela.dyn may include these synthetic sections:
1266 //
1267 // - part.relaDyn
1268 // - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1269 // - in.relaPlt: this is included if a linker script places .rela.plt inside
1270 //   .rela.dyn
1271 //
1272 // DT_RELASZ is the total size of the included sections.
1273 static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1274   size_t size = relaDyn.getSize();
1275   if (in.relaIplt->getParent() == relaDyn.getParent())
1276     size += in.relaIplt->getSize();
1277   if (in.relaPlt->getParent() == relaDyn.getParent())
1278     size += in.relaPlt->getSize();
1279   return size;
1280 }
1281 
1282 // A Linker script may assign the RELA relocation sections to the same
1283 // output section. When this occurs we cannot just use the OutputSection
1284 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1285 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1286 static uint64_t addPltRelSz() {
1287   size_t size = in.relaPlt->getSize();
1288   if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1289       in.relaIplt->name == in.relaPlt->name)
1290     size += in.relaIplt->getSize();
1291   return size;
1292 }
1293 
1294 // Add remaining entries to complete .dynamic contents.
1295 template <class ELFT>
1296 std::vector<std::pair<int32_t, uint64_t>>
1297 DynamicSection<ELFT>::computeContents() {
1298   elf::Partition &part = getPartition();
1299   bool isMain = part.name.empty();
1300   std::vector<std::pair<int32_t, uint64_t>> entries;
1301 
1302   auto addInt = [&](int32_t tag, uint64_t val) {
1303     entries.emplace_back(tag, val);
1304   };
1305   auto addInSec = [&](int32_t tag, const InputSection &sec) {
1306     entries.emplace_back(tag, sec.getVA());
1307   };
1308 
1309   for (StringRef s : config->filterList)
1310     addInt(DT_FILTER, part.dynStrTab->addString(s));
1311   for (StringRef s : config->auxiliaryList)
1312     addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1313 
1314   if (!config->rpath.empty())
1315     addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1316            part.dynStrTab->addString(config->rpath));
1317 
1318   for (SharedFile *file : ctx.sharedFiles)
1319     if (file->isNeeded)
1320       addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1321 
1322   if (isMain) {
1323     if (!config->soName.empty())
1324       addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1325   } else {
1326     if (!config->soName.empty())
1327       addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1328     addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1329   }
1330 
1331   // Set DT_FLAGS and DT_FLAGS_1.
1332   uint32_t dtFlags = 0;
1333   uint32_t dtFlags1 = 0;
1334   if (config->bsymbolic == BsymbolicKind::All)
1335     dtFlags |= DF_SYMBOLIC;
1336   if (config->zGlobal)
1337     dtFlags1 |= DF_1_GLOBAL;
1338   if (config->zInitfirst)
1339     dtFlags1 |= DF_1_INITFIRST;
1340   if (config->zInterpose)
1341     dtFlags1 |= DF_1_INTERPOSE;
1342   if (config->zNodefaultlib)
1343     dtFlags1 |= DF_1_NODEFLIB;
1344   if (config->zNodelete)
1345     dtFlags1 |= DF_1_NODELETE;
1346   if (config->zNodlopen)
1347     dtFlags1 |= DF_1_NOOPEN;
1348   if (config->pie)
1349     dtFlags1 |= DF_1_PIE;
1350   if (config->zNow) {
1351     dtFlags |= DF_BIND_NOW;
1352     dtFlags1 |= DF_1_NOW;
1353   }
1354   if (config->zOrigin) {
1355     dtFlags |= DF_ORIGIN;
1356     dtFlags1 |= DF_1_ORIGIN;
1357   }
1358   if (!config->zText)
1359     dtFlags |= DF_TEXTREL;
1360   if (ctx.hasTlsIe && config->shared)
1361     dtFlags |= DF_STATIC_TLS;
1362 
1363   if (dtFlags)
1364     addInt(DT_FLAGS, dtFlags);
1365   if (dtFlags1)
1366     addInt(DT_FLAGS_1, dtFlags1);
1367 
1368   // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1369   // need it for each process, so we don't write it for DSOs. The loader writes
1370   // the pointer into this entry.
1371   //
1372   // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1373   // systems (currently only Fuchsia OS) provide other means to give the
1374   // debugger this information. Such systems may choose make .dynamic read-only.
1375   // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1376   if (!config->shared && !config->relocatable && !config->zRodynamic)
1377     addInt(DT_DEBUG, 0);
1378 
1379   if (part.relaDyn->isNeeded() ||
1380       (in.relaIplt->isNeeded() &&
1381        part.relaDyn->getParent() == in.relaIplt->getParent())) {
1382     addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1383     entries.emplace_back(part.relaDyn->sizeDynamicTag,
1384                          addRelaSz(*part.relaDyn));
1385 
1386     bool isRela = config->isRela;
1387     addInt(isRela ? DT_RELAENT : DT_RELENT,
1388            isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1389 
1390     // MIPS dynamic loader does not support RELCOUNT tag.
1391     // The problem is in the tight relation between dynamic
1392     // relocations and GOT. So do not emit this tag on MIPS.
1393     if (config->emachine != EM_MIPS) {
1394       size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1395       if (config->zCombreloc && numRelativeRels)
1396         addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1397     }
1398   }
1399   if (part.relrDyn && part.relrDyn->getParent() &&
1400       !part.relrDyn->relocs.empty()) {
1401     addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1402              *part.relrDyn);
1403     addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1404            part.relrDyn->getParent()->size);
1405     addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1406            sizeof(Elf_Relr));
1407   }
1408   // .rel[a].plt section usually consists of two parts, containing plt and
1409   // iplt relocations. It is possible to have only iplt relocations in the
1410   // output. In that case relaPlt is empty and have zero offset, the same offset
1411   // as relaIplt has. And we still want to emit proper dynamic tags for that
1412   // case, so here we always use relaPlt as marker for the beginning of
1413   // .rel[a].plt section.
1414   if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1415     addInSec(DT_JMPREL, *in.relaPlt);
1416     entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1417     switch (config->emachine) {
1418     case EM_MIPS:
1419       addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1420       break;
1421     case EM_SPARCV9:
1422       addInSec(DT_PLTGOT, *in.plt);
1423       break;
1424     case EM_AARCH64:
1425       if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1426            return r.type == target->pltRel &&
1427                   r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1428           }) != in.relaPlt->relocs.end())
1429         addInt(DT_AARCH64_VARIANT_PCS, 0);
1430       addInSec(DT_PLTGOT, *in.gotPlt);
1431       break;
1432     case EM_RISCV:
1433       if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) {
1434             return r.type == target->pltRel &&
1435                    (r.sym->stOther & STO_RISCV_VARIANT_CC);
1436           }))
1437         addInt(DT_RISCV_VARIANT_CC, 0);
1438       [[fallthrough]];
1439     default:
1440       addInSec(DT_PLTGOT, *in.gotPlt);
1441       break;
1442     }
1443     addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1444   }
1445 
1446   if (config->emachine == EM_AARCH64) {
1447     if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1448       addInt(DT_AARCH64_BTI_PLT, 0);
1449     if (config->zPacPlt)
1450       addInt(DT_AARCH64_PAC_PLT, 0);
1451 
1452     if (config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
1453       addInt(DT_AARCH64_MEMTAG_MODE, config->androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC);
1454       addInt(DT_AARCH64_MEMTAG_HEAP, config->androidMemtagHeap);
1455       addInt(DT_AARCH64_MEMTAG_STACK, config->androidMemtagStack);
1456     }
1457   }
1458 
1459   addInSec(DT_SYMTAB, *part.dynSymTab);
1460   addInt(DT_SYMENT, sizeof(Elf_Sym));
1461   addInSec(DT_STRTAB, *part.dynStrTab);
1462   addInt(DT_STRSZ, part.dynStrTab->getSize());
1463   if (!config->zText)
1464     addInt(DT_TEXTREL, 0);
1465   if (part.gnuHashTab && part.gnuHashTab->getParent())
1466     addInSec(DT_GNU_HASH, *part.gnuHashTab);
1467   if (part.hashTab && part.hashTab->getParent())
1468     addInSec(DT_HASH, *part.hashTab);
1469 
1470   if (isMain) {
1471     if (Out::preinitArray) {
1472       addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1473       addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1474     }
1475     if (Out::initArray) {
1476       addInt(DT_INIT_ARRAY, Out::initArray->addr);
1477       addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1478     }
1479     if (Out::finiArray) {
1480       addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1481       addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1482     }
1483 
1484     if (Symbol *b = symtab.find(config->init))
1485       if (b->isDefined())
1486         addInt(DT_INIT, b->getVA());
1487     if (Symbol *b = symtab.find(config->fini))
1488       if (b->isDefined())
1489         addInt(DT_FINI, b->getVA());
1490   }
1491 
1492   if (part.verSym && part.verSym->isNeeded())
1493     addInSec(DT_VERSYM, *part.verSym);
1494   if (part.verDef && part.verDef->isLive()) {
1495     addInSec(DT_VERDEF, *part.verDef);
1496     addInt(DT_VERDEFNUM, getVerDefNum());
1497   }
1498   if (part.verNeed && part.verNeed->isNeeded()) {
1499     addInSec(DT_VERNEED, *part.verNeed);
1500     unsigned needNum = 0;
1501     for (SharedFile *f : ctx.sharedFiles)
1502       if (!f->vernauxs.empty())
1503         ++needNum;
1504     addInt(DT_VERNEEDNUM, needNum);
1505   }
1506 
1507   if (config->emachine == EM_MIPS) {
1508     addInt(DT_MIPS_RLD_VERSION, 1);
1509     addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1510     addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1511     addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1512     addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1513 
1514     if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1515       addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1516     else
1517       addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1518     addInSec(DT_PLTGOT, *in.mipsGot);
1519     if (in.mipsRldMap) {
1520       if (!config->pie)
1521         addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1522       // Store the offset to the .rld_map section
1523       // relative to the address of the tag.
1524       addInt(DT_MIPS_RLD_MAP_REL,
1525              in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1526     }
1527   }
1528 
1529   // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1530   // glibc assumes the old-style BSS PLT layout which we don't support.
1531   if (config->emachine == EM_PPC)
1532     addInSec(DT_PPC_GOT, *in.got);
1533 
1534   // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1535   if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1536     // The Glink tag points to 32 bytes before the first lazy symbol resolution
1537     // stub, which starts directly after the header.
1538     addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1539   }
1540 
1541   if (config->emachine == EM_PPC64)
1542     addInt(DT_PPC64_OPT, getPPC64TargetInfo()->ppc64DynamicSectionOpt);
1543 
1544   addInt(DT_NULL, 0);
1545   return entries;
1546 }
1547 
1548 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1549   if (OutputSection *sec = getPartition().dynStrTab->getParent())
1550     getParent()->link = sec->sectionIndex;
1551   this->size = computeContents().size() * this->entsize;
1552 }
1553 
1554 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1555   auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1556 
1557   for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1558     p->d_tag = kv.first;
1559     p->d_un.d_val = kv.second;
1560     ++p;
1561   }
1562 }
1563 
1564 uint64_t DynamicReloc::getOffset() const {
1565   return inputSec->getVA(offsetInSec);
1566 }
1567 
1568 int64_t DynamicReloc::computeAddend() const {
1569   switch (kind) {
1570   case AddendOnly:
1571     assert(sym == nullptr);
1572     return addend;
1573   case AgainstSymbol:
1574     assert(sym != nullptr);
1575     return addend;
1576   case AddendOnlyWithTargetVA:
1577   case AgainstSymbolWithTargetVA: {
1578     uint64_t ca = InputSection::getRelocTargetVA(inputSec->file, type, addend,
1579                                                  getOffset(), *sym, expr);
1580     return config->is64 ? ca : SignExtend64<32>(ca);
1581   }
1582   case MipsMultiGotPage:
1583     assert(sym == nullptr);
1584     return getMipsPageAddr(outputSec->addr) + addend;
1585   }
1586   llvm_unreachable("Unknown DynamicReloc::Kind enum");
1587 }
1588 
1589 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1590   if (!needsDynSymIndex())
1591     return 0;
1592 
1593   size_t index = symTab->getSymbolIndex(sym);
1594   assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1595           !mainPart->dynSymTab->getParent()) &&
1596          "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1597   return index;
1598 }
1599 
1600 RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1601                                              int32_t dynamicTag,
1602                                              int32_t sizeDynamicTag,
1603                                              bool combreloc,
1604                                              unsigned concurrency)
1605     : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1606       dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1607       relocsVec(concurrency), combreloc(combreloc) {}
1608 
1609 void RelocationBaseSection::addSymbolReloc(
1610     RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1611     int64_t addend, std::optional<RelType> addendRelType) {
1612   addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1613            R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1614 }
1615 
1616 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1617     RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym,
1618     RelType addendRelType) {
1619   // No need to write an addend to the section for preemptible symbols.
1620   if (sym.isPreemptible)
1621     addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1622               R_ABS});
1623   else
1624     addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec,
1625              sym, 0, R_ABS, addendRelType);
1626 }
1627 
1628 void RelocationBaseSection::mergeRels() {
1629   size_t newSize = relocs.size();
1630   for (const auto &v : relocsVec)
1631     newSize += v.size();
1632   relocs.reserve(newSize);
1633   for (const auto &v : relocsVec)
1634     llvm::append_range(relocs, v);
1635   relocsVec.clear();
1636 }
1637 
1638 void RelocationBaseSection::partitionRels() {
1639   if (!combreloc)
1640     return;
1641   const RelType relativeRel = target->relativeRel;
1642   numRelativeRelocs =
1643       llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1644       relocs.begin();
1645 }
1646 
1647 void RelocationBaseSection::finalizeContents() {
1648   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1649 
1650   // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1651   // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1652   // case.
1653   if (symTab && symTab->getParent())
1654     getParent()->link = symTab->getParent()->sectionIndex;
1655   else
1656     getParent()->link = 0;
1657 
1658   if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1659     getParent()->flags |= ELF::SHF_INFO_LINK;
1660     getParent()->info = in.gotPlt->getParent()->sectionIndex;
1661   }
1662   if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1663     getParent()->flags |= ELF::SHF_INFO_LINK;
1664     getParent()->info = in.igotPlt->getParent()->sectionIndex;
1665   }
1666 }
1667 
1668 void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1669   r_offset = getOffset();
1670   r_sym = getSymIndex(symtab);
1671   addend = computeAddend();
1672   kind = AddendOnly; // Catch errors
1673 }
1674 
1675 void RelocationBaseSection::computeRels() {
1676   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1677   parallelForEach(relocs,
1678                   [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1679   // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1680   // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1681   // is to make results easier to read.
1682   if (combreloc) {
1683     auto nonRelative = relocs.begin() + numRelativeRelocs;
1684     parallelSort(relocs.begin(), nonRelative,
1685                  [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1686     // Non-relative relocations are few, so don't bother with parallelSort.
1687     llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1688       return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1689     });
1690   }
1691 }
1692 
1693 template <class ELFT>
1694 RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc,
1695                                            unsigned concurrency)
1696     : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1697                             config->isRela ? DT_RELA : DT_REL,
1698                             config->isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1699                             concurrency) {
1700   this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1701 }
1702 
1703 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1704   computeRels();
1705   for (const DynamicReloc &rel : relocs) {
1706     auto *p = reinterpret_cast<Elf_Rela *>(buf);
1707     p->r_offset = rel.r_offset;
1708     p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1709     if (config->isRela)
1710       p->r_addend = rel.addend;
1711     buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1712   }
1713 }
1714 
1715 RelrBaseSection::RelrBaseSection(unsigned concurrency)
1716     : SyntheticSection(SHF_ALLOC,
1717                        config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1718                        config->wordsize, ".relr.dyn"),
1719       relocsVec(concurrency) {}
1720 
1721 void RelrBaseSection::mergeRels() {
1722   size_t newSize = relocs.size();
1723   for (const auto &v : relocsVec)
1724     newSize += v.size();
1725   relocs.reserve(newSize);
1726   for (const auto &v : relocsVec)
1727     llvm::append_range(relocs, v);
1728   relocsVec.clear();
1729 }
1730 
1731 template <class ELFT>
1732 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1733     StringRef name, unsigned concurrency)
1734     : RelocationBaseSection(
1735           name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1736           config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1737           config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1738           /*combreloc=*/false, concurrency) {
1739   this->entsize = 1;
1740 }
1741 
1742 template <class ELFT>
1743 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1744   // This function computes the contents of an Android-format packed relocation
1745   // section.
1746   //
1747   // This format compresses relocations by using relocation groups to factor out
1748   // fields that are common between relocations and storing deltas from previous
1749   // relocations in SLEB128 format (which has a short representation for small
1750   // numbers). A good example of a relocation type with common fields is
1751   // R_*_RELATIVE, which is normally used to represent function pointers in
1752   // vtables. In the REL format, each relative relocation has the same r_info
1753   // field, and is only different from other relative relocations in terms of
1754   // the r_offset field. By sorting relocations by offset, grouping them by
1755   // r_info and representing each relocation with only the delta from the
1756   // previous offset, each 8-byte relocation can be compressed to as little as 1
1757   // byte (or less with run-length encoding). This relocation packer was able to
1758   // reduce the size of the relocation section in an Android Chromium DSO from
1759   // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1760   //
1761   // A relocation section consists of a header containing the literal bytes
1762   // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1763   // elements are the total number of relocations in the section and an initial
1764   // r_offset value. The remaining elements define a sequence of relocation
1765   // groups. Each relocation group starts with a header consisting of the
1766   // following elements:
1767   //
1768   // - the number of relocations in the relocation group
1769   // - flags for the relocation group
1770   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1771   //   for each relocation in the group.
1772   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1773   //   field for each relocation in the group.
1774   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1775   //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1776   //   each relocation in the group.
1777   //
1778   // Following the relocation group header are descriptions of each of the
1779   // relocations in the group. They consist of the following elements:
1780   //
1781   // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1782   //   delta for this relocation.
1783   // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1784   //   field for this relocation.
1785   // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1786   //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1787   //   this relocation.
1788 
1789   size_t oldSize = relocData.size();
1790 
1791   relocData = {'A', 'P', 'S', '2'};
1792   raw_svector_ostream os(relocData);
1793   auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1794 
1795   // The format header includes the number of relocations and the initial
1796   // offset (we set this to zero because the first relocation group will
1797   // perform the initial adjustment).
1798   add(relocs.size());
1799   add(0);
1800 
1801   std::vector<Elf_Rela> relatives, nonRelatives;
1802 
1803   for (const DynamicReloc &rel : relocs) {
1804     Elf_Rela r;
1805     r.r_offset = rel.getOffset();
1806     r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1807                        rel.type, false);
1808     r.r_addend = config->isRela ? rel.computeAddend() : 0;
1809 
1810     if (r.getType(config->isMips64EL) == target->relativeRel)
1811       relatives.push_back(r);
1812     else
1813       nonRelatives.push_back(r);
1814   }
1815 
1816   llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1817     return a.r_offset < b.r_offset;
1818   });
1819 
1820   // Try to find groups of relative relocations which are spaced one word
1821   // apart from one another. These generally correspond to vtable entries. The
1822   // format allows these groups to be encoded using a sort of run-length
1823   // encoding, but each group will cost 7 bytes in addition to the offset from
1824   // the previous group, so it is only profitable to do this for groups of
1825   // size 8 or larger.
1826   std::vector<Elf_Rela> ungroupedRelatives;
1827   std::vector<std::vector<Elf_Rela>> relativeGroups;
1828   for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1829     std::vector<Elf_Rela> group;
1830     do {
1831       group.push_back(*i++);
1832     } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1833 
1834     if (group.size() < 8)
1835       ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1836                                 group.end());
1837     else
1838       relativeGroups.emplace_back(std::move(group));
1839   }
1840 
1841   // For non-relative relocations, we would like to:
1842   //   1. Have relocations with the same symbol offset to be consecutive, so
1843   //      that the runtime linker can speed-up symbol lookup by implementing an
1844   //      1-entry cache.
1845   //   2. Group relocations by r_info to reduce the size of the relocation
1846   //      section.
1847   // Since the symbol offset is the high bits in r_info, sorting by r_info
1848   // allows us to do both.
1849   //
1850   // For Rela, we also want to sort by r_addend when r_info is the same. This
1851   // enables us to group by r_addend as well.
1852   llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1853     if (a.r_info != b.r_info)
1854       return a.r_info < b.r_info;
1855     if (a.r_addend != b.r_addend)
1856       return a.r_addend < b.r_addend;
1857     return a.r_offset < b.r_offset;
1858   });
1859 
1860   // Group relocations with the same r_info. Note that each group emits a group
1861   // header and that may make the relocation section larger. It is hard to
1862   // estimate the size of a group header as the encoded size of that varies
1863   // based on r_info. However, we can approximate this trade-off by the number
1864   // of values encoded. Each group header contains 3 values, and each relocation
1865   // in a group encodes one less value, as compared to when it is not grouped.
1866   // Therefore, we only group relocations if there are 3 or more of them with
1867   // the same r_info.
1868   //
1869   // For Rela, the addend for most non-relative relocations is zero, and thus we
1870   // can usually get a smaller relocation section if we group relocations with 0
1871   // addend as well.
1872   std::vector<Elf_Rela> ungroupedNonRelatives;
1873   std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1874   for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1875     auto j = i + 1;
1876     while (j != e && i->r_info == j->r_info &&
1877            (!config->isRela || i->r_addend == j->r_addend))
1878       ++j;
1879     if (j - i < 3 || (config->isRela && i->r_addend != 0))
1880       ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1881     else
1882       nonRelativeGroups.emplace_back(i, j);
1883     i = j;
1884   }
1885 
1886   // Sort ungrouped relocations by offset to minimize the encoded length.
1887   llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1888     return a.r_offset < b.r_offset;
1889   });
1890 
1891   unsigned hasAddendIfRela =
1892       config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1893 
1894   uint64_t offset = 0;
1895   uint64_t addend = 0;
1896 
1897   // Emit the run-length encoding for the groups of adjacent relative
1898   // relocations. Each group is represented using two groups in the packed
1899   // format. The first is used to set the current offset to the start of the
1900   // group (and also encodes the first relocation), and the second encodes the
1901   // remaining relocations.
1902   for (std::vector<Elf_Rela> &g : relativeGroups) {
1903     // The first relocation in the group.
1904     add(1);
1905     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1906         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1907     add(g[0].r_offset - offset);
1908     add(target->relativeRel);
1909     if (config->isRela) {
1910       add(g[0].r_addend - addend);
1911       addend = g[0].r_addend;
1912     }
1913 
1914     // The remaining relocations.
1915     add(g.size() - 1);
1916     add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1917         RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1918     add(config->wordsize);
1919     add(target->relativeRel);
1920     if (config->isRela) {
1921       for (const auto &i : llvm::drop_begin(g)) {
1922         add(i.r_addend - addend);
1923         addend = i.r_addend;
1924       }
1925     }
1926 
1927     offset = g.back().r_offset;
1928   }
1929 
1930   // Now the ungrouped relatives.
1931   if (!ungroupedRelatives.empty()) {
1932     add(ungroupedRelatives.size());
1933     add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1934     add(target->relativeRel);
1935     for (Elf_Rela &r : ungroupedRelatives) {
1936       add(r.r_offset - offset);
1937       offset = r.r_offset;
1938       if (config->isRela) {
1939         add(r.r_addend - addend);
1940         addend = r.r_addend;
1941       }
1942     }
1943   }
1944 
1945   // Grouped non-relatives.
1946   for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1947     add(g.size());
1948     add(RELOCATION_GROUPED_BY_INFO_FLAG);
1949     add(g[0].r_info);
1950     for (const Elf_Rela &r : g) {
1951       add(r.r_offset - offset);
1952       offset = r.r_offset;
1953     }
1954     addend = 0;
1955   }
1956 
1957   // Finally the ungrouped non-relative relocations.
1958   if (!ungroupedNonRelatives.empty()) {
1959     add(ungroupedNonRelatives.size());
1960     add(hasAddendIfRela);
1961     for (Elf_Rela &r : ungroupedNonRelatives) {
1962       add(r.r_offset - offset);
1963       offset = r.r_offset;
1964       add(r.r_info);
1965       if (config->isRela) {
1966         add(r.r_addend - addend);
1967         addend = r.r_addend;
1968       }
1969     }
1970   }
1971 
1972   // Don't allow the section to shrink; otherwise the size of the section can
1973   // oscillate infinitely.
1974   if (relocData.size() < oldSize)
1975     relocData.append(oldSize - relocData.size(), 0);
1976 
1977   // Returns whether the section size changed. We need to keep recomputing both
1978   // section layout and the contents of this section until the size converges
1979   // because changing this section's size can affect section layout, which in
1980   // turn can affect the sizes of the LEB-encoded integers stored in this
1981   // section.
1982   return relocData.size() != oldSize;
1983 }
1984 
1985 template <class ELFT>
1986 RelrSection<ELFT>::RelrSection(unsigned concurrency)
1987     : RelrBaseSection(concurrency) {
1988   this->entsize = config->wordsize;
1989 }
1990 
1991 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1992   // This function computes the contents of an SHT_RELR packed relocation
1993   // section.
1994   //
1995   // Proposal for adding SHT_RELR sections to generic-abi is here:
1996   //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1997   //
1998   // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1999   // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2000   //
2001   // i.e. start with an address, followed by any number of bitmaps. The address
2002   // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2003   // relocations each, at subsequent offsets following the last address entry.
2004   //
2005   // The bitmap entries must have 1 in the least significant bit. The assumption
2006   // here is that an address cannot have 1 in lsb. Odd addresses are not
2007   // supported.
2008   //
2009   // Excluding the least significant bit in the bitmap, each non-zero bit in
2010   // the bitmap represents a relocation to be applied to a corresponding machine
2011   // word that follows the base address word. The second least significant bit
2012   // represents the machine word immediately following the initial address, and
2013   // each bit that follows represents the next word, in linear order. As such,
2014   // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2015   // 63 relocations in a 64-bit object.
2016   //
2017   // This encoding has a couple of interesting properties:
2018   // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2019   //    even means address, odd means bitmap.
2020   // 2. Just a simple list of addresses is a valid encoding.
2021 
2022   size_t oldSize = relrRelocs.size();
2023   relrRelocs.clear();
2024 
2025   // Same as Config->Wordsize but faster because this is a compile-time
2026   // constant.
2027   const size_t wordsize = sizeof(typename ELFT::uint);
2028 
2029   // Number of bits to use for the relocation offsets bitmap.
2030   // Must be either 63 or 31.
2031   const size_t nBits = wordsize * 8 - 1;
2032 
2033   // Get offsets for all relative relocations and sort them.
2034   std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2035   for (auto [i, r] : llvm::enumerate(relocs))
2036     offsets[i] = r.getOffset();
2037   llvm::sort(offsets.get(), offsets.get() + relocs.size());
2038 
2039   // For each leading relocation, find following ones that can be folded
2040   // as a bitmap and fold them.
2041   for (size_t i = 0, e = relocs.size(); i != e;) {
2042     // Add a leading relocation.
2043     relrRelocs.push_back(Elf_Relr(offsets[i]));
2044     uint64_t base = offsets[i] + wordsize;
2045     ++i;
2046 
2047     // Find foldable relocations to construct bitmaps.
2048     for (;;) {
2049       uint64_t bitmap = 0;
2050       for (; i != e; ++i) {
2051         uint64_t d = offsets[i] - base;
2052         if (d >= nBits * wordsize || d % wordsize)
2053           break;
2054         bitmap |= uint64_t(1) << (d / wordsize);
2055       }
2056       if (!bitmap)
2057         break;
2058       relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2059       base += nBits * wordsize;
2060     }
2061   }
2062 
2063   // Don't allow the section to shrink; otherwise the size of the section can
2064   // oscillate infinitely. Trailing 1s do not decode to more relocations.
2065   if (relrRelocs.size() < oldSize) {
2066     log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2067         " padding word(s)");
2068     relrRelocs.resize(oldSize, Elf_Relr(1));
2069   }
2070 
2071   return relrRelocs.size() != oldSize;
2072 }
2073 
2074 SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2075     : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2076                        strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2077                        config->wordsize,
2078                        strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2079       strTabSec(strTabSec) {}
2080 
2081 // Orders symbols according to their positions in the GOT,
2082 // in compliance with MIPS ABI rules.
2083 // See "Global Offset Table" in Chapter 5 in the following document
2084 // for detailed description:
2085 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2086 static bool sortMipsSymbols(const SymbolTableEntry &l,
2087                             const SymbolTableEntry &r) {
2088   // Sort entries related to non-local preemptible symbols by GOT indexes.
2089   // All other entries go to the beginning of a dynsym in arbitrary order.
2090   if (l.sym->isInGot() && r.sym->isInGot())
2091     return l.sym->getGotIdx() < r.sym->getGotIdx();
2092   if (!l.sym->isInGot() && !r.sym->isInGot())
2093     return false;
2094   return !l.sym->isInGot();
2095 }
2096 
2097 void SymbolTableBaseSection::finalizeContents() {
2098   if (OutputSection *sec = strTabSec.getParent())
2099     getParent()->link = sec->sectionIndex;
2100 
2101   if (this->type != SHT_DYNSYM) {
2102     sortSymTabSymbols();
2103     return;
2104   }
2105 
2106   // If it is a .dynsym, there should be no local symbols, but we need
2107   // to do a few things for the dynamic linker.
2108 
2109   // Section's Info field has the index of the first non-local symbol.
2110   // Because the first symbol entry is a null entry, 1 is the first.
2111   getParent()->info = 1;
2112 
2113   if (getPartition().gnuHashTab) {
2114     // NB: It also sorts Symbols to meet the GNU hash table requirements.
2115     getPartition().gnuHashTab->addSymbols(symbols);
2116   } else if (config->emachine == EM_MIPS) {
2117     llvm::stable_sort(symbols, sortMipsSymbols);
2118   }
2119 
2120   // Only the main partition's dynsym indexes are stored in the symbols
2121   // themselves. All other partitions use a lookup table.
2122   if (this == mainPart->dynSymTab.get()) {
2123     size_t i = 0;
2124     for (const SymbolTableEntry &s : symbols)
2125       s.sym->dynsymIndex = ++i;
2126   }
2127 }
2128 
2129 // The ELF spec requires that all local symbols precede global symbols, so we
2130 // sort symbol entries in this function. (For .dynsym, we don't do that because
2131 // symbols for dynamic linking are inherently all globals.)
2132 //
2133 // Aside from above, we put local symbols in groups starting with the STT_FILE
2134 // symbol. That is convenient for purpose of identifying where are local symbols
2135 // coming from.
2136 void SymbolTableBaseSection::sortSymTabSymbols() {
2137   // Move all local symbols before global symbols.
2138   auto e = std::stable_partition(
2139       symbols.begin(), symbols.end(),
2140       [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2141   size_t numLocals = e - symbols.begin();
2142   getParent()->info = numLocals + 1;
2143 
2144   // We want to group the local symbols by file. For that we rebuild the local
2145   // part of the symbols vector. We do not need to care about the STT_FILE
2146   // symbols, they are already naturally placed first in each group. That
2147   // happens because STT_FILE is always the first symbol in the object and hence
2148   // precede all other local symbols we add for a file.
2149   MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2150   for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2151     arr[s.sym->file].push_back(s);
2152 
2153   auto i = symbols.begin();
2154   for (auto &p : arr)
2155     for (SymbolTableEntry &entry : p.second)
2156       *i++ = entry;
2157 }
2158 
2159 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2160   // Adding a local symbol to a .dynsym is a bug.
2161   assert(this->type != SHT_DYNSYM || !b->isLocal());
2162   symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2163 }
2164 
2165 size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2166   if (this == mainPart->dynSymTab.get())
2167     return sym->dynsymIndex;
2168 
2169   // Initializes symbol lookup tables lazily. This is used only for -r,
2170   // --emit-relocs and dynsyms in partitions other than the main one.
2171   llvm::call_once(onceFlag, [&] {
2172     symbolIndexMap.reserve(symbols.size());
2173     size_t i = 0;
2174     for (const SymbolTableEntry &e : symbols) {
2175       if (e.sym->type == STT_SECTION)
2176         sectionIndexMap[e.sym->getOutputSection()] = ++i;
2177       else
2178         symbolIndexMap[e.sym] = ++i;
2179     }
2180   });
2181 
2182   // Section symbols are mapped based on their output sections
2183   // to maintain their semantics.
2184   if (sym->type == STT_SECTION)
2185     return sectionIndexMap.lookup(sym->getOutputSection());
2186   return symbolIndexMap.lookup(sym);
2187 }
2188 
2189 template <class ELFT>
2190 SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2191     : SymbolTableBaseSection(strTabSec) {
2192   this->entsize = sizeof(Elf_Sym);
2193 }
2194 
2195 static BssSection *getCommonSec(Symbol *sym) {
2196   if (config->relocatable)
2197     if (auto *d = dyn_cast<Defined>(sym))
2198       return dyn_cast_or_null<BssSection>(d->section);
2199   return nullptr;
2200 }
2201 
2202 static uint32_t getSymSectionIndex(Symbol *sym) {
2203   assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2204   if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
2205     return SHN_UNDEF;
2206   if (const OutputSection *os = sym->getOutputSection())
2207     return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2208                                              : os->sectionIndex;
2209   return SHN_ABS;
2210 }
2211 
2212 // Write the internal symbol table contents to the output symbol table.
2213 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2214   // The first entry is a null entry as per the ELF spec.
2215   buf += sizeof(Elf_Sym);
2216 
2217   auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2218 
2219   for (SymbolTableEntry &ent : symbols) {
2220     Symbol *sym = ent.sym;
2221     bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2222 
2223     // Set st_name, st_info and st_other.
2224     eSym->st_name = ent.strTabOffset;
2225     eSym->setBindingAndType(sym->binding, sym->type);
2226     eSym->st_other = sym->stOther;
2227 
2228     if (BssSection *commonSec = getCommonSec(sym)) {
2229       // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2230       // holds SHN_COMMON and st_value holds the alignment.
2231       eSym->st_shndx = SHN_COMMON;
2232       eSym->st_value = commonSec->addralign;
2233       eSym->st_size = cast<Defined>(sym)->size;
2234     } else {
2235       const uint32_t shndx = getSymSectionIndex(sym);
2236       if (isDefinedHere) {
2237         eSym->st_shndx = shndx;
2238         eSym->st_value = sym->getVA();
2239         // Copy symbol size if it is a defined symbol. st_size is not
2240         // significant for undefined symbols, so whether copying it or not is up
2241         // to us if that's the case. We'll leave it as zero because by not
2242         // setting a value, we can get the exact same outputs for two sets of
2243         // input files that differ only in undefined symbol size in DSOs.
2244         eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2245       } else {
2246         eSym->st_shndx = 0;
2247         eSym->st_value = 0;
2248         eSym->st_size = 0;
2249       }
2250     }
2251 
2252     ++eSym;
2253   }
2254 
2255   // On MIPS we need to mark symbol which has a PLT entry and requires
2256   // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2257   // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2258   // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2259   if (config->emachine == EM_MIPS) {
2260     auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2261 
2262     for (SymbolTableEntry &ent : symbols) {
2263       Symbol *sym = ent.sym;
2264       if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY))
2265         eSym->st_other |= STO_MIPS_PLT;
2266       if (isMicroMips()) {
2267         // We already set the less-significant bit for symbols
2268         // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2269         // records. That allows us to distinguish such symbols in
2270         // the `MIPS<ELFT>::relocate()` routine. Now we should
2271         // clear that bit for non-dynamic symbol table, so tools
2272         // like `objdump` will be able to deal with a correct
2273         // symbol position.
2274         if (sym->isDefined() &&
2275             ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
2276           if (!strTabSec.isDynamic())
2277             eSym->st_value &= ~1;
2278           eSym->st_other |= STO_MIPS_MICROMIPS;
2279         }
2280       }
2281       if (config->relocatable)
2282         if (auto *d = dyn_cast<Defined>(sym))
2283           if (isMipsPIC<ELFT>(d))
2284             eSym->st_other |= STO_MIPS_PIC;
2285       ++eSym;
2286     }
2287   }
2288 }
2289 
2290 SymtabShndxSection::SymtabShndxSection()
2291     : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2292   this->entsize = 4;
2293 }
2294 
2295 void SymtabShndxSection::writeTo(uint8_t *buf) {
2296   // We write an array of 32 bit values, where each value has 1:1 association
2297   // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2298   // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2299   buf += 4; // Ignore .symtab[0] entry.
2300   for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2301     if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2302       write32(buf, entry.sym->getOutputSection()->sectionIndex);
2303     buf += 4;
2304   }
2305 }
2306 
2307 bool SymtabShndxSection::isNeeded() const {
2308   // SHT_SYMTAB can hold symbols with section indices values up to
2309   // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2310   // section. Problem is that we reveal the final section indices a bit too
2311   // late, and we do not know them here. For simplicity, we just always create
2312   // a .symtab_shndx section when the amount of output sections is huge.
2313   size_t size = 0;
2314   for (SectionCommand *cmd : script->sectionCommands)
2315     if (isa<OutputDesc>(cmd))
2316       ++size;
2317   return size >= SHN_LORESERVE;
2318 }
2319 
2320 void SymtabShndxSection::finalizeContents() {
2321   getParent()->link = in.symTab->getParent()->sectionIndex;
2322 }
2323 
2324 size_t SymtabShndxSection::getSize() const {
2325   return in.symTab->getNumSymbols() * 4;
2326 }
2327 
2328 // .hash and .gnu.hash sections contain on-disk hash tables that map
2329 // symbol names to their dynamic symbol table indices. Their purpose
2330 // is to help the dynamic linker resolve symbols quickly. If ELF files
2331 // don't have them, the dynamic linker has to do linear search on all
2332 // dynamic symbols, which makes programs slower. Therefore, a .hash
2333 // section is added to a DSO by default.
2334 //
2335 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2336 // Each ELF file has a list of DSOs that the ELF file depends on and a
2337 // list of dynamic symbols that need to be resolved from any of the
2338 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2339 // where m is the number of DSOs and n is the number of dynamic
2340 // symbols. For modern large programs, both m and n are large.  So
2341 // making each step faster by using hash tables substantially
2342 // improves time to load programs.
2343 //
2344 // (Note that this is not the only way to design the shared library.
2345 // For instance, the Windows DLL takes a different approach. On
2346 // Windows, each dynamic symbol has a name of DLL from which the symbol
2347 // has to be resolved. That makes the cost of symbol resolution O(n).
2348 // This disables some hacky techniques you can use on Unix such as
2349 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2350 //
2351 // Due to historical reasons, we have two different hash tables, .hash
2352 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2353 // and better version of .hash. .hash is just an on-disk hash table, but
2354 // .gnu.hash has a bloom filter in addition to a hash table to skip
2355 // DSOs very quickly. If you are sure that your dynamic linker knows
2356 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2357 // safe bet is to specify --hash-style=both for backward compatibility.
2358 GnuHashTableSection::GnuHashTableSection()
2359     : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2360 }
2361 
2362 void GnuHashTableSection::finalizeContents() {
2363   if (OutputSection *sec = getPartition().dynSymTab->getParent())
2364     getParent()->link = sec->sectionIndex;
2365 
2366   // Computes bloom filter size in word size. We want to allocate 12
2367   // bits for each symbol. It must be a power of two.
2368   if (symbols.empty()) {
2369     maskWords = 1;
2370   } else {
2371     uint64_t numBits = symbols.size() * 12;
2372     maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2373   }
2374 
2375   size = 16;                            // Header
2376   size += config->wordsize * maskWords; // Bloom filter
2377   size += nBuckets * 4;                 // Hash buckets
2378   size += symbols.size() * 4;           // Hash values
2379 }
2380 
2381 void GnuHashTableSection::writeTo(uint8_t *buf) {
2382   // Write a header.
2383   write32(buf, nBuckets);
2384   write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2385   write32(buf + 8, maskWords);
2386   write32(buf + 12, Shift2);
2387   buf += 16;
2388 
2389   // Write the 2-bit bloom filter.
2390   const unsigned c = config->is64 ? 64 : 32;
2391   for (const Entry &sym : symbols) {
2392     // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2393     // the word using bits [0:5] and [26:31].
2394     size_t i = (sym.hash / c) & (maskWords - 1);
2395     uint64_t val = readUint(buf + i * config->wordsize);
2396     val |= uint64_t(1) << (sym.hash % c);
2397     val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2398     writeUint(buf + i * config->wordsize, val);
2399   }
2400   buf += config->wordsize * maskWords;
2401 
2402   // Write the hash table.
2403   uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2404   uint32_t oldBucket = -1;
2405   uint32_t *values = buckets + nBuckets;
2406   for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2407     // Write a hash value. It represents a sequence of chains that share the
2408     // same hash modulo value. The last element of each chain is terminated by
2409     // LSB 1.
2410     uint32_t hash = i->hash;
2411     bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2412     hash = isLastInChain ? hash | 1 : hash & ~1;
2413     write32(values++, hash);
2414 
2415     if (i->bucketIdx == oldBucket)
2416       continue;
2417     // Write a hash bucket. Hash buckets contain indices in the following hash
2418     // value table.
2419     write32(buckets + i->bucketIdx,
2420             getPartition().dynSymTab->getSymbolIndex(i->sym));
2421     oldBucket = i->bucketIdx;
2422   }
2423 }
2424 
2425 // Add symbols to this symbol hash table. Note that this function
2426 // destructively sort a given vector -- which is needed because
2427 // GNU-style hash table places some sorting requirements.
2428 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2429   // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2430   // its type correctly.
2431   auto mid =
2432       std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2433         return !s.sym->isDefined() || s.sym->partition != partition;
2434       });
2435 
2436   // We chose load factor 4 for the on-disk hash table. For each hash
2437   // collision, the dynamic linker will compare a uint32_t hash value.
2438   // Since the integer comparison is quite fast, we believe we can
2439   // make the load factor even larger. 4 is just a conservative choice.
2440   //
2441   // Note that we don't want to create a zero-sized hash table because
2442   // Android loader as of 2018 doesn't like a .gnu.hash containing such
2443   // table. If that's the case, we create a hash table with one unused
2444   // dummy slot.
2445   nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2446 
2447   if (mid == v.end())
2448     return;
2449 
2450   for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2451     Symbol *b = ent.sym;
2452     uint32_t hash = hashGnu(b->getName());
2453     uint32_t bucketIdx = hash % nBuckets;
2454     symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2455   }
2456 
2457   llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2458     return std::tie(l.bucketIdx, l.strTabOffset) <
2459            std::tie(r.bucketIdx, r.strTabOffset);
2460   });
2461 
2462   v.erase(mid, v.end());
2463   for (const Entry &ent : symbols)
2464     v.push_back({ent.sym, ent.strTabOffset});
2465 }
2466 
2467 HashTableSection::HashTableSection()
2468     : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2469   this->entsize = 4;
2470 }
2471 
2472 void HashTableSection::finalizeContents() {
2473   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2474 
2475   if (OutputSection *sec = symTab->getParent())
2476     getParent()->link = sec->sectionIndex;
2477 
2478   unsigned numEntries = 2;               // nbucket and nchain.
2479   numEntries += symTab->getNumSymbols(); // The chain entries.
2480 
2481   // Create as many buckets as there are symbols.
2482   numEntries += symTab->getNumSymbols();
2483   this->size = numEntries * 4;
2484 }
2485 
2486 void HashTableSection::writeTo(uint8_t *buf) {
2487   SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2488   unsigned numSymbols = symTab->getNumSymbols();
2489 
2490   uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2491   write32(p++, numSymbols); // nbucket
2492   write32(p++, numSymbols); // nchain
2493 
2494   uint32_t *buckets = p;
2495   uint32_t *chains = p + numSymbols;
2496 
2497   for (const SymbolTableEntry &s : symTab->getSymbols()) {
2498     Symbol *sym = s.sym;
2499     StringRef name = sym->getName();
2500     unsigned i = sym->dynsymIndex;
2501     uint32_t hash = hashSysV(name) % numSymbols;
2502     chains[i] = buckets[hash];
2503     write32(buckets + hash, i);
2504   }
2505 }
2506 
2507 PltSection::PltSection()
2508     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2509       headerSize(target->pltHeaderSize) {
2510   // On PowerPC, this section contains lazy symbol resolvers.
2511   if (config->emachine == EM_PPC64) {
2512     name = ".glink";
2513     addralign = 4;
2514   }
2515 
2516   // On x86 when IBT is enabled, this section contains the second PLT (lazy
2517   // symbol resolvers).
2518   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2519       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2520     name = ".plt.sec";
2521 
2522   // The PLT needs to be writable on SPARC as the dynamic linker will
2523   // modify the instructions in the PLT entries.
2524   if (config->emachine == EM_SPARCV9)
2525     this->flags |= SHF_WRITE;
2526 }
2527 
2528 void PltSection::writeTo(uint8_t *buf) {
2529   // At beginning of PLT, we have code to call the dynamic
2530   // linker to resolve dynsyms at runtime. Write such code.
2531   target->writePltHeader(buf);
2532   size_t off = headerSize;
2533 
2534   for (const Symbol *sym : entries) {
2535     target->writePlt(buf + off, *sym, getVA() + off);
2536     off += target->pltEntrySize;
2537   }
2538 }
2539 
2540 void PltSection::addEntry(Symbol &sym) {
2541   assert(sym.auxIdx == symAux.size() - 1);
2542   symAux.back().pltIdx = entries.size();
2543   entries.push_back(&sym);
2544 }
2545 
2546 size_t PltSection::getSize() const {
2547   return headerSize + entries.size() * target->pltEntrySize;
2548 }
2549 
2550 bool PltSection::isNeeded() const {
2551   // For -z retpolineplt, .iplt needs the .plt header.
2552   return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2553 }
2554 
2555 // Used by ARM to add mapping symbols in the PLT section, which aid
2556 // disassembly.
2557 void PltSection::addSymbols() {
2558   target->addPltHeaderSymbols(*this);
2559 
2560   size_t off = headerSize;
2561   for (size_t i = 0; i < entries.size(); ++i) {
2562     target->addPltSymbols(*this, off);
2563     off += target->pltEntrySize;
2564   }
2565 }
2566 
2567 IpltSection::IpltSection()
2568     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2569   if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2570     name = ".glink";
2571     addralign = 4;
2572   }
2573 }
2574 
2575 void IpltSection::writeTo(uint8_t *buf) {
2576   uint32_t off = 0;
2577   for (const Symbol *sym : entries) {
2578     target->writeIplt(buf + off, *sym, getVA() + off);
2579     off += target->ipltEntrySize;
2580   }
2581 }
2582 
2583 size_t IpltSection::getSize() const {
2584   return entries.size() * target->ipltEntrySize;
2585 }
2586 
2587 void IpltSection::addEntry(Symbol &sym) {
2588   assert(sym.auxIdx == symAux.size() - 1);
2589   symAux.back().pltIdx = entries.size();
2590   entries.push_back(&sym);
2591 }
2592 
2593 // ARM uses mapping symbols to aid disassembly.
2594 void IpltSection::addSymbols() {
2595   size_t off = 0;
2596   for (size_t i = 0, e = entries.size(); i != e; ++i) {
2597     target->addPltSymbols(*this, off);
2598     off += target->pltEntrySize;
2599   }
2600 }
2601 
2602 PPC32GlinkSection::PPC32GlinkSection() {
2603   name = ".glink";
2604   addralign = 4;
2605 }
2606 
2607 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2608   writePPC32GlinkSection(buf, entries.size());
2609 }
2610 
2611 size_t PPC32GlinkSection::getSize() const {
2612   return headerSize + entries.size() * target->pltEntrySize + footerSize;
2613 }
2614 
2615 // This is an x86-only extra PLT section and used only when a security
2616 // enhancement feature called CET is enabled. In this comment, I'll explain what
2617 // the feature is and why we have two PLT sections if CET is enabled.
2618 //
2619 // So, what does CET do? CET introduces a new restriction to indirect jump
2620 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2621 // execute an indirect jump instruction, the processor verifies that a special
2622 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2623 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2624 // does not start with that instruction, the processor raises an exception
2625 // instead of continuing executing code.
2626 //
2627 // If CET is enabled, the compiler emits endbr to all locations where indirect
2628 // jumps may jump to.
2629 //
2630 // This mechanism makes it extremely hard to transfer the control to a middle of
2631 // a function that is not supporsed to be a indirect jump target, preventing
2632 // certain types of attacks such as ROP or JOP.
2633 //
2634 // Note that the processors in the market as of 2019 don't actually support the
2635 // feature. Only the spec is available at the moment.
2636 //
2637 // Now, I'll explain why we have this extra PLT section for CET.
2638 //
2639 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2640 // start with endbr. The problem is there's no extra space for endbr (which is 4
2641 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2642 // used.
2643 //
2644 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2645 // Remember that each PLT entry contains code to jump to an address read from
2646 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2647 // the former code is written to .plt.sec, and the latter code is written to
2648 // .plt.
2649 //
2650 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2651 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2652 // contain only code for lazy symbol resolution.
2653 //
2654 // In other words, this is how the 2-PLT scheme works. Application code is
2655 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2656 // entry contains code to read an address from a corresponding .got.plt entry
2657 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2658 // when an application calls an external function for the first time, the
2659 // control is transferred to a function that resolves a symbol name from
2660 // external shared object files. That function then rewrites a .got.plt entry
2661 // with a resolved address, so that the subsequent function calls directly jump
2662 // to a desired location from .plt.sec.
2663 //
2664 // There is an open question as to whether the 2-PLT scheme was desirable or
2665 // not. We could have simply extended the PLT entry size to 32-bytes to
2666 // accommodate endbr, and that scheme would have been much simpler than the
2667 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2668 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2669 // that the optimization actually makes a difference.
2670 //
2671 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2672 // depend on it, so we implement the ABI.
2673 IBTPltSection::IBTPltSection()
2674     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2675 
2676 void IBTPltSection::writeTo(uint8_t *buf) {
2677   target->writeIBTPlt(buf, in.plt->getNumEntries());
2678 }
2679 
2680 size_t IBTPltSection::getSize() const {
2681   // 16 is the header size of .plt.
2682   return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2683 }
2684 
2685 bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2686 
2687 // The string hash function for .gdb_index.
2688 static uint32_t computeGdbHash(StringRef s) {
2689   uint32_t h = 0;
2690   for (uint8_t c : s)
2691     h = h * 67 + toLower(c) - 113;
2692   return h;
2693 }
2694 
2695 GdbIndexSection::GdbIndexSection()
2696     : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2697 
2698 // Returns the desired size of an on-disk hash table for a .gdb_index section.
2699 // There's a tradeoff between size and collision rate. We aim 75% utilization.
2700 size_t GdbIndexSection::computeSymtabSize() const {
2701   return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2702 }
2703 
2704 static SmallVector<GdbIndexSection::CuEntry, 0>
2705 readCuList(DWARFContext &dwarf) {
2706   SmallVector<GdbIndexSection::CuEntry, 0> ret;
2707   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2708     ret.push_back({cu->getOffset(), cu->getLength() + 4});
2709   return ret;
2710 }
2711 
2712 static SmallVector<GdbIndexSection::AddressEntry, 0>
2713 readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2714   SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2715 
2716   uint32_t cuIdx = 0;
2717   for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2718     if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2719       warn(toString(sec) + ": " + toString(std::move(e)));
2720       return {};
2721     }
2722     Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2723     if (!ranges) {
2724       warn(toString(sec) + ": " + toString(ranges.takeError()));
2725       return {};
2726     }
2727 
2728     ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2729     for (DWARFAddressRange &r : *ranges) {
2730       if (r.SectionIndex == -1ULL)
2731         continue;
2732       // Range list with zero size has no effect.
2733       InputSectionBase *s = sections[r.SectionIndex];
2734       if (s && s != &InputSection::discarded && s->isLive())
2735         if (r.LowPC != r.HighPC)
2736           ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2737     }
2738     ++cuIdx;
2739   }
2740 
2741   return ret;
2742 }
2743 
2744 template <class ELFT>
2745 static SmallVector<GdbIndexSection::NameAttrEntry, 0>
2746 readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2747                      const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2748   const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2749   const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2750 
2751   SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2752   for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2753     DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2754     DWARFDebugPubTable table;
2755     table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2756       warn(toString(pub->sec) + ": " + toString(std::move(e)));
2757     });
2758     for (const DWARFDebugPubTable::Set &set : table.getData()) {
2759       // The value written into the constant pool is kind << 24 | cuIndex. As we
2760       // don't know how many compilation units precede this object to compute
2761       // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2762       // the number of preceding compilation units later.
2763       uint32_t i = llvm::partition_point(cus,
2764                                          [&](GdbIndexSection::CuEntry cu) {
2765                                            return cu.cuOffset < set.Offset;
2766                                          }) -
2767                    cus.begin();
2768       for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2769         ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2770                        (ent.Descriptor.toBits() << 24) | i});
2771     }
2772   }
2773   return ret;
2774 }
2775 
2776 // Create a list of symbols from a given list of symbol names and types
2777 // by uniquifying them by name.
2778 static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
2779 createSymbols(
2780     ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2781     const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2782   using GdbSymbol = GdbIndexSection::GdbSymbol;
2783   using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2784 
2785   // For each chunk, compute the number of compilation units preceding it.
2786   uint32_t cuIdx = 0;
2787   std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2788   for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2789     cuIdxs[i] = cuIdx;
2790     cuIdx += chunks[i].compilationUnits.size();
2791   }
2792 
2793   // The number of symbols we will handle in this function is of the order
2794   // of millions for very large executables, so we use multi-threading to
2795   // speed it up.
2796   constexpr size_t numShards = 32;
2797   const size_t concurrency =
2798       llvm::bit_floor(std::min<size_t>(config->threadCount, numShards));
2799 
2800   // A sharded map to uniquify symbols by name.
2801   auto map =
2802       std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2803   size_t shift = 32 - llvm::countr_zero(numShards);
2804 
2805   // Instantiate GdbSymbols while uniqufying them by name.
2806   auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2807 
2808   parallelFor(0, concurrency, [&](size_t threadId) {
2809     uint32_t i = 0;
2810     for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2811       for (const NameAttrEntry &ent : entries) {
2812         size_t shardId = ent.name.hash() >> shift;
2813         if ((shardId & (concurrency - 1)) != threadId)
2814           continue;
2815 
2816         uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2817         size_t &idx = map[shardId][ent.name];
2818         if (idx) {
2819           symbols[shardId][idx - 1].cuVector.push_back(v);
2820           continue;
2821         }
2822 
2823         idx = symbols[shardId].size() + 1;
2824         symbols[shardId].push_back({ent.name, {v}, 0, 0});
2825       }
2826       ++i;
2827     }
2828   });
2829 
2830   size_t numSymbols = 0;
2831   for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
2832     numSymbols += v.size();
2833 
2834   // The return type is a flattened vector, so we'll copy each vector
2835   // contents to Ret.
2836   SmallVector<GdbSymbol, 0> ret;
2837   ret.reserve(numSymbols);
2838   for (SmallVector<GdbSymbol, 0> &vec :
2839        MutableArrayRef(symbols.get(), numShards))
2840     for (GdbSymbol &sym : vec)
2841       ret.push_back(std::move(sym));
2842 
2843   // CU vectors and symbol names are adjacent in the output file.
2844   // We can compute their offsets in the output file now.
2845   size_t off = 0;
2846   for (GdbSymbol &sym : ret) {
2847     sym.cuVectorOff = off;
2848     off += (sym.cuVector.size() + 1) * 4;
2849   }
2850   for (GdbSymbol &sym : ret) {
2851     sym.nameOff = off;
2852     off += sym.name.size() + 1;
2853   }
2854   // If off overflows, the last symbol's nameOff likely overflows.
2855   if (!isUInt<32>(off))
2856     errorOrWarn("--gdb-index: constant pool size (" + Twine(off) +
2857                 ") exceeds UINT32_MAX");
2858 
2859   return {ret, off};
2860 }
2861 
2862 // Returns a newly-created .gdb_index section.
2863 template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2864   llvm::TimeTraceScope timeScope("Create gdb index");
2865 
2866   // Collect InputFiles with .debug_info. See the comment in
2867   // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2868   // note that isec->data() may uncompress the full content, which should be
2869   // parallelized.
2870   SetVector<InputFile *> files;
2871   for (InputSectionBase *s : ctx.inputSections) {
2872     InputSection *isec = dyn_cast<InputSection>(s);
2873     if (!isec)
2874       continue;
2875     // .debug_gnu_pub{names,types} are useless in executables.
2876     // They are present in input object files solely for creating
2877     // a .gdb_index. So we can remove them from the output.
2878     if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2879       s->markDead();
2880     else if (isec->name == ".debug_info")
2881       files.insert(isec->file);
2882   }
2883   // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2884   llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
2885     if (auto *isec = dyn_cast<InputSection>(s))
2886       if (InputSectionBase *rel = isec->getRelocatedSection())
2887         return !rel->isLive();
2888     return !s->isLive();
2889   });
2890 
2891   SmallVector<GdbChunk, 0> chunks(files.size());
2892   SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2893 
2894   parallelFor(0, files.size(), [&](size_t i) {
2895     // To keep memory usage low, we don't want to keep cached DWARFContext, so
2896     // avoid getDwarf() here.
2897     ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2898     DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2899     auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2900 
2901     // If the are multiple compile units .debug_info (very rare ld -r --unique),
2902     // this only picks the last one. Other address ranges are lost.
2903     chunks[i].sec = dobj.getInfoSection();
2904     chunks[i].compilationUnits = readCuList(dwarf);
2905     chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2906     nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2907   });
2908 
2909   auto *ret = make<GdbIndexSection>();
2910   ret->chunks = std::move(chunks);
2911   std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks);
2912 
2913   // Count the areas other than the constant pool.
2914   ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
2915   for (GdbChunk &chunk : ret->chunks)
2916     ret->size +=
2917         chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2918 
2919   return ret;
2920 }
2921 
2922 void GdbIndexSection::writeTo(uint8_t *buf) {
2923   // Write the header.
2924   auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2925   uint8_t *start = buf;
2926   hdr->version = 7;
2927   buf += sizeof(*hdr);
2928 
2929   // Write the CU list.
2930   hdr->cuListOff = buf - start;
2931   for (GdbChunk &chunk : chunks) {
2932     for (CuEntry &cu : chunk.compilationUnits) {
2933       write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2934       write64le(buf + 8, cu.cuLength);
2935       buf += 16;
2936     }
2937   }
2938 
2939   // Write the address area.
2940   hdr->cuTypesOff = buf - start;
2941   hdr->addressAreaOff = buf - start;
2942   uint32_t cuOff = 0;
2943   for (GdbChunk &chunk : chunks) {
2944     for (AddressEntry &e : chunk.addressAreas) {
2945       // In the case of ICF there may be duplicate address range entries.
2946       const uint64_t baseAddr = e.section->repl->getVA(0);
2947       write64le(buf, baseAddr + e.lowAddress);
2948       write64le(buf + 8, baseAddr + e.highAddress);
2949       write32le(buf + 16, e.cuIndex + cuOff);
2950       buf += 20;
2951     }
2952     cuOff += chunk.compilationUnits.size();
2953   }
2954 
2955   // Write the on-disk open-addressing hash table containing symbols.
2956   hdr->symtabOff = buf - start;
2957   size_t symtabSize = computeSymtabSize();
2958   uint32_t mask = symtabSize - 1;
2959 
2960   for (GdbSymbol &sym : symbols) {
2961     uint32_t h = sym.name.hash();
2962     uint32_t i = h & mask;
2963     uint32_t step = ((h * 17) & mask) | 1;
2964 
2965     while (read32le(buf + i * 8))
2966       i = (i + step) & mask;
2967 
2968     write32le(buf + i * 8, sym.nameOff);
2969     write32le(buf + i * 8 + 4, sym.cuVectorOff);
2970   }
2971 
2972   buf += symtabSize * 8;
2973 
2974   // Write the string pool.
2975   hdr->constantPoolOff = buf - start;
2976   parallelForEach(symbols, [&](GdbSymbol &sym) {
2977     memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2978   });
2979 
2980   // Write the CU vectors.
2981   for (GdbSymbol &sym : symbols) {
2982     write32le(buf, sym.cuVector.size());
2983     buf += 4;
2984     for (uint32_t val : sym.cuVector) {
2985       write32le(buf, val);
2986       buf += 4;
2987     }
2988   }
2989 }
2990 
2991 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
2992 
2993 EhFrameHeader::EhFrameHeader()
2994     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
2995 
2996 void EhFrameHeader::writeTo(uint8_t *buf) {
2997   // Unlike most sections, the EhFrameHeader section is written while writing
2998   // another section, namely EhFrameSection, which calls the write() function
2999   // below from its writeTo() function. This is necessary because the contents
3000   // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3001   // don't know which order the sections will be written in.
3002 }
3003 
3004 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
3005 // Each entry of the search table consists of two values,
3006 // the starting PC from where FDEs covers, and the FDE's address.
3007 // It is sorted by PC.
3008 void EhFrameHeader::write() {
3009   uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
3010   using FdeData = EhFrameSection::FdeData;
3011   SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
3012 
3013   buf[0] = 1;
3014   buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3015   buf[2] = DW_EH_PE_udata4;
3016   buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3017   write32(buf + 4,
3018           getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3019   write32(buf + 8, fdes.size());
3020   buf += 12;
3021 
3022   for (FdeData &fde : fdes) {
3023     write32(buf, fde.pcRel);
3024     write32(buf + 4, fde.fdeVARel);
3025     buf += 8;
3026   }
3027 }
3028 
3029 size_t EhFrameHeader::getSize() const {
3030   // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3031   return 12 + getPartition().ehFrame->numFdes * 8;
3032 }
3033 
3034 bool EhFrameHeader::isNeeded() const {
3035   return isLive() && getPartition().ehFrame->isNeeded();
3036 }
3037 
3038 VersionDefinitionSection::VersionDefinitionSection()
3039     : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3040                        ".gnu.version_d") {}
3041 
3042 StringRef VersionDefinitionSection::getFileDefName() {
3043   if (!getPartition().name.empty())
3044     return getPartition().name;
3045   if (!config->soName.empty())
3046     return config->soName;
3047   return config->outputFile;
3048 }
3049 
3050 void VersionDefinitionSection::finalizeContents() {
3051   fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3052   for (const VersionDefinition &v : namedVersionDefs())
3053     verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3054 
3055   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3056     getParent()->link = sec->sectionIndex;
3057 
3058   // sh_info should be set to the number of definitions. This fact is missed in
3059   // documentation, but confirmed by binutils community:
3060   // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3061   getParent()->info = getVerDefNum();
3062 }
3063 
3064 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3065                                         StringRef name, size_t nameOff) {
3066   uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3067 
3068   // Write a verdef.
3069   write16(buf, 1);                  // vd_version
3070   write16(buf + 2, flags);          // vd_flags
3071   write16(buf + 4, index);          // vd_ndx
3072   write16(buf + 6, 1);              // vd_cnt
3073   write32(buf + 8, hashSysV(name)); // vd_hash
3074   write32(buf + 12, 20);            // vd_aux
3075   write32(buf + 16, 28);            // vd_next
3076 
3077   // Write a veraux.
3078   write32(buf + 20, nameOff); // vda_name
3079   write32(buf + 24, 0);       // vda_next
3080 }
3081 
3082 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3083   writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3084 
3085   auto nameOffIt = verDefNameOffs.begin();
3086   for (const VersionDefinition &v : namedVersionDefs()) {
3087     buf += EntrySize;
3088     writeOne(buf, v.id, v.name, *nameOffIt++);
3089   }
3090 
3091   // Need to terminate the last version definition.
3092   write32(buf + 16, 0); // vd_next
3093 }
3094 
3095 size_t VersionDefinitionSection::getSize() const {
3096   return EntrySize * getVerDefNum();
3097 }
3098 
3099 // .gnu.version is a table where each entry is 2 byte long.
3100 VersionTableSection::VersionTableSection()
3101     : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3102                        ".gnu.version") {
3103   this->entsize = 2;
3104 }
3105 
3106 void VersionTableSection::finalizeContents() {
3107   // At the moment of june 2016 GNU docs does not mention that sh_link field
3108   // should be set, but Sun docs do. Also readelf relies on this field.
3109   getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3110 }
3111 
3112 size_t VersionTableSection::getSize() const {
3113   return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3114 }
3115 
3116 void VersionTableSection::writeTo(uint8_t *buf) {
3117   buf += 2;
3118   for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3119     // For an unextracted lazy symbol (undefined weak), it must have been
3120     // converted to Undefined and have VER_NDX_GLOBAL version here.
3121     assert(!s.sym->isLazy());
3122     write16(buf, s.sym->versionId);
3123     buf += 2;
3124   }
3125 }
3126 
3127 bool VersionTableSection::isNeeded() const {
3128   return isLive() &&
3129          (getPartition().verDef || getPartition().verNeed->isNeeded());
3130 }
3131 
3132 void elf::addVerneed(Symbol *ss) {
3133   auto &file = cast<SharedFile>(*ss->file);
3134   if (ss->verdefIndex == VER_NDX_GLOBAL) {
3135     ss->versionId = VER_NDX_GLOBAL;
3136     return;
3137   }
3138 
3139   if (file.vernauxs.empty())
3140     file.vernauxs.resize(file.verdefs.size());
3141 
3142   // Select a version identifier for the vernaux data structure, if we haven't
3143   // already allocated one. The verdef identifiers cover the range
3144   // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3145   // getVerDefNum()+1.
3146   if (file.vernauxs[ss->verdefIndex] == 0)
3147     file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3148 
3149   ss->versionId = file.vernauxs[ss->verdefIndex];
3150 }
3151 
3152 template <class ELFT>
3153 VersionNeedSection<ELFT>::VersionNeedSection()
3154     : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3155                        ".gnu.version_r") {}
3156 
3157 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3158   for (SharedFile *f : ctx.sharedFiles) {
3159     if (f->vernauxs.empty())
3160       continue;
3161     verneeds.emplace_back();
3162     Verneed &vn = verneeds.back();
3163     vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3164     bool isLibc = config->relrGlibc && f->soName.starts_with("libc.so.");
3165     bool isGlibc2 = false;
3166     for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3167       if (f->vernauxs[i] == 0)
3168         continue;
3169       auto *verdef =
3170           reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3171       StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3172       if (isLibc && ver.starts_with("GLIBC_2."))
3173         isGlibc2 = true;
3174       vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3175                              getPartition().dynStrTab->addString(ver)});
3176     }
3177     if (isGlibc2) {
3178       const char *ver = "GLIBC_ABI_DT_RELR";
3179       vn.vernauxs.push_back({hashSysV(ver),
3180                              ++SharedFile::vernauxNum + getVerDefNum(),
3181                              getPartition().dynStrTab->addString(ver)});
3182     }
3183   }
3184 
3185   if (OutputSection *sec = getPartition().dynStrTab->getParent())
3186     getParent()->link = sec->sectionIndex;
3187   getParent()->info = verneeds.size();
3188 }
3189 
3190 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3191   // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3192   auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3193   auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3194 
3195   for (auto &vn : verneeds) {
3196     // Create an Elf_Verneed for this DSO.
3197     verneed->vn_version = 1;
3198     verneed->vn_cnt = vn.vernauxs.size();
3199     verneed->vn_file = vn.nameStrTab;
3200     verneed->vn_aux =
3201         reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3202     verneed->vn_next = sizeof(Elf_Verneed);
3203     ++verneed;
3204 
3205     // Create the Elf_Vernauxs for this Elf_Verneed.
3206     for (auto &vna : vn.vernauxs) {
3207       vernaux->vna_hash = vna.hash;
3208       vernaux->vna_flags = 0;
3209       vernaux->vna_other = vna.verneedIndex;
3210       vernaux->vna_name = vna.nameStrTab;
3211       vernaux->vna_next = sizeof(Elf_Vernaux);
3212       ++vernaux;
3213     }
3214 
3215     vernaux[-1].vna_next = 0;
3216   }
3217   verneed[-1].vn_next = 0;
3218 }
3219 
3220 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3221   return verneeds.size() * sizeof(Elf_Verneed) +
3222          SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3223 }
3224 
3225 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3226   return isLive() && SharedFile::vernauxNum != 0;
3227 }
3228 
3229 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3230   ms->parent = this;
3231   sections.push_back(ms);
3232   assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3233   addralign = std::max(addralign, ms->addralign);
3234 }
3235 
3236 MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3237                                    uint64_t flags, uint32_t alignment)
3238     : MergeSyntheticSection(name, type, flags, alignment),
3239       builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3240 
3241 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3242 
3243 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3244 
3245 void MergeTailSection::finalizeContents() {
3246   // Add all string pieces to the string table builder to create section
3247   // contents.
3248   for (MergeInputSection *sec : sections)
3249     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3250       if (sec->pieces[i].live)
3251         builder.add(sec->getData(i));
3252 
3253   // Fix the string table content. After this, the contents will never change.
3254   builder.finalize();
3255 
3256   // finalize() fixed tail-optimized strings, so we can now get
3257   // offsets of strings. Get an offset for each string and save it
3258   // to a corresponding SectionPiece for easy access.
3259   for (MergeInputSection *sec : sections)
3260     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3261       if (sec->pieces[i].live)
3262         sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3263 }
3264 
3265 void MergeNoTailSection::writeTo(uint8_t *buf) {
3266   parallelFor(0, numShards,
3267               [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3268 }
3269 
3270 // This function is very hot (i.e. it can take several seconds to finish)
3271 // because sometimes the number of inputs is in an order of magnitude of
3272 // millions. So, we use multi-threading.
3273 //
3274 // For any strings S and T, we know S is not mergeable with T if S's hash
3275 // value is different from T's. If that's the case, we can safely put S and
3276 // T into different string builders without worrying about merge misses.
3277 // We do it in parallel.
3278 void MergeNoTailSection::finalizeContents() {
3279   // Initializes string table builders.
3280   for (size_t i = 0; i < numShards; ++i)
3281     shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
3282 
3283   // Concurrency level. Must be a power of 2 to avoid expensive modulo
3284   // operations in the following tight loop.
3285   const size_t concurrency =
3286       llvm::bit_floor(std::min<size_t>(config->threadCount, numShards));
3287 
3288   // Add section pieces to the builders.
3289   parallelFor(0, concurrency, [&](size_t threadId) {
3290     for (MergeInputSection *sec : sections) {
3291       for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3292         if (!sec->pieces[i].live)
3293           continue;
3294         size_t shardId = getShardId(sec->pieces[i].hash);
3295         if ((shardId & (concurrency - 1)) == threadId)
3296           sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3297       }
3298     }
3299   });
3300 
3301   // Compute an in-section offset for each shard.
3302   size_t off = 0;
3303   for (size_t i = 0; i < numShards; ++i) {
3304     shards[i].finalizeInOrder();
3305     if (shards[i].getSize() > 0)
3306       off = alignToPowerOf2(off, addralign);
3307     shardOffsets[i] = off;
3308     off += shards[i].getSize();
3309   }
3310   size = off;
3311 
3312   // So far, section pieces have offsets from beginning of shards, but
3313   // we want offsets from beginning of the whole section. Fix them.
3314   parallelForEach(sections, [&](MergeInputSection *sec) {
3315     for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3316       if (sec->pieces[i].live)
3317         sec->pieces[i].outputOff +=
3318             shardOffsets[getShardId(sec->pieces[i].hash)];
3319   });
3320 }
3321 
3322 template <class ELFT> void elf::splitSections() {
3323   llvm::TimeTraceScope timeScope("Split sections");
3324   // splitIntoPieces needs to be called on each MergeInputSection
3325   // before calling finalizeContents().
3326   parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
3327     for (InputSectionBase *sec : file->getSections()) {
3328       if (!sec)
3329         continue;
3330       if (auto *s = dyn_cast<MergeInputSection>(sec))
3331         s->splitIntoPieces();
3332       else if (auto *eh = dyn_cast<EhInputSection>(sec))
3333         eh->split<ELFT>();
3334     }
3335   });
3336 }
3337 
3338 void elf::combineEhSections() {
3339   llvm::TimeTraceScope timeScope("Combine EH sections");
3340   for (EhInputSection *sec : ctx.ehInputSections) {
3341     EhFrameSection &eh = *sec->getPartition().ehFrame;
3342     sec->parent = &eh;
3343     eh.addralign = std::max(eh.addralign, sec->addralign);
3344     eh.sections.push_back(sec);
3345     llvm::append_range(eh.dependentSections, sec->dependentSections);
3346   }
3347 
3348   if (!mainPart->armExidx)
3349     return;
3350   llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3351     // Ignore dead sections and the partition end marker (.part.end),
3352     // whose partition number is out of bounds.
3353     if (!s->isLive() || s->partition == 255)
3354       return false;
3355     Partition &part = s->getPartition();
3356     return s->kind() == SectionBase::Regular && part.armExidx &&
3357            part.armExidx->addSection(cast<InputSection>(s));
3358   });
3359 }
3360 
3361 MipsRldMapSection::MipsRldMapSection()
3362     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3363                        ".rld_map") {}
3364 
3365 ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3366     : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3367                        config->wordsize, ".ARM.exidx") {}
3368 
3369 static InputSection *findExidxSection(InputSection *isec) {
3370   for (InputSection *d : isec->dependentSections)
3371     if (d->type == SHT_ARM_EXIDX && d->isLive())
3372       return d;
3373   return nullptr;
3374 }
3375 
3376 static bool isValidExidxSectionDep(InputSection *isec) {
3377   return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3378          isec->getSize() > 0;
3379 }
3380 
3381 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3382   if (isec->type == SHT_ARM_EXIDX) {
3383     if (InputSection *dep = isec->getLinkOrderDep())
3384       if (isValidExidxSectionDep(dep)) {
3385         exidxSections.push_back(isec);
3386         // Every exidxSection is 8 bytes, we need an estimate of
3387         // size before assignAddresses can be called. Final size
3388         // will only be known after finalize is called.
3389         size += 8;
3390       }
3391     return true;
3392   }
3393 
3394   if (isValidExidxSectionDep(isec)) {
3395     executableSections.push_back(isec);
3396     return false;
3397   }
3398 
3399   // FIXME: we do not output a relocation section when --emit-relocs is used
3400   // as we do not have relocation sections for linker generated table entries
3401   // and we would have to erase at a late stage relocations from merged entries.
3402   // Given that exception tables are already position independent and a binary
3403   // analyzer could derive the relocations we choose to erase the relocations.
3404   if (config->emitRelocs && isec->type == SHT_REL)
3405     if (InputSectionBase *ex = isec->getRelocatedSection())
3406       if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3407         return true;
3408 
3409   return false;
3410 }
3411 
3412 // References to .ARM.Extab Sections have bit 31 clear and are not the
3413 // special EXIDX_CANTUNWIND bit-pattern.
3414 static bool isExtabRef(uint32_t unwind) {
3415   return (unwind & 0x80000000) == 0 && unwind != 0x1;
3416 }
3417 
3418 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3419 // section Prev, where Cur follows Prev in the table. This can be done if the
3420 // unwinding instructions in Cur are identical to Prev. Linker generated
3421 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3422 // InputSection.
3423 static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3424   // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3425   // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3426   uint32_t prevUnwind = 1;
3427   if (prev)
3428     prevUnwind = read32(prev->content().data() + prev->content().size() - 4);
3429   if (isExtabRef(prevUnwind))
3430     return false;
3431 
3432   // We consider the unwind instructions of an .ARM.exidx table entry
3433   // a duplicate if the previous unwind instructions if:
3434   // - Both are the special EXIDX_CANTUNWIND.
3435   // - Both are the same inline unwind instructions.
3436   // We do not attempt to follow and check links into .ARM.extab tables as
3437   // consecutive identical entries are rare and the effort to check that they
3438   // are identical is high.
3439 
3440   // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3441   if (cur == nullptr)
3442     return prevUnwind == 1;
3443 
3444   for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) {
3445     uint32_t curUnwind = read32(cur->content().data() + offset);
3446     if (isExtabRef(curUnwind) || curUnwind != prevUnwind)
3447       return false;
3448   }
3449   // All table entries in this .ARM.exidx Section can be merged into the
3450   // previous Section.
3451   return true;
3452 }
3453 
3454 // The .ARM.exidx table must be sorted in ascending order of the address of the
3455 // functions the table describes. std::optionally duplicate adjacent table
3456 // entries can be removed. At the end of the function the executableSections
3457 // must be sorted in ascending order of address, Sentinel is set to the
3458 // InputSection with the highest address and any InputSections that have
3459 // mergeable .ARM.exidx table entries are removed from it.
3460 void ARMExidxSyntheticSection::finalizeContents() {
3461   // The executableSections and exidxSections that we use to derive the final
3462   // contents of this SyntheticSection are populated before
3463   // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3464   // ICF may remove executable InputSections and their dependent .ARM.exidx
3465   // section that we recorded earlier.
3466   auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3467   llvm::erase_if(exidxSections, isDiscarded);
3468   // We need to remove discarded InputSections and InputSections without
3469   // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3470   // of range.
3471   auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3472     if (!isec->isLive())
3473       return true;
3474     if (findExidxSection(isec))
3475       return false;
3476     int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3477     return off != llvm::SignExtend64(off, 31);
3478   };
3479   llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3480 
3481   // Sort the executable sections that may or may not have associated
3482   // .ARM.exidx sections by order of ascending address. This requires the
3483   // relative positions of InputSections and OutputSections to be known.
3484   auto compareByFilePosition = [](const InputSection *a,
3485                                   const InputSection *b) {
3486     OutputSection *aOut = a->getParent();
3487     OutputSection *bOut = b->getParent();
3488 
3489     if (aOut != bOut)
3490       return aOut->addr < bOut->addr;
3491     return a->outSecOff < b->outSecOff;
3492   };
3493   llvm::stable_sort(executableSections, compareByFilePosition);
3494   sentinel = executableSections.back();
3495   // std::optionally merge adjacent duplicate entries.
3496   if (config->mergeArmExidx) {
3497     SmallVector<InputSection *, 0> selectedSections;
3498     selectedSections.reserve(executableSections.size());
3499     selectedSections.push_back(executableSections[0]);
3500     size_t prev = 0;
3501     for (size_t i = 1; i < executableSections.size(); ++i) {
3502       InputSection *ex1 = findExidxSection(executableSections[prev]);
3503       InputSection *ex2 = findExidxSection(executableSections[i]);
3504       if (!isDuplicateArmExidxSec(ex1, ex2)) {
3505         selectedSections.push_back(executableSections[i]);
3506         prev = i;
3507       }
3508     }
3509     executableSections = std::move(selectedSections);
3510   }
3511   // offset is within the SyntheticSection.
3512   size_t offset = 0;
3513   size = 0;
3514   for (InputSection *isec : executableSections) {
3515     if (InputSection *d = findExidxSection(isec)) {
3516       d->outSecOff = offset;
3517       d->parent = getParent();
3518       offset += d->getSize();
3519     } else {
3520       offset += 8;
3521     }
3522   }
3523   // Size includes Sentinel.
3524   size = offset + 8;
3525 }
3526 
3527 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3528   return executableSections.front();
3529 }
3530 
3531 // To write the .ARM.exidx table from the ExecutableSections we have three cases
3532 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3533 //     We write the .ARM.exidx section contents and apply its relocations.
3534 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3535 //     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3536 //     start of the InputSection as the purpose of the linker generated
3537 //     section is to terminate the address range of the previous entry.
3538 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3539 //     the table to terminate the address range of the final entry.
3540 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3541 
3542   // A linker generated CANTUNWIND entry is made up of two words:
3543   // 0x0 with R_ARM_PREL31 relocation to target.
3544   // 0x1 with EXIDX_CANTUNWIND.
3545   uint64_t offset = 0;
3546   for (InputSection *isec : executableSections) {
3547     assert(isec->getParent() != nullptr);
3548     if (InputSection *d = findExidxSection(isec)) {
3549       for (int dataOffset = 0; dataOffset != (int)d->content().size();
3550            dataOffset += 4)
3551         write32(buf + offset + dataOffset,
3552                 read32(d->content().data() + dataOffset));
3553       // Recalculate outSecOff as finalizeAddressDependentContent()
3554       // may have altered syntheticSection outSecOff.
3555       d->outSecOff = offset + outSecOff;
3556       target->relocateAlloc(*d, buf + offset);
3557       offset += d->getSize();
3558     } else {
3559       // A Linker generated CANTUNWIND section.
3560       write32(buf + offset + 0, 0x0);
3561       write32(buf + offset + 4, 0x1);
3562       uint64_t s = isec->getVA();
3563       uint64_t p = getVA() + offset;
3564       target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3565       offset += 8;
3566     }
3567   }
3568   // Write Sentinel CANTUNWIND entry.
3569   write32(buf + offset + 0, 0x0);
3570   write32(buf + offset + 4, 0x1);
3571   uint64_t s = sentinel->getVA(sentinel->getSize());
3572   uint64_t p = getVA() + offset;
3573   target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3574   assert(size == offset + 8);
3575 }
3576 
3577 bool ARMExidxSyntheticSection::isNeeded() const {
3578   return llvm::any_of(exidxSections,
3579                       [](InputSection *isec) { return isec->isLive(); });
3580 }
3581 
3582 ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3583     : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3584                        config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3585   this->parent = os;
3586   this->outSecOff = off;
3587 }
3588 
3589 size_t ThunkSection::getSize() const {
3590   if (roundUpSizeForErrata)
3591     return alignTo(size, 4096);
3592   return size;
3593 }
3594 
3595 void ThunkSection::addThunk(Thunk *t) {
3596   thunks.push_back(t);
3597   t->addSymbols(*this);
3598 }
3599 
3600 void ThunkSection::writeTo(uint8_t *buf) {
3601   for (Thunk *t : thunks)
3602     t->writeTo(buf + t->offset);
3603 }
3604 
3605 InputSection *ThunkSection::getTargetInputSection() const {
3606   if (thunks.empty())
3607     return nullptr;
3608   const Thunk *t = thunks.front();
3609   return t->getTargetInputSection();
3610 }
3611 
3612 bool ThunkSection::assignOffsets() {
3613   uint64_t off = 0;
3614   for (Thunk *t : thunks) {
3615     off = alignToPowerOf2(off, t->alignment);
3616     t->setOffset(off);
3617     uint32_t size = t->size();
3618     t->getThunkTargetSym()->size = size;
3619     off += size;
3620   }
3621   bool changed = off != size;
3622   size = off;
3623   return changed;
3624 }
3625 
3626 PPC32Got2Section::PPC32Got2Section()
3627     : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3628 
3629 bool PPC32Got2Section::isNeeded() const {
3630   // See the comment below. This is not needed if there is no other
3631   // InputSection.
3632   for (SectionCommand *cmd : getParent()->commands)
3633     if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3634       for (InputSection *isec : isd->sections)
3635         if (isec != this)
3636           return true;
3637   return false;
3638 }
3639 
3640 void PPC32Got2Section::finalizeContents() {
3641   // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3642   // .got2 . This function computes outSecOff of each .got2 to be used in
3643   // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3644   // to collect input sections named ".got2".
3645   for (SectionCommand *cmd : getParent()->commands)
3646     if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3647       for (InputSection *isec : isd->sections) {
3648         // isec->file may be nullptr for MergeSyntheticSection.
3649         if (isec != this && isec->file)
3650           isec->file->ppc32Got2 = isec;
3651       }
3652     }
3653 }
3654 
3655 // If linking position-dependent code then the table will store the addresses
3656 // directly in the binary so the section has type SHT_PROGBITS. If linking
3657 // position-independent code the section has type SHT_NOBITS since it will be
3658 // allocated and filled in by the dynamic linker.
3659 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3660     : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3661                        config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3662                        ".branch_lt") {}
3663 
3664 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3665                                                   int64_t addend) {
3666   return getVA() + entry_index.find({sym, addend})->second * 8;
3667 }
3668 
3669 std::optional<uint32_t>
3670 PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
3671   auto res =
3672       entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3673   if (!res.second)
3674     return std::nullopt;
3675   entries.emplace_back(sym, addend);
3676   return res.first->second;
3677 }
3678 
3679 size_t PPC64LongBranchTargetSection::getSize() const {
3680   return entries.size() * 8;
3681 }
3682 
3683 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3684   // If linking non-pic we have the final addresses of the targets and they get
3685   // written to the table directly. For pic the dynamic linker will allocate
3686   // the section and fill it.
3687   if (config->isPic)
3688     return;
3689 
3690   for (auto entry : entries) {
3691     const Symbol *sym = entry.first;
3692     int64_t addend = entry.second;
3693     assert(sym->getVA());
3694     // Need calls to branch to the local entry-point since a long-branch
3695     // must be a local-call.
3696     write64(buf, sym->getVA(addend) +
3697                      getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3698     buf += 8;
3699   }
3700 }
3701 
3702 bool PPC64LongBranchTargetSection::isNeeded() const {
3703   // `removeUnusedSyntheticSections()` is called before thunk allocation which
3704   // is too early to determine if this section will be empty or not. We need
3705   // Finalized to keep the section alive until after thunk creation. Finalized
3706   // only gets set to true once `finalizeSections()` is called after thunk
3707   // creation. Because of this, if we don't create any long-branch thunks we end
3708   // up with an empty .branch_lt section in the binary.
3709   return !finalized || !entries.empty();
3710 }
3711 
3712 static uint8_t getAbiVersion() {
3713   // MIPS non-PIC executable gets ABI version 1.
3714   if (config->emachine == EM_MIPS) {
3715     if (!config->isPic && !config->relocatable &&
3716         (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3717       return 1;
3718     return 0;
3719   }
3720 
3721   if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
3722     uint8_t ver = ctx.objectFiles[0]->abiVersion;
3723     for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
3724       if (file->abiVersion != ver)
3725         error("incompatible ABI version: " + toString(file));
3726     return ver;
3727   }
3728 
3729   return 0;
3730 }
3731 
3732 template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3733   memcpy(buf, "\177ELF", 4);
3734 
3735   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3736   eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3737   eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3738   eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3739   eHdr->e_ident[EI_OSABI] = config->osabi;
3740   eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3741   eHdr->e_machine = config->emachine;
3742   eHdr->e_version = EV_CURRENT;
3743   eHdr->e_flags = config->eflags;
3744   eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3745   eHdr->e_phnum = part.phdrs.size();
3746   eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3747 
3748   if (!config->relocatable) {
3749     eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3750     eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3751   }
3752 }
3753 
3754 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3755   // Write the program header table.
3756   auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3757   for (PhdrEntry *p : part.phdrs) {
3758     hBuf->p_type = p->p_type;
3759     hBuf->p_flags = p->p_flags;
3760     hBuf->p_offset = p->p_offset;
3761     hBuf->p_vaddr = p->p_vaddr;
3762     hBuf->p_paddr = p->p_paddr;
3763     hBuf->p_filesz = p->p_filesz;
3764     hBuf->p_memsz = p->p_memsz;
3765     hBuf->p_align = p->p_align;
3766     ++hBuf;
3767   }
3768 }
3769 
3770 template <typename ELFT>
3771 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3772     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3773 
3774 template <typename ELFT>
3775 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3776   return sizeof(typename ELFT::Ehdr);
3777 }
3778 
3779 template <typename ELFT>
3780 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3781   writeEhdr<ELFT>(buf, getPartition());
3782 
3783   // Loadable partitions are always ET_DYN.
3784   auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3785   eHdr->e_type = ET_DYN;
3786 }
3787 
3788 template <typename ELFT>
3789 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3790     : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3791 
3792 template <typename ELFT>
3793 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3794   return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3795 }
3796 
3797 template <typename ELFT>
3798 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3799   writePhdrs<ELFT>(buf, getPartition());
3800 }
3801 
3802 PartitionIndexSection::PartitionIndexSection()
3803     : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3804 
3805 size_t PartitionIndexSection::getSize() const {
3806   return 12 * (partitions.size() - 1);
3807 }
3808 
3809 void PartitionIndexSection::finalizeContents() {
3810   for (size_t i = 1; i != partitions.size(); ++i)
3811     partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3812 }
3813 
3814 void PartitionIndexSection::writeTo(uint8_t *buf) {
3815   uint64_t va = getVA();
3816   for (size_t i = 1; i != partitions.size(); ++i) {
3817     write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3818     write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3819 
3820     SyntheticSection *next = i == partitions.size() - 1
3821                                  ? in.partEnd.get()
3822                                  : partitions[i + 1].elfHeader.get();
3823     write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3824 
3825     va += 12;
3826     buf += 12;
3827   }
3828 }
3829 
3830 void InStruct::reset() {
3831   attributes.reset();
3832   riscvAttributes.reset();
3833   bss.reset();
3834   bssRelRo.reset();
3835   got.reset();
3836   gotPlt.reset();
3837   igotPlt.reset();
3838   armCmseSGSection.reset();
3839   ppc64LongBranchTarget.reset();
3840   mipsAbiFlags.reset();
3841   mipsGot.reset();
3842   mipsOptions.reset();
3843   mipsReginfo.reset();
3844   mipsRldMap.reset();
3845   partEnd.reset();
3846   partIndex.reset();
3847   plt.reset();
3848   iplt.reset();
3849   ppc32Got2.reset();
3850   ibtPlt.reset();
3851   relaPlt.reset();
3852   relaIplt.reset();
3853   shStrTab.reset();
3854   strTab.reset();
3855   symTab.reset();
3856   symTabShndx.reset();
3857 }
3858 
3859 constexpr char kMemtagAndroidNoteName[] = "Android";
3860 void MemtagAndroidNote::writeTo(uint8_t *buf) {
3861   static_assert(
3862       sizeof(kMemtagAndroidNoteName) == 8,
3863       "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it "
3864       "that way for backwards compatibility.");
3865 
3866   write32(buf, sizeof(kMemtagAndroidNoteName));
3867   write32(buf + 4, sizeof(uint32_t));
3868   write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3869   memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3870   buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4);
3871 
3872   uint32_t value = 0;
3873   value |= config->androidMemtagMode;
3874   if (config->androidMemtagHeap)
3875     value |= ELF::NT_MEMTAG_HEAP;
3876   // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3877   // binary on Android 11 or 12 will result in a checkfail in the loader.
3878   if (config->androidMemtagStack)
3879     value |= ELF::NT_MEMTAG_STACK;
3880   write32(buf, value); // note value
3881 }
3882 
3883 size_t MemtagAndroidNote::getSize() const {
3884   return sizeof(llvm::ELF::Elf64_Nhdr) +
3885          /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) +
3886          /*descsz=*/sizeof(uint32_t);
3887 }
3888 
3889 void PackageMetadataNote::writeTo(uint8_t *buf) {
3890   write32(buf, 4);
3891   write32(buf + 4, config->packageMetadata.size() + 1);
3892   write32(buf + 8, FDO_PACKAGING_METADATA);
3893   memcpy(buf + 12, "FDO", 4);
3894   memcpy(buf + 16, config->packageMetadata.data(),
3895          config->packageMetadata.size());
3896 }
3897 
3898 size_t PackageMetadataNote::getSize() const {
3899   return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
3900          alignTo(config->packageMetadata.size() + 1, 4);
3901 }
3902 
3903 InStruct elf::in;
3904 
3905 std::vector<Partition> elf::partitions;
3906 Partition *elf::mainPart;
3907 
3908 template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3909 template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3910 template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3911 template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3912 
3913 template void elf::splitSections<ELF32LE>();
3914 template void elf::splitSections<ELF32BE>();
3915 template void elf::splitSections<ELF64LE>();
3916 template void elf::splitSections<ELF64BE>();
3917 
3918 template class elf::MipsAbiFlagsSection<ELF32LE>;
3919 template class elf::MipsAbiFlagsSection<ELF32BE>;
3920 template class elf::MipsAbiFlagsSection<ELF64LE>;
3921 template class elf::MipsAbiFlagsSection<ELF64BE>;
3922 
3923 template class elf::MipsOptionsSection<ELF32LE>;
3924 template class elf::MipsOptionsSection<ELF32BE>;
3925 template class elf::MipsOptionsSection<ELF64LE>;
3926 template class elf::MipsOptionsSection<ELF64BE>;
3927 
3928 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
3929     function_ref<void(InputSection &)>);
3930 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
3931     function_ref<void(InputSection &)>);
3932 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
3933     function_ref<void(InputSection &)>);
3934 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
3935     function_ref<void(InputSection &)>);
3936 
3937 template class elf::MipsReginfoSection<ELF32LE>;
3938 template class elf::MipsReginfoSection<ELF32BE>;
3939 template class elf::MipsReginfoSection<ELF64LE>;
3940 template class elf::MipsReginfoSection<ELF64BE>;
3941 
3942 template class elf::DynamicSection<ELF32LE>;
3943 template class elf::DynamicSection<ELF32BE>;
3944 template class elf::DynamicSection<ELF64LE>;
3945 template class elf::DynamicSection<ELF64BE>;
3946 
3947 template class elf::RelocationSection<ELF32LE>;
3948 template class elf::RelocationSection<ELF32BE>;
3949 template class elf::RelocationSection<ELF64LE>;
3950 template class elf::RelocationSection<ELF64BE>;
3951 
3952 template class elf::AndroidPackedRelocationSection<ELF32LE>;
3953 template class elf::AndroidPackedRelocationSection<ELF32BE>;
3954 template class elf::AndroidPackedRelocationSection<ELF64LE>;
3955 template class elf::AndroidPackedRelocationSection<ELF64BE>;
3956 
3957 template class elf::RelrSection<ELF32LE>;
3958 template class elf::RelrSection<ELF32BE>;
3959 template class elf::RelrSection<ELF64LE>;
3960 template class elf::RelrSection<ELF64BE>;
3961 
3962 template class elf::SymbolTableSection<ELF32LE>;
3963 template class elf::SymbolTableSection<ELF32BE>;
3964 template class elf::SymbolTableSection<ELF64LE>;
3965 template class elf::SymbolTableSection<ELF64BE>;
3966 
3967 template class elf::VersionNeedSection<ELF32LE>;
3968 template class elf::VersionNeedSection<ELF32BE>;
3969 template class elf::VersionNeedSection<ELF64LE>;
3970 template class elf::VersionNeedSection<ELF64BE>;
3971 
3972 template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3973 template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3974 template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3975 template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3976 
3977 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3978 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3979 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3980 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3981 
3982 template class elf::PartitionElfHeaderSection<ELF32LE>;
3983 template class elf::PartitionElfHeaderSection<ELF32BE>;
3984 template class elf::PartitionElfHeaderSection<ELF64LE>;
3985 template class elf::PartitionElfHeaderSection<ELF64BE>;
3986 
3987 template class elf::PartitionProgramHeadersSection<ELF32LE>;
3988 template class elf::PartitionProgramHeadersSection<ELF32BE>;
3989 template class elf::PartitionProgramHeadersSection<ELF64LE>;
3990 template class elf::PartitionProgramHeadersSection<ELF64BE>;
3991