1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/BLAKE3.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/RandomNumberGenerator.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34 
35 #define DEBUG_TYPE "lld"
36 
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50 
51   Writer() : buffer(errorHandler().outputBuffer) {}
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void sortSections();
59   void resolveShfLinkOrder();
60   void finalizeAddressDependentContent();
61   void optimizeBasicBlockJumps();
62   void sortInputSections();
63   void sortOrphanSections();
64   void finalizeSections();
65   void checkExecuteOnly();
66   void setReservedSymbolSections();
67 
68   SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
69   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70                          unsigned pFlags);
71   void assignFileOffsets();
72   void assignFileOffsetsBinary();
73   void setPhdrs(Partition &part);
74   void checkSections();
75   void fixSectionAlignments();
76   void openFile();
77   void writeTrapInstr();
78   void writeHeader();
79   void writeSections();
80   void writeSectionsBinary();
81   void writeBuildId();
82 
83   std::unique_ptr<FileOutputBuffer> &buffer;
84 
85   void addRelIpltSymbols();
86   void addStartEndSymbols();
87   void addStartStopSymbols(OutputSection &osec);
88 
89   uint64_t fileSize;
90   uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93 
94 static bool needsInterpSection() {
95   return !config->relocatable && !config->shared &&
96          !config->dynamicLinker.empty() && script->needsInterpSection();
97 }
98 
99 template <class ELFT> void elf::writeResult() {
100   Writer<ELFT>().run();
101 }
102 
103 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
104   auto it = std::stable_partition(
105       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
106         if (p->p_type != PT_LOAD)
107           return true;
108         if (!p->firstSec)
109           return false;
110         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
111         return size != 0;
112       });
113 
114   // Clear OutputSection::ptLoad for sections contained in removed
115   // segments.
116   DenseSet<PhdrEntry *> removed(it, phdrs.end());
117   for (OutputSection *sec : outputSections)
118     if (removed.count(sec->ptLoad))
119       sec->ptLoad = nullptr;
120   phdrs.erase(it, phdrs.end());
121 }
122 
123 void elf::copySectionsIntoPartitions() {
124   SmallVector<InputSectionBase *, 0> newSections;
125   const size_t ehSize = ctx.ehInputSections.size();
126   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
127     for (InputSectionBase *s : ctx.inputSections) {
128       if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE)
129         continue;
130       auto *copy = make<InputSection>(cast<InputSection>(*s));
131       copy->partition = part;
132       newSections.push_back(copy);
133     }
134     for (size_t i = 0; i != ehSize; ++i) {
135       assert(ctx.ehInputSections[i]->isLive());
136       auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]);
137       copy->partition = part;
138       ctx.ehInputSections.push_back(copy);
139     }
140   }
141 
142   ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(),
143                            newSections.end());
144 }
145 
146 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
147                                    uint64_t val, uint8_t stOther = STV_HIDDEN) {
148   Symbol *s = symtab.find(name);
149   if (!s || s->isDefined() || s->isCommon())
150     return nullptr;
151 
152   s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val,
153                      /*size=*/0, sec});
154   s->isUsedInRegularObj = true;
155   return cast<Defined>(s);
156 }
157 
158 static Defined *addAbsolute(StringRef name) {
159   Symbol *sym = symtab.addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
160                                          STT_NOTYPE, 0, 0, nullptr});
161   sym->isUsedInRegularObj = true;
162   return cast<Defined>(sym);
163 }
164 
165 // The linker is expected to define some symbols depending on
166 // the linking result. This function defines such symbols.
167 void elf::addReservedSymbols() {
168   if (config->emachine == EM_MIPS) {
169     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
170     // so that it points to an absolute address which by default is relative
171     // to GOT. Default offset is 0x7ff0.
172     // See "Global Data Symbols" in Chapter 6 in the following document:
173     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
174     ElfSym::mipsGp = addAbsolute("_gp");
175 
176     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
177     // start of function and 'gp' pointer into GOT.
178     if (symtab.find("_gp_disp"))
179       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
180 
181     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
182     // pointer. This symbol is used in the code generated by .cpload pseudo-op
183     // in case of using -mno-shared option.
184     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
185     if (symtab.find("__gnu_local_gp"))
186       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
187   } else if (config->emachine == EM_PPC) {
188     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
189     // support Small Data Area, define it arbitrarily as 0.
190     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
191   } else if (config->emachine == EM_PPC64) {
192     addPPC64SaveRestore();
193   }
194 
195   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
196   // combines the typical ELF GOT with the small data sections. It commonly
197   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
198   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
199   // represent the TOC base which is offset by 0x8000 bytes from the start of
200   // the .got section.
201   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
202   // correctness of some relocations depends on its value.
203   StringRef gotSymName =
204       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
205 
206   if (Symbol *s = symtab.find(gotSymName)) {
207     if (s->isDefined()) {
208       error(toString(s->file) + " cannot redefine linker defined symbol '" +
209             gotSymName + "'");
210       return;
211     }
212 
213     uint64_t gotOff = 0;
214     if (config->emachine == EM_PPC64)
215       gotOff = 0x8000;
216 
217     s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
218                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
219     ElfSym::globalOffsetTable = cast<Defined>(s);
220   }
221 
222   // __ehdr_start is the location of ELF file headers. Note that we define
223   // this symbol unconditionally even when using a linker script, which
224   // differs from the behavior implemented by GNU linker which only define
225   // this symbol if ELF headers are in the memory mapped segment.
226   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
227 
228   // __executable_start is not documented, but the expectation of at
229   // least the Android libc is that it points to the ELF header.
230   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
231 
232   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
233   // each DSO. The address of the symbol doesn't matter as long as they are
234   // different in different DSOs, so we chose the start address of the DSO.
235   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
236 
237   // If linker script do layout we do not need to create any standard symbols.
238   if (script->hasSectionsCommand)
239     return;
240 
241   auto add = [](StringRef s, int64_t pos) {
242     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
243   };
244 
245   ElfSym::bss = add("__bss_start", 0);
246   ElfSym::end1 = add("end", -1);
247   ElfSym::end2 = add("_end", -1);
248   ElfSym::etext1 = add("etext", -1);
249   ElfSym::etext2 = add("_etext", -1);
250   ElfSym::edata1 = add("edata", -1);
251   ElfSym::edata2 = add("_edata", -1);
252 }
253 
254 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
255   for (SectionCommand *cmd : script->sectionCommands)
256     if (auto *osd = dyn_cast<OutputDesc>(cmd))
257       if (osd->osec.name == name && osd->osec.partition == partition)
258         return &osd->osec;
259   return nullptr;
260 }
261 
262 template <class ELFT> void elf::createSyntheticSections() {
263   // Initialize all pointers with NULL. This is needed because
264   // you can call lld::elf::main more than once as a library.
265   Out::tlsPhdr = nullptr;
266   Out::preinitArray = nullptr;
267   Out::initArray = nullptr;
268   Out::finiArray = nullptr;
269 
270   // Add the .interp section first because it is not a SyntheticSection.
271   // The removeUnusedSyntheticSections() function relies on the
272   // SyntheticSections coming last.
273   if (needsInterpSection()) {
274     for (size_t i = 1; i <= partitions.size(); ++i) {
275       InputSection *sec = createInterpSection();
276       sec->partition = i;
277       ctx.inputSections.push_back(sec);
278     }
279   }
280 
281   auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
282 
283   in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
284 
285   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
286   Out::programHeaders->addralign = config->wordsize;
287 
288   if (config->strip != StripPolicy::All) {
289     in.strTab = std::make_unique<StringTableSection>(".strtab", false);
290     in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
291     in.symTabShndx = std::make_unique<SymtabShndxSection>();
292   }
293 
294   in.bss = std::make_unique<BssSection>(".bss", 0, 1);
295   add(*in.bss);
296 
297   // If there is a SECTIONS command and a .data.rel.ro section name use name
298   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
299   // This makes sure our relro is contiguous.
300   bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
301   in.bssRelRo = std::make_unique<BssSection>(
302       hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
303   add(*in.bssRelRo);
304 
305   // Add MIPS-specific sections.
306   if (config->emachine == EM_MIPS) {
307     if (!config->shared && config->hasDynSymTab) {
308       in.mipsRldMap = std::make_unique<MipsRldMapSection>();
309       add(*in.mipsRldMap);
310     }
311     if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
312       add(*in.mipsAbiFlags);
313     if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
314       add(*in.mipsOptions);
315     if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
316       add(*in.mipsReginfo);
317   }
318 
319   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
320 
321   const unsigned threadCount = config->threadCount;
322   for (Partition &part : partitions) {
323     auto add = [&](SyntheticSection &sec) {
324       sec.partition = part.getNumber();
325       ctx.inputSections.push_back(&sec);
326     };
327 
328     if (!part.name.empty()) {
329       part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
330       part.elfHeader->name = part.name;
331       add(*part.elfHeader);
332 
333       part.programHeaders =
334           std::make_unique<PartitionProgramHeadersSection<ELFT>>();
335       add(*part.programHeaders);
336     }
337 
338     if (config->buildId != BuildIdKind::None) {
339       part.buildId = std::make_unique<BuildIdSection>();
340       add(*part.buildId);
341     }
342 
343     part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
344     part.dynSymTab =
345         std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
346     part.dynamic = std::make_unique<DynamicSection<ELFT>>();
347 
348     if (config->emachine == EM_AARCH64 &&
349         config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
350       part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
351       add(*part.memtagAndroidNote);
352     }
353 
354     if (config->androidPackDynRelocs)
355       part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
356           relaDynName, threadCount);
357     else
358       part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
359           relaDynName, config->zCombreloc, threadCount);
360 
361     if (config->hasDynSymTab) {
362       add(*part.dynSymTab);
363 
364       part.verSym = std::make_unique<VersionTableSection>();
365       add(*part.verSym);
366 
367       if (!namedVersionDefs().empty()) {
368         part.verDef = std::make_unique<VersionDefinitionSection>();
369         add(*part.verDef);
370       }
371 
372       part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
373       add(*part.verNeed);
374 
375       if (config->gnuHash) {
376         part.gnuHashTab = std::make_unique<GnuHashTableSection>();
377         add(*part.gnuHashTab);
378       }
379 
380       if (config->sysvHash) {
381         part.hashTab = std::make_unique<HashTableSection>();
382         add(*part.hashTab);
383       }
384 
385       add(*part.dynamic);
386       add(*part.dynStrTab);
387       add(*part.relaDyn);
388     }
389 
390     if (config->relrPackDynRelocs) {
391       part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount);
392       add(*part.relrDyn);
393     }
394 
395     if (!config->relocatable) {
396       if (config->ehFrameHdr) {
397         part.ehFrameHdr = std::make_unique<EhFrameHeader>();
398         add(*part.ehFrameHdr);
399       }
400       part.ehFrame = std::make_unique<EhFrameSection>();
401       add(*part.ehFrame);
402 
403       if (config->emachine == EM_ARM) {
404         // This section replaces all the individual .ARM.exidx InputSections.
405         part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
406         add(*part.armExidx);
407       }
408     }
409 
410     if (!config->packageMetadata.empty()) {
411       part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
412       add(*part.packageMetadataNote);
413     }
414   }
415 
416   if (partitions.size() != 1) {
417     // Create the partition end marker. This needs to be in partition number 255
418     // so that it is sorted after all other partitions. It also has other
419     // special handling (see createPhdrs() and combineEhSections()).
420     in.partEnd =
421         std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
422     in.partEnd->partition = 255;
423     add(*in.partEnd);
424 
425     in.partIndex = std::make_unique<PartitionIndexSection>();
426     addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
427     addOptionalRegular("__part_index_end", in.partIndex.get(),
428                        in.partIndex->getSize());
429     add(*in.partIndex);
430   }
431 
432   // Add .got. MIPS' .got is so different from the other archs,
433   // it has its own class.
434   if (config->emachine == EM_MIPS) {
435     in.mipsGot = std::make_unique<MipsGotSection>();
436     add(*in.mipsGot);
437   } else {
438     in.got = std::make_unique<GotSection>();
439     add(*in.got);
440   }
441 
442   if (config->emachine == EM_PPC) {
443     in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
444     add(*in.ppc32Got2);
445   }
446 
447   if (config->emachine == EM_PPC64) {
448     in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
449     add(*in.ppc64LongBranchTarget);
450   }
451 
452   in.gotPlt = std::make_unique<GotPltSection>();
453   add(*in.gotPlt);
454   in.igotPlt = std::make_unique<IgotPltSection>();
455   add(*in.igotPlt);
456 
457   if (config->emachine == EM_ARM) {
458     in.armCmseSGSection = std::make_unique<ArmCmseSGSection>();
459     add(*in.armCmseSGSection);
460   }
461 
462   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
463   // it as a relocation and ensure the referenced section is created.
464   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
465     if (target->gotBaseSymInGotPlt)
466       in.gotPlt->hasGotPltOffRel = true;
467     else
468       in.got->hasGotOffRel = true;
469   }
470 
471   if (config->gdbIndex)
472     add(*GdbIndexSection::create<ELFT>());
473 
474   // We always need to add rel[a].plt to output if it has entries.
475   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
476   in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
477       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
478       /*threadCount=*/1);
479   add(*in.relaPlt);
480 
481   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
482   // relocations are processed last by the dynamic loader. We cannot place the
483   // iplt section in .rel.dyn when Android relocation packing is enabled because
484   // that would cause a section type mismatch. However, because the Android
485   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
486   // behaviour by placing the iplt section in .rel.plt.
487   in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
488       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
489       /*sort=*/false, /*threadCount=*/1);
490   add(*in.relaIplt);
491 
492   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
493       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
494     in.ibtPlt = std::make_unique<IBTPltSection>();
495     add(*in.ibtPlt);
496   }
497 
498   if (config->emachine == EM_PPC)
499     in.plt = std::make_unique<PPC32GlinkSection>();
500   else
501     in.plt = std::make_unique<PltSection>();
502   add(*in.plt);
503   in.iplt = std::make_unique<IpltSection>();
504   add(*in.iplt);
505 
506   if (config->andFeatures)
507     add(*make<GnuPropertySection>());
508 
509   // .note.GNU-stack is always added when we are creating a re-linkable
510   // object file. Other linkers are using the presence of this marker
511   // section to control the executable-ness of the stack area, but that
512   // is irrelevant these days. Stack area should always be non-executable
513   // by default. So we emit this section unconditionally.
514   if (config->relocatable)
515     add(*make<GnuStackSection>());
516 
517   if (in.symTab)
518     add(*in.symTab);
519   if (in.symTabShndx)
520     add(*in.symTabShndx);
521   add(*in.shStrTab);
522   if (in.strTab)
523     add(*in.strTab);
524 }
525 
526 // The main function of the writer.
527 template <class ELFT> void Writer<ELFT>::run() {
528   copyLocalSymbols();
529 
530   if (config->copyRelocs)
531     addSectionSymbols();
532 
533   // Now that we have a complete set of output sections. This function
534   // completes section contents. For example, we need to add strings
535   // to the string table, and add entries to .got and .plt.
536   // finalizeSections does that.
537   finalizeSections();
538   checkExecuteOnly();
539 
540   // If --compressed-debug-sections is specified, compress .debug_* sections.
541   // Do it right now because it changes the size of output sections.
542   for (OutputSection *sec : outputSections)
543     sec->maybeCompress<ELFT>();
544 
545   if (script->hasSectionsCommand)
546     script->allocateHeaders(mainPart->phdrs);
547 
548   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
549   // 0 sized region. This has to be done late since only after assignAddresses
550   // we know the size of the sections.
551   for (Partition &part : partitions)
552     removeEmptyPTLoad(part.phdrs);
553 
554   if (!config->oFormatBinary)
555     assignFileOffsets();
556   else
557     assignFileOffsetsBinary();
558 
559   for (Partition &part : partitions)
560     setPhdrs(part);
561 
562   // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
563   // because the files may be useful in case checkSections() or openFile()
564   // fails, for example, due to an erroneous file size.
565   writeMapAndCref();
566 
567   // Handle --print-memory-usage option.
568   if (config->printMemoryUsage)
569     script->printMemoryUsage(lld::outs());
570 
571   if (config->checkSections)
572     checkSections();
573 
574   // It does not make sense try to open the file if we have error already.
575   if (errorCount())
576     return;
577 
578   {
579     llvm::TimeTraceScope timeScope("Write output file");
580     // Write the result down to a file.
581     openFile();
582     if (errorCount())
583       return;
584 
585     if (!config->oFormatBinary) {
586       if (config->zSeparate != SeparateSegmentKind::None)
587         writeTrapInstr();
588       writeHeader();
589       writeSections();
590     } else {
591       writeSectionsBinary();
592     }
593 
594     // Backfill .note.gnu.build-id section content. This is done at last
595     // because the content is usually a hash value of the entire output file.
596     writeBuildId();
597     if (errorCount())
598       return;
599 
600     if (auto e = buffer->commit())
601       fatal("failed to write output '" + buffer->getPath() +
602             "': " + toString(std::move(e)));
603 
604     if (!config->cmseOutputLib.empty())
605       writeARMCmseImportLib<ELFT>();
606   }
607 }
608 
609 template <class ELFT, class RelTy>
610 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
611                                      llvm::ArrayRef<RelTy> rels) {
612   for (const RelTy &rel : rels) {
613     Symbol &sym = file->getRelocTargetSym(rel);
614     if (sym.isLocal())
615       sym.used = true;
616   }
617 }
618 
619 // The function ensures that the "used" field of local symbols reflects the fact
620 // that the symbol is used in a relocation from a live section.
621 template <class ELFT> static void markUsedLocalSymbols() {
622   // With --gc-sections, the field is already filled.
623   // See MarkLive<ELFT>::resolveReloc().
624   if (config->gcSections)
625     return;
626   for (ELFFileBase *file : ctx.objectFiles) {
627     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
628     for (InputSectionBase *s : f->getSections()) {
629       InputSection *isec = dyn_cast_or_null<InputSection>(s);
630       if (!isec)
631         continue;
632       if (isec->type == SHT_REL)
633         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
634       else if (isec->type == SHT_RELA)
635         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
636     }
637   }
638 }
639 
640 static bool shouldKeepInSymtab(const Defined &sym) {
641   if (sym.isSection())
642     return false;
643 
644   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
645   // from live sections.
646   if (sym.used && config->copyRelocs)
647     return true;
648 
649   // Exclude local symbols pointing to .ARM.exidx sections.
650   // They are probably mapping symbols "$d", which are optional for these
651   // sections. After merging the .ARM.exidx sections, some of these symbols
652   // may become dangling. The easiest way to avoid the issue is not to add
653   // them to the symbol table from the beginning.
654   if (config->emachine == EM_ARM && sym.section &&
655       sym.section->type == SHT_ARM_EXIDX)
656     return false;
657 
658   if (config->discard == DiscardPolicy::None)
659     return true;
660   if (config->discard == DiscardPolicy::All)
661     return false;
662 
663   // In ELF assembly .L symbols are normally discarded by the assembler.
664   // If the assembler fails to do so, the linker discards them if
665   // * --discard-locals is used.
666   // * The symbol is in a SHF_MERGE section, which is normally the reason for
667   //   the assembler keeping the .L symbol.
668   if (sym.getName().starts_with(".L") &&
669       (config->discard == DiscardPolicy::Locals ||
670        (sym.section && (sym.section->flags & SHF_MERGE))))
671     return false;
672   return true;
673 }
674 
675 static bool includeInSymtab(const Symbol &b) {
676   if (auto *d = dyn_cast<Defined>(&b)) {
677     // Always include absolute symbols.
678     SectionBase *sec = d->section;
679     if (!sec)
680       return true;
681 
682     if (auto *s = dyn_cast<MergeInputSection>(sec))
683       return s->getSectionPiece(d->value).live;
684     return sec->isLive();
685   }
686   return b.used || !config->gcSections;
687 }
688 
689 // Local symbols are not in the linker's symbol table. This function scans
690 // each object file's symbol table to copy local symbols to the output.
691 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
692   if (!in.symTab)
693     return;
694   llvm::TimeTraceScope timeScope("Add local symbols");
695   if (config->copyRelocs && config->discard != DiscardPolicy::None)
696     markUsedLocalSymbols<ELFT>();
697   for (ELFFileBase *file : ctx.objectFiles) {
698     for (Symbol *b : file->getLocalSymbols()) {
699       assert(b->isLocal() && "should have been caught in initializeSymbols()");
700       auto *dr = dyn_cast<Defined>(b);
701 
702       // No reason to keep local undefined symbol in symtab.
703       if (!dr)
704         continue;
705       if (includeInSymtab(*b) && shouldKeepInSymtab(*dr))
706         in.symTab->addSymbol(b);
707     }
708   }
709 }
710 
711 // Create a section symbol for each output section so that we can represent
712 // relocations that point to the section. If we know that no relocation is
713 // referring to a section (that happens if the section is a synthetic one), we
714 // don't create a section symbol for that section.
715 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
716   for (SectionCommand *cmd : script->sectionCommands) {
717     auto *osd = dyn_cast<OutputDesc>(cmd);
718     if (!osd)
719       continue;
720     OutputSection &osec = osd->osec;
721     InputSectionBase *isec = nullptr;
722     // Iterate over all input sections and add a STT_SECTION symbol if any input
723     // section may be a relocation target.
724     for (SectionCommand *cmd : osec.commands) {
725       auto *isd = dyn_cast<InputSectionDescription>(cmd);
726       if (!isd)
727         continue;
728       for (InputSectionBase *s : isd->sections) {
729         // Relocations are not using REL[A] section symbols.
730         if (s->type == SHT_REL || s->type == SHT_RELA)
731           continue;
732 
733         // Unlike other synthetic sections, mergeable output sections contain
734         // data copied from input sections, and there may be a relocation
735         // pointing to its contents if -r or --emit-reloc is given.
736         if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
737           continue;
738 
739         isec = s;
740         break;
741       }
742     }
743     if (!isec)
744       continue;
745 
746     // Set the symbol to be relative to the output section so that its st_value
747     // equals the output section address. Note, there may be a gap between the
748     // start of the output section and isec.
749     in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
750                                      STT_SECTION,
751                                      /*value=*/0, /*size=*/0, &osec));
752   }
753 }
754 
755 // Today's loaders have a feature to make segments read-only after
756 // processing dynamic relocations to enhance security. PT_GNU_RELRO
757 // is defined for that.
758 //
759 // This function returns true if a section needs to be put into a
760 // PT_GNU_RELRO segment.
761 static bool isRelroSection(const OutputSection *sec) {
762   if (!config->zRelro)
763     return false;
764   if (sec->relro)
765     return true;
766 
767   uint64_t flags = sec->flags;
768 
769   // Non-allocatable or non-writable sections don't need RELRO because
770   // they are not writable or not even mapped to memory in the first place.
771   // RELRO is for sections that are essentially read-only but need to
772   // be writable only at process startup to allow dynamic linker to
773   // apply relocations.
774   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
775     return false;
776 
777   // Once initialized, TLS data segments are used as data templates
778   // for a thread-local storage. For each new thread, runtime
779   // allocates memory for a TLS and copy templates there. No thread
780   // are supposed to use templates directly. Thus, it can be in RELRO.
781   if (flags & SHF_TLS)
782     return true;
783 
784   // .init_array, .preinit_array and .fini_array contain pointers to
785   // functions that are executed on process startup or exit. These
786   // pointers are set by the static linker, and they are not expected
787   // to change at runtime. But if you are an attacker, you could do
788   // interesting things by manipulating pointers in .fini_array, for
789   // example. So they are put into RELRO.
790   uint32_t type = sec->type;
791   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
792       type == SHT_PREINIT_ARRAY)
793     return true;
794 
795   // .got contains pointers to external symbols. They are resolved by
796   // the dynamic linker when a module is loaded into memory, and after
797   // that they are not expected to change. So, it can be in RELRO.
798   if (in.got && sec == in.got->getParent())
799     return true;
800 
801   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
802   // through r2 register, which is reserved for that purpose. Since r2 is used
803   // for accessing .got as well, .got and .toc need to be close enough in the
804   // virtual address space. Usually, .toc comes just after .got. Since we place
805   // .got into RELRO, .toc needs to be placed into RELRO too.
806   if (sec->name.equals(".toc"))
807     return true;
808 
809   // .got.plt contains pointers to external function symbols. They are
810   // by default resolved lazily, so we usually cannot put it into RELRO.
811   // However, if "-z now" is given, the lazy symbol resolution is
812   // disabled, which enables us to put it into RELRO.
813   if (sec == in.gotPlt->getParent())
814     return config->zNow;
815 
816   // .dynamic section contains data for the dynamic linker, and
817   // there's no need to write to it at runtime, so it's better to put
818   // it into RELRO.
819   if (sec->name == ".dynamic")
820     return true;
821 
822   // Sections with some special names are put into RELRO. This is a
823   // bit unfortunate because section names shouldn't be significant in
824   // ELF in spirit. But in reality many linker features depend on
825   // magic section names.
826   StringRef s = sec->name;
827   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
828          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
829          s == ".fini_array" || s == ".init_array" ||
830          s == ".openbsd.randomdata" || s == ".preinit_array";
831 }
832 
833 // We compute a rank for each section. The rank indicates where the
834 // section should be placed in the file.  Instead of using simple
835 // numbers (0,1,2...), we use a series of flags. One for each decision
836 // point when placing the section.
837 // Using flags has two key properties:
838 // * It is easy to check if a give branch was taken.
839 // * It is easy two see how similar two ranks are (see getRankProximity).
840 enum RankFlags {
841   RF_NOT_ADDR_SET = 1 << 27,
842   RF_NOT_ALLOC = 1 << 26,
843   RF_PARTITION = 1 << 18, // Partition number (8 bits)
844   RF_NOT_SPECIAL = 1 << 17,
845   RF_WRITE = 1 << 16,
846   RF_EXEC_WRITE = 1 << 15,
847   RF_EXEC = 1 << 14,
848   RF_RODATA = 1 << 13,
849   RF_LARGE = 1 << 12,
850   RF_NOT_RELRO = 1 << 9,
851   RF_NOT_TLS = 1 << 8,
852   RF_BSS = 1 << 7,
853 };
854 
855 static unsigned getSectionRank(const OutputSection &osec) {
856   unsigned rank = osec.partition * RF_PARTITION;
857 
858   // We want to put section specified by -T option first, so we
859   // can start assigning VA starting from them later.
860   if (config->sectionStartMap.count(osec.name))
861     return rank;
862   rank |= RF_NOT_ADDR_SET;
863 
864   // Allocatable sections go first to reduce the total PT_LOAD size and
865   // so debug info doesn't change addresses in actual code.
866   if (!(osec.flags & SHF_ALLOC))
867     return rank | RF_NOT_ALLOC;
868 
869   if (osec.type == SHT_LLVM_PART_EHDR)
870     return rank;
871   if (osec.type == SHT_LLVM_PART_PHDR)
872     return rank | 1;
873 
874   // Put .interp first because some loaders want to see that section
875   // on the first page of the executable file when loaded into memory.
876   if (osec.name == ".interp")
877     return rank | 2;
878 
879   // Put .note sections at the beginning so that they are likely to be included
880   // in a truncate core file. In particular, .note.gnu.build-id, if available,
881   // can identify the object file.
882   if (osec.type == SHT_NOTE)
883     return rank | 3;
884 
885   rank |= RF_NOT_SPECIAL;
886 
887   // Sort sections based on their access permission in the following
888   // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
889   //
890   // Read-only sections come first such that they go in the PT_LOAD covering the
891   // program headers at the start of the file.
892   //
893   // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
894   // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
895   // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
896   // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
897   // places.
898   bool isExec = osec.flags & SHF_EXECINSTR;
899   bool isWrite = osec.flags & SHF_WRITE;
900 
901   if (!isWrite && !isExec) {
902     // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
903     // alleviate relocation overflow pressure. Large special sections such as
904     // .dynstr and .dynsym can be away from .text.
905     if (osec.type == SHT_PROGBITS)
906       rank |= RF_RODATA;
907     // Among PROGBITS sections, place .lrodata further from .text.
908     if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64))
909       rank |= RF_LARGE;
910   } else if (isExec) {
911     rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC;
912   } else {
913     rank |= RF_WRITE;
914     // The TLS initialization block needs to be a single contiguous block. Place
915     // TLS sections directly before the other RELRO sections.
916     if (!(osec.flags & SHF_TLS))
917       rank |= RF_NOT_TLS;
918     if (!isRelroSection(&osec))
919       rank |= RF_NOT_RELRO;
920     // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates
921     // relocation overflow pressure.
922     if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)
923       rank |= RF_LARGE;
924   }
925 
926   // Within TLS sections, or within other RelRo sections, or within non-RelRo
927   // sections, place non-NOBITS sections first.
928   if (osec.type == SHT_NOBITS)
929     rank |= RF_BSS;
930 
931   // Some architectures have additional ordering restrictions for sections
932   // within the same PT_LOAD.
933   if (config->emachine == EM_PPC64) {
934     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
935     // that we would like to make sure appear is a specific order to maximize
936     // their coverage by a single signed 16-bit offset from the TOC base
937     // pointer.
938     StringRef name = osec.name;
939     if (name == ".branch_lt")
940       rank |= 1;
941     else if (name == ".got")
942       rank |= 2;
943     else if (name == ".toc")
944       rank |= 4;
945   }
946 
947   if (config->emachine == EM_MIPS) {
948     if (osec.name != ".got")
949       rank |= 1;
950     // All sections with SHF_MIPS_GPREL flag should be grouped together
951     // because data in these sections is addressable with a gp relative address.
952     if (osec.flags & SHF_MIPS_GPREL)
953       rank |= 2;
954   }
955 
956   if (config->emachine == EM_RISCV) {
957     // .sdata and .sbss are placed closer to make GP relaxation more profitable
958     // and match GNU ld.
959     StringRef name = osec.name;
960     if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss"))
961       rank |= 1;
962   }
963 
964   return rank;
965 }
966 
967 static bool compareSections(const SectionCommand *aCmd,
968                             const SectionCommand *bCmd) {
969   const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
970   const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
971 
972   if (a->sortRank != b->sortRank)
973     return a->sortRank < b->sortRank;
974 
975   if (!(a->sortRank & RF_NOT_ADDR_SET))
976     return config->sectionStartMap.lookup(a->name) <
977            config->sectionStartMap.lookup(b->name);
978   return false;
979 }
980 
981 void PhdrEntry::add(OutputSection *sec) {
982   lastSec = sec;
983   if (!firstSec)
984     firstSec = sec;
985   p_align = std::max(p_align, sec->addralign);
986   if (p_type == PT_LOAD)
987     sec->ptLoad = this;
988 }
989 
990 // The beginning and the ending of .rel[a].plt section are marked
991 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
992 // executable. The runtime needs these symbols in order to resolve
993 // all IRELATIVE relocs on startup. For dynamic executables, we don't
994 // need these symbols, since IRELATIVE relocs are resolved through GOT
995 // and PLT. For details, see http://www.airs.com/blog/archives/403.
996 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
997   if (config->isPic)
998     return;
999 
1000   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1001   // because .rela.plt might be empty and thus removed from output.
1002   // We'll override Out::elfHeader with In.relaIplt later when we are
1003   // sure that .rela.plt exists in output.
1004   ElfSym::relaIpltStart = addOptionalRegular(
1005       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1006       Out::elfHeader, 0, STV_HIDDEN);
1007 
1008   ElfSym::relaIpltEnd = addOptionalRegular(
1009       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1010       Out::elfHeader, 0, STV_HIDDEN);
1011 }
1012 
1013 // This function generates assignments for predefined symbols (e.g. _end or
1014 // _etext) and inserts them into the commands sequence to be processed at the
1015 // appropriate time. This ensures that the value is going to be correct by the
1016 // time any references to these symbols are processed and is equivalent to
1017 // defining these symbols explicitly in the linker script.
1018 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1019   if (ElfSym::globalOffsetTable) {
1020     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1021     // to the start of the .got or .got.plt section.
1022     InputSection *sec = in.gotPlt.get();
1023     if (!target->gotBaseSymInGotPlt)
1024       sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get())
1025                        : cast<InputSection>(in.got.get());
1026     ElfSym::globalOffsetTable->section = sec;
1027   }
1028 
1029   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1030   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1031     ElfSym::relaIpltStart->section = in.relaIplt.get();
1032     ElfSym::relaIpltEnd->section = in.relaIplt.get();
1033     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1034   }
1035 
1036   PhdrEntry *last = nullptr;
1037   PhdrEntry *lastRO = nullptr;
1038 
1039   for (Partition &part : partitions) {
1040     for (PhdrEntry *p : part.phdrs) {
1041       if (p->p_type != PT_LOAD)
1042         continue;
1043       last = p;
1044       if (!(p->p_flags & PF_W))
1045         lastRO = p;
1046     }
1047   }
1048 
1049   if (lastRO) {
1050     // _etext is the first location after the last read-only loadable segment.
1051     if (ElfSym::etext1)
1052       ElfSym::etext1->section = lastRO->lastSec;
1053     if (ElfSym::etext2)
1054       ElfSym::etext2->section = lastRO->lastSec;
1055   }
1056 
1057   if (last) {
1058     // _edata points to the end of the last mapped initialized section.
1059     OutputSection *edata = nullptr;
1060     for (OutputSection *os : outputSections) {
1061       if (os->type != SHT_NOBITS)
1062         edata = os;
1063       if (os == last->lastSec)
1064         break;
1065     }
1066 
1067     if (ElfSym::edata1)
1068       ElfSym::edata1->section = edata;
1069     if (ElfSym::edata2)
1070       ElfSym::edata2->section = edata;
1071 
1072     // _end is the first location after the uninitialized data region.
1073     if (ElfSym::end1)
1074       ElfSym::end1->section = last->lastSec;
1075     if (ElfSym::end2)
1076       ElfSym::end2->section = last->lastSec;
1077   }
1078 
1079   if (ElfSym::bss) {
1080     // On RISC-V, set __bss_start to the start of .sbss if present.
1081     OutputSection *sbss =
1082         config->emachine == EM_RISCV ? findSection(".sbss") : nullptr;
1083     ElfSym::bss->section = sbss ? sbss : findSection(".bss");
1084   }
1085 
1086   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1087   // be equal to the _gp symbol's value.
1088   if (ElfSym::mipsGp) {
1089     // Find GP-relative section with the lowest address
1090     // and use this address to calculate default _gp value.
1091     for (OutputSection *os : outputSections) {
1092       if (os->flags & SHF_MIPS_GPREL) {
1093         ElfSym::mipsGp->section = os;
1094         ElfSym::mipsGp->value = 0x7ff0;
1095         break;
1096       }
1097     }
1098   }
1099 }
1100 
1101 // We want to find how similar two ranks are.
1102 // The more branches in getSectionRank that match, the more similar they are.
1103 // Since each branch corresponds to a bit flag, we can just use
1104 // countLeadingZeros.
1105 static int getRankProximity(OutputSection *a, SectionCommand *b) {
1106   auto *osd = dyn_cast<OutputDesc>(b);
1107   return (osd && osd->osec.hasInputSections)
1108              ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank)
1109              : -1;
1110 }
1111 
1112 // When placing orphan sections, we want to place them after symbol assignments
1113 // so that an orphan after
1114 //   begin_foo = .;
1115 //   foo : { *(foo) }
1116 //   end_foo = .;
1117 // doesn't break the intended meaning of the begin/end symbols.
1118 // We don't want to go over sections since findOrphanPos is the
1119 // one in charge of deciding the order of the sections.
1120 // We don't want to go over changes to '.', since doing so in
1121 //  rx_sec : { *(rx_sec) }
1122 //  . = ALIGN(0x1000);
1123 //  /* The RW PT_LOAD starts here*/
1124 //  rw_sec : { *(rw_sec) }
1125 // would mean that the RW PT_LOAD would become unaligned.
1126 static bool shouldSkip(SectionCommand *cmd) {
1127   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1128     return assign->name != ".";
1129   return false;
1130 }
1131 
1132 // We want to place orphan sections so that they share as much
1133 // characteristics with their neighbors as possible. For example, if
1134 // both are rw, or both are tls.
1135 static SmallVectorImpl<SectionCommand *>::iterator
1136 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
1137               SmallVectorImpl<SectionCommand *>::iterator e) {
1138   OutputSection *sec = &cast<OutputDesc>(*e)->osec;
1139 
1140   // Find the first element that has as close a rank as possible.
1141   auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1142     return getRankProximity(sec, a) < getRankProximity(sec, b);
1143   });
1144   if (i == e)
1145     return e;
1146   if (!isa<OutputDesc>(*i))
1147     return e;
1148   auto foundSec = &cast<OutputDesc>(*i)->osec;
1149 
1150   // Consider all existing sections with the same proximity.
1151   int proximity = getRankProximity(sec, *i);
1152   unsigned sortRank = sec->sortRank;
1153   if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1154     // Prevent the orphan section to be placed before the found section. If
1155     // custom program headers are defined, that helps to avoid adding it to a
1156     // previous segment and changing flags of that segment, for example, making
1157     // a read-only segment writable. If memory regions are defined, an orphan
1158     // section should continue the same region as the found section to better
1159     // resemble the behavior of GNU ld.
1160     sortRank = std::max(sortRank, foundSec->sortRank);
1161   for (; i != e; ++i) {
1162     auto *curSecDesc = dyn_cast<OutputDesc>(*i);
1163     if (!curSecDesc || !curSecDesc->osec.hasInputSections)
1164       continue;
1165     if (getRankProximity(sec, curSecDesc) != proximity ||
1166         sortRank < curSecDesc->osec.sortRank)
1167       break;
1168   }
1169 
1170   auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1171     auto *osd = dyn_cast<OutputDesc>(cmd);
1172     return osd && osd->osec.hasInputSections;
1173   };
1174   auto j =
1175       std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
1176                    isOutputSecWithInputSections);
1177   i = j.base();
1178 
1179   // As a special case, if the orphan section is the last section, put
1180   // it at the very end, past any other commands.
1181   // This matches bfd's behavior and is convenient when the linker script fully
1182   // specifies the start of the file, but doesn't care about the end (the non
1183   // alloc sections for example).
1184   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1185   if (nextSec == e)
1186     return e;
1187 
1188   while (i != e && shouldSkip(*i))
1189     ++i;
1190   return i;
1191 }
1192 
1193 // Adds random priorities to sections not already in the map.
1194 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1195   if (config->shuffleSections.empty())
1196     return;
1197 
1198   SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections;
1199   matched.reserve(sections.size());
1200   for (const auto &patAndSeed : config->shuffleSections) {
1201     matched.clear();
1202     for (InputSectionBase *sec : sections)
1203       if (patAndSeed.first.match(sec->name))
1204         matched.push_back(sec);
1205     const uint32_t seed = patAndSeed.second;
1206     if (seed == UINT32_MAX) {
1207       // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1208       // section order is stable even if the number of sections changes. This is
1209       // useful to catch issues like static initialization order fiasco
1210       // reliably.
1211       std::reverse(matched.begin(), matched.end());
1212     } else {
1213       std::mt19937 g(seed ? seed : std::random_device()());
1214       llvm::shuffle(matched.begin(), matched.end(), g);
1215     }
1216     size_t i = 0;
1217     for (InputSectionBase *&sec : sections)
1218       if (patAndSeed.first.match(sec->name))
1219         sec = matched[i++];
1220   }
1221 
1222   // Existing priorities are < 0, so use priorities >= 0 for the missing
1223   // sections.
1224   int prio = 0;
1225   for (InputSectionBase *sec : sections) {
1226     if (order.try_emplace(sec, prio).second)
1227       ++prio;
1228   }
1229 }
1230 
1231 // Builds section order for handling --symbol-ordering-file.
1232 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1233   DenseMap<const InputSectionBase *, int> sectionOrder;
1234   // Use the rarely used option --call-graph-ordering-file to sort sections.
1235   if (!config->callGraphProfile.empty())
1236     return computeCallGraphProfileOrder();
1237 
1238   if (config->symbolOrderingFile.empty())
1239     return sectionOrder;
1240 
1241   struct SymbolOrderEntry {
1242     int priority;
1243     bool present;
1244   };
1245 
1246   // Build a map from symbols to their priorities. Symbols that didn't
1247   // appear in the symbol ordering file have the lowest priority 0.
1248   // All explicitly mentioned symbols have negative (higher) priorities.
1249   DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
1250   int priority = -config->symbolOrderingFile.size();
1251   for (StringRef s : config->symbolOrderingFile)
1252     symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
1253 
1254   // Build a map from sections to their priorities.
1255   auto addSym = [&](Symbol &sym) {
1256     auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
1257     if (it == symbolOrder.end())
1258       return;
1259     SymbolOrderEntry &ent = it->second;
1260     ent.present = true;
1261 
1262     maybeWarnUnorderableSymbol(&sym);
1263 
1264     if (auto *d = dyn_cast<Defined>(&sym)) {
1265       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1266         int &priority = sectionOrder[cast<InputSectionBase>(sec)];
1267         priority = std::min(priority, ent.priority);
1268       }
1269     }
1270   };
1271 
1272   // We want both global and local symbols. We get the global ones from the
1273   // symbol table and iterate the object files for the local ones.
1274   for (Symbol *sym : symtab.getSymbols())
1275     addSym(*sym);
1276 
1277   for (ELFFileBase *file : ctx.objectFiles)
1278     for (Symbol *sym : file->getLocalSymbols())
1279       addSym(*sym);
1280 
1281   if (config->warnSymbolOrdering)
1282     for (auto orderEntry : symbolOrder)
1283       if (!orderEntry.second.present)
1284         warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
1285 
1286   return sectionOrder;
1287 }
1288 
1289 // Sorts the sections in ISD according to the provided section order.
1290 static void
1291 sortISDBySectionOrder(InputSectionDescription *isd,
1292                       const DenseMap<const InputSectionBase *, int> &order,
1293                       bool executableOutputSection) {
1294   SmallVector<InputSection *, 0> unorderedSections;
1295   SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
1296   uint64_t unorderedSize = 0;
1297   uint64_t totalSize = 0;
1298 
1299   for (InputSection *isec : isd->sections) {
1300     if (executableOutputSection)
1301       totalSize += isec->getSize();
1302     auto i = order.find(isec);
1303     if (i == order.end()) {
1304       unorderedSections.push_back(isec);
1305       unorderedSize += isec->getSize();
1306       continue;
1307     }
1308     orderedSections.push_back({isec, i->second});
1309   }
1310   llvm::sort(orderedSections, llvm::less_second());
1311 
1312   // Find an insertion point for the ordered section list in the unordered
1313   // section list. On targets with limited-range branches, this is the mid-point
1314   // of the unordered section list. This decreases the likelihood that a range
1315   // extension thunk will be needed to enter or exit the ordered region. If the
1316   // ordered section list is a list of hot functions, we can generally expect
1317   // the ordered functions to be called more often than the unordered functions,
1318   // making it more likely that any particular call will be within range, and
1319   // therefore reducing the number of thunks required.
1320   //
1321   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1322   // If the layout is:
1323   //
1324   // 8MB hot
1325   // 32MB cold
1326   //
1327   // only the first 8-16MB of the cold code (depending on which hot function it
1328   // is actually calling) can call the hot code without a range extension thunk.
1329   // However, if we use this layout:
1330   //
1331   // 16MB cold
1332   // 8MB hot
1333   // 16MB cold
1334   //
1335   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1336   // of the second block of cold code can call the hot code without a thunk. So
1337   // we effectively double the amount of code that could potentially call into
1338   // the hot code without a thunk.
1339   //
1340   // The above is not necessary if total size of input sections in this "isd"
1341   // is small. Note that we assume all input sections are executable if the
1342   // output section is executable (which is not always true but supposed to
1343   // cover most cases).
1344   size_t insPt = 0;
1345   if (executableOutputSection && !orderedSections.empty() &&
1346       target->getThunkSectionSpacing() &&
1347       totalSize >= target->getThunkSectionSpacing()) {
1348     uint64_t unorderedPos = 0;
1349     for (; insPt != unorderedSections.size(); ++insPt) {
1350       unorderedPos += unorderedSections[insPt]->getSize();
1351       if (unorderedPos > unorderedSize / 2)
1352         break;
1353     }
1354   }
1355 
1356   isd->sections.clear();
1357   for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt))
1358     isd->sections.push_back(isec);
1359   for (std::pair<InputSection *, int> p : orderedSections)
1360     isd->sections.push_back(p.first);
1361   for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt))
1362     isd->sections.push_back(isec);
1363 }
1364 
1365 static void sortSection(OutputSection &osec,
1366                         const DenseMap<const InputSectionBase *, int> &order) {
1367   StringRef name = osec.name;
1368 
1369   // Never sort these.
1370   if (name == ".init" || name == ".fini")
1371     return;
1372 
1373   // IRelative relocations that usually live in the .rel[a].dyn section should
1374   // be processed last by the dynamic loader. To achieve that we add synthetic
1375   // sections in the required order from the beginning so that the in.relaIplt
1376   // section is placed last in an output section. Here we just do not apply
1377   // sorting for an output section which holds the in.relaIplt section.
1378   if (in.relaIplt->getParent() == &osec)
1379     return;
1380 
1381   // Sort input sections by priority using the list provided by
1382   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1383   // digit radix sort. The sections may be sorted stably again by a more
1384   // significant key.
1385   if (!order.empty())
1386     for (SectionCommand *b : osec.commands)
1387       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1388         sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
1389 
1390   if (script->hasSectionsCommand)
1391     return;
1392 
1393   if (name == ".init_array" || name == ".fini_array") {
1394     osec.sortInitFini();
1395   } else if (name == ".ctors" || name == ".dtors") {
1396     osec.sortCtorsDtors();
1397   } else if (config->emachine == EM_PPC64 && name == ".toc") {
1398     // .toc is allocated just after .got and is accessed using GOT-relative
1399     // relocations. Object files compiled with small code model have an
1400     // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1401     // To reduce the risk of relocation overflow, .toc contents are sorted so
1402     // that sections having smaller relocation offsets are at beginning of .toc
1403     assert(osec.commands.size() == 1);
1404     auto *isd = cast<InputSectionDescription>(osec.commands[0]);
1405     llvm::stable_sort(isd->sections,
1406                       [](const InputSection *a, const InputSection *b) -> bool {
1407                         return a->file->ppc64SmallCodeModelTocRelocs &&
1408                                !b->file->ppc64SmallCodeModelTocRelocs;
1409                       });
1410   }
1411 }
1412 
1413 // If no layout was provided by linker script, we want to apply default
1414 // sorting for special input sections. This also handles --symbol-ordering-file.
1415 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1416   // Build the order once since it is expensive.
1417   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1418   maybeShuffle(order);
1419   for (SectionCommand *cmd : script->sectionCommands)
1420     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1421       sortSection(osd->osec, order);
1422 }
1423 
1424 template <class ELFT> void Writer<ELFT>::sortSections() {
1425   llvm::TimeTraceScope timeScope("Sort sections");
1426 
1427   // Don't sort if using -r. It is not necessary and we want to preserve the
1428   // relative order for SHF_LINK_ORDER sections.
1429   if (config->relocatable) {
1430     script->adjustOutputSections();
1431     return;
1432   }
1433 
1434   sortInputSections();
1435 
1436   for (SectionCommand *cmd : script->sectionCommands)
1437     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1438       osd->osec.sortRank = getSectionRank(osd->osec);
1439   if (!script->hasSectionsCommand) {
1440     // We know that all the OutputSections are contiguous in this case.
1441     auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); };
1442     std::stable_sort(
1443         llvm::find_if(script->sectionCommands, isSection),
1444         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1445         compareSections);
1446   }
1447 
1448   // Process INSERT commands and update output section attributes. From this
1449   // point onwards the order of script->sectionCommands is fixed.
1450   script->processInsertCommands();
1451   script->adjustOutputSections();
1452 
1453   if (script->hasSectionsCommand)
1454     sortOrphanSections();
1455 
1456   script->adjustSectionsAfterSorting();
1457 }
1458 
1459 template <class ELFT> void Writer<ELFT>::sortOrphanSections() {
1460   // Orphan sections are sections present in the input files which are
1461   // not explicitly placed into the output file by the linker script.
1462   //
1463   // The sections in the linker script are already in the correct
1464   // order. We have to figuere out where to insert the orphan
1465   // sections.
1466   //
1467   // The order of the sections in the script is arbitrary and may not agree with
1468   // compareSections. This means that we cannot easily define a strict weak
1469   // ordering. To see why, consider a comparison of a section in the script and
1470   // one not in the script. We have a two simple options:
1471   // * Make them equivalent (a is not less than b, and b is not less than a).
1472   //   The problem is then that equivalence has to be transitive and we can
1473   //   have sections a, b and c with only b in a script and a less than c
1474   //   which breaks this property.
1475   // * Use compareSectionsNonScript. Given that the script order doesn't have
1476   //   to match, we can end up with sections a, b, c, d where b and c are in the
1477   //   script and c is compareSectionsNonScript less than b. In which case d
1478   //   can be equivalent to c, a to b and d < a. As a concrete example:
1479   //   .a (rx) # not in script
1480   //   .b (rx) # in script
1481   //   .c (ro) # in script
1482   //   .d (ro) # not in script
1483   //
1484   // The way we define an order then is:
1485   // *  Sort only the orphan sections. They are in the end right now.
1486   // *  Move each orphan section to its preferred position. We try
1487   //    to put each section in the last position where it can share
1488   //    a PT_LOAD.
1489   //
1490   // There is some ambiguity as to where exactly a new entry should be
1491   // inserted, because Commands contains not only output section
1492   // commands but also other types of commands such as symbol assignment
1493   // expressions. There's no correct answer here due to the lack of the
1494   // formal specification of the linker script. We use heuristics to
1495   // determine whether a new output command should be added before or
1496   // after another commands. For the details, look at shouldSkip
1497   // function.
1498 
1499   auto i = script->sectionCommands.begin();
1500   auto e = script->sectionCommands.end();
1501   auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1502     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1503       return osd->osec.sectionIndex == UINT32_MAX;
1504     return false;
1505   });
1506 
1507   // Sort the orphan sections.
1508   std::stable_sort(nonScriptI, e, compareSections);
1509 
1510   // As a horrible special case, skip the first . assignment if it is before any
1511   // section. We do this because it is common to set a load address by starting
1512   // the script with ". = 0xabcd" and the expectation is that every section is
1513   // after that.
1514   auto firstSectionOrDotAssignment =
1515       std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1516   if (firstSectionOrDotAssignment != e &&
1517       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1518     ++firstSectionOrDotAssignment;
1519   i = firstSectionOrDotAssignment;
1520 
1521   while (nonScriptI != e) {
1522     auto pos = findOrphanPos(i, nonScriptI);
1523     OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
1524 
1525     // As an optimization, find all sections with the same sort rank
1526     // and insert them with one rotate.
1527     unsigned rank = orphan->sortRank;
1528     auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1529       return cast<OutputDesc>(cmd)->osec.sortRank != rank;
1530     });
1531     std::rotate(pos, nonScriptI, end);
1532     nonScriptI = end;
1533   }
1534 }
1535 
1536 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1537   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1538   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1539   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1540   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1541   if (!la || !lb)
1542     return la && !lb;
1543   OutputSection *aOut = la->getParent();
1544   OutputSection *bOut = lb->getParent();
1545 
1546   if (aOut != bOut)
1547     return aOut->addr < bOut->addr;
1548   return la->outSecOff < lb->outSecOff;
1549 }
1550 
1551 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1552   llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1553   for (OutputSection *sec : outputSections) {
1554     if (!(sec->flags & SHF_LINK_ORDER))
1555       continue;
1556 
1557     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1558     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1559     if (!config->relocatable && config->emachine == EM_ARM &&
1560         sec->type == SHT_ARM_EXIDX)
1561       continue;
1562 
1563     // Link order may be distributed across several InputSectionDescriptions.
1564     // Sorting is performed separately.
1565     SmallVector<InputSection **, 0> scriptSections;
1566     SmallVector<InputSection *, 0> sections;
1567     for (SectionCommand *cmd : sec->commands) {
1568       auto *isd = dyn_cast<InputSectionDescription>(cmd);
1569       if (!isd)
1570         continue;
1571       bool hasLinkOrder = false;
1572       scriptSections.clear();
1573       sections.clear();
1574       for (InputSection *&isec : isd->sections) {
1575         if (isec->flags & SHF_LINK_ORDER) {
1576           InputSection *link = isec->getLinkOrderDep();
1577           if (link && !link->getParent())
1578             error(toString(isec) + ": sh_link points to discarded section " +
1579                   toString(link));
1580           hasLinkOrder = true;
1581         }
1582         scriptSections.push_back(&isec);
1583         sections.push_back(isec);
1584       }
1585       if (hasLinkOrder && errorCount() == 0) {
1586         llvm::stable_sort(sections, compareByFilePosition);
1587         for (int i = 0, n = sections.size(); i != n; ++i)
1588           *scriptSections[i] = sections[i];
1589       }
1590     }
1591   }
1592 }
1593 
1594 static void finalizeSynthetic(SyntheticSection *sec) {
1595   if (sec && sec->isNeeded() && sec->getParent()) {
1596     llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1597     sec->finalizeContents();
1598   }
1599 }
1600 
1601 // We need to generate and finalize the content that depends on the address of
1602 // InputSections. As the generation of the content may also alter InputSection
1603 // addresses we must converge to a fixed point. We do that here. See the comment
1604 // in Writer<ELFT>::finalizeSections().
1605 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1606   llvm::TimeTraceScope timeScope("Finalize address dependent content");
1607   ThunkCreator tc;
1608   AArch64Err843419Patcher a64p;
1609   ARMErr657417Patcher a32p;
1610   script->assignAddresses();
1611   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1612   // do require the relative addresses of OutputSections because linker scripts
1613   // can assign Virtual Addresses to OutputSections that are not monotonically
1614   // increasing.
1615   for (Partition &part : partitions)
1616     finalizeSynthetic(part.armExidx.get());
1617   resolveShfLinkOrder();
1618 
1619   // Converts call x@GDPLT to call __tls_get_addr
1620   if (config->emachine == EM_HEXAGON)
1621     hexagonTLSSymbolUpdate(outputSections);
1622 
1623   uint32_t pass = 0, assignPasses = 0;
1624   for (;;) {
1625     bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
1626                                        : target->relaxOnce(pass);
1627     ++pass;
1628 
1629     // With Thunk Size much smaller than branch range we expect to
1630     // converge quickly; if we get to 30 something has gone wrong.
1631     if (changed && pass >= 30) {
1632       error(target->needsThunks ? "thunk creation not converged"
1633                                 : "relaxation not converged");
1634       break;
1635     }
1636 
1637     if (config->fixCortexA53Errata843419) {
1638       if (changed)
1639         script->assignAddresses();
1640       changed |= a64p.createFixes();
1641     }
1642     if (config->fixCortexA8) {
1643       if (changed)
1644         script->assignAddresses();
1645       changed |= a32p.createFixes();
1646     }
1647 
1648     if (in.mipsGot)
1649       in.mipsGot->updateAllocSize();
1650 
1651     for (Partition &part : partitions) {
1652       changed |= part.relaDyn->updateAllocSize();
1653       if (part.relrDyn)
1654         changed |= part.relrDyn->updateAllocSize();
1655     }
1656 
1657     const Defined *changedSym = script->assignAddresses();
1658     if (!changed) {
1659       // Some symbols may be dependent on section addresses. When we break the
1660       // loop, the symbol values are finalized because a previous
1661       // assignAddresses() finalized section addresses.
1662       if (!changedSym)
1663         break;
1664       if (++assignPasses == 5) {
1665         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1666                     " does not converge");
1667         break;
1668       }
1669     }
1670   }
1671   if (!config->relocatable && config->emachine == EM_RISCV)
1672     riscvFinalizeRelax(pass);
1673 
1674   if (config->relocatable)
1675     for (OutputSection *sec : outputSections)
1676       sec->addr = 0;
1677 
1678   // If addrExpr is set, the address may not be a multiple of the alignment.
1679   // Warn because this is error-prone.
1680   for (SectionCommand *cmd : script->sectionCommands)
1681     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1682       OutputSection *osec = &osd->osec;
1683       if (osec->addr % osec->addralign != 0)
1684         warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
1685              osec->name + " is not a multiple of alignment (" +
1686              Twine(osec->addralign) + ")");
1687     }
1688 }
1689 
1690 // If Input Sections have been shrunk (basic block sections) then
1691 // update symbol values and sizes associated with these sections.  With basic
1692 // block sections, input sections can shrink when the jump instructions at
1693 // the end of the section are relaxed.
1694 static void fixSymbolsAfterShrinking() {
1695   for (InputFile *File : ctx.objectFiles) {
1696     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1697       auto *def = dyn_cast<Defined>(Sym);
1698       if (!def)
1699         return;
1700 
1701       const SectionBase *sec = def->section;
1702       if (!sec)
1703         return;
1704 
1705       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
1706       if (!inputSec || !inputSec->bytesDropped)
1707         return;
1708 
1709       const size_t OldSize = inputSec->content().size();
1710       const size_t NewSize = OldSize - inputSec->bytesDropped;
1711 
1712       if (def->value > NewSize && def->value <= OldSize) {
1713         LLVM_DEBUG(llvm::dbgs()
1714                    << "Moving symbol " << Sym->getName() << " from "
1715                    << def->value << " to "
1716                    << def->value - inputSec->bytesDropped << " bytes\n");
1717         def->value -= inputSec->bytesDropped;
1718         return;
1719       }
1720 
1721       if (def->value + def->size > NewSize && def->value <= OldSize &&
1722           def->value + def->size <= OldSize) {
1723         LLVM_DEBUG(llvm::dbgs()
1724                    << "Shrinking symbol " << Sym->getName() << " from "
1725                    << def->size << " to " << def->size - inputSec->bytesDropped
1726                    << " bytes\n");
1727         def->size -= inputSec->bytesDropped;
1728       }
1729     });
1730   }
1731 }
1732 
1733 // If basic block sections exist, there are opportunities to delete fall thru
1734 // jumps and shrink jump instructions after basic block reordering.  This
1735 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1736 // option is used.
1737 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1738   assert(config->optimizeBBJumps);
1739   SmallVector<InputSection *, 0> storage;
1740 
1741   script->assignAddresses();
1742   // For every output section that has executable input sections, this
1743   // does the following:
1744   //   1. Deletes all direct jump instructions in input sections that
1745   //      jump to the following section as it is not required.
1746   //   2. If there are two consecutive jump instructions, it checks
1747   //      if they can be flipped and one can be deleted.
1748   for (OutputSection *osec : outputSections) {
1749     if (!(osec->flags & SHF_EXECINSTR))
1750       continue;
1751     ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
1752     size_t numDeleted = 0;
1753     // Delete all fall through jump instructions.  Also, check if two
1754     // consecutive jump instructions can be flipped so that a fall
1755     // through jmp instruction can be deleted.
1756     for (size_t i = 0, e = sections.size(); i != e; ++i) {
1757       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1758       InputSection &sec = *sections[i];
1759       numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
1760     }
1761     if (numDeleted > 0) {
1762       script->assignAddresses();
1763       LLVM_DEBUG(llvm::dbgs()
1764                  << "Removing " << numDeleted << " fall through jumps\n");
1765     }
1766   }
1767 
1768   fixSymbolsAfterShrinking();
1769 
1770   for (OutputSection *osec : outputSections)
1771     for (InputSection *is : getInputSections(*osec, storage))
1772       is->trim();
1773 }
1774 
1775 // In order to allow users to manipulate linker-synthesized sections,
1776 // we had to add synthetic sections to the input section list early,
1777 // even before we make decisions whether they are needed. This allows
1778 // users to write scripts like this: ".mygot : { .got }".
1779 //
1780 // Doing it has an unintended side effects. If it turns out that we
1781 // don't need a .got (for example) at all because there's no
1782 // relocation that needs a .got, we don't want to emit .got.
1783 //
1784 // To deal with the above problem, this function is called after
1785 // scanRelocations is called to remove synthetic sections that turn
1786 // out to be empty.
1787 static void removeUnusedSyntheticSections() {
1788   // All input synthetic sections that can be empty are placed after
1789   // all regular ones. Reverse iterate to find the first synthetic section
1790   // after a non-synthetic one which will be our starting point.
1791   auto start =
1792       llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) {
1793         return !isa<SyntheticSection>(s);
1794       }).base();
1795 
1796   // Remove unused synthetic sections from ctx.inputSections;
1797   DenseSet<InputSectionBase *> unused;
1798   auto end =
1799       std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) {
1800         auto *sec = cast<SyntheticSection>(s);
1801         if (sec->getParent() && sec->isNeeded())
1802           return false;
1803         unused.insert(sec);
1804         return true;
1805       });
1806   ctx.inputSections.erase(end, ctx.inputSections.end());
1807 
1808   // Remove unused synthetic sections from the corresponding input section
1809   // description and orphanSections.
1810   for (auto *sec : unused)
1811     if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1812       for (SectionCommand *cmd : osec->commands)
1813         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1814           llvm::erase_if(isd->sections, [&](InputSection *isec) {
1815             return unused.count(isec);
1816           });
1817   llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1818     return unused.count(sec);
1819   });
1820 }
1821 
1822 // Create output section objects and add them to OutputSections.
1823 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1824   if (!config->relocatable) {
1825     Out::preinitArray = findSection(".preinit_array");
1826     Out::initArray = findSection(".init_array");
1827     Out::finiArray = findSection(".fini_array");
1828 
1829     // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1830     // symbols for sections, so that the runtime can get the start and end
1831     // addresses of each section by section name. Add such symbols.
1832     addStartEndSymbols();
1833     for (SectionCommand *cmd : script->sectionCommands)
1834       if (auto *osd = dyn_cast<OutputDesc>(cmd))
1835         addStartStopSymbols(osd->osec);
1836 
1837     // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1838     // It should be okay as no one seems to care about the type.
1839     // Even the author of gold doesn't remember why gold behaves that way.
1840     // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1841     if (mainPart->dynamic->parent) {
1842       Symbol *s = symtab.addSymbol(Defined{
1843           /*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
1844           /*value=*/0, /*size=*/0, mainPart->dynamic.get()});
1845       s->isUsedInRegularObj = true;
1846     }
1847 
1848     // Define __rel[a]_iplt_{start,end} symbols if needed.
1849     addRelIpltSymbols();
1850 
1851     // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1852     // should only be defined in an executable. If .sdata does not exist, its
1853     // value/section does not matter but it has to be relative, so set its
1854     // st_shndx arbitrarily to 1 (Out::elfHeader).
1855     if (config->emachine == EM_RISCV) {
1856       ElfSym::riscvGlobalPointer = nullptr;
1857       if (!config->shared) {
1858         OutputSection *sec = findSection(".sdata");
1859         addOptionalRegular(
1860             "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT);
1861         // Set riscvGlobalPointer to be used by the optional global pointer
1862         // relaxation.
1863         if (config->relaxGP) {
1864           Symbol *s = symtab.find("__global_pointer$");
1865           if (s && s->isDefined())
1866             ElfSym::riscvGlobalPointer = cast<Defined>(s);
1867         }
1868       }
1869     }
1870 
1871     if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1872       // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1873       // way that:
1874       //
1875       // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1876       // computes 0.
1877       // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1878       // in the TLS block).
1879       //
1880       // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1881       // as an absolute symbol of zero. This is different from GNU linkers which
1882       // define _TLS_MODULE_BASE_ relative to the first TLS section.
1883       Symbol *s = symtab.find("_TLS_MODULE_BASE_");
1884       if (s && s->isUndefined()) {
1885         s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL,
1886                            STV_HIDDEN, STT_TLS, /*value=*/0, 0,
1887                            /*section=*/nullptr});
1888         ElfSym::tlsModuleBase = cast<Defined>(s);
1889       }
1890     }
1891 
1892     // This responsible for splitting up .eh_frame section into
1893     // pieces. The relocation scan uses those pieces, so this has to be
1894     // earlier.
1895     {
1896       llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1897       for (Partition &part : partitions)
1898         finalizeSynthetic(part.ehFrame.get());
1899     }
1900 
1901     if (config->hasDynSymTab) {
1902       parallelForEach(symtab.getSymbols(), [](Symbol *sym) {
1903         sym->isPreemptible = computeIsPreemptible(*sym);
1904       });
1905     }
1906   }
1907 
1908   // Change values of linker-script-defined symbols from placeholders (assigned
1909   // by declareSymbols) to actual definitions.
1910   script->processSymbolAssignments();
1911 
1912   if (!config->relocatable) {
1913     llvm::TimeTraceScope timeScope("Scan relocations");
1914     // Scan relocations. This must be done after every symbol is declared so
1915     // that we can correctly decide if a dynamic relocation is needed. This is
1916     // called after processSymbolAssignments() because it needs to know whether
1917     // a linker-script-defined symbol is absolute.
1918     ppc64noTocRelax.clear();
1919     scanRelocations<ELFT>();
1920     reportUndefinedSymbols();
1921     postScanRelocations();
1922 
1923     if (in.plt && in.plt->isNeeded())
1924       in.plt->addSymbols();
1925     if (in.iplt && in.iplt->isNeeded())
1926       in.iplt->addSymbols();
1927 
1928     if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1929       auto diagnose =
1930           config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
1931               ? errorOrWarn
1932               : warn;
1933       // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1934       // entries are seen. These cases would otherwise lead to runtime errors
1935       // reported by the dynamic linker.
1936       //
1937       // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1938       // to catch more cases. That is too much for us. Our approach resembles
1939       // the one used in ld.gold, achieves a good balance to be useful but not
1940       // too smart.
1941       for (SharedFile *file : ctx.sharedFiles) {
1942         bool allNeededIsKnown =
1943             llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1944               return symtab.soNames.count(CachedHashStringRef(needed));
1945             });
1946         if (!allNeededIsKnown)
1947           continue;
1948         for (Symbol *sym : file->requiredSymbols)
1949           if (sym->isUndefined() && !sym->isWeak())
1950             diagnose("undefined reference due to --no-allow-shlib-undefined: " +
1951                      toString(*sym) + "\n>>> referenced by " + toString(file));
1952       }
1953     }
1954   }
1955 
1956   {
1957     llvm::TimeTraceScope timeScope("Add symbols to symtabs");
1958     // Now that we have defined all possible global symbols including linker-
1959     // synthesized ones. Visit all symbols to give the finishing touches.
1960     for (Symbol *sym : symtab.getSymbols()) {
1961       if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
1962         continue;
1963       if (!config->relocatable)
1964         sym->binding = sym->computeBinding();
1965       if (in.symTab)
1966         in.symTab->addSymbol(sym);
1967 
1968       if (sym->includeInDynsym()) {
1969         partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1970         if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1971           if (file->isNeeded && !sym->isUndefined())
1972             addVerneed(sym);
1973       }
1974     }
1975 
1976     // We also need to scan the dynamic relocation tables of the other
1977     // partitions and add any referenced symbols to the partition's dynsym.
1978     for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1979       DenseSet<Symbol *> syms;
1980       for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1981         syms.insert(e.sym);
1982       for (DynamicReloc &reloc : part.relaDyn->relocs)
1983         if (reloc.sym && reloc.needsDynSymIndex() &&
1984             syms.insert(reloc.sym).second)
1985           part.dynSymTab->addSymbol(reloc.sym);
1986     }
1987   }
1988 
1989   if (in.mipsGot)
1990     in.mipsGot->build();
1991 
1992   removeUnusedSyntheticSections();
1993   script->diagnoseOrphanHandling();
1994   script->diagnoseMissingSGSectionAddress();
1995 
1996   sortSections();
1997 
1998   // Create a list of OutputSections, assign sectionIndex, and populate
1999   // in.shStrTab.
2000   for (SectionCommand *cmd : script->sectionCommands)
2001     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
2002       OutputSection *osec = &osd->osec;
2003       outputSections.push_back(osec);
2004       osec->sectionIndex = outputSections.size();
2005       osec->shName = in.shStrTab->addString(osec->name);
2006     }
2007 
2008   // Prefer command line supplied address over other constraints.
2009   for (OutputSection *sec : outputSections) {
2010     auto i = config->sectionStartMap.find(sec->name);
2011     if (i != config->sectionStartMap.end())
2012       sec->addrExpr = [=] { return i->second; };
2013   }
2014 
2015   // With the outputSections available check for GDPLT relocations
2016   // and add __tls_get_addr symbol if needed.
2017   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2018     Symbol *sym = symtab.addSymbol(Undefined{
2019         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2020     sym->isPreemptible = true;
2021     partitions[0].dynSymTab->addSymbol(sym);
2022   }
2023 
2024   // This is a bit of a hack. A value of 0 means undef, so we set it
2025   // to 1 to make __ehdr_start defined. The section number is not
2026   // particularly relevant.
2027   Out::elfHeader->sectionIndex = 1;
2028   Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2029 
2030   // Binary and relocatable output does not have PHDRS.
2031   // The headers have to be created before finalize as that can influence the
2032   // image base and the dynamic section on mips includes the image base.
2033   if (!config->relocatable && !config->oFormatBinary) {
2034     for (Partition &part : partitions) {
2035       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2036                                               : createPhdrs(part);
2037       if (config->emachine == EM_ARM) {
2038         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2039         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2040       }
2041       if (config->emachine == EM_MIPS) {
2042         // Add separate segments for MIPS-specific sections.
2043         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2044         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2045         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2046       }
2047       if (config->emachine == EM_RISCV)
2048         addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES,
2049                           PF_R);
2050     }
2051     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2052 
2053     // Find the TLS segment. This happens before the section layout loop so that
2054     // Android relocation packing can look up TLS symbol addresses. We only need
2055     // to care about the main partition here because all TLS symbols were moved
2056     // to the main partition (see MarkLive.cpp).
2057     for (PhdrEntry *p : mainPart->phdrs)
2058       if (p->p_type == PT_TLS)
2059         Out::tlsPhdr = p;
2060   }
2061 
2062   // Some symbols are defined in term of program headers. Now that we
2063   // have the headers, we can find out which sections they point to.
2064   setReservedSymbolSections();
2065 
2066   {
2067     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2068 
2069     finalizeSynthetic(in.bss.get());
2070     finalizeSynthetic(in.bssRelRo.get());
2071     finalizeSynthetic(in.symTabShndx.get());
2072     finalizeSynthetic(in.shStrTab.get());
2073     finalizeSynthetic(in.strTab.get());
2074     finalizeSynthetic(in.got.get());
2075     finalizeSynthetic(in.mipsGot.get());
2076     finalizeSynthetic(in.igotPlt.get());
2077     finalizeSynthetic(in.gotPlt.get());
2078     finalizeSynthetic(in.relaIplt.get());
2079     finalizeSynthetic(in.relaPlt.get());
2080     finalizeSynthetic(in.plt.get());
2081     finalizeSynthetic(in.iplt.get());
2082     finalizeSynthetic(in.ppc32Got2.get());
2083     finalizeSynthetic(in.partIndex.get());
2084 
2085     // Dynamic section must be the last one in this list and dynamic
2086     // symbol table section (dynSymTab) must be the first one.
2087     for (Partition &part : partitions) {
2088       if (part.relaDyn) {
2089         part.relaDyn->mergeRels();
2090         // Compute DT_RELACOUNT to be used by part.dynamic.
2091         part.relaDyn->partitionRels();
2092         finalizeSynthetic(part.relaDyn.get());
2093       }
2094       if (part.relrDyn) {
2095         part.relrDyn->mergeRels();
2096         finalizeSynthetic(part.relrDyn.get());
2097       }
2098 
2099       finalizeSynthetic(part.dynSymTab.get());
2100       finalizeSynthetic(part.gnuHashTab.get());
2101       finalizeSynthetic(part.hashTab.get());
2102       finalizeSynthetic(part.verDef.get());
2103       finalizeSynthetic(part.ehFrameHdr.get());
2104       finalizeSynthetic(part.verSym.get());
2105       finalizeSynthetic(part.verNeed.get());
2106       finalizeSynthetic(part.dynamic.get());
2107     }
2108   }
2109 
2110   if (!script->hasSectionsCommand && !config->relocatable)
2111     fixSectionAlignments();
2112 
2113   // This is used to:
2114   // 1) Create "thunks":
2115   //    Jump instructions in many ISAs have small displacements, and therefore
2116   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2117   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2118   //    responsibility to create and insert small pieces of code between
2119   //    sections to extend the ranges if jump targets are out of range. Such
2120   //    code pieces are called "thunks".
2121   //
2122   //    We add thunks at this stage. We couldn't do this before this point
2123   //    because this is the earliest point where we know sizes of sections and
2124   //    their layouts (that are needed to determine if jump targets are in
2125   //    range).
2126   //
2127   // 2) Update the sections. We need to generate content that depends on the
2128   //    address of InputSections. For example, MIPS GOT section content or
2129   //    android packed relocations sections content.
2130   //
2131   // 3) Assign the final values for the linker script symbols. Linker scripts
2132   //    sometimes using forward symbol declarations. We want to set the correct
2133   //    values. They also might change after adding the thunks.
2134   finalizeAddressDependentContent();
2135 
2136   // All information needed for OutputSection part of Map file is available.
2137   if (errorCount())
2138     return;
2139 
2140   {
2141     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2142     // finalizeAddressDependentContent may have added local symbols to the
2143     // static symbol table.
2144     finalizeSynthetic(in.symTab.get());
2145     finalizeSynthetic(in.ppc64LongBranchTarget.get());
2146     finalizeSynthetic(in.armCmseSGSection.get());
2147   }
2148 
2149   // Relaxation to delete inter-basic block jumps created by basic block
2150   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2151   // can relax jump instructions based on symbol offset.
2152   if (config->optimizeBBJumps)
2153     optimizeBasicBlockJumps();
2154 
2155   // Fill other section headers. The dynamic table is finalized
2156   // at the end because some tags like RELSZ depend on result
2157   // of finalizing other sections.
2158   for (OutputSection *sec : outputSections)
2159     sec->finalize();
2160 
2161   script->checkMemoryRegions();
2162 
2163   if (config->emachine == EM_ARM && !config->isLE && config->armBe8) {
2164     addArmInputSectionMappingSymbols();
2165     sortArmMappingSymbols();
2166   }
2167 }
2168 
2169 // Ensure data sections are not mixed with executable sections when
2170 // --execute-only is used. --execute-only make pages executable but not
2171 // readable.
2172 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2173   if (!config->executeOnly)
2174     return;
2175 
2176   SmallVector<InputSection *, 0> storage;
2177   for (OutputSection *osec : outputSections)
2178     if (osec->flags & SHF_EXECINSTR)
2179       for (InputSection *isec : getInputSections(*osec, storage))
2180         if (!(isec->flags & SHF_EXECINSTR))
2181           error("cannot place " + toString(isec) + " into " +
2182                 toString(osec->name) +
2183                 ": --execute-only does not support intermingling data and code");
2184 }
2185 
2186 // The linker is expected to define SECNAME_start and SECNAME_end
2187 // symbols for a few sections. This function defines them.
2188 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2189   // If a section does not exist, there's ambiguity as to how we
2190   // define _start and _end symbols for an init/fini section. Since
2191   // the loader assume that the symbols are always defined, we need to
2192   // always define them. But what value? The loader iterates over all
2193   // pointers between _start and _end to run global ctors/dtors, so if
2194   // the section is empty, their symbol values don't actually matter
2195   // as long as _start and _end point to the same location.
2196   //
2197   // That said, we don't want to set the symbols to 0 (which is
2198   // probably the simplest value) because that could cause some
2199   // program to fail to link due to relocation overflow, if their
2200   // program text is above 2 GiB. We use the address of the .text
2201   // section instead to prevent that failure.
2202   //
2203   // In rare situations, the .text section may not exist. If that's the
2204   // case, use the image base address as a last resort.
2205   OutputSection *Default = findSection(".text");
2206   if (!Default)
2207     Default = Out::elfHeader;
2208 
2209   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2210     if (os && !script->isDiscarded(os)) {
2211       addOptionalRegular(start, os, 0);
2212       addOptionalRegular(end, os, -1);
2213     } else {
2214       addOptionalRegular(start, Default, 0);
2215       addOptionalRegular(end, Default, 0);
2216     }
2217   };
2218 
2219   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2220   define("__init_array_start", "__init_array_end", Out::initArray);
2221   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2222 
2223   if (OutputSection *sec = findSection(".ARM.exidx"))
2224     define("__exidx_start", "__exidx_end", sec);
2225 }
2226 
2227 // If a section name is valid as a C identifier (which is rare because of
2228 // the leading '.'), linkers are expected to define __start_<secname> and
2229 // __stop_<secname> symbols. They are at beginning and end of the section,
2230 // respectively. This is not requested by the ELF standard, but GNU ld and
2231 // gold provide the feature, and used by many programs.
2232 template <class ELFT>
2233 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
2234   StringRef s = osec.name;
2235   if (!isValidCIdentifier(s))
2236     return;
2237   addOptionalRegular(saver().save("__start_" + s), &osec, 0,
2238                      config->zStartStopVisibility);
2239   addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
2240                      config->zStartStopVisibility);
2241 }
2242 
2243 static bool needsPtLoad(OutputSection *sec) {
2244   if (!(sec->flags & SHF_ALLOC))
2245     return false;
2246 
2247   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2248   // responsible for allocating space for them, not the PT_LOAD that
2249   // contains the TLS initialization image.
2250   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2251     return false;
2252   return true;
2253 }
2254 
2255 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2256 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2257 // RW. This means that there is no alignment in the RO to RX transition and we
2258 // cannot create a PT_LOAD there.
2259 static uint64_t computeFlags(uint64_t flags) {
2260   if (config->omagic)
2261     return PF_R | PF_W | PF_X;
2262   if (config->executeOnly && (flags & PF_X))
2263     return flags & ~PF_R;
2264   if (config->singleRoRx && !(flags & PF_W))
2265     return flags | PF_X;
2266   return flags;
2267 }
2268 
2269 // Decide which program headers to create and which sections to include in each
2270 // one.
2271 template <class ELFT>
2272 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
2273   SmallVector<PhdrEntry *, 0> ret;
2274   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2275     ret.push_back(make<PhdrEntry>(type, flags));
2276     return ret.back();
2277   };
2278 
2279   unsigned partNo = part.getNumber();
2280   bool isMain = partNo == 1;
2281 
2282   // Add the first PT_LOAD segment for regular output sections.
2283   uint64_t flags = computeFlags(PF_R);
2284   PhdrEntry *load = nullptr;
2285 
2286   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2287   // PT_LOAD.
2288   if (!config->nmagic && !config->omagic) {
2289     // The first phdr entry is PT_PHDR which describes the program header
2290     // itself.
2291     if (isMain)
2292       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2293     else
2294       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2295 
2296     // PT_INTERP must be the second entry if exists.
2297     if (OutputSection *cmd = findSection(".interp", partNo))
2298       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2299 
2300     // Add the headers. We will remove them if they don't fit.
2301     // In the other partitions the headers are ordinary sections, so they don't
2302     // need to be added here.
2303     if (isMain) {
2304       load = addHdr(PT_LOAD, flags);
2305       load->add(Out::elfHeader);
2306       load->add(Out::programHeaders);
2307     }
2308   }
2309 
2310   // PT_GNU_RELRO includes all sections that should be marked as
2311   // read-only by dynamic linker after processing relocations.
2312   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2313   // an error message if more than one PT_GNU_RELRO PHDR is required.
2314   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2315   bool inRelroPhdr = false;
2316   OutputSection *relroEnd = nullptr;
2317   for (OutputSection *sec : outputSections) {
2318     if (sec->partition != partNo || !needsPtLoad(sec))
2319       continue;
2320     if (isRelroSection(sec)) {
2321       inRelroPhdr = true;
2322       if (!relroEnd)
2323         relRo->add(sec);
2324       else
2325         error("section: " + sec->name + " is not contiguous with other relro" +
2326               " sections");
2327     } else if (inRelroPhdr) {
2328       inRelroPhdr = false;
2329       relroEnd = sec;
2330     }
2331   }
2332 
2333   for (OutputSection *sec : outputSections) {
2334     if (!needsPtLoad(sec))
2335       continue;
2336 
2337     // Normally, sections in partitions other than the current partition are
2338     // ignored. But partition number 255 is a special case: it contains the
2339     // partition end marker (.part.end). It needs to be added to the main
2340     // partition so that a segment is created for it in the main partition,
2341     // which will cause the dynamic loader to reserve space for the other
2342     // partitions.
2343     if (sec->partition != partNo) {
2344       if (isMain && sec->partition == 255)
2345         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2346       continue;
2347     }
2348 
2349     // Segments are contiguous memory regions that has the same attributes
2350     // (e.g. executable or writable). There is one phdr for each segment.
2351     // Therefore, we need to create a new phdr when the next section has
2352     // different flags or is loaded at a discontiguous address or memory region
2353     // using AT or AT> linker script command, respectively.
2354     //
2355     // As an exception, we don't create a separate load segment for the ELF
2356     // headers, even if the first "real" output has an AT or AT> attribute.
2357     //
2358     // In addition, NOBITS sections should only be placed at the end of a LOAD
2359     // segment (since it's represented as p_filesz < p_memsz). If we have a
2360     // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
2361     // even if flags match, so as not to require actually writing the
2362     // supposed-to-be-NOBITS section to the output file. (However, we cannot do
2363     // so when hasSectionsCommand, since we cannot introduce the extra alignment
2364     // needed to create a new LOAD)
2365     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2366     bool sameLMARegion =
2367         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2368     if (!(load && newFlags == flags && sec != relroEnd &&
2369           sec->memRegion == load->firstSec->memRegion &&
2370           (sameLMARegion || load->lastSec == Out::programHeaders) &&
2371           (script->hasSectionsCommand || sec->type == SHT_NOBITS ||
2372            load->lastSec->type != SHT_NOBITS))) {
2373       load = addHdr(PT_LOAD, newFlags);
2374       flags = newFlags;
2375     }
2376 
2377     load->add(sec);
2378   }
2379 
2380   // Add a TLS segment if any.
2381   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2382   for (OutputSection *sec : outputSections)
2383     if (sec->partition == partNo && sec->flags & SHF_TLS)
2384       tlsHdr->add(sec);
2385   if (tlsHdr->firstSec)
2386     ret.push_back(tlsHdr);
2387 
2388   // Add an entry for .dynamic.
2389   if (OutputSection *sec = part.dynamic->getParent())
2390     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2391 
2392   if (relRo->firstSec)
2393     ret.push_back(relRo);
2394 
2395   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2396   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2397       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2398     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2399         ->add(part.ehFrameHdr->getParent());
2400 
2401   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2402   // the dynamic linker fill the segment with random data.
2403   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2404     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2405 
2406   if (config->zGnustack != GnuStackKind::None) {
2407     // PT_GNU_STACK is a special section to tell the loader to make the
2408     // pages for the stack non-executable. If you really want an executable
2409     // stack, you can pass -z execstack, but that's not recommended for
2410     // security reasons.
2411     unsigned perm = PF_R | PF_W;
2412     if (config->zGnustack == GnuStackKind::Exec)
2413       perm |= PF_X;
2414     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2415   }
2416 
2417   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2418   // is expected to perform W^X violations, such as calling mprotect(2) or
2419   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2420   // OpenBSD.
2421   if (config->zWxneeded)
2422     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2423 
2424   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2425     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2426 
2427   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2428   // same alignment.
2429   PhdrEntry *note = nullptr;
2430   for (OutputSection *sec : outputSections) {
2431     if (sec->partition != partNo)
2432       continue;
2433     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2434       if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign)
2435         note = addHdr(PT_NOTE, PF_R);
2436       note->add(sec);
2437     } else {
2438       note = nullptr;
2439     }
2440   }
2441   return ret;
2442 }
2443 
2444 template <class ELFT>
2445 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2446                                      unsigned pType, unsigned pFlags) {
2447   unsigned partNo = part.getNumber();
2448   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2449     return cmd->partition == partNo && cmd->type == shType;
2450   });
2451   if (i == outputSections.end())
2452     return;
2453 
2454   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2455   entry->add(*i);
2456   part.phdrs.push_back(entry);
2457 }
2458 
2459 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2460 // This is achieved by assigning an alignment expression to addrExpr of each
2461 // such section.
2462 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2463   const PhdrEntry *prev;
2464   auto pageAlign = [&](const PhdrEntry *p) {
2465     OutputSection *cmd = p->firstSec;
2466     if (!cmd)
2467       return;
2468     cmd->alignExpr = [align = cmd->addralign]() { return align; };
2469     if (!cmd->addrExpr) {
2470       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2471       // padding in the file contents.
2472       //
2473       // When -z separate-code is used we must not have any overlap in pages
2474       // between an executable segment and a non-executable segment. We align to
2475       // the next maximum page size boundary on transitions between executable
2476       // and non-executable segments.
2477       //
2478       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2479       // sections will be extracted to a separate file. Align to the next
2480       // maximum page size boundary so that we can find the ELF header at the
2481       // start. We cannot benefit from overlapping p_offset ranges with the
2482       // previous segment anyway.
2483       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2484           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2485            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2486           cmd->type == SHT_LLVM_PART_EHDR)
2487         cmd->addrExpr = [] {
2488           return alignToPowerOf2(script->getDot(), config->maxPageSize);
2489         };
2490       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2491       // it must be the RW. Align to p_align(PT_TLS) to make sure
2492       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2493       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2494       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2495       // be congruent to 0 modulo p_align(PT_TLS).
2496       //
2497       // Technically this is not required, but as of 2019, some dynamic loaders
2498       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2499       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2500       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2501       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2502       // blocks correctly. We need to keep the workaround for a while.
2503       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2504         cmd->addrExpr = [] {
2505           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2506                  alignToPowerOf2(script->getDot() % config->maxPageSize,
2507                                  Out::tlsPhdr->p_align);
2508         };
2509       else
2510         cmd->addrExpr = [] {
2511           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2512                  script->getDot() % config->maxPageSize;
2513         };
2514     }
2515   };
2516 
2517   for (Partition &part : partitions) {
2518     prev = nullptr;
2519     for (const PhdrEntry *p : part.phdrs)
2520       if (p->p_type == PT_LOAD && p->firstSec) {
2521         pageAlign(p);
2522         prev = p;
2523       }
2524   }
2525 }
2526 
2527 // Compute an in-file position for a given section. The file offset must be the
2528 // same with its virtual address modulo the page size, so that the loader can
2529 // load executables without any address adjustment.
2530 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2531   // The first section in a PT_LOAD has to have congruent offset and address
2532   // modulo the maximum page size.
2533   if (os->ptLoad && os->ptLoad->firstSec == os)
2534     return alignTo(off, os->ptLoad->p_align, os->addr);
2535 
2536   // File offsets are not significant for .bss sections other than the first one
2537   // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2538   // increasing rather than setting to zero.
2539   if (os->type == SHT_NOBITS &&
2540       (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2541      return off;
2542 
2543   // If the section is not in a PT_LOAD, we just have to align it.
2544   if (!os->ptLoad)
2545      return alignToPowerOf2(off, os->addralign);
2546 
2547   // If two sections share the same PT_LOAD the file offset is calculated
2548   // using this formula: Off2 = Off1 + (VA2 - VA1).
2549   OutputSection *first = os->ptLoad->firstSec;
2550   return first->offset + os->addr - first->addr;
2551 }
2552 
2553 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2554   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2555   auto needsOffset = [](OutputSection &sec) {
2556     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2557   };
2558   uint64_t minAddr = UINT64_MAX;
2559   for (OutputSection *sec : outputSections)
2560     if (needsOffset(*sec)) {
2561       sec->offset = sec->getLMA();
2562       minAddr = std::min(minAddr, sec->offset);
2563     }
2564 
2565   // Sections are laid out at LMA minus minAddr.
2566   fileSize = 0;
2567   for (OutputSection *sec : outputSections)
2568     if (needsOffset(*sec)) {
2569       sec->offset -= minAddr;
2570       fileSize = std::max(fileSize, sec->offset + sec->size);
2571     }
2572 }
2573 
2574 static std::string rangeToString(uint64_t addr, uint64_t len) {
2575   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2576 }
2577 
2578 // Assign file offsets to output sections.
2579 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2580   Out::programHeaders->offset = Out::elfHeader->size;
2581   uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2582 
2583   PhdrEntry *lastRX = nullptr;
2584   for (Partition &part : partitions)
2585     for (PhdrEntry *p : part.phdrs)
2586       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2587         lastRX = p;
2588 
2589   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2590   // will not occupy file offsets contained by a PT_LOAD.
2591   for (OutputSection *sec : outputSections) {
2592     if (!(sec->flags & SHF_ALLOC))
2593       continue;
2594     off = computeFileOffset(sec, off);
2595     sec->offset = off;
2596     if (sec->type != SHT_NOBITS)
2597       off += sec->size;
2598 
2599     // If this is a last section of the last executable segment and that
2600     // segment is the last loadable segment, align the offset of the
2601     // following section to avoid loading non-segments parts of the file.
2602     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2603         lastRX->lastSec == sec)
2604       off = alignToPowerOf2(off, config->maxPageSize);
2605   }
2606   for (OutputSection *osec : outputSections)
2607     if (!(osec->flags & SHF_ALLOC)) {
2608       osec->offset = alignToPowerOf2(off, osec->addralign);
2609       off = osec->offset + osec->size;
2610     }
2611 
2612   sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
2613   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2614 
2615   // Our logic assumes that sections have rising VA within the same segment.
2616   // With use of linker scripts it is possible to violate this rule and get file
2617   // offset overlaps or overflows. That should never happen with a valid script
2618   // which does not move the location counter backwards and usually scripts do
2619   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2620   // kernel, which control segment distribution explicitly and move the counter
2621   // backwards, so we have to allow doing that to support linking them. We
2622   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2623   // we want to prevent file size overflows because it would crash the linker.
2624   for (OutputSection *sec : outputSections) {
2625     if (sec->type == SHT_NOBITS)
2626       continue;
2627     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2628       error("unable to place section " + sec->name + " at file offset " +
2629             rangeToString(sec->offset, sec->size) +
2630             "; check your linker script for overflows");
2631   }
2632 }
2633 
2634 // Finalize the program headers. We call this function after we assign
2635 // file offsets and VAs to all sections.
2636 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2637   for (PhdrEntry *p : part.phdrs) {
2638     OutputSection *first = p->firstSec;
2639     OutputSection *last = p->lastSec;
2640 
2641     // .ARM.exidx sections may not be within a single .ARM.exidx
2642     // output section. We always want to describe just the
2643     // SyntheticSection.
2644     if (part.armExidx && p->p_type == PT_ARM_EXIDX) {
2645       p->p_filesz = part.armExidx->getSize();
2646       p->p_memsz = part.armExidx->getSize();
2647       p->p_offset = first->offset + part.armExidx->outSecOff;
2648       p->p_vaddr = first->addr + part.armExidx->outSecOff;
2649       p->p_align = part.armExidx->addralign;
2650       if (part.elfHeader)
2651         p->p_offset -= part.elfHeader->getParent()->offset;
2652 
2653       if (!p->hasLMA)
2654         p->p_paddr = first->getLMA() + part.armExidx->outSecOff;
2655       return;
2656     }
2657 
2658     if (first) {
2659       p->p_filesz = last->offset - first->offset;
2660       if (last->type != SHT_NOBITS)
2661         p->p_filesz += last->size;
2662 
2663       p->p_memsz = last->addr + last->size - first->addr;
2664       p->p_offset = first->offset;
2665       p->p_vaddr = first->addr;
2666 
2667       // File offsets in partitions other than the main partition are relative
2668       // to the offset of the ELF headers. Perform that adjustment now.
2669       if (part.elfHeader)
2670         p->p_offset -= part.elfHeader->getParent()->offset;
2671 
2672       if (!p->hasLMA)
2673         p->p_paddr = first->getLMA();
2674     }
2675 
2676     if (p->p_type == PT_GNU_RELRO) {
2677       p->p_align = 1;
2678       // musl/glibc ld.so rounds the size down, so we need to round up
2679       // to protect the last page. This is a no-op on FreeBSD which always
2680       // rounds up.
2681       p->p_memsz =
2682           alignToPowerOf2(p->p_offset + p->p_memsz, config->commonPageSize) -
2683           p->p_offset;
2684     }
2685   }
2686 }
2687 
2688 // A helper struct for checkSectionOverlap.
2689 namespace {
2690 struct SectionOffset {
2691   OutputSection *sec;
2692   uint64_t offset;
2693 };
2694 } // namespace
2695 
2696 // Check whether sections overlap for a specific address range (file offsets,
2697 // load and virtual addresses).
2698 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2699                          bool isVirtualAddr) {
2700   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2701     return a.offset < b.offset;
2702   });
2703 
2704   // Finding overlap is easy given a vector is sorted by start position.
2705   // If an element starts before the end of the previous element, they overlap.
2706   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2707     SectionOffset a = sections[i - 1];
2708     SectionOffset b = sections[i];
2709     if (b.offset >= a.offset + a.sec->size)
2710       continue;
2711 
2712     // If both sections are in OVERLAY we allow the overlapping of virtual
2713     // addresses, because it is what OVERLAY was designed for.
2714     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2715       continue;
2716 
2717     errorOrWarn("section " + a.sec->name + " " + name +
2718                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2719                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2720                 b.sec->name + " range is " +
2721                 rangeToString(b.offset, b.sec->size));
2722   }
2723 }
2724 
2725 // Check for overlapping sections and address overflows.
2726 //
2727 // In this function we check that none of the output sections have overlapping
2728 // file offsets. For SHF_ALLOC sections we also check that the load address
2729 // ranges and the virtual address ranges don't overlap
2730 template <class ELFT> void Writer<ELFT>::checkSections() {
2731   // First, check that section's VAs fit in available address space for target.
2732   for (OutputSection *os : outputSections)
2733     if ((os->addr + os->size < os->addr) ||
2734         (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1))
2735       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2736                   " of size 0x" + utohexstr(os->size) +
2737                   " exceeds available address space");
2738 
2739   // Check for overlapping file offsets. In this case we need to skip any
2740   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2741   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2742   // binary is specified only add SHF_ALLOC sections are added to the output
2743   // file so we skip any non-allocated sections in that case.
2744   std::vector<SectionOffset> fileOffs;
2745   for (OutputSection *sec : outputSections)
2746     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2747         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2748       fileOffs.push_back({sec, sec->offset});
2749   checkOverlap("file", fileOffs, false);
2750 
2751   // When linking with -r there is no need to check for overlapping virtual/load
2752   // addresses since those addresses will only be assigned when the final
2753   // executable/shared object is created.
2754   if (config->relocatable)
2755     return;
2756 
2757   // Checking for overlapping virtual and load addresses only needs to take
2758   // into account SHF_ALLOC sections since others will not be loaded.
2759   // Furthermore, we also need to skip SHF_TLS sections since these will be
2760   // mapped to other addresses at runtime and can therefore have overlapping
2761   // ranges in the file.
2762   std::vector<SectionOffset> vmas;
2763   for (OutputSection *sec : outputSections)
2764     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2765       vmas.push_back({sec, sec->addr});
2766   checkOverlap("virtual address", vmas, true);
2767 
2768   // Finally, check that the load addresses don't overlap. This will usually be
2769   // the same as the virtual addresses but can be different when using a linker
2770   // script with AT().
2771   std::vector<SectionOffset> lmas;
2772   for (OutputSection *sec : outputSections)
2773     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2774       lmas.push_back({sec, sec->getLMA()});
2775   checkOverlap("load address", lmas, false);
2776 }
2777 
2778 // The entry point address is chosen in the following ways.
2779 //
2780 // 1. the '-e' entry command-line option;
2781 // 2. the ENTRY(symbol) command in a linker control script;
2782 // 3. the value of the symbol _start, if present;
2783 // 4. the number represented by the entry symbol, if it is a number;
2784 // 5. the address 0.
2785 static uint64_t getEntryAddr() {
2786   // Case 1, 2 or 3
2787   if (Symbol *b = symtab.find(config->entry))
2788     return b->getVA();
2789 
2790   // Case 4
2791   uint64_t addr;
2792   if (to_integer(config->entry, addr))
2793     return addr;
2794 
2795   // Case 5
2796   if (config->warnMissingEntry)
2797     warn("cannot find entry symbol " + config->entry +
2798          "; not setting start address");
2799   return 0;
2800 }
2801 
2802 static uint16_t getELFType() {
2803   if (config->isPic)
2804     return ET_DYN;
2805   if (config->relocatable)
2806     return ET_REL;
2807   return ET_EXEC;
2808 }
2809 
2810 template <class ELFT> void Writer<ELFT>::writeHeader() {
2811   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2812   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2813 
2814   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2815   eHdr->e_type = getELFType();
2816   eHdr->e_entry = getEntryAddr();
2817   eHdr->e_shoff = sectionHeaderOff;
2818 
2819   // Write the section header table.
2820   //
2821   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2822   // and e_shstrndx fields. When the value of one of these fields exceeds
2823   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2824   // use fields in the section header at index 0 to store
2825   // the value. The sentinel values and fields are:
2826   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2827   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2828   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2829   size_t num = outputSections.size() + 1;
2830   if (num >= SHN_LORESERVE)
2831     sHdrs->sh_size = num;
2832   else
2833     eHdr->e_shnum = num;
2834 
2835   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2836   if (strTabIndex >= SHN_LORESERVE) {
2837     sHdrs->sh_link = strTabIndex;
2838     eHdr->e_shstrndx = SHN_XINDEX;
2839   } else {
2840     eHdr->e_shstrndx = strTabIndex;
2841   }
2842 
2843   for (OutputSection *sec : outputSections)
2844     sec->writeHeaderTo<ELFT>(++sHdrs);
2845 }
2846 
2847 // Open a result file.
2848 template <class ELFT> void Writer<ELFT>::openFile() {
2849   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2850   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2851     std::string msg;
2852     raw_string_ostream s(msg);
2853     s << "output file too large: " << Twine(fileSize) << " bytes\n"
2854       << "section sizes:\n";
2855     for (OutputSection *os : outputSections)
2856       s << os->name << ' ' << os->size << "\n";
2857     error(s.str());
2858     return;
2859   }
2860 
2861   unlinkAsync(config->outputFile);
2862   unsigned flags = 0;
2863   if (!config->relocatable)
2864     flags |= FileOutputBuffer::F_executable;
2865   if (!config->mmapOutputFile)
2866     flags |= FileOutputBuffer::F_no_mmap;
2867   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2868       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2869 
2870   if (!bufferOrErr) {
2871     error("failed to open " + config->outputFile + ": " +
2872           llvm::toString(bufferOrErr.takeError()));
2873     return;
2874   }
2875   buffer = std::move(*bufferOrErr);
2876   Out::bufferStart = buffer->getBufferStart();
2877 }
2878 
2879 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2880   parallel::TaskGroup tg;
2881   for (OutputSection *sec : outputSections)
2882     if (sec->flags & SHF_ALLOC)
2883       sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2884 }
2885 
2886 static void fillTrap(uint8_t *i, uint8_t *end) {
2887   for (; i + 4 <= end; i += 4)
2888     memcpy(i, &target->trapInstr, 4);
2889 }
2890 
2891 // Fill the last page of executable segments with trap instructions
2892 // instead of leaving them as zero. Even though it is not required by any
2893 // standard, it is in general a good thing to do for security reasons.
2894 //
2895 // We'll leave other pages in segments as-is because the rest will be
2896 // overwritten by output sections.
2897 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2898   for (Partition &part : partitions) {
2899     // Fill the last page.
2900     for (PhdrEntry *p : part.phdrs)
2901       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2902         fillTrap(Out::bufferStart +
2903                      alignDown(p->firstSec->offset + p->p_filesz, 4),
2904                  Out::bufferStart +
2905                      alignToPowerOf2(p->firstSec->offset + p->p_filesz,
2906                                      config->maxPageSize));
2907 
2908     // Round up the file size of the last segment to the page boundary iff it is
2909     // an executable segment to ensure that other tools don't accidentally
2910     // trim the instruction padding (e.g. when stripping the file).
2911     PhdrEntry *last = nullptr;
2912     for (PhdrEntry *p : part.phdrs)
2913       if (p->p_type == PT_LOAD)
2914         last = p;
2915 
2916     if (last && (last->p_flags & PF_X))
2917       last->p_memsz = last->p_filesz =
2918           alignToPowerOf2(last->p_filesz, config->maxPageSize);
2919   }
2920 }
2921 
2922 // Write section contents to a mmap'ed file.
2923 template <class ELFT> void Writer<ELFT>::writeSections() {
2924   llvm::TimeTraceScope timeScope("Write sections");
2925 
2926   {
2927     // In -r or --emit-relocs mode, write the relocation sections first as in
2928     // ELf_Rel targets we might find out that we need to modify the relocated
2929     // section while doing it.
2930     parallel::TaskGroup tg;
2931     for (OutputSection *sec : outputSections)
2932       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2933         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2934   }
2935   {
2936     parallel::TaskGroup tg;
2937     for (OutputSection *sec : outputSections)
2938       if (sec->type != SHT_REL && sec->type != SHT_RELA)
2939         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2940   }
2941 
2942   // Finally, check that all dynamic relocation addends were written correctly.
2943   if (config->checkDynamicRelocs && config->writeAddends) {
2944     for (OutputSection *sec : outputSections)
2945       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2946         sec->checkDynRelAddends(Out::bufferStart);
2947   }
2948 }
2949 
2950 // Computes a hash value of Data using a given hash function.
2951 // In order to utilize multiple cores, we first split data into 1MB
2952 // chunks, compute a hash for each chunk, and then compute a hash value
2953 // of the hash values.
2954 static void
2955 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2956             llvm::ArrayRef<uint8_t> data,
2957             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2958   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2959   const size_t hashesSize = chunks.size() * hashBuf.size();
2960   std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
2961 
2962   // Compute hash values.
2963   parallelFor(0, chunks.size(), [&](size_t i) {
2964     hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
2965   });
2966 
2967   // Write to the final output buffer.
2968   hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize));
2969 }
2970 
2971 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2972   if (!mainPart->buildId || !mainPart->buildId->getParent())
2973     return;
2974 
2975   if (config->buildId == BuildIdKind::Hexstring) {
2976     for (Partition &part : partitions)
2977       part.buildId->writeBuildId(config->buildIdVector);
2978     return;
2979   }
2980 
2981   // Compute a hash of all sections of the output file.
2982   size_t hashSize = mainPart->buildId->hashSize;
2983   std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
2984   MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
2985   llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
2986 
2987   // Fedora introduced build ID as "approximation of true uniqueness across all
2988   // binaries that might be used by overlapping sets of people". It does not
2989   // need some security goals that some hash algorithms strive to provide, e.g.
2990   // (second-)preimage and collision resistance. In practice people use 'md5'
2991   // and 'sha1' just for different lengths. Implement them with the more
2992   // efficient BLAKE3.
2993   switch (config->buildId) {
2994   case BuildIdKind::Fast:
2995     computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2996       write64le(dest, xxh3_64bits(arr));
2997     });
2998     break;
2999   case BuildIdKind::Md5:
3000     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3001       memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
3002     });
3003     break;
3004   case BuildIdKind::Sha1:
3005     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3006       memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
3007     });
3008     break;
3009   case BuildIdKind::Uuid:
3010     if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
3011       error("entropy source failure: " + ec.message());
3012     break;
3013   default:
3014     llvm_unreachable("unknown BuildIdKind");
3015   }
3016   for (Partition &part : partitions)
3017     part.buildId->writeBuildId(output);
3018 }
3019 
3020 template void elf::createSyntheticSections<ELF32LE>();
3021 template void elf::createSyntheticSections<ELF32BE>();
3022 template void elf::createSyntheticSections<ELF64LE>();
3023 template void elf::createSyntheticSections<ELF64BE>();
3024 
3025 template void elf::writeResult<ELF32LE>();
3026 template void elf::writeResult<ELF32BE>();
3027 template void elf::writeResult<ELF64LE>();
3028 template void elf::writeResult<ELF64BE>();
3029