1 //===- SyntheticSections.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SyntheticSections.h"
10 #include "ConcatOutputSection.h"
11 #include "Config.h"
12 #include "ExportTrie.h"
13 #include "InputFiles.h"
14 #include "MachOStructs.h"
15 #include "OutputSegment.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/Support/EndianStream.h"
23 #include "llvm/Support/FileSystem.h"
24 #include "llvm/Support/LEB128.h"
25 #include "llvm/Support/Parallel.h"
26 #include "llvm/Support/Path.h"
27 
28 #if defined(__APPLE__)
29 #include <sys/mman.h>
30 
31 #define COMMON_DIGEST_FOR_OPENSSL
32 #include <CommonCrypto/CommonDigest.h>
33 #else
34 #include "llvm/Support/SHA256.h"
35 #endif
36 
37 #ifdef LLVM_HAVE_LIBXAR
38 #include <fcntl.h>
39 extern "C" {
40 #include <xar/xar.h>
41 }
42 #endif
43 
44 using namespace llvm;
45 using namespace llvm::MachO;
46 using namespace llvm::support;
47 using namespace llvm::support::endian;
48 using namespace lld;
49 using namespace lld::macho;
50 
51 // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`.
52 static void sha256(const uint8_t *data, size_t len, uint8_t *output) {
53 #if defined(__APPLE__)
54   // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121
55   // for some notes on this.
56   CC_SHA256(data, len, output);
57 #else
58   ArrayRef<uint8_t> block(data, len);
59   std::array<uint8_t, 32> hash = SHA256::hash(block);
60   static_assert(hash.size() == CodeSignatureSection::hashSize, "");
61   memcpy(output, hash.data(), hash.size());
62 #endif
63 }
64 
65 InStruct macho::in;
66 std::vector<SyntheticSection *> macho::syntheticSections;
67 
68 SyntheticSection::SyntheticSection(const char *segname, const char *name)
69     : OutputSection(SyntheticKind, name) {
70   std::tie(this->segname, this->name) = maybeRenameSection({segname, name});
71   isec = makeSyntheticInputSection(segname, name);
72   isec->parent = this;
73   syntheticSections.push_back(this);
74 }
75 
76 // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts
77 // from the beginning of the file (i.e. the header).
78 MachHeaderSection::MachHeaderSection()
79     : SyntheticSection(segment_names::text, section_names::header) {
80   // XXX: This is a hack. (See D97007)
81   // Setting the index to 1 to pretend that this section is the text
82   // section.
83   index = 1;
84   isec->isFinal = true;
85 }
86 
87 void MachHeaderSection::addLoadCommand(LoadCommand *lc) {
88   loadCommands.push_back(lc);
89   sizeOfCmds += lc->getSize();
90 }
91 
92 uint64_t MachHeaderSection::getSize() const {
93   uint64_t size = target->headerSize + sizeOfCmds + config->headerPad;
94   // If we are emitting an encryptable binary, our load commands must have a
95   // separate (non-encrypted) page to themselves.
96   if (config->emitEncryptionInfo)
97     size = alignTo(size, target->getPageSize());
98   return size;
99 }
100 
101 static uint32_t cpuSubtype() {
102   uint32_t subtype = target->cpuSubtype;
103 
104   if (config->outputType == MH_EXECUTE && !config->staticLink &&
105       target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL &&
106       config->platform() == PLATFORM_MACOS &&
107       config->platformInfo.minimum >= VersionTuple(10, 5))
108     subtype |= CPU_SUBTYPE_LIB64;
109 
110   return subtype;
111 }
112 
113 void MachHeaderSection::writeTo(uint8_t *buf) const {
114   auto *hdr = reinterpret_cast<mach_header *>(buf);
115   hdr->magic = target->magic;
116   hdr->cputype = target->cpuType;
117   hdr->cpusubtype = cpuSubtype();
118   hdr->filetype = config->outputType;
119   hdr->ncmds = loadCommands.size();
120   hdr->sizeofcmds = sizeOfCmds;
121   hdr->flags = MH_DYLDLINK;
122 
123   if (config->namespaceKind == NamespaceKind::twolevel)
124     hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL;
125 
126   if (config->outputType == MH_DYLIB && !config->hasReexports)
127     hdr->flags |= MH_NO_REEXPORTED_DYLIBS;
128 
129   if (config->markDeadStrippableDylib)
130     hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB;
131 
132   if (config->outputType == MH_EXECUTE && config->isPic)
133     hdr->flags |= MH_PIE;
134 
135   if (config->outputType == MH_DYLIB && config->applicationExtension)
136     hdr->flags |= MH_APP_EXTENSION_SAFE;
137 
138   if (in.exports->hasWeakSymbol || in.weakBinding->hasNonWeakDefinition())
139     hdr->flags |= MH_WEAK_DEFINES;
140 
141   if (in.exports->hasWeakSymbol || in.weakBinding->hasEntry())
142     hdr->flags |= MH_BINDS_TO_WEAK;
143 
144   for (const OutputSegment *seg : outputSegments) {
145     for (const OutputSection *osec : seg->getSections()) {
146       if (isThreadLocalVariables(osec->flags)) {
147         hdr->flags |= MH_HAS_TLV_DESCRIPTORS;
148         break;
149       }
150     }
151   }
152 
153   uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize;
154   for (const LoadCommand *lc : loadCommands) {
155     lc->writeTo(p);
156     p += lc->getSize();
157   }
158 }
159 
160 PageZeroSection::PageZeroSection()
161     : SyntheticSection(segment_names::pageZero, section_names::pageZero) {}
162 
163 RebaseSection::RebaseSection()
164     : LinkEditSection(segment_names::linkEdit, section_names::rebase) {}
165 
166 namespace {
167 struct RebaseState {
168   uint64_t sequenceLength;
169   uint64_t skipLength;
170 };
171 } // namespace
172 
173 static void emitIncrement(uint64_t incr, raw_svector_ostream &os) {
174   assert(incr != 0);
175 
176   if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK &&
177       (incr % target->wordSize) == 0) {
178     os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED |
179                                (incr >> target->p2WordSize));
180   } else {
181     os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB);
182     encodeULEB128(incr, os);
183   }
184 }
185 
186 static void flushRebase(const RebaseState &state, raw_svector_ostream &os) {
187   assert(state.sequenceLength > 0);
188 
189   if (state.skipLength == target->wordSize) {
190     if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) {
191       os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES |
192                                  state.sequenceLength);
193     } else {
194       os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES);
195       encodeULEB128(state.sequenceLength, os);
196     }
197   } else if (state.sequenceLength == 1) {
198     os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB);
199     encodeULEB128(state.skipLength - target->wordSize, os);
200   } else {
201     os << static_cast<uint8_t>(
202         REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB);
203     encodeULEB128(state.sequenceLength, os);
204     encodeULEB128(state.skipLength - target->wordSize, os);
205   }
206 }
207 
208 // Rebases are communicated to dyld using a bytecode, whose opcodes cause the
209 // memory location at a specific address to be rebased and/or the address to be
210 // incremented.
211 //
212 // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic
213 // one, encoding a series of evenly spaced addresses. This algorithm works by
214 // splitting up the sorted list of addresses into such chunks. If the locations
215 // are consecutive or the sequence consists of a single location, flushRebase
216 // will use a smaller, more specialized encoding.
217 static void encodeRebases(const OutputSegment *seg,
218                           MutableArrayRef<Location> locations,
219                           raw_svector_ostream &os) {
220   // dyld operates on segments. Translate section offsets into segment offsets.
221   for (Location &loc : locations)
222     loc.offset =
223         loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(loc.offset);
224   // The algorithm assumes that locations are unique.
225   Location *end =
226       llvm::unique(locations, [](const Location &a, const Location &b) {
227         return a.offset == b.offset;
228       });
229   size_t count = end - locations.begin();
230 
231   os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
232                              seg->index);
233   assert(!locations.empty());
234   uint64_t offset = locations[0].offset;
235   encodeULEB128(offset, os);
236 
237   RebaseState state{1, target->wordSize};
238 
239   for (size_t i = 1; i < count; ++i) {
240     offset = locations[i].offset;
241 
242     uint64_t skip = offset - locations[i - 1].offset;
243     assert(skip != 0 && "duplicate locations should have been weeded out");
244 
245     if (skip == state.skipLength) {
246       ++state.sequenceLength;
247     } else if (state.sequenceLength == 1) {
248       ++state.sequenceLength;
249       state.skipLength = skip;
250     } else if (skip < state.skipLength) {
251       // The address is lower than what the rebase pointer would be if the last
252       // location would be part of a sequence. We start a new sequence from the
253       // previous location.
254       --state.sequenceLength;
255       flushRebase(state, os);
256 
257       state.sequenceLength = 2;
258       state.skipLength = skip;
259     } else {
260       // The address is at some positive offset from the rebase pointer. We
261       // start a new sequence which begins with the current location.
262       flushRebase(state, os);
263       emitIncrement(skip - state.skipLength, os);
264       state.sequenceLength = 1;
265       state.skipLength = target->wordSize;
266     }
267   }
268   flushRebase(state, os);
269 }
270 
271 void RebaseSection::finalizeContents() {
272   if (locations.empty())
273     return;
274 
275   raw_svector_ostream os{contents};
276   os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER);
277 
278   llvm::sort(locations, [](const Location &a, const Location &b) {
279     return a.isec->getVA(a.offset) < b.isec->getVA(b.offset);
280   });
281 
282   for (size_t i = 0, count = locations.size(); i < count;) {
283     const OutputSegment *seg = locations[i].isec->parent->parent;
284     size_t j = i + 1;
285     while (j < count && locations[j].isec->parent->parent == seg)
286       ++j;
287     encodeRebases(seg, {locations.data() + i, locations.data() + j}, os);
288     i = j;
289   }
290   os << static_cast<uint8_t>(REBASE_OPCODE_DONE);
291 }
292 
293 void RebaseSection::writeTo(uint8_t *buf) const {
294   memcpy(buf, contents.data(), contents.size());
295 }
296 
297 NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname,
298                                                      const char *name)
299     : SyntheticSection(segname, name) {
300   align = target->wordSize;
301 }
302 
303 void macho::addNonLazyBindingEntries(const Symbol *sym,
304                                      const InputSection *isec, uint64_t offset,
305                                      int64_t addend) {
306   if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
307     in.binding->addEntry(dysym, isec, offset, addend);
308     if (dysym->isWeakDef())
309       in.weakBinding->addEntry(sym, isec, offset, addend);
310   } else if (const auto *defined = dyn_cast<Defined>(sym)) {
311     in.rebase->addEntry(isec, offset);
312     if (defined->isExternalWeakDef())
313       in.weakBinding->addEntry(sym, isec, offset, addend);
314     else if (defined->interposable)
315       in.binding->addEntry(sym, isec, offset, addend);
316   } else {
317     // Undefined symbols are filtered out in scanRelocations(); we should never
318     // get here
319     llvm_unreachable("cannot bind to an undefined symbol");
320   }
321 }
322 
323 void NonLazyPointerSectionBase::addEntry(Symbol *sym) {
324   if (entries.insert(sym)) {
325     assert(!sym->isInGot());
326     sym->gotIndex = entries.size() - 1;
327 
328     addNonLazyBindingEntries(sym, isec, sym->gotIndex * target->wordSize);
329   }
330 }
331 
332 void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const {
333   for (size_t i = 0, n = entries.size(); i < n; ++i)
334     if (auto *defined = dyn_cast<Defined>(entries[i]))
335       write64le(&buf[i * target->wordSize], defined->getVA());
336 }
337 
338 GotSection::GotSection()
339     : NonLazyPointerSectionBase(segment_names::data, section_names::got) {
340   flags = S_NON_LAZY_SYMBOL_POINTERS;
341 }
342 
343 TlvPointerSection::TlvPointerSection()
344     : NonLazyPointerSectionBase(segment_names::data,
345                                 section_names::threadPtrs) {
346   flags = S_THREAD_LOCAL_VARIABLE_POINTERS;
347 }
348 
349 BindingSection::BindingSection()
350     : LinkEditSection(segment_names::linkEdit, section_names::binding) {}
351 
352 namespace {
353 struct Binding {
354   OutputSegment *segment = nullptr;
355   uint64_t offset = 0;
356   int64_t addend = 0;
357 };
358 struct BindIR {
359   // Default value of 0xF0 is not valid opcode and should make the program
360   // scream instead of accidentally writing "valid" values.
361   uint8_t opcode = 0xF0;
362   uint64_t data = 0;
363   uint64_t consecutiveCount = 0;
364 };
365 } // namespace
366 
367 // Encode a sequence of opcodes that tell dyld to write the address of symbol +
368 // addend at osec->addr + outSecOff.
369 //
370 // The bind opcode "interpreter" remembers the values of each binding field, so
371 // we only need to encode the differences between bindings. Hence the use of
372 // lastBinding.
373 static void encodeBinding(const OutputSection *osec, uint64_t outSecOff,
374                           int64_t addend, Binding &lastBinding,
375                           std::vector<BindIR> &opcodes) {
376   OutputSegment *seg = osec->parent;
377   uint64_t offset = osec->getSegmentOffset() + outSecOff;
378   if (lastBinding.segment != seg) {
379     opcodes.push_back(
380         {static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
381                               seg->index),
382          offset});
383     lastBinding.segment = seg;
384     lastBinding.offset = offset;
385   } else if (lastBinding.offset != offset) {
386     opcodes.push_back({BIND_OPCODE_ADD_ADDR_ULEB, offset - lastBinding.offset});
387     lastBinding.offset = offset;
388   }
389 
390   if (lastBinding.addend != addend) {
391     opcodes.push_back(
392         {BIND_OPCODE_SET_ADDEND_SLEB, static_cast<uint64_t>(addend)});
393     lastBinding.addend = addend;
394   }
395 
396   opcodes.push_back({BIND_OPCODE_DO_BIND, 0});
397   // DO_BIND causes dyld to both perform the binding and increment the offset
398   lastBinding.offset += target->wordSize;
399 }
400 
401 static void optimizeOpcodes(std::vector<BindIR> &opcodes) {
402   // Pass 1: Combine bind/add pairs
403   size_t i;
404   int pWrite = 0;
405   for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
406     if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) &&
407         (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) {
408       opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB;
409       opcodes[pWrite].data = opcodes[i].data;
410       ++i;
411     } else {
412       opcodes[pWrite] = opcodes[i - 1];
413     }
414   }
415   if (i == opcodes.size())
416     opcodes[pWrite] = opcodes[i - 1];
417   opcodes.resize(pWrite + 1);
418 
419   // Pass 2: Compress two or more bind_add opcodes
420   pWrite = 0;
421   for (i = 1; i < opcodes.size(); ++i, ++pWrite) {
422     if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
423         (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
424         (opcodes[i].data == opcodes[i - 1].data)) {
425       opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB;
426       opcodes[pWrite].consecutiveCount = 2;
427       opcodes[pWrite].data = opcodes[i].data;
428       ++i;
429       while (i < opcodes.size() &&
430              (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
431              (opcodes[i].data == opcodes[i - 1].data)) {
432         opcodes[pWrite].consecutiveCount++;
433         ++i;
434       }
435     } else {
436       opcodes[pWrite] = opcodes[i - 1];
437     }
438   }
439   if (i == opcodes.size())
440     opcodes[pWrite] = opcodes[i - 1];
441   opcodes.resize(pWrite + 1);
442 
443   // Pass 3: Use immediate encodings
444   // Every binding is the size of one pointer. If the next binding is a
445   // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the
446   // opcode can be scaled by wordSize into a single byte and dyld will
447   // expand it to the correct address.
448   for (auto &p : opcodes) {
449     // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK,
450     // but ld64 currently does this. This could be a potential bug, but
451     // for now, perform the same behavior to prevent mysterious bugs.
452     if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) &&
453         ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) &&
454         ((p.data % target->wordSize) == 0)) {
455       p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED;
456       p.data /= target->wordSize;
457     }
458   }
459 }
460 
461 static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) {
462   uint8_t opcode = op.opcode & BIND_OPCODE_MASK;
463   switch (opcode) {
464   case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB:
465   case BIND_OPCODE_ADD_ADDR_ULEB:
466   case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB:
467     os << op.opcode;
468     encodeULEB128(op.data, os);
469     break;
470   case BIND_OPCODE_SET_ADDEND_SLEB:
471     os << op.opcode;
472     encodeSLEB128(static_cast<int64_t>(op.data), os);
473     break;
474   case BIND_OPCODE_DO_BIND:
475     os << op.opcode;
476     break;
477   case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB:
478     os << op.opcode;
479     encodeULEB128(op.consecutiveCount, os);
480     encodeULEB128(op.data, os);
481     break;
482   case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED:
483     os << static_cast<uint8_t>(op.opcode | op.data);
484     break;
485   default:
486     llvm_unreachable("cannot bind to an unrecognized symbol");
487   }
488 }
489 
490 // Non-weak bindings need to have their dylib ordinal encoded as well.
491 static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) {
492   if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup())
493     return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP);
494   assert(dysym.getFile()->isReferenced());
495   return dysym.getFile()->ordinal;
496 }
497 
498 static int16_t ordinalForSymbol(const Symbol &sym) {
499   if (const auto *dysym = dyn_cast<DylibSymbol>(&sym))
500     return ordinalForDylibSymbol(*dysym);
501   assert(cast<Defined>(&sym)->interposable);
502   return BIND_SPECIAL_DYLIB_FLAT_LOOKUP;
503 }
504 
505 static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) {
506   if (ordinal <= 0) {
507     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM |
508                                (ordinal & BIND_IMMEDIATE_MASK));
509   } else if (ordinal <= BIND_IMMEDIATE_MASK) {
510     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal);
511   } else {
512     os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB);
513     encodeULEB128(ordinal, os);
514   }
515 }
516 
517 static void encodeWeakOverride(const Defined *defined,
518                                raw_svector_ostream &os) {
519   os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM |
520                              BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION)
521      << defined->getName() << '\0';
522 }
523 
524 // Organize the bindings so we can encoded them with fewer opcodes.
525 //
526 // First, all bindings for a given symbol should be grouped together.
527 // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it
528 // has an associated symbol string), so we only want to emit it once per symbol.
529 //
530 // Within each group, we sort the bindings by address. Since bindings are
531 // delta-encoded, sorting them allows for a more compact result. Note that
532 // sorting by address alone ensures that bindings for the same segment / section
533 // are located together, minimizing the number of times we have to emit
534 // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB.
535 //
536 // Finally, we sort the symbols by the address of their first binding, again
537 // to facilitate the delta-encoding process.
538 template <class Sym>
539 std::vector<std::pair<const Sym *, std::vector<BindingEntry>>>
540 sortBindings(const BindingsMap<const Sym *> &bindingsMap) {
541   std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec(
542       bindingsMap.begin(), bindingsMap.end());
543   for (auto &p : bindingsVec) {
544     std::vector<BindingEntry> &bindings = p.second;
545     llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) {
546       return a.target.getVA() < b.target.getVA();
547     });
548   }
549   llvm::sort(bindingsVec, [](const auto &a, const auto &b) {
550     return a.second[0].target.getVA() < b.second[0].target.getVA();
551   });
552   return bindingsVec;
553 }
554 
555 // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld
556 // interprets to update a record with the following fields:
557 //  * segment index (of the segment to write the symbol addresses to, typically
558 //    the __DATA_CONST segment which contains the GOT)
559 //  * offset within the segment, indicating the next location to write a binding
560 //  * symbol type
561 //  * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command)
562 //  * symbol name
563 //  * addend
564 // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind
565 // a symbol in the GOT, and increments the segment offset to point to the next
566 // entry. It does *not* clear the record state after doing the bind, so
567 // subsequent opcodes only need to encode the differences between bindings.
568 void BindingSection::finalizeContents() {
569   raw_svector_ostream os{contents};
570   Binding lastBinding;
571   int16_t lastOrdinal = 0;
572 
573   for (auto &p : sortBindings(bindingsMap)) {
574     const Symbol *sym = p.first;
575     std::vector<BindingEntry> &bindings = p.second;
576     uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
577     if (sym->isWeakRef())
578       flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
579     os << flags << sym->getName() << '\0'
580        << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
581     int16_t ordinal = ordinalForSymbol(*sym);
582     if (ordinal != lastOrdinal) {
583       encodeDylibOrdinal(ordinal, os);
584       lastOrdinal = ordinal;
585     }
586     std::vector<BindIR> opcodes;
587     for (const BindingEntry &b : bindings)
588       encodeBinding(b.target.isec->parent,
589                     b.target.isec->getOffset(b.target.offset), b.addend,
590                     lastBinding, opcodes);
591     if (config->optimize > 1)
592       optimizeOpcodes(opcodes);
593     for (const auto &op : opcodes)
594       flushOpcodes(op, os);
595   }
596   if (!bindingsMap.empty())
597     os << static_cast<uint8_t>(BIND_OPCODE_DONE);
598 }
599 
600 void BindingSection::writeTo(uint8_t *buf) const {
601   memcpy(buf, contents.data(), contents.size());
602 }
603 
604 WeakBindingSection::WeakBindingSection()
605     : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {}
606 
607 void WeakBindingSection::finalizeContents() {
608   raw_svector_ostream os{contents};
609   Binding lastBinding;
610 
611   for (const Defined *defined : definitions)
612     encodeWeakOverride(defined, os);
613 
614   for (auto &p : sortBindings(bindingsMap)) {
615     const Symbol *sym = p.first;
616     std::vector<BindingEntry> &bindings = p.second;
617     os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM)
618        << sym->getName() << '\0'
619        << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER);
620     std::vector<BindIR> opcodes;
621     for (const BindingEntry &b : bindings)
622       encodeBinding(b.target.isec->parent,
623                     b.target.isec->getOffset(b.target.offset), b.addend,
624                     lastBinding, opcodes);
625     if (config->optimize > 1)
626       optimizeOpcodes(opcodes);
627     for (const auto &op : opcodes)
628       flushOpcodes(op, os);
629   }
630   if (!bindingsMap.empty() || !definitions.empty())
631     os << static_cast<uint8_t>(BIND_OPCODE_DONE);
632 }
633 
634 void WeakBindingSection::writeTo(uint8_t *buf) const {
635   memcpy(buf, contents.data(), contents.size());
636 }
637 
638 StubsSection::StubsSection()
639     : SyntheticSection(segment_names::text, section_names::stubs) {
640   flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
641   // The stubs section comprises machine instructions, which are aligned to
642   // 4 bytes on the archs we care about.
643   align = 4;
644   reserved2 = target->stubSize;
645 }
646 
647 uint64_t StubsSection::getSize() const {
648   return entries.size() * target->stubSize;
649 }
650 
651 void StubsSection::writeTo(uint8_t *buf) const {
652   size_t off = 0;
653   for (const Symbol *sym : entries) {
654     target->writeStub(buf + off, *sym);
655     off += target->stubSize;
656   }
657 }
658 
659 void StubsSection::finalize() { isFinal = true; }
660 
661 bool StubsSection::addEntry(Symbol *sym) {
662   bool inserted = entries.insert(sym);
663   if (inserted)
664     sym->stubsIndex = entries.size() - 1;
665   return inserted;
666 }
667 
668 StubHelperSection::StubHelperSection()
669     : SyntheticSection(segment_names::text, section_names::stubHelper) {
670   flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS;
671   align = 4; // This section comprises machine instructions
672 }
673 
674 uint64_t StubHelperSection::getSize() const {
675   return target->stubHelperHeaderSize +
676          in.lazyBinding->getEntries().size() * target->stubHelperEntrySize;
677 }
678 
679 bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); }
680 
681 void StubHelperSection::writeTo(uint8_t *buf) const {
682   target->writeStubHelperHeader(buf);
683   size_t off = target->stubHelperHeaderSize;
684   for (const Symbol *sym : in.lazyBinding->getEntries()) {
685     target->writeStubHelperEntry(buf + off, *sym, addr + off);
686     off += target->stubHelperEntrySize;
687   }
688 }
689 
690 void StubHelperSection::setup() {
691   Symbol *binder = symtab->addUndefined("dyld_stub_binder", /*file=*/nullptr,
692                                         /*isWeakRef=*/false);
693   if (auto *undefined = dyn_cast<Undefined>(binder))
694     treatUndefinedSymbol(*undefined,
695                          "lazy binding (normally in libSystem.dylib)");
696 
697   // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check.
698   stubBinder = dyn_cast_or_null<DylibSymbol>(binder);
699   if (stubBinder == nullptr)
700     return;
701 
702   in.got->addEntry(stubBinder);
703 
704   in.imageLoaderCache->parent =
705       ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache);
706   inputSections.push_back(in.imageLoaderCache);
707   // Since this isn't in the symbol table or in any input file, the noDeadStrip
708   // argument doesn't matter.
709   dyldPrivate =
710       make<Defined>("__dyld_private", nullptr, in.imageLoaderCache, 0, 0,
711                     /*isWeakDef=*/false,
712                     /*isExternal=*/false, /*isPrivateExtern=*/false,
713                     /*includeInSymtab=*/true,
714                     /*isThumb=*/false, /*isReferencedDynamically=*/false,
715                     /*noDeadStrip=*/false);
716   dyldPrivate->used = true;
717 }
718 
719 LazyPointerSection::LazyPointerSection()
720     : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) {
721   align = target->wordSize;
722   flags = S_LAZY_SYMBOL_POINTERS;
723 }
724 
725 uint64_t LazyPointerSection::getSize() const {
726   return in.stubs->getEntries().size() * target->wordSize;
727 }
728 
729 bool LazyPointerSection::isNeeded() const {
730   return !in.stubs->getEntries().empty();
731 }
732 
733 void LazyPointerSection::writeTo(uint8_t *buf) const {
734   size_t off = 0;
735   for (const Symbol *sym : in.stubs->getEntries()) {
736     if (const auto *dysym = dyn_cast<DylibSymbol>(sym)) {
737       if (dysym->hasStubsHelper()) {
738         uint64_t stubHelperOffset =
739             target->stubHelperHeaderSize +
740             dysym->stubsHelperIndex * target->stubHelperEntrySize;
741         write64le(buf + off, in.stubHelper->addr + stubHelperOffset);
742       }
743     } else {
744       write64le(buf + off, sym->getVA());
745     }
746     off += target->wordSize;
747   }
748 }
749 
750 LazyBindingSection::LazyBindingSection()
751     : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {}
752 
753 void LazyBindingSection::finalizeContents() {
754   // TODO: Just precompute output size here instead of writing to a temporary
755   // buffer
756   for (Symbol *sym : entries)
757     sym->lazyBindOffset = encode(*sym);
758 }
759 
760 void LazyBindingSection::writeTo(uint8_t *buf) const {
761   memcpy(buf, contents.data(), contents.size());
762 }
763 
764 void LazyBindingSection::addEntry(Symbol *sym) {
765   if (entries.insert(sym)) {
766     sym->stubsHelperIndex = entries.size() - 1;
767     in.rebase->addEntry(in.lazyPointers->isec,
768                         sym->stubsIndex * target->wordSize);
769   }
770 }
771 
772 // Unlike the non-lazy binding section, the bind opcodes in this section aren't
773 // interpreted all at once. Rather, dyld will start interpreting opcodes at a
774 // given offset, typically only binding a single symbol before it finds a
775 // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case,
776 // we cannot encode just the differences between symbols; we have to emit the
777 // complete bind information for each symbol.
778 uint32_t LazyBindingSection::encode(const Symbol &sym) {
779   uint32_t opstreamOffset = contents.size();
780   OutputSegment *dataSeg = in.lazyPointers->parent;
781   os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB |
782                              dataSeg->index);
783   uint64_t offset =
784       in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize;
785   encodeULEB128(offset, os);
786   encodeDylibOrdinal(ordinalForSymbol(sym), os);
787 
788   uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM;
789   if (sym.isWeakRef())
790     flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT;
791 
792   os << flags << sym.getName() << '\0'
793      << static_cast<uint8_t>(BIND_OPCODE_DO_BIND)
794      << static_cast<uint8_t>(BIND_OPCODE_DONE);
795   return opstreamOffset;
796 }
797 
798 ExportSection::ExportSection()
799     : LinkEditSection(segment_names::linkEdit, section_names::export_) {}
800 
801 void ExportSection::finalizeContents() {
802   trieBuilder.setImageBase(in.header->addr);
803   for (const Symbol *sym : symtab->getSymbols()) {
804     if (const auto *defined = dyn_cast<Defined>(sym)) {
805       if (defined->privateExtern || !defined->isLive())
806         continue;
807       trieBuilder.addSymbol(*defined);
808       hasWeakSymbol = hasWeakSymbol || sym->isWeakDef();
809     }
810   }
811   size = trieBuilder.build();
812 }
813 
814 void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); }
815 
816 DataInCodeSection::DataInCodeSection()
817     : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {}
818 
819 template <class LP>
820 static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() {
821   std::vector<MachO::data_in_code_entry> dataInCodeEntries;
822   for (const InputFile *inputFile : inputFiles) {
823     if (!isa<ObjFile>(inputFile))
824       continue;
825     const ObjFile *objFile = cast<ObjFile>(inputFile);
826     ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode();
827     if (entries.empty())
828       continue;
829 
830     assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
831                                            const data_in_code_entry &rhs) {
832       return lhs.offset < rhs.offset;
833     }));
834     // For each code subsection find 'data in code' entries residing in it.
835     // Compute the new offset values as
836     // <offset within subsection> + <subsection address> - <__TEXT address>.
837     for (const Section *section : objFile->sections) {
838       for (const Subsection &subsec : section->subsections) {
839         const InputSection *isec = subsec.isec;
840         if (!isCodeSection(isec))
841           continue;
842         if (cast<ConcatInputSection>(isec)->shouldOmitFromOutput())
843           continue;
844         const uint64_t beginAddr = section->addr + subsec.offset;
845         auto it = llvm::lower_bound(
846             entries, beginAddr,
847             [](const MachO::data_in_code_entry &entry, uint64_t addr) {
848               return entry.offset < addr;
849             });
850         const uint64_t endAddr = beginAddr + isec->getSize();
851         for (const auto end = entries.end();
852              it != end && it->offset + it->length <= endAddr; ++it)
853           dataInCodeEntries.push_back(
854               {static_cast<uint32_t>(isec->getVA(it->offset - beginAddr) -
855                                      in.header->addr),
856                it->length, it->kind});
857       }
858     }
859   }
860   return dataInCodeEntries;
861 }
862 
863 void DataInCodeSection::finalizeContents() {
864   entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>()
865                                   : collectDataInCodeEntries<ILP32>();
866 }
867 
868 void DataInCodeSection::writeTo(uint8_t *buf) const {
869   if (!entries.empty())
870     memcpy(buf, entries.data(), getRawSize());
871 }
872 
873 FunctionStartsSection::FunctionStartsSection()
874     : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {}
875 
876 void FunctionStartsSection::finalizeContents() {
877   raw_svector_ostream os{contents};
878   std::vector<uint64_t> addrs;
879   for (const InputFile *file : inputFiles) {
880     if (auto *objFile = dyn_cast<ObjFile>(file)) {
881       for (const Symbol *sym : objFile->symbols) {
882         if (const auto *defined = dyn_cast_or_null<Defined>(sym)) {
883           if (!defined->isec || !isCodeSection(defined->isec) ||
884               !defined->isLive())
885             continue;
886           // TODO: Add support for thumbs, in that case
887           // the lowest bit of nextAddr needs to be set to 1.
888           addrs.push_back(defined->getVA());
889         }
890       }
891     }
892   }
893   llvm::sort(addrs);
894   uint64_t addr = in.header->addr;
895   for (uint64_t nextAddr : addrs) {
896     uint64_t delta = nextAddr - addr;
897     if (delta == 0)
898       continue;
899     encodeULEB128(delta, os);
900     addr = nextAddr;
901   }
902   os << '\0';
903 }
904 
905 void FunctionStartsSection::writeTo(uint8_t *buf) const {
906   memcpy(buf, contents.data(), contents.size());
907 }
908 
909 SymtabSection::SymtabSection(StringTableSection &stringTableSection)
910     : LinkEditSection(segment_names::linkEdit, section_names::symbolTable),
911       stringTableSection(stringTableSection) {}
912 
913 void SymtabSection::emitBeginSourceStab(StringRef sourceFile) {
914   StabsEntry stab(N_SO);
915   stab.strx = stringTableSection.addString(saver().save(sourceFile));
916   stabs.emplace_back(std::move(stab));
917 }
918 
919 void SymtabSection::emitEndSourceStab() {
920   StabsEntry stab(N_SO);
921   stab.sect = 1;
922   stabs.emplace_back(std::move(stab));
923 }
924 
925 void SymtabSection::emitObjectFileStab(ObjFile *file) {
926   StabsEntry stab(N_OSO);
927   stab.sect = target->cpuSubtype;
928   SmallString<261> path(!file->archiveName.empty() ? file->archiveName
929                                                    : file->getName());
930   std::error_code ec = sys::fs::make_absolute(path);
931   if (ec)
932     fatal("failed to get absolute path for " + path);
933 
934   if (!file->archiveName.empty())
935     path.append({"(", file->getName(), ")"});
936 
937   StringRef adjustedPath = saver().save(path.str());
938   adjustedPath.consume_front(config->osoPrefix);
939 
940   stab.strx = stringTableSection.addString(adjustedPath);
941   stab.desc = 1;
942   stab.value = file->modTime;
943   stabs.emplace_back(std::move(stab));
944 }
945 
946 void SymtabSection::emitEndFunStab(Defined *defined) {
947   StabsEntry stab(N_FUN);
948   stab.value = defined->size;
949   stabs.emplace_back(std::move(stab));
950 }
951 
952 void SymtabSection::emitStabs() {
953   if (config->omitDebugInfo)
954     return;
955 
956   for (const std::string &s : config->astPaths) {
957     StabsEntry astStab(N_AST);
958     astStab.strx = stringTableSection.addString(s);
959     stabs.emplace_back(std::move(astStab));
960   }
961 
962   // Cache the file ID for each symbol in an std::pair for faster sorting.
963   using SortingPair = std::pair<Defined *, int>;
964   std::vector<SortingPair> symbolsNeedingStabs;
965   for (const SymtabEntry &entry :
966        concat<SymtabEntry>(localSymbols, externalSymbols)) {
967     Symbol *sym = entry.sym;
968     assert(sym->isLive() &&
969            "dead symbols should not be in localSymbols, externalSymbols");
970     if (auto *defined = dyn_cast<Defined>(sym)) {
971       // Excluded symbols should have been filtered out in finalizeContents().
972       assert(defined->includeInSymtab);
973 
974       if (defined->isAbsolute())
975         continue;
976 
977       // Constant-folded symbols go in the executable's symbol table, but don't
978       // get a stabs entry.
979       if (defined->wasIdenticalCodeFolded)
980         continue;
981 
982       InputSection *isec = defined->isec;
983       ObjFile *file = dyn_cast_or_null<ObjFile>(isec->getFile());
984       if (!file || !file->compileUnit)
985         continue;
986 
987       symbolsNeedingStabs.emplace_back(defined, defined->isec->getFile()->id);
988     }
989   }
990 
991   llvm::stable_sort(symbolsNeedingStabs,
992                     [&](const SortingPair &a, const SortingPair &b) {
993                       return a.second < b.second;
994                     });
995 
996   // Emit STABS symbols so that dsymutil and/or the debugger can map address
997   // regions in the final binary to the source and object files from which they
998   // originated.
999   InputFile *lastFile = nullptr;
1000   for (SortingPair &pair : symbolsNeedingStabs) {
1001     Defined *defined = pair.first;
1002     InputSection *isec = defined->isec;
1003     ObjFile *file = cast<ObjFile>(isec->getFile());
1004 
1005     if (lastFile == nullptr || lastFile != file) {
1006       if (lastFile != nullptr)
1007         emitEndSourceStab();
1008       lastFile = file;
1009 
1010       emitBeginSourceStab(file->sourceFile());
1011       emitObjectFileStab(file);
1012     }
1013 
1014     StabsEntry symStab;
1015     symStab.sect = defined->isec->parent->index;
1016     symStab.strx = stringTableSection.addString(defined->getName());
1017     symStab.value = defined->getVA();
1018 
1019     if (isCodeSection(isec)) {
1020       symStab.type = N_FUN;
1021       stabs.emplace_back(std::move(symStab));
1022       emitEndFunStab(defined);
1023     } else {
1024       symStab.type = defined->isExternal() ? N_GSYM : N_STSYM;
1025       stabs.emplace_back(std::move(symStab));
1026     }
1027   }
1028 
1029   if (!stabs.empty())
1030     emitEndSourceStab();
1031 }
1032 
1033 void SymtabSection::finalizeContents() {
1034   auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) {
1035     uint32_t strx = stringTableSection.addString(sym->getName());
1036     symbols.push_back({sym, strx});
1037   };
1038 
1039   std::function<void(Symbol *)> localSymbolsHandler;
1040   switch (config->localSymbolsPresence) {
1041   case SymtabPresence::All:
1042     localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); };
1043     break;
1044   case SymtabPresence::None:
1045     localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ };
1046     break;
1047   case SymtabPresence::SelectivelyIncluded:
1048     localSymbolsHandler = [&](Symbol *sym) {
1049       if (config->localSymbolPatterns.match(sym->getName()))
1050         addSymbol(localSymbols, sym);
1051     };
1052     break;
1053   case SymtabPresence::SelectivelyExcluded:
1054     localSymbolsHandler = [&](Symbol *sym) {
1055       if (!config->localSymbolPatterns.match(sym->getName()))
1056         addSymbol(localSymbols, sym);
1057     };
1058     break;
1059   }
1060 
1061   // Local symbols aren't in the SymbolTable, so we walk the list of object
1062   // files to gather them.
1063   // But if `-x` is set, then we don't need to. localSymbolsHandler() will do
1064   // the right thing regardless, but this check is a perf optimization because
1065   // iterating through all the input files and their symbols is expensive.
1066   if (config->localSymbolsPresence != SymtabPresence::None) {
1067     for (const InputFile *file : inputFiles) {
1068       if (auto *objFile = dyn_cast<ObjFile>(file)) {
1069         for (Symbol *sym : objFile->symbols) {
1070           if (auto *defined = dyn_cast_or_null<Defined>(sym)) {
1071             if (defined->isExternal() || !defined->isLive() ||
1072                 !defined->includeInSymtab)
1073               continue;
1074             localSymbolsHandler(sym);
1075           }
1076         }
1077       }
1078     }
1079   }
1080 
1081   // __dyld_private is a local symbol too. It's linker-created and doesn't
1082   // exist in any object file.
1083   if (Defined *dyldPrivate = in.stubHelper->dyldPrivate)
1084     localSymbolsHandler(dyldPrivate);
1085 
1086   for (Symbol *sym : symtab->getSymbols()) {
1087     if (!sym->isLive())
1088       continue;
1089     if (auto *defined = dyn_cast<Defined>(sym)) {
1090       if (!defined->includeInSymtab)
1091         continue;
1092       assert(defined->isExternal());
1093       if (defined->privateExtern)
1094         localSymbolsHandler(defined);
1095       else
1096         addSymbol(externalSymbols, defined);
1097     } else if (auto *dysym = dyn_cast<DylibSymbol>(sym)) {
1098       if (dysym->isReferenced())
1099         addSymbol(undefinedSymbols, sym);
1100     }
1101   }
1102 
1103   emitStabs();
1104   uint32_t symtabIndex = stabs.size();
1105   for (const SymtabEntry &entry :
1106        concat<SymtabEntry>(localSymbols, externalSymbols, undefinedSymbols)) {
1107     entry.sym->symtabIndex = symtabIndex++;
1108   }
1109 }
1110 
1111 uint32_t SymtabSection::getNumSymbols() const {
1112   return stabs.size() + localSymbols.size() + externalSymbols.size() +
1113          undefinedSymbols.size();
1114 }
1115 
1116 // This serves to hide (type-erase) the template parameter from SymtabSection.
1117 template <class LP> class SymtabSectionImpl final : public SymtabSection {
1118 public:
1119   SymtabSectionImpl(StringTableSection &stringTableSection)
1120       : SymtabSection(stringTableSection) {}
1121   uint64_t getRawSize() const override;
1122   void writeTo(uint8_t *buf) const override;
1123 };
1124 
1125 template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const {
1126   return getNumSymbols() * sizeof(typename LP::nlist);
1127 }
1128 
1129 template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const {
1130   auto *nList = reinterpret_cast<typename LP::nlist *>(buf);
1131   // Emit the stabs entries before the "real" symbols. We cannot emit them
1132   // after as that would render Symbol::symtabIndex inaccurate.
1133   for (const StabsEntry &entry : stabs) {
1134     nList->n_strx = entry.strx;
1135     nList->n_type = entry.type;
1136     nList->n_sect = entry.sect;
1137     nList->n_desc = entry.desc;
1138     nList->n_value = entry.value;
1139     ++nList;
1140   }
1141 
1142   for (const SymtabEntry &entry : concat<const SymtabEntry>(
1143            localSymbols, externalSymbols, undefinedSymbols)) {
1144     nList->n_strx = entry.strx;
1145     // TODO populate n_desc with more flags
1146     if (auto *defined = dyn_cast<Defined>(entry.sym)) {
1147       uint8_t scope = 0;
1148       if (defined->privateExtern) {
1149         // Private external -- dylib scoped symbol.
1150         // Promote to non-external at link time.
1151         scope = N_PEXT;
1152       } else if (defined->isExternal()) {
1153         // Normal global symbol.
1154         scope = N_EXT;
1155       } else {
1156         // TU-local symbol from localSymbols.
1157         scope = 0;
1158       }
1159 
1160       if (defined->isAbsolute()) {
1161         nList->n_type = scope | N_ABS;
1162         nList->n_sect = NO_SECT;
1163         nList->n_value = defined->value;
1164       } else {
1165         nList->n_type = scope | N_SECT;
1166         nList->n_sect = defined->isec->parent->index;
1167         // For the N_SECT symbol type, n_value is the address of the symbol
1168         nList->n_value = defined->getVA();
1169       }
1170       nList->n_desc |= defined->thumb ? N_ARM_THUMB_DEF : 0;
1171       nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0;
1172       nList->n_desc |=
1173           defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0;
1174     } else if (auto *dysym = dyn_cast<DylibSymbol>(entry.sym)) {
1175       uint16_t n_desc = nList->n_desc;
1176       int16_t ordinal = ordinalForDylibSymbol(*dysym);
1177       if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP)
1178         SET_LIBRARY_ORDINAL(n_desc, DYNAMIC_LOOKUP_ORDINAL);
1179       else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE)
1180         SET_LIBRARY_ORDINAL(n_desc, EXECUTABLE_ORDINAL);
1181       else {
1182         assert(ordinal > 0);
1183         SET_LIBRARY_ORDINAL(n_desc, static_cast<uint8_t>(ordinal));
1184       }
1185 
1186       nList->n_type = N_EXT;
1187       n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0;
1188       n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0;
1189       nList->n_desc = n_desc;
1190     }
1191     ++nList;
1192   }
1193 }
1194 
1195 template <class LP>
1196 SymtabSection *
1197 macho::makeSymtabSection(StringTableSection &stringTableSection) {
1198   return make<SymtabSectionImpl<LP>>(stringTableSection);
1199 }
1200 
1201 IndirectSymtabSection::IndirectSymtabSection()
1202     : LinkEditSection(segment_names::linkEdit,
1203                       section_names::indirectSymbolTable) {}
1204 
1205 uint32_t IndirectSymtabSection::getNumSymbols() const {
1206   return in.got->getEntries().size() + in.tlvPointers->getEntries().size() +
1207          2 * in.stubs->getEntries().size();
1208 }
1209 
1210 bool IndirectSymtabSection::isNeeded() const {
1211   return in.got->isNeeded() || in.tlvPointers->isNeeded() ||
1212          in.stubs->isNeeded();
1213 }
1214 
1215 void IndirectSymtabSection::finalizeContents() {
1216   uint32_t off = 0;
1217   in.got->reserved1 = off;
1218   off += in.got->getEntries().size();
1219   in.tlvPointers->reserved1 = off;
1220   off += in.tlvPointers->getEntries().size();
1221   in.stubs->reserved1 = off;
1222   off += in.stubs->getEntries().size();
1223   in.lazyPointers->reserved1 = off;
1224 }
1225 
1226 static uint32_t indirectValue(const Symbol *sym) {
1227   if (sym->symtabIndex == UINT32_MAX)
1228     return INDIRECT_SYMBOL_LOCAL;
1229   if (auto *defined = dyn_cast<Defined>(sym))
1230     if (defined->privateExtern)
1231       return INDIRECT_SYMBOL_LOCAL;
1232   return sym->symtabIndex;
1233 }
1234 
1235 void IndirectSymtabSection::writeTo(uint8_t *buf) const {
1236   uint32_t off = 0;
1237   for (const Symbol *sym : in.got->getEntries()) {
1238     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1239     ++off;
1240   }
1241   for (const Symbol *sym : in.tlvPointers->getEntries()) {
1242     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1243     ++off;
1244   }
1245   for (const Symbol *sym : in.stubs->getEntries()) {
1246     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1247     ++off;
1248   }
1249   // There is a 1:1 correspondence between stubs and LazyPointerSection
1250   // entries. But giving __stubs and __la_symbol_ptr the same reserved1
1251   // (the offset into the indirect symbol table) so that they both refer
1252   // to the same range of offsets confuses `strip`, so write the stubs
1253   // symbol table offsets a second time.
1254   for (const Symbol *sym : in.stubs->getEntries()) {
1255     write32le(buf + off * sizeof(uint32_t), indirectValue(sym));
1256     ++off;
1257   }
1258 }
1259 
1260 StringTableSection::StringTableSection()
1261     : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {}
1262 
1263 uint32_t StringTableSection::addString(StringRef str) {
1264   uint32_t strx = size;
1265   strings.push_back(str); // TODO: consider deduplicating strings
1266   size += str.size() + 1; // account for null terminator
1267   return strx;
1268 }
1269 
1270 void StringTableSection::writeTo(uint8_t *buf) const {
1271   uint32_t off = 0;
1272   for (StringRef str : strings) {
1273     memcpy(buf + off, str.data(), str.size());
1274     off += str.size() + 1; // account for null terminator
1275   }
1276 }
1277 
1278 static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0, "");
1279 static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0, "");
1280 
1281 CodeSignatureSection::CodeSignatureSection()
1282     : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) {
1283   align = 16; // required by libstuff
1284   // FIXME: Consider using finalOutput instead of outputFile.
1285   fileName = config->outputFile;
1286   size_t slashIndex = fileName.rfind("/");
1287   if (slashIndex != std::string::npos)
1288     fileName = fileName.drop_front(slashIndex + 1);
1289 
1290   // NOTE: Any changes to these calculations should be repeated
1291   // in llvm-objcopy's MachOLayoutBuilder::layoutTail.
1292   allHeadersSize = alignTo<16>(fixedHeadersSize + fileName.size() + 1);
1293   fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size();
1294 }
1295 
1296 uint32_t CodeSignatureSection::getBlockCount() const {
1297   return (fileOff + blockSize - 1) / blockSize;
1298 }
1299 
1300 uint64_t CodeSignatureSection::getRawSize() const {
1301   return allHeadersSize + getBlockCount() * hashSize;
1302 }
1303 
1304 void CodeSignatureSection::writeHashes(uint8_t *buf) const {
1305   // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1306   // MachOWriter::writeSignatureData.
1307   uint8_t *hashes = buf + fileOff + allHeadersSize;
1308   parallelFor(0, getBlockCount(), [&](size_t i) {
1309     sha256(buf + i * blockSize,
1310            std::min(static_cast<size_t>(fileOff - i * blockSize),
1311                     static_cast<size_t>(blockSize)),
1312            hashes + i * hashSize);
1313   });
1314 #if defined(__APPLE__)
1315   // This is macOS-specific work-around and makes no sense for any
1316   // other host OS. See https://openradar.appspot.com/FB8914231
1317   //
1318   // The macOS kernel maintains a signature-verification cache to
1319   // quickly validate applications at time of execve(2).  The trouble
1320   // is that for the kernel creates the cache entry at the time of the
1321   // mmap(2) call, before we have a chance to write either the code to
1322   // sign or the signature header+hashes.  The fix is to invalidate
1323   // all cached data associated with the output file, thus discarding
1324   // the bogus prematurely-cached signature.
1325   msync(buf, fileOff + getSize(), MS_INVALIDATE);
1326 #endif
1327 }
1328 
1329 void CodeSignatureSection::writeTo(uint8_t *buf) const {
1330   // NOTE: Changes to this functionality should be repeated in llvm-objcopy's
1331   // MachOWriter::writeSignatureData.
1332   uint32_t signatureSize = static_cast<uint32_t>(getSize());
1333   auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf);
1334   write32be(&superBlob->magic, CSMAGIC_EMBEDDED_SIGNATURE);
1335   write32be(&superBlob->length, signatureSize);
1336   write32be(&superBlob->count, 1);
1337   auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]);
1338   write32be(&blobIndex->type, CSSLOT_CODEDIRECTORY);
1339   write32be(&blobIndex->offset, blobHeadersSize);
1340   auto *codeDirectory =
1341       reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize);
1342   write32be(&codeDirectory->magic, CSMAGIC_CODEDIRECTORY);
1343   write32be(&codeDirectory->length, signatureSize - blobHeadersSize);
1344   write32be(&codeDirectory->version, CS_SUPPORTSEXECSEG);
1345   write32be(&codeDirectory->flags, CS_ADHOC | CS_LINKER_SIGNED);
1346   write32be(&codeDirectory->hashOffset,
1347             sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad);
1348   write32be(&codeDirectory->identOffset, sizeof(CS_CodeDirectory));
1349   codeDirectory->nSpecialSlots = 0;
1350   write32be(&codeDirectory->nCodeSlots, getBlockCount());
1351   write32be(&codeDirectory->codeLimit, fileOff);
1352   codeDirectory->hashSize = static_cast<uint8_t>(hashSize);
1353   codeDirectory->hashType = kSecCodeSignatureHashSHA256;
1354   codeDirectory->platform = 0;
1355   codeDirectory->pageSize = blockSizeShift;
1356   codeDirectory->spare2 = 0;
1357   codeDirectory->scatterOffset = 0;
1358   codeDirectory->teamOffset = 0;
1359   codeDirectory->spare3 = 0;
1360   codeDirectory->codeLimit64 = 0;
1361   OutputSegment *textSeg = getOrCreateOutputSegment(segment_names::text);
1362   write64be(&codeDirectory->execSegBase, textSeg->fileOff);
1363   write64be(&codeDirectory->execSegLimit, textSeg->fileSize);
1364   write64be(&codeDirectory->execSegFlags,
1365             config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0);
1366   auto *id = reinterpret_cast<char *>(&codeDirectory[1]);
1367   memcpy(id, fileName.begin(), fileName.size());
1368   memset(id + fileName.size(), 0, fileNamePad);
1369 }
1370 
1371 BitcodeBundleSection::BitcodeBundleSection()
1372     : SyntheticSection(segment_names::llvm, section_names::bitcodeBundle) {}
1373 
1374 class ErrorCodeWrapper {
1375 public:
1376   explicit ErrorCodeWrapper(std::error_code ec) : errorCode(ec.value()) {}
1377   explicit ErrorCodeWrapper(int ec) : errorCode(ec) {}
1378   operator int() const { return errorCode; }
1379 
1380 private:
1381   int errorCode;
1382 };
1383 
1384 #define CHECK_EC(exp)                                                          \
1385   do {                                                                         \
1386     ErrorCodeWrapper ec(exp);                                                  \
1387     if (ec)                                                                    \
1388       fatal(Twine("operation failed with error code ") + Twine(ec) + ": " +    \
1389             #exp);                                                             \
1390   } while (0);
1391 
1392 void BitcodeBundleSection::finalize() {
1393 #ifdef LLVM_HAVE_LIBXAR
1394   using namespace llvm::sys::fs;
1395   CHECK_EC(createTemporaryFile("bitcode-bundle", "xar", xarPath));
1396 
1397 #pragma clang diagnostic push
1398 #pragma clang diagnostic ignored "-Wdeprecated-declarations"
1399   xar_t xar(xar_open(xarPath.data(), O_RDWR));
1400 #pragma clang diagnostic pop
1401   if (!xar)
1402     fatal("failed to open XAR temporary file at " + xarPath);
1403   CHECK_EC(xar_opt_set(xar, XAR_OPT_COMPRESSION, XAR_OPT_VAL_NONE));
1404   // FIXME: add more data to XAR
1405   CHECK_EC(xar_close(xar));
1406 
1407   file_size(xarPath, xarSize);
1408 #endif // defined(LLVM_HAVE_LIBXAR)
1409 }
1410 
1411 void BitcodeBundleSection::writeTo(uint8_t *buf) const {
1412   using namespace llvm::sys::fs;
1413   file_t handle =
1414       CHECK(openNativeFile(xarPath, CD_OpenExisting, FA_Read, OF_None),
1415             "failed to open XAR file");
1416   std::error_code ec;
1417   mapped_file_region xarMap(handle, mapped_file_region::mapmode::readonly,
1418                             xarSize, 0, ec);
1419   if (ec)
1420     fatal("failed to map XAR file");
1421   memcpy(buf, xarMap.const_data(), xarSize);
1422 
1423   closeFile(handle);
1424   remove(xarPath);
1425 }
1426 
1427 CStringSection::CStringSection()
1428     : SyntheticSection(segment_names::text, section_names::cString) {
1429   flags = S_CSTRING_LITERALS;
1430 }
1431 
1432 void CStringSection::addInput(CStringInputSection *isec) {
1433   isec->parent = this;
1434   inputs.push_back(isec);
1435   if (isec->align > align)
1436     align = isec->align;
1437 }
1438 
1439 void CStringSection::writeTo(uint8_t *buf) const {
1440   for (const CStringInputSection *isec : inputs) {
1441     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1442       if (!isec->pieces[i].live)
1443         continue;
1444       StringRef string = isec->getStringRef(i);
1445       memcpy(buf + isec->pieces[i].outSecOff, string.data(), string.size());
1446     }
1447   }
1448 }
1449 
1450 void CStringSection::finalizeContents() {
1451   uint64_t offset = 0;
1452   for (CStringInputSection *isec : inputs) {
1453     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1454       if (!isec->pieces[i].live)
1455         continue;
1456       // See comment above DeduplicatedCStringSection for how alignment is
1457       // handled.
1458       uint32_t pieceAlign =
1459           1 << countTrailingZeros(isec->align | isec->pieces[i].inSecOff);
1460       offset = alignTo(offset, pieceAlign);
1461       isec->pieces[i].outSecOff = offset;
1462       isec->isFinal = true;
1463       StringRef string = isec->getStringRef(i);
1464       offset += string.size();
1465     }
1466   }
1467   size = offset;
1468 }
1469 
1470 // Mergeable cstring literals are found under the __TEXT,__cstring section. In
1471 // contrast to ELF, which puts strings that need different alignments into
1472 // different sections, clang's Mach-O backend puts them all in one section.
1473 // Strings that need to be aligned have the .p2align directive emitted before
1474 // them, which simply translates into zero padding in the object file. In other
1475 // words, we have to infer the desired alignment of these cstrings from their
1476 // addresses.
1477 //
1478 // We differ slightly from ld64 in how we've chosen to align these cstrings.
1479 // Both LLD and ld64 preserve the number of trailing zeros in each cstring's
1480 // address in the input object files. When deduplicating identical cstrings,
1481 // both linkers pick the cstring whose address has more trailing zeros, and
1482 // preserve the alignment of that address in the final binary. However, ld64
1483 // goes a step further and also preserves the offset of the cstring from the
1484 // last section-aligned address.  I.e. if a cstring is at offset 18 in the
1485 // input, with a section alignment of 16, then both LLD and ld64 will ensure the
1486 // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also
1487 // ensure that the final address is of the form 16 * k + 2 for some k.
1488 //
1489 // Note that ld64's heuristic means that a dedup'ed cstring's final address is
1490 // dependent on the order of the input object files. E.g. if in addition to the
1491 // cstring at offset 18 above, we have a duplicate one in another file with a
1492 // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick
1493 // the cstring from the object file earlier on the command line (since both have
1494 // the same number of trailing zeros in their address). So the final cstring may
1495 // either be at some address `16 * k + 2` or at some address `2 * k`.
1496 //
1497 // I've opted not to follow this behavior primarily for implementation
1498 // simplicity, and secondarily to save a few more bytes. It's not clear to me
1499 // that preserving the section alignment + offset is ever necessary, and there
1500 // are many cases that are clearly redundant. In particular, if an x86_64 object
1501 // file contains some strings that are accessed via SIMD instructions, then the
1502 // .cstring section in the object file will be 16-byte-aligned (since SIMD
1503 // requires its operand addresses to be 16-byte aligned). However, there will
1504 // typically also be other cstrings in the same file that aren't used via SIMD
1505 // and don't need this alignment. They will be emitted at some arbitrary address
1506 // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16
1507 // % A`.
1508 void DeduplicatedCStringSection::finalizeContents() {
1509   // Find the largest alignment required for each string.
1510   for (const CStringInputSection *isec : inputs) {
1511     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1512       const StringPiece &piece = isec->pieces[i];
1513       if (!piece.live)
1514         continue;
1515       auto s = isec->getCachedHashStringRef(i);
1516       assert(isec->align != 0);
1517       uint8_t trailingZeros = countTrailingZeros(isec->align | piece.inSecOff);
1518       auto it = stringOffsetMap.insert(
1519           std::make_pair(s, StringOffset(trailingZeros)));
1520       if (!it.second && it.first->second.trailingZeros < trailingZeros)
1521         it.first->second.trailingZeros = trailingZeros;
1522     }
1523   }
1524 
1525   // Assign an offset for each string and save it to the corresponding
1526   // StringPieces for easy access.
1527   for (CStringInputSection *isec : inputs) {
1528     for (size_t i = 0, e = isec->pieces.size(); i != e; ++i) {
1529       if (!isec->pieces[i].live)
1530         continue;
1531       auto s = isec->getCachedHashStringRef(i);
1532       auto it = stringOffsetMap.find(s);
1533       assert(it != stringOffsetMap.end());
1534       StringOffset &offsetInfo = it->second;
1535       if (offsetInfo.outSecOff == UINT64_MAX) {
1536         offsetInfo.outSecOff = alignTo(size, 1ULL << offsetInfo.trailingZeros);
1537         size = offsetInfo.outSecOff + s.size();
1538       }
1539       isec->pieces[i].outSecOff = offsetInfo.outSecOff;
1540     }
1541     isec->isFinal = true;
1542   }
1543 }
1544 
1545 void DeduplicatedCStringSection::writeTo(uint8_t *buf) const {
1546   for (const auto &p : stringOffsetMap) {
1547     StringRef data = p.first.val();
1548     uint64_t off = p.second.outSecOff;
1549     if (!data.empty())
1550       memcpy(buf + off, data.data(), data.size());
1551   }
1552 }
1553 
1554 // This section is actually emitted as __TEXT,__const by ld64, but clang may
1555 // emit input sections of that name, and LLD doesn't currently support mixing
1556 // synthetic and concat-type OutputSections. To work around this, I've given
1557 // our merged-literals section a different name.
1558 WordLiteralSection::WordLiteralSection()
1559     : SyntheticSection(segment_names::text, section_names::literals) {
1560   align = 16;
1561 }
1562 
1563 void WordLiteralSection::addInput(WordLiteralInputSection *isec) {
1564   isec->parent = this;
1565   inputs.push_back(isec);
1566 }
1567 
1568 void WordLiteralSection::finalizeContents() {
1569   for (WordLiteralInputSection *isec : inputs) {
1570     // We do all processing of the InputSection here, so it will be effectively
1571     // finalized.
1572     isec->isFinal = true;
1573     const uint8_t *buf = isec->data.data();
1574     switch (sectionType(isec->getFlags())) {
1575     case S_4BYTE_LITERALS: {
1576       for (size_t off = 0, e = isec->data.size(); off < e; off += 4) {
1577         if (!isec->isLive(off))
1578           continue;
1579         uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off);
1580         literal4Map.emplace(value, literal4Map.size());
1581       }
1582       break;
1583     }
1584     case S_8BYTE_LITERALS: {
1585       for (size_t off = 0, e = isec->data.size(); off < e; off += 8) {
1586         if (!isec->isLive(off))
1587           continue;
1588         uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off);
1589         literal8Map.emplace(value, literal8Map.size());
1590       }
1591       break;
1592     }
1593     case S_16BYTE_LITERALS: {
1594       for (size_t off = 0, e = isec->data.size(); off < e; off += 16) {
1595         if (!isec->isLive(off))
1596           continue;
1597         UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off);
1598         literal16Map.emplace(value, literal16Map.size());
1599       }
1600       break;
1601     }
1602     default:
1603       llvm_unreachable("invalid literal section type");
1604     }
1605   }
1606 }
1607 
1608 void WordLiteralSection::writeTo(uint8_t *buf) const {
1609   // Note that we don't attempt to do any endianness conversion in addInput(),
1610   // so we don't do it here either -- just write out the original value,
1611   // byte-for-byte.
1612   for (const auto &p : literal16Map)
1613     memcpy(buf + p.second * 16, &p.first, 16);
1614   buf += literal16Map.size() * 16;
1615 
1616   for (const auto &p : literal8Map)
1617     memcpy(buf + p.second * 8, &p.first, 8);
1618   buf += literal8Map.size() * 8;
1619 
1620   for (const auto &p : literal4Map)
1621     memcpy(buf + p.second * 4, &p.first, 4);
1622 }
1623 
1624 ObjCImageInfoSection::ObjCImageInfoSection()
1625     : SyntheticSection(segment_names::data, section_names::objCImageInfo) {}
1626 
1627 ObjCImageInfoSection::ImageInfo
1628 ObjCImageInfoSection::parseImageInfo(const InputFile *file) {
1629   ImageInfo info;
1630   ArrayRef<uint8_t> data = file->objCImageInfo;
1631   // The image info struct has the following layout:
1632   // struct {
1633   //   uint32_t version;
1634   //   uint32_t flags;
1635   // };
1636   if (data.size() < 8) {
1637     warn(toString(file) + ": invalid __objc_imageinfo size");
1638     return info;
1639   }
1640 
1641   auto *buf = reinterpret_cast<const uint32_t *>(data.data());
1642   if (read32le(buf) != 0) {
1643     warn(toString(file) + ": invalid __objc_imageinfo version");
1644     return info;
1645   }
1646 
1647   uint32_t flags = read32le(buf + 1);
1648   info.swiftVersion = (flags >> 8) & 0xff;
1649   info.hasCategoryClassProperties = flags & 0x40;
1650   return info;
1651 }
1652 
1653 static std::string swiftVersionString(uint8_t version) {
1654   switch (version) {
1655     case 1:
1656       return "1.0";
1657     case 2:
1658       return "1.1";
1659     case 3:
1660       return "2.0";
1661     case 4:
1662       return "3.0";
1663     case 5:
1664       return "4.0";
1665     default:
1666       return ("0x" + Twine::utohexstr(version)).str();
1667   }
1668 }
1669 
1670 // Validate each object file's __objc_imageinfo and use them to generate the
1671 // image info for the output binary. Only two pieces of info are relevant:
1672 // 1. The Swift version (should be identical across inputs)
1673 // 2. `bool hasCategoryClassProperties` (true only if true for all inputs)
1674 void ObjCImageInfoSection::finalizeContents() {
1675   assert(files.size() != 0); // should have already been checked via isNeeded()
1676 
1677   info.hasCategoryClassProperties = true;
1678   const InputFile *firstFile;
1679   for (auto file : files) {
1680     ImageInfo inputInfo = parseImageInfo(file);
1681     info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties;
1682 
1683     // swiftVersion 0 means no Swift is present, so no version checking required
1684     if (inputInfo.swiftVersion == 0)
1685       continue;
1686 
1687     if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) {
1688       error("Swift version mismatch: " + toString(firstFile) + " has version " +
1689             swiftVersionString(info.swiftVersion) + " but " + toString(file) +
1690             " has version " + swiftVersionString(inputInfo.swiftVersion));
1691     } else {
1692       info.swiftVersion = inputInfo.swiftVersion;
1693       firstFile = file;
1694     }
1695   }
1696 }
1697 
1698 void ObjCImageInfoSection::writeTo(uint8_t *buf) const {
1699   uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0;
1700   flags |= info.swiftVersion << 8;
1701   write32le(buf + 4, flags);
1702 }
1703 
1704 void macho::createSyntheticSymbols() {
1705   auto addHeaderSymbol = [](const char *name) {
1706     symtab->addSynthetic(name, in.header->isec, /*value=*/0,
1707                          /*isPrivateExtern=*/true, /*includeInSymtab=*/false,
1708                          /*referencedDynamically=*/false);
1709   };
1710 
1711   switch (config->outputType) {
1712     // FIXME: Assign the right address value for these symbols
1713     // (rather than 0). But we need to do that after assignAddresses().
1714   case MH_EXECUTE:
1715     // If linking PIE, __mh_execute_header is a defined symbol in
1716     //  __TEXT, __text)
1717     // Otherwise, it's an absolute symbol.
1718     if (config->isPic)
1719       symtab->addSynthetic("__mh_execute_header", in.header->isec, /*value=*/0,
1720                            /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
1721                            /*referencedDynamically=*/true);
1722     else
1723       symtab->addSynthetic("__mh_execute_header", /*isec=*/nullptr, /*value=*/0,
1724                            /*isPrivateExtern=*/false, /*includeInSymtab=*/true,
1725                            /*referencedDynamically=*/true);
1726     break;
1727 
1728     // The following symbols are N_SECT symbols, even though the header is not
1729     // part of any section and that they are private to the bundle/dylib/object
1730     // they are part of.
1731   case MH_BUNDLE:
1732     addHeaderSymbol("__mh_bundle_header");
1733     break;
1734   case MH_DYLIB:
1735     addHeaderSymbol("__mh_dylib_header");
1736     break;
1737   case MH_DYLINKER:
1738     addHeaderSymbol("__mh_dylinker_header");
1739     break;
1740   case MH_OBJECT:
1741     addHeaderSymbol("__mh_object_header");
1742     break;
1743   default:
1744     llvm_unreachable("unexpected outputType");
1745     break;
1746   }
1747 
1748   // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit
1749   // which does e.g. cleanup of static global variables. The ABI document
1750   // says that the pointer can point to any address in one of the dylib's
1751   // segments, but in practice ld64 seems to set it to point to the header,
1752   // so that's what's implemented here.
1753   addHeaderSymbol("___dso_handle");
1754 }
1755 
1756 template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &);
1757 template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &);
1758