1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "UnwindInfoSection.h"
10 #include "InputSection.h"
11 #include "OutputSection.h"
12 #include "OutputSegment.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "Target.h"
17 
18 #include "lld/Common/ErrorHandler.h"
19 #include "lld/Common/Memory.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/BinaryFormat/MachO.h"
23 #include "llvm/Support/Parallel.h"
24 
25 #include "mach-o/compact_unwind_encoding.h"
26 
27 #include <numeric>
28 
29 using namespace llvm;
30 using namespace llvm::MachO;
31 using namespace llvm::support::endian;
32 using namespace lld;
33 using namespace lld::macho;
34 
35 #define COMMON_ENCODINGS_MAX 127
36 #define COMPACT_ENCODINGS_MAX 256
37 
38 #define SECOND_LEVEL_PAGE_BYTES 4096
39 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
40 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX                                       \
41   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
42     sizeof(unwind_info_regular_second_level_page_header)) /                    \
43    sizeof(unwind_info_regular_second_level_entry))
44 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX                                    \
45   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
46     sizeof(unwind_info_compressed_second_level_page_header)) /                 \
47    sizeof(uint32_t))
48 
49 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK                                      \
51   UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
52 
53 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
54 // optimizes space and exception-time lookup.  Most DWARF unwind
55 // entries can be replaced with Compact Unwind entries, but the ones
56 // that cannot are retained in DWARF form.
57 //
58 // This comment will address macro-level organization of the pre-link
59 // and post-link compact unwind tables. For micro-level organization
60 // pertaining to the bitfield layout of the 32-bit compact unwind
61 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
62 //
63 // Important clarifying factoids:
64 //
65 // * __LD,__compact_unwind is the compact unwind format for compiler
66 // output and linker input. It is never a final output. It could be
67 // an intermediate output with the `-r` option which retains relocs.
68 //
69 // * __TEXT,__unwind_info is the compact unwind format for final
70 // linker output. It is never an input.
71 //
72 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
73 //
74 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
75 // level) by ascending address, and the pages are referenced by an
76 // index (1st level) in the section header.
77 //
78 // * Following the headers in __TEXT,__unwind_info, the bulk of the
79 // section contains a vector of compact unwind entries
80 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
81 // Adjacent entries with the same encoding can be folded to great
82 // advantage, achieving a 3-order-of-magnitude reduction in the
83 // number of entries.
84 //
85 // Refer to the definition of unwind_info_section_header in
86 // compact_unwind_encoding.h for an overview of the format we are encoding
87 // here.
88 
89 // TODO(gkm): how do we align the 2nd-level pages?
90 
91 // The offsets of various fields in the on-disk representation of each compact
92 // unwind entry.
93 struct CompactUnwindOffsets {
94   uint32_t functionAddress;
95   uint32_t functionLength;
96   uint32_t encoding;
97   uint32_t personality;
98   uint32_t lsda;
99 
100   CompactUnwindOffsets(size_t wordSize) {
101     if (wordSize == 8)
102       init<uint64_t>();
103     else {
104       assert(wordSize == 4);
105       init<uint32_t>();
106     }
107   }
108 
109 private:
110   template <class Ptr> void init() {
111     functionAddress = offsetof(Layout<Ptr>, functionAddress);
112     functionLength = offsetof(Layout<Ptr>, functionLength);
113     encoding = offsetof(Layout<Ptr>, encoding);
114     personality = offsetof(Layout<Ptr>, personality);
115     lsda = offsetof(Layout<Ptr>, lsda);
116   }
117 
118   template <class Ptr> struct Layout {
119     Ptr functionAddress;
120     uint32_t functionLength;
121     compact_unwind_encoding_t encoding;
122     Ptr personality;
123     Ptr lsda;
124   };
125 };
126 
127 // LLD's internal representation of a compact unwind entry.
128 struct CompactUnwindEntry {
129   uint64_t functionAddress;
130   uint32_t functionLength;
131   compact_unwind_encoding_t encoding;
132   Symbol *personality;
133   InputSection *lsda;
134 };
135 
136 using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
137 
138 struct SecondLevelPage {
139   uint32_t kind;
140   size_t entryIndex;
141   size_t entryCount;
142   size_t byteCount;
143   std::vector<compact_unwind_encoding_t> localEncodings;
144   EncodingMap localEncodingIndexes;
145 };
146 
147 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
148 // lengthy definition of UnwindInfoSection.
149 class UnwindInfoSectionImpl final : public UnwindInfoSection {
150 public:
151   UnwindInfoSectionImpl() : cuOffsets(target->wordSize) {}
152   uint64_t getSize() const override { return unwindInfoSize; }
153   void prepare() override;
154   void finalize() override;
155   void writeTo(uint8_t *buf) const override;
156 
157 private:
158   void prepareRelocations(ConcatInputSection *);
159   void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
160   void encodePersonalities();
161   Symbol *canonicalizePersonality(Symbol *);
162 
163   uint64_t unwindInfoSize = 0;
164   std::vector<decltype(symbols)::value_type> symbolsVec;
165   CompactUnwindOffsets cuOffsets;
166   std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
167   EncodingMap commonEncodingIndexes;
168   // The entries here will be in the same order as their originating symbols
169   // in symbolsVec.
170   std::vector<CompactUnwindEntry> cuEntries;
171   // Indices into the cuEntries vector.
172   std::vector<size_t> cuIndices;
173   std::vector<Symbol *> personalities;
174   SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
175       personalityTable;
176   // Indices into cuEntries for CUEs with a non-null LSDA.
177   std::vector<size_t> entriesWithLsda;
178   // Map of cuEntries index to an index within the LSDA array.
179   DenseMap<size_t, uint32_t> lsdaIndex;
180   std::vector<SecondLevelPage> secondLevelPages;
181   uint64_t level2PagesOffset = 0;
182   // The highest-address function plus its size. The unwinder needs this to
183   // determine the address range that is covered by unwind info.
184   uint64_t cueEndBoundary = 0;
185 };
186 
187 UnwindInfoSection::UnwindInfoSection()
188     : SyntheticSection(segment_names::text, section_names::unwindInfo) {
189   align = 4;
190 }
191 
192 // Record function symbols that may need entries emitted in __unwind_info, which
193 // stores unwind data for address ranges.
194 //
195 // Note that if several adjacent functions have the same unwind encoding and
196 // personality function and no LSDA, they share one unwind entry. For this to
197 // work, functions without unwind info need explicit "no unwind info" unwind
198 // entries -- else the unwinder would think they have the unwind info of the
199 // closest function with unwind info right before in the image. Thus, we add
200 // function symbols for each unique address regardless of whether they have
201 // associated unwind info.
202 void UnwindInfoSection::addSymbol(const Defined *d) {
203   if (d->unwindEntry)
204     allEntriesAreOmitted = false;
205   // We don't yet know the final output address of this symbol, but we know that
206   // they are uniquely determined by a combination of the isec and value, so
207   // we use that as the key here.
208   auto p = symbols.insert({{d->isec, d->value}, d});
209   // If we have multiple symbols at the same address, only one of them can have
210   // an associated unwind entry.
211   if (!p.second && d->unwindEntry) {
212     assert(p.first->second == d || !p.first->second->unwindEntry);
213     p.first->second = d;
214   }
215 }
216 
217 void UnwindInfoSectionImpl::prepare() {
218   // This iteration needs to be deterministic, since prepareRelocations may add
219   // entries to the GOT. Hence the use of a MapVector for
220   // UnwindInfoSection::symbols.
221   for (const Defined *d : make_second_range(symbols))
222     if (d->unwindEntry) {
223       if (d->unwindEntry->getName() == section_names::compactUnwind) {
224         prepareRelocations(d->unwindEntry);
225       } else {
226         // We don't have to add entries to the GOT here because FDEs have
227         // explicit GOT relocations, so Writer::scanRelocations() will add those
228         // GOT entries. However, we still need to canonicalize the personality
229         // pointers (like prepareRelocations() does for CU entries) in order
230         // to avoid overflowing the 3-personality limit.
231         FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
232         fde.personality = canonicalizePersonality(fde.personality);
233       }
234     }
235 }
236 
237 // Compact unwind relocations have different semantics, so we handle them in a
238 // separate code path from regular relocations. First, we do not wish to add
239 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
240 // actually end up in the final binary. Second, personality pointers always
241 // reside in the GOT and must be treated specially.
242 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
243   assert(!isec->shouldOmitFromOutput() &&
244          "__compact_unwind section should not be omitted");
245 
246   // FIXME: Make this skip relocations for CompactUnwindEntries that
247   // point to dead-stripped functions. That might save some amount of
248   // work. But since there are usually just few personality functions
249   // that are referenced from many places, at least some of them likely
250   // live, it wouldn't reduce number of got entries.
251   for (size_t i = 0; i < isec->relocs.size(); ++i) {
252     Reloc &r = isec->relocs[i];
253     assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
254     // Since compact unwind sections aren't part of the inputSections vector,
255     // they don't get canonicalized by scanRelocations(), so we have to do the
256     // canonicalization here.
257     if (auto *referentIsec = r.referent.dyn_cast<InputSection *>())
258       r.referent = referentIsec->canonical();
259 
260     // Functions and LSDA entries always reside in the same object file as the
261     // compact unwind entries that references them, and thus appear as section
262     // relocs. There is no need to prepare them. We only prepare relocs for
263     // personality functions.
264     if (r.offset != cuOffsets.personality)
265       continue;
266 
267     if (auto *s = r.referent.dyn_cast<Symbol *>()) {
268       // Personality functions are nearly always system-defined (e.g.,
269       // ___gxx_personality_v0 for C++) and relocated as dylib symbols.  When an
270       // application provides its own personality function, it might be
271       // referenced by an extern Defined symbol reloc, or a local section reloc.
272       if (auto *defined = dyn_cast<Defined>(s)) {
273         // XXX(vyng) This is a special case for handling duplicate personality
274         // symbols. Note that LD64's behavior is a bit different and it is
275         // inconsistent with how symbol resolution usually work
276         //
277         // So we've decided not to follow it. Instead, simply pick the symbol
278         // with the same name from the symbol table to replace the local one.
279         //
280         // (See discussions/alternatives already considered on D107533)
281         if (!defined->isExternal())
282           if (Symbol *sym = symtab->find(defined->getName()))
283             if (!sym->isLazy())
284               r.referent = s = sym;
285       }
286       if (auto *undefined = dyn_cast<Undefined>(s)) {
287         treatUndefinedSymbol(*undefined, isec, r.offset);
288         // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
289         if (isa<Undefined>(s))
290           continue;
291       }
292 
293       // Similar to canonicalizePersonality(), but we also register a GOT entry.
294       if (auto *defined = dyn_cast<Defined>(s)) {
295         // Check if we have created a synthetic symbol at the same address.
296         Symbol *&personality =
297             personalityTable[{defined->isec, defined->value}];
298         if (personality == nullptr) {
299           personality = defined;
300           in.got->addEntry(defined);
301         } else if (personality != defined) {
302           r.referent = personality;
303         }
304         continue;
305       }
306 
307       assert(isa<DylibSymbol>(s));
308       in.got->addEntry(s);
309       continue;
310     }
311 
312     if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
313       assert(!isCoalescedWeak(referentIsec));
314       // Personality functions can be referenced via section relocations
315       // if they live in the same object file. Create placeholder synthetic
316       // symbols for them in the GOT.
317       Symbol *&s = personalityTable[{referentIsec, r.addend}];
318       if (s == nullptr) {
319         // This runs after dead stripping, so the noDeadStrip argument does not
320         // matter.
321         s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
322                           r.addend, /*size=*/0, /*isWeakDef=*/false,
323                           /*isExternal=*/false, /*isPrivateExtern=*/false,
324                           /*includeInSymtab=*/true,
325                           /*isThumb=*/false, /*isReferencedDynamically=*/false,
326                           /*noDeadStrip=*/false);
327         s->used = true;
328         in.got->addEntry(s);
329       }
330       r.referent = s;
331       r.addend = 0;
332     }
333   }
334 }
335 
336 Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
337   if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
338     // Check if we have created a synthetic symbol at the same address.
339     Symbol *&synth = personalityTable[{defined->isec, defined->value}];
340     if (synth == nullptr)
341       synth = defined;
342     else if (synth != defined)
343       return synth;
344   }
345   return personality;
346 }
347 
348 // We need to apply the relocations to the pre-link compact unwind section
349 // before converting it to post-link form. There should only be absolute
350 // relocations here: since we are not emitting the pre-link CU section, there
351 // is no source address to make a relative location meaningful.
352 void UnwindInfoSectionImpl::relocateCompactUnwind(
353     std::vector<CompactUnwindEntry> &cuEntries) {
354   parallelFor(0, symbolsVec.size(), [&](size_t i) {
355     CompactUnwindEntry &cu = cuEntries[i];
356     const Defined *d = symbolsVec[i].second;
357     cu.functionAddress = d->getVA();
358     if (!d->unwindEntry)
359       return;
360 
361     // If we have DWARF unwind info, create a CU entry that points to it.
362     if (d->unwindEntry->getName() == section_names::ehFrame) {
363       cu.encoding = target->modeDwarfEncoding | d->unwindEntry->outSecOff;
364       const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
365       cu.functionLength = fde.funcLength;
366       cu.personality = fde.personality;
367       cu.lsda = fde.lsda;
368       return;
369     }
370 
371     assert(d->unwindEntry->getName() == section_names::compactUnwind);
372 
373     auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
374                target->wordSize;
375     cu.functionLength =
376         support::endian::read32le(buf + cuOffsets.functionLength);
377     cu.encoding = support::endian::read32le(buf + cuOffsets.encoding);
378     for (const Reloc &r : d->unwindEntry->relocs) {
379       if (r.offset == cuOffsets.personality) {
380         cu.personality = r.referent.get<Symbol *>();
381       } else if (r.offset == cuOffsets.lsda) {
382         if (auto *referentSym = r.referent.dyn_cast<Symbol *>())
383           cu.lsda = cast<Defined>(referentSym)->isec;
384         else
385           cu.lsda = r.referent.get<InputSection *>();
386       }
387     }
388   });
389 }
390 
391 // There should only be a handful of unique personality pointers, so we can
392 // encode them as 2-bit indices into a small array.
393 void UnwindInfoSectionImpl::encodePersonalities() {
394   for (size_t idx : cuIndices) {
395     CompactUnwindEntry &cu = cuEntries[idx];
396     if (cu.personality == nullptr)
397       continue;
398     // Linear search is fast enough for a small array.
399     auto it = find(personalities, cu.personality);
400     uint32_t personalityIndex; // 1-based index
401     if (it != personalities.end()) {
402       personalityIndex = std::distance(personalities.begin(), it) + 1;
403     } else {
404       personalities.push_back(cu.personality);
405       personalityIndex = personalities.size();
406     }
407     cu.encoding |=
408         personalityIndex << countTrailingZeros(
409             static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
410   }
411   if (personalities.size() > 3)
412     error("too many personalities (" + Twine(personalities.size()) +
413           ") for compact unwind to encode");
414 }
415 
416 static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
417   // From compact_unwind_encoding.h:
418   //  UNWIND_X86_64_MODE_STACK_IND:
419   //  A "frameless" (RBP not used as frame pointer) function large constant
420   //  stack size.  This case is like the previous, except the stack size is too
421   //  large to encode in the compact unwind encoding.  Instead it requires that
422   //  the function contains "subq $nnnnnnnn,RSP" in its prolog.  The compact
423   //  encoding contains the offset to the nnnnnnnn value in the function in
424   //  UNWIND_X86_64_FRAMELESS_STACK_SIZE.
425   // Since this means the unwinder has to look at the `subq` in the function
426   // of the unwind info's unwind address, two functions that have identical
427   // unwind info can't be folded if it's using this encoding since both
428   // entries need unique addresses.
429   static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
430                 static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
431   if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
432       (encoding & UNWIND_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
433     // FIXME: Consider passing in the two function addresses and getting
434     // their two stack sizes off the `subq` and only returning false if they're
435     // actually different.
436     return false;
437   }
438   return true;
439 }
440 
441 // Scan the __LD,__compact_unwind entries and compute the space needs of
442 // __TEXT,__unwind_info and __TEXT,__eh_frame.
443 void UnwindInfoSectionImpl::finalize() {
444   if (symbols.empty())
445     return;
446 
447   // At this point, the address space for __TEXT,__text has been
448   // assigned, so we can relocate the __LD,__compact_unwind entries
449   // into a temporary buffer. Relocation is necessary in order to sort
450   // the CU entries by function address. Sorting is necessary so that
451   // we can fold adjacent CU entries with identical encoding+personality
452   // and without any LSDA. Folding is necessary because it reduces the
453   // number of CU entries by as much as 3 orders of magnitude!
454   cuEntries.resize(symbols.size());
455   // The "map" part of the symbols MapVector was only needed for deduplication
456   // in addSymbol(). Now that we are done adding, move the contents to a plain
457   // std::vector for indexed access.
458   symbolsVec = symbols.takeVector();
459   relocateCompactUnwind(cuEntries);
460 
461   // Rather than sort & fold the 32-byte entries directly, we create a
462   // vector of indices to entries and sort & fold that instead.
463   cuIndices.resize(cuEntries.size());
464   std::iota(cuIndices.begin(), cuIndices.end(), 0);
465   llvm::sort(cuIndices, [&](size_t a, size_t b) {
466     return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
467   });
468 
469   // Record the ending boundary before we fold the entries.
470   cueEndBoundary = cuEntries[cuIndices.back()].functionAddress +
471                    cuEntries[cuIndices.back()].functionLength;
472 
473   // Fold adjacent entries with matching encoding+personality and without LSDA
474   // We use three iterators on the same cuIndices to fold in-situ:
475   // (1) `foldBegin` is the first of a potential sequence of matching entries
476   // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
477   // The semi-open interval [ foldBegin .. foldEnd ) contains a range
478   // entries that can be folded into a single entry and written to ...
479   // (3) `foldWrite`
480   auto foldWrite = cuIndices.begin();
481   for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
482     auto foldEnd = foldBegin;
483     // Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
484     // a base address. The base address is normally not contained directly in
485     // the LSDA, and in that case, the personality function treats the starting
486     // address of the function (which is computed by the unwinder) as the base
487     // address and interprets the LSDA accordingly. The unwinder computes the
488     // starting address of a function as the address associated with its CU
489     // entry. For this reason, we cannot fold adjacent entries if they have an
490     // LSDA, because folding would make the unwinder compute the wrong starting
491     // address for the functions with the folded entries, which in turn would
492     // cause the personality function to misinterpret the LSDA for those
493     // functions. In the very rare case where the base address is encoded
494     // directly in the LSDA, two functions at different addresses would
495     // necessarily have different LSDAs, so their CU entries would not have been
496     // folded anyway.
497     while (++foldEnd < cuIndices.end() &&
498            cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
499            !cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
500            // If we've gotten to this point, we don't have an LSDA, which should
501            // also imply that we don't have a personality function, since in all
502            // likelihood a personality function needs the LSDA to do anything
503            // useful. It can be technically valid to have a personality function
504            // and no LSDA though (e.g. the C++ personality __gxx_personality_v0
505            // is just a no-op without LSDA), so we still check for personality
506            // function equivalence to handle that case.
507            cuEntries[*foldBegin].personality ==
508                cuEntries[*foldEnd].personality &&
509            canFoldEncoding(cuEntries[*foldEnd].encoding))
510       ;
511     *foldWrite++ = *foldBegin;
512     foldBegin = foldEnd;
513   }
514   cuIndices.erase(foldWrite, cuIndices.end());
515 
516   encodePersonalities();
517 
518   // Count frequencies of the folded encodings
519   EncodingMap encodingFrequencies;
520   for (size_t idx : cuIndices)
521     encodingFrequencies[cuEntries[idx].encoding]++;
522 
523   // Make a vector of encodings, sorted by descending frequency
524   for (const auto &frequency : encodingFrequencies)
525     commonEncodings.emplace_back(frequency);
526   llvm::sort(commonEncodings,
527              [](const std::pair<compact_unwind_encoding_t, size_t> &a,
528                 const std::pair<compact_unwind_encoding_t, size_t> &b) {
529                if (a.second == b.second)
530                  // When frequencies match, secondarily sort on encoding
531                  // to maintain parity with validate-unwind-info.py
532                  return a.first > b.first;
533                return a.second > b.second;
534              });
535 
536   // Truncate the vector to 127 elements.
537   // Common encoding indexes are limited to 0..126, while encoding
538   // indexes 127..255 are local to each second-level page
539   if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
540     commonEncodings.resize(COMMON_ENCODINGS_MAX);
541 
542   // Create a map from encoding to common-encoding-table index
543   for (size_t i = 0; i < commonEncodings.size(); i++)
544     commonEncodingIndexes[commonEncodings[i].first] = i;
545 
546   // Split folded encodings into pages, where each page is limited by ...
547   // (a) 4 KiB capacity
548   // (b) 24-bit difference between first & final function address
549   // (c) 8-bit compact-encoding-table index,
550   //     for which 0..126 references the global common-encodings table,
551   //     and 127..255 references a local per-second-level-page table.
552   // First we try the compact format and determine how many entries fit.
553   // If more entries fit in the regular format, we use that.
554   for (size_t i = 0; i < cuIndices.size();) {
555     size_t idx = cuIndices[i];
556     secondLevelPages.emplace_back();
557     SecondLevelPage &page = secondLevelPages.back();
558     page.entryIndex = i;
559     uint64_t functionAddressMax =
560         cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
561     size_t n = commonEncodings.size();
562     size_t wordsRemaining =
563         SECOND_LEVEL_PAGE_WORDS -
564         sizeof(unwind_info_compressed_second_level_page_header) /
565             sizeof(uint32_t);
566     while (wordsRemaining >= 1 && i < cuIndices.size()) {
567       idx = cuIndices[i];
568       const CompactUnwindEntry *cuPtr = &cuEntries[idx];
569       if (cuPtr->functionAddress >= functionAddressMax) {
570         break;
571       } else if (commonEncodingIndexes.count(cuPtr->encoding) ||
572                  page.localEncodingIndexes.count(cuPtr->encoding)) {
573         i++;
574         wordsRemaining--;
575       } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
576         page.localEncodings.emplace_back(cuPtr->encoding);
577         page.localEncodingIndexes[cuPtr->encoding] = n++;
578         i++;
579         wordsRemaining -= 2;
580       } else {
581         break;
582       }
583     }
584     page.entryCount = i - page.entryIndex;
585 
586     // If this is not the final page, see if it's possible to fit more entries
587     // by using the regular format. This can happen when there are many unique
588     // encodings, and we saturated the local encoding table early.
589     if (i < cuIndices.size() &&
590         page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
591       page.kind = UNWIND_SECOND_LEVEL_REGULAR;
592       page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
593                                  cuIndices.size() - page.entryIndex);
594       i = page.entryIndex + page.entryCount;
595     } else {
596       page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
597     }
598   }
599 
600   for (size_t idx : cuIndices) {
601     lsdaIndex[idx] = entriesWithLsda.size();
602     if (cuEntries[idx].lsda)
603       entriesWithLsda.push_back(idx);
604   }
605 
606   // compute size of __TEXT,__unwind_info section
607   level2PagesOffset = sizeof(unwind_info_section_header) +
608                       commonEncodings.size() * sizeof(uint32_t) +
609                       personalities.size() * sizeof(uint32_t) +
610                       // The extra second-level-page entry is for the sentinel
611                       (secondLevelPages.size() + 1) *
612                           sizeof(unwind_info_section_header_index_entry) +
613                       entriesWithLsda.size() *
614                           sizeof(unwind_info_section_header_lsda_index_entry);
615   unwindInfoSize =
616       level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
617 }
618 
619 // All inputs are relocated and output addresses are known, so write!
620 
621 void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
622   assert(!cuIndices.empty() && "call only if there is unwind info");
623 
624   // section header
625   auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
626   uip->version = 1;
627   uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
628   uip->commonEncodingsArrayCount = commonEncodings.size();
629   uip->personalityArraySectionOffset =
630       uip->commonEncodingsArraySectionOffset +
631       (uip->commonEncodingsArrayCount * sizeof(uint32_t));
632   uip->personalityArrayCount = personalities.size();
633   uip->indexSectionOffset = uip->personalityArraySectionOffset +
634                             (uip->personalityArrayCount * sizeof(uint32_t));
635   uip->indexCount = secondLevelPages.size() + 1;
636 
637   // Common encodings
638   auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
639   for (const auto &encoding : commonEncodings)
640     *i32p++ = encoding.first;
641 
642   // Personalities
643   for (const Symbol *personality : personalities)
644     *i32p++ = personality->getGotVA() - in.header->addr;
645 
646   // FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
647   // ranges. We should do the same too
648 
649   // Level-1 index
650   uint32_t lsdaOffset =
651       uip->indexSectionOffset +
652       uip->indexCount * sizeof(unwind_info_section_header_index_entry);
653   uint64_t l2PagesOffset = level2PagesOffset;
654   auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
655   for (const SecondLevelPage &page : secondLevelPages) {
656     size_t idx = cuIndices[page.entryIndex];
657     iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
658     iep->secondLevelPagesSectionOffset = l2PagesOffset;
659     iep->lsdaIndexArraySectionOffset =
660         lsdaOffset + lsdaIndex.lookup(idx) *
661                          sizeof(unwind_info_section_header_lsda_index_entry);
662     iep++;
663     l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
664   }
665   // Level-1 sentinel
666   // XXX(vyng): Note that LD64 adds +1 here.
667   // Unsure whether it's a bug or it's their workaround for something else.
668   // See comments from https://reviews.llvm.org/D138320.
669   iep->functionOffset = cueEndBoundary - in.header->addr;
670   iep->secondLevelPagesSectionOffset = 0;
671   iep->lsdaIndexArraySectionOffset =
672       lsdaOffset + entriesWithLsda.size() *
673                        sizeof(unwind_info_section_header_lsda_index_entry);
674   iep++;
675 
676   // LSDAs
677   auto *lep =
678       reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
679   for (size_t idx : entriesWithLsda) {
680     const CompactUnwindEntry &cu = cuEntries[idx];
681     lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
682     lep->functionOffset = cu.functionAddress - in.header->addr;
683     lep++;
684   }
685 
686   // Level-2 pages
687   auto *pp = reinterpret_cast<uint32_t *>(lep);
688   for (const SecondLevelPage &page : secondLevelPages) {
689     if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
690       uintptr_t functionAddressBase =
691           cuEntries[cuIndices[page.entryIndex]].functionAddress;
692       auto *p2p =
693           reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
694               pp);
695       p2p->kind = page.kind;
696       p2p->entryPageOffset =
697           sizeof(unwind_info_compressed_second_level_page_header);
698       p2p->entryCount = page.entryCount;
699       p2p->encodingsPageOffset =
700           p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
701       p2p->encodingsCount = page.localEncodings.size();
702       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
703       for (size_t i = 0; i < page.entryCount; i++) {
704         const CompactUnwindEntry &cue =
705             cuEntries[cuIndices[page.entryIndex + i]];
706         auto it = commonEncodingIndexes.find(cue.encoding);
707         if (it == commonEncodingIndexes.end())
708           it = page.localEncodingIndexes.find(cue.encoding);
709         *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
710                 (cue.functionAddress - functionAddressBase);
711       }
712       if (!page.localEncodings.empty())
713         memcpy(ep, page.localEncodings.data(),
714                page.localEncodings.size() * sizeof(uint32_t));
715     } else {
716       auto *p2p =
717           reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
718       p2p->kind = page.kind;
719       p2p->entryPageOffset =
720           sizeof(unwind_info_regular_second_level_page_header);
721       p2p->entryCount = page.entryCount;
722       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
723       for (size_t i = 0; i < page.entryCount; i++) {
724         const CompactUnwindEntry &cue =
725             cuEntries[cuIndices[page.entryIndex + i]];
726         *ep++ = cue.functionAddress;
727         *ep++ = cue.encoding;
728       }
729     }
730     pp += SECOND_LEVEL_PAGE_WORDS;
731   }
732 }
733 
734 UnwindInfoSection *macho::makeUnwindInfoSection() {
735   return make<UnwindInfoSectionImpl>();
736 }
737