1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "UnwindInfoSection.h"
10 #include "InputSection.h"
11 #include "Layout.h"
12 #include "OutputSection.h"
13 #include "OutputSegment.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/Support/Parallel.h"
25 
26 #include "mach-o/compact_unwind_encoding.h"
27 
28 #include <numeric>
29 
30 using namespace llvm;
31 using namespace llvm::MachO;
32 using namespace llvm::support::endian;
33 using namespace lld;
34 using namespace lld::macho;
35 
36 #define COMMON_ENCODINGS_MAX 127
37 #define COMPACT_ENCODINGS_MAX 256
38 
39 #define SECOND_LEVEL_PAGE_BYTES 4096
40 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
41 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX                                       \
42   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
43     sizeof(unwind_info_regular_second_level_page_header)) /                    \
44    sizeof(unwind_info_regular_second_level_entry))
45 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX                                    \
46   ((SECOND_LEVEL_PAGE_BYTES -                                                  \
47     sizeof(unwind_info_compressed_second_level_page_header)) /                 \
48    sizeof(uint32_t))
49 
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
51 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK                                      \
52   UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
53 
54 static_assert(static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
55                   static_cast<uint32_t>(UNWIND_ARM64_DWARF_SECTION_OFFSET) &&
56               static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
57                   static_cast<uint32_t>(UNWIND_X86_DWARF_SECTION_OFFSET));
58 
59 constexpr uint64_t DWARF_SECTION_OFFSET = UNWIND_X86_64_DWARF_SECTION_OFFSET;
60 
61 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
62 // optimizes space and exception-time lookup.  Most DWARF unwind
63 // entries can be replaced with Compact Unwind entries, but the ones
64 // that cannot are retained in DWARF form.
65 //
66 // This comment will address macro-level organization of the pre-link
67 // and post-link compact unwind tables. For micro-level organization
68 // pertaining to the bitfield layout of the 32-bit compact unwind
69 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
70 //
71 // Important clarifying factoids:
72 //
73 // * __LD,__compact_unwind is the compact unwind format for compiler
74 // output and linker input. It is never a final output. It could be
75 // an intermediate output with the `-r` option which retains relocs.
76 //
77 // * __TEXT,__unwind_info is the compact unwind format for final
78 // linker output. It is never an input.
79 //
80 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
81 //
82 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
83 // level) by ascending address, and the pages are referenced by an
84 // index (1st level) in the section header.
85 //
86 // * Following the headers in __TEXT,__unwind_info, the bulk of the
87 // section contains a vector of compact unwind entries
88 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
89 // Adjacent entries with the same encoding can be folded to great
90 // advantage, achieving a 3-order-of-magnitude reduction in the
91 // number of entries.
92 //
93 // Refer to the definition of unwind_info_section_header in
94 // compact_unwind_encoding.h for an overview of the format we are encoding
95 // here.
96 
97 // TODO(gkm): how do we align the 2nd-level pages?
98 
99 // The various fields in the on-disk representation of each compact unwind
100 // entry.
101 #define FOR_EACH_CU_FIELD(DO)                                                  \
102   DO(Ptr, functionAddress)                                                     \
103   DO(uint32_t, functionLength)                                                 \
104   DO(compact_unwind_encoding_t, encoding)                                      \
105   DO(Ptr, personality)                                                         \
106   DO(Ptr, lsda)
107 
108 CREATE_LAYOUT_CLASS(CompactUnwind, FOR_EACH_CU_FIELD);
109 
110 #undef FOR_EACH_CU_FIELD
111 
112 // LLD's internal representation of a compact unwind entry.
113 struct CompactUnwindEntry {
114   uint64_t functionAddress;
115   uint32_t functionLength;
116   compact_unwind_encoding_t encoding;
117   Symbol *personality;
118   InputSection *lsda;
119 };
120 
121 using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
122 
123 struct SecondLevelPage {
124   uint32_t kind;
125   size_t entryIndex;
126   size_t entryCount;
127   size_t byteCount;
128   std::vector<compact_unwind_encoding_t> localEncodings;
129   EncodingMap localEncodingIndexes;
130 };
131 
132 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
133 // lengthy definition of UnwindInfoSection.
134 class UnwindInfoSectionImpl final : public UnwindInfoSection {
135 public:
136   UnwindInfoSectionImpl() : cuLayout(target->wordSize) {}
137   uint64_t getSize() const override { return unwindInfoSize; }
138   void prepare() override;
139   void finalize() override;
140   void writeTo(uint8_t *buf) const override;
141 
142 private:
143   void prepareRelocations(ConcatInputSection *);
144   void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
145   void encodePersonalities();
146   Symbol *canonicalizePersonality(Symbol *);
147 
148   uint64_t unwindInfoSize = 0;
149   SmallVector<decltype(symbols)::value_type, 0> symbolsVec;
150   CompactUnwindLayout cuLayout;
151   std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
152   EncodingMap commonEncodingIndexes;
153   // The entries here will be in the same order as their originating symbols
154   // in symbolsVec.
155   std::vector<CompactUnwindEntry> cuEntries;
156   // Indices into the cuEntries vector.
157   std::vector<size_t> cuIndices;
158   std::vector<Symbol *> personalities;
159   SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
160       personalityTable;
161   // Indices into cuEntries for CUEs with a non-null LSDA.
162   std::vector<size_t> entriesWithLsda;
163   // Map of cuEntries index to an index within the LSDA array.
164   DenseMap<size_t, uint32_t> lsdaIndex;
165   std::vector<SecondLevelPage> secondLevelPages;
166   uint64_t level2PagesOffset = 0;
167   // The highest-address function plus its size. The unwinder needs this to
168   // determine the address range that is covered by unwind info.
169   uint64_t cueEndBoundary = 0;
170 };
171 
172 UnwindInfoSection::UnwindInfoSection()
173     : SyntheticSection(segment_names::text, section_names::unwindInfo) {
174   align = 4;
175 }
176 
177 // Record function symbols that may need entries emitted in __unwind_info, which
178 // stores unwind data for address ranges.
179 //
180 // Note that if several adjacent functions have the same unwind encoding and
181 // personality function and no LSDA, they share one unwind entry. For this to
182 // work, functions without unwind info need explicit "no unwind info" unwind
183 // entries -- else the unwinder would think they have the unwind info of the
184 // closest function with unwind info right before in the image. Thus, we add
185 // function symbols for each unique address regardless of whether they have
186 // associated unwind info.
187 void UnwindInfoSection::addSymbol(const Defined *d) {
188   if (d->unwindEntry)
189     allEntriesAreOmitted = false;
190   // We don't yet know the final output address of this symbol, but we know that
191   // they are uniquely determined by a combination of the isec and value, so
192   // we use that as the key here.
193   auto p = symbols.insert({{d->isec, d->value}, d});
194   // If we have multiple symbols at the same address, only one of them can have
195   // an associated unwind entry.
196   if (!p.second && d->unwindEntry) {
197     assert(p.first->second == d || !p.first->second->unwindEntry);
198     p.first->second = d;
199   }
200 }
201 
202 void UnwindInfoSectionImpl::prepare() {
203   // This iteration needs to be deterministic, since prepareRelocations may add
204   // entries to the GOT. Hence the use of a MapVector for
205   // UnwindInfoSection::symbols.
206   for (const Defined *d : make_second_range(symbols))
207     if (d->unwindEntry) {
208       if (d->unwindEntry->getName() == section_names::compactUnwind) {
209         prepareRelocations(d->unwindEntry);
210       } else {
211         // We don't have to add entries to the GOT here because FDEs have
212         // explicit GOT relocations, so Writer::scanRelocations() will add those
213         // GOT entries. However, we still need to canonicalize the personality
214         // pointers (like prepareRelocations() does for CU entries) in order
215         // to avoid overflowing the 3-personality limit.
216         FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
217         fde.personality = canonicalizePersonality(fde.personality);
218       }
219     }
220 }
221 
222 // Compact unwind relocations have different semantics, so we handle them in a
223 // separate code path from regular relocations. First, we do not wish to add
224 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
225 // actually end up in the final binary. Second, personality pointers always
226 // reside in the GOT and must be treated specially.
227 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
228   assert(!isec->shouldOmitFromOutput() &&
229          "__compact_unwind section should not be omitted");
230 
231   // FIXME: Make this skip relocations for CompactUnwindEntries that
232   // point to dead-stripped functions. That might save some amount of
233   // work. But since there are usually just few personality functions
234   // that are referenced from many places, at least some of them likely
235   // live, it wouldn't reduce number of got entries.
236   for (size_t i = 0; i < isec->relocs.size(); ++i) {
237     Reloc &r = isec->relocs[i];
238     assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
239     // Since compact unwind sections aren't part of the inputSections vector,
240     // they don't get canonicalized by scanRelocations(), so we have to do the
241     // canonicalization here.
242     if (auto *referentIsec = r.referent.dyn_cast<InputSection *>())
243       r.referent = referentIsec->canonical();
244 
245     // Functions and LSDA entries always reside in the same object file as the
246     // compact unwind entries that references them, and thus appear as section
247     // relocs. There is no need to prepare them. We only prepare relocs for
248     // personality functions.
249     if (r.offset != cuLayout.personalityOffset)
250       continue;
251 
252     if (auto *s = r.referent.dyn_cast<Symbol *>()) {
253       // Personality functions are nearly always system-defined (e.g.,
254       // ___gxx_personality_v0 for C++) and relocated as dylib symbols.  When an
255       // application provides its own personality function, it might be
256       // referenced by an extern Defined symbol reloc, or a local section reloc.
257       if (auto *defined = dyn_cast<Defined>(s)) {
258         // XXX(vyng) This is a special case for handling duplicate personality
259         // symbols. Note that LD64's behavior is a bit different and it is
260         // inconsistent with how symbol resolution usually work
261         //
262         // So we've decided not to follow it. Instead, simply pick the symbol
263         // with the same name from the symbol table to replace the local one.
264         //
265         // (See discussions/alternatives already considered on D107533)
266         if (!defined->isExternal())
267           if (Symbol *sym = symtab->find(defined->getName()))
268             if (!sym->isLazy())
269               r.referent = s = sym;
270       }
271       if (auto *undefined = dyn_cast<Undefined>(s)) {
272         treatUndefinedSymbol(*undefined, isec, r.offset);
273         // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
274         if (isa<Undefined>(s))
275           continue;
276       }
277 
278       // Similar to canonicalizePersonality(), but we also register a GOT entry.
279       if (auto *defined = dyn_cast<Defined>(s)) {
280         // Check if we have created a synthetic symbol at the same address.
281         Symbol *&personality =
282             personalityTable[{defined->isec, defined->value}];
283         if (personality == nullptr) {
284           personality = defined;
285           in.got->addEntry(defined);
286         } else if (personality != defined) {
287           r.referent = personality;
288         }
289         continue;
290       }
291 
292       assert(isa<DylibSymbol>(s));
293       in.got->addEntry(s);
294       continue;
295     }
296 
297     if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
298       assert(!isCoalescedWeak(referentIsec));
299       // Personality functions can be referenced via section relocations
300       // if they live in the same object file. Create placeholder synthetic
301       // symbols for them in the GOT.
302       Symbol *&s = personalityTable[{referentIsec, r.addend}];
303       if (s == nullptr) {
304         // This runs after dead stripping, so the noDeadStrip argument does not
305         // matter.
306         s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
307                           r.addend, /*size=*/0, /*isWeakDef=*/false,
308                           /*isExternal=*/false, /*isPrivateExtern=*/false,
309                           /*includeInSymtab=*/true,
310                           /*isReferencedDynamically=*/false,
311                           /*noDeadStrip=*/false);
312         s->used = true;
313         in.got->addEntry(s);
314       }
315       r.referent = s;
316       r.addend = 0;
317     }
318   }
319 }
320 
321 Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
322   if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
323     // Check if we have created a synthetic symbol at the same address.
324     Symbol *&synth = personalityTable[{defined->isec, defined->value}];
325     if (synth == nullptr)
326       synth = defined;
327     else if (synth != defined)
328       return synth;
329   }
330   return personality;
331 }
332 
333 // We need to apply the relocations to the pre-link compact unwind section
334 // before converting it to post-link form. There should only be absolute
335 // relocations here: since we are not emitting the pre-link CU section, there
336 // is no source address to make a relative location meaningful.
337 void UnwindInfoSectionImpl::relocateCompactUnwind(
338     std::vector<CompactUnwindEntry> &cuEntries) {
339   parallelFor(0, symbolsVec.size(), [&](size_t i) {
340     CompactUnwindEntry &cu = cuEntries[i];
341     const Defined *d = symbolsVec[i].second;
342     cu.functionAddress = d->getVA();
343     if (!d->unwindEntry)
344       return;
345 
346     // If we have DWARF unwind info, create a slimmed-down CU entry that points
347     // to it.
348     if (d->unwindEntry->getName() == section_names::ehFrame) {
349       // The unwinder will look for the DWARF entry starting at the hint,
350       // assuming the hint points to a valid CFI record start. If it
351       // fails to find the record, it proceeds in a linear search through the
352       // contiguous CFI records from the hint until the end of the section.
353       // Ideally, in the case where the offset is too large to be encoded, we
354       // would instead encode the largest possible offset to a valid CFI record,
355       // but since we don't keep track of that, just encode zero -- the start of
356       // the section is always the start of a CFI record.
357       uint64_t dwarfOffsetHint =
358           d->unwindEntry->outSecOff <= DWARF_SECTION_OFFSET
359               ? d->unwindEntry->outSecOff
360               : 0;
361       cu.encoding = target->modeDwarfEncoding | dwarfOffsetHint;
362       const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
363       cu.functionLength = fde.funcLength;
364       // Omit the DWARF personality from compact-unwind entry so that we
365       // don't need to encode it.
366       cu.personality = nullptr;
367       cu.lsda = fde.lsda;
368       return;
369     }
370 
371     assert(d->unwindEntry->getName() == section_names::compactUnwind);
372 
373     auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
374                target->wordSize;
375     cu.functionLength =
376         support::endian::read32le(buf + cuLayout.functionLengthOffset);
377     cu.encoding = support::endian::read32le(buf + cuLayout.encodingOffset);
378     for (const Reloc &r : d->unwindEntry->relocs) {
379       if (r.offset == cuLayout.personalityOffset)
380         cu.personality = r.referent.get<Symbol *>();
381       else if (r.offset == cuLayout.lsdaOffset)
382         cu.lsda = r.getReferentInputSection();
383     }
384   });
385 }
386 
387 // There should only be a handful of unique personality pointers, so we can
388 // encode them as 2-bit indices into a small array.
389 void UnwindInfoSectionImpl::encodePersonalities() {
390   for (size_t idx : cuIndices) {
391     CompactUnwindEntry &cu = cuEntries[idx];
392     if (cu.personality == nullptr)
393       continue;
394     // Linear search is fast enough for a small array.
395     auto it = find(personalities, cu.personality);
396     uint32_t personalityIndex; // 1-based index
397     if (it != personalities.end()) {
398       personalityIndex = std::distance(personalities.begin(), it) + 1;
399     } else {
400       personalities.push_back(cu.personality);
401       personalityIndex = personalities.size();
402     }
403     cu.encoding |=
404         personalityIndex << llvm::countr_zero(
405             static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
406   }
407   if (personalities.size() > 3)
408     error("too many personalities (" + Twine(personalities.size()) +
409           ") for compact unwind to encode");
410 }
411 
412 static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
413   // From compact_unwind_encoding.h:
414   //  UNWIND_X86_64_MODE_STACK_IND:
415   //  A "frameless" (RBP not used as frame pointer) function large constant
416   //  stack size.  This case is like the previous, except the stack size is too
417   //  large to encode in the compact unwind encoding.  Instead it requires that
418   //  the function contains "subq $nnnnnnnn,RSP" in its prolog.  The compact
419   //  encoding contains the offset to the nnnnnnnn value in the function in
420   //  UNWIND_X86_64_FRAMELESS_STACK_SIZE.
421   // Since this means the unwinder has to look at the `subq` in the function
422   // of the unwind info's unwind address, two functions that have identical
423   // unwind info can't be folded if it's using this encoding since both
424   // entries need unique addresses.
425   static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
426                 static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
427   if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
428       (encoding & UNWIND_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
429     // FIXME: Consider passing in the two function addresses and getting
430     // their two stack sizes off the `subq` and only returning false if they're
431     // actually different.
432     return false;
433   }
434   return true;
435 }
436 
437 // Scan the __LD,__compact_unwind entries and compute the space needs of
438 // __TEXT,__unwind_info and __TEXT,__eh_frame.
439 void UnwindInfoSectionImpl::finalize() {
440   if (symbols.empty())
441     return;
442 
443   // At this point, the address space for __TEXT,__text has been
444   // assigned, so we can relocate the __LD,__compact_unwind entries
445   // into a temporary buffer. Relocation is necessary in order to sort
446   // the CU entries by function address. Sorting is necessary so that
447   // we can fold adjacent CU entries with identical encoding+personality
448   // and without any LSDA. Folding is necessary because it reduces the
449   // number of CU entries by as much as 3 orders of magnitude!
450   cuEntries.resize(symbols.size());
451   // The "map" part of the symbols MapVector was only needed for deduplication
452   // in addSymbol(). Now that we are done adding, move the contents to a plain
453   // std::vector for indexed access.
454   symbolsVec = symbols.takeVector();
455   relocateCompactUnwind(cuEntries);
456 
457   // Rather than sort & fold the 32-byte entries directly, we create a
458   // vector of indices to entries and sort & fold that instead.
459   cuIndices.resize(cuEntries.size());
460   std::iota(cuIndices.begin(), cuIndices.end(), 0);
461   llvm::sort(cuIndices, [&](size_t a, size_t b) {
462     return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
463   });
464 
465   // Record the ending boundary before we fold the entries.
466   cueEndBoundary = cuEntries[cuIndices.back()].functionAddress +
467                    cuEntries[cuIndices.back()].functionLength;
468 
469   // Fold adjacent entries with matching encoding+personality and without LSDA
470   // We use three iterators on the same cuIndices to fold in-situ:
471   // (1) `foldBegin` is the first of a potential sequence of matching entries
472   // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
473   // The semi-open interval [ foldBegin .. foldEnd ) contains a range
474   // entries that can be folded into a single entry and written to ...
475   // (3) `foldWrite`
476   auto foldWrite = cuIndices.begin();
477   for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
478     auto foldEnd = foldBegin;
479     // Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
480     // a base address. The base address is normally not contained directly in
481     // the LSDA, and in that case, the personality function treats the starting
482     // address of the function (which is computed by the unwinder) as the base
483     // address and interprets the LSDA accordingly. The unwinder computes the
484     // starting address of a function as the address associated with its CU
485     // entry. For this reason, we cannot fold adjacent entries if they have an
486     // LSDA, because folding would make the unwinder compute the wrong starting
487     // address for the functions with the folded entries, which in turn would
488     // cause the personality function to misinterpret the LSDA for those
489     // functions. In the very rare case where the base address is encoded
490     // directly in the LSDA, two functions at different addresses would
491     // necessarily have different LSDAs, so their CU entries would not have been
492     // folded anyway.
493     while (++foldEnd < cuIndices.end() &&
494            cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
495            !cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
496            // If we've gotten to this point, we don't have an LSDA, which should
497            // also imply that we don't have a personality function, since in all
498            // likelihood a personality function needs the LSDA to do anything
499            // useful. It can be technically valid to have a personality function
500            // and no LSDA though (e.g. the C++ personality __gxx_personality_v0
501            // is just a no-op without LSDA), so we still check for personality
502            // function equivalence to handle that case.
503            cuEntries[*foldBegin].personality ==
504                cuEntries[*foldEnd].personality &&
505            canFoldEncoding(cuEntries[*foldEnd].encoding))
506       ;
507     *foldWrite++ = *foldBegin;
508     foldBegin = foldEnd;
509   }
510   cuIndices.erase(foldWrite, cuIndices.end());
511 
512   encodePersonalities();
513 
514   // Count frequencies of the folded encodings
515   EncodingMap encodingFrequencies;
516   for (size_t idx : cuIndices)
517     encodingFrequencies[cuEntries[idx].encoding]++;
518 
519   // Make a vector of encodings, sorted by descending frequency
520   for (const auto &frequency : encodingFrequencies)
521     commonEncodings.emplace_back(frequency);
522   llvm::sort(commonEncodings,
523              [](const std::pair<compact_unwind_encoding_t, size_t> &a,
524                 const std::pair<compact_unwind_encoding_t, size_t> &b) {
525                if (a.second == b.second)
526                  // When frequencies match, secondarily sort on encoding
527                  // to maintain parity with validate-unwind-info.py
528                  return a.first > b.first;
529                return a.second > b.second;
530              });
531 
532   // Truncate the vector to 127 elements.
533   // Common encoding indexes are limited to 0..126, while encoding
534   // indexes 127..255 are local to each second-level page
535   if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
536     commonEncodings.resize(COMMON_ENCODINGS_MAX);
537 
538   // Create a map from encoding to common-encoding-table index
539   for (size_t i = 0; i < commonEncodings.size(); i++)
540     commonEncodingIndexes[commonEncodings[i].first] = i;
541 
542   // Split folded encodings into pages, where each page is limited by ...
543   // (a) 4 KiB capacity
544   // (b) 24-bit difference between first & final function address
545   // (c) 8-bit compact-encoding-table index,
546   //     for which 0..126 references the global common-encodings table,
547   //     and 127..255 references a local per-second-level-page table.
548   // First we try the compact format and determine how many entries fit.
549   // If more entries fit in the regular format, we use that.
550   for (size_t i = 0; i < cuIndices.size();) {
551     size_t idx = cuIndices[i];
552     secondLevelPages.emplace_back();
553     SecondLevelPage &page = secondLevelPages.back();
554     page.entryIndex = i;
555     uint64_t functionAddressMax =
556         cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
557     size_t n = commonEncodings.size();
558     size_t wordsRemaining =
559         SECOND_LEVEL_PAGE_WORDS -
560         sizeof(unwind_info_compressed_second_level_page_header) /
561             sizeof(uint32_t);
562     while (wordsRemaining >= 1 && i < cuIndices.size()) {
563       idx = cuIndices[i];
564       const CompactUnwindEntry *cuPtr = &cuEntries[idx];
565       if (cuPtr->functionAddress >= functionAddressMax)
566         break;
567       if (commonEncodingIndexes.count(cuPtr->encoding) ||
568           page.localEncodingIndexes.count(cuPtr->encoding)) {
569         i++;
570         wordsRemaining--;
571       } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
572         page.localEncodings.emplace_back(cuPtr->encoding);
573         page.localEncodingIndexes[cuPtr->encoding] = n++;
574         i++;
575         wordsRemaining -= 2;
576       } else {
577         break;
578       }
579     }
580     page.entryCount = i - page.entryIndex;
581 
582     // If this is not the final page, see if it's possible to fit more entries
583     // by using the regular format. This can happen when there are many unique
584     // encodings, and we saturated the local encoding table early.
585     if (i < cuIndices.size() &&
586         page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
587       page.kind = UNWIND_SECOND_LEVEL_REGULAR;
588       page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
589                                  cuIndices.size() - page.entryIndex);
590       i = page.entryIndex + page.entryCount;
591     } else {
592       page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
593     }
594   }
595 
596   for (size_t idx : cuIndices) {
597     lsdaIndex[idx] = entriesWithLsda.size();
598     if (cuEntries[idx].lsda)
599       entriesWithLsda.push_back(idx);
600   }
601 
602   // compute size of __TEXT,__unwind_info section
603   level2PagesOffset = sizeof(unwind_info_section_header) +
604                       commonEncodings.size() * sizeof(uint32_t) +
605                       personalities.size() * sizeof(uint32_t) +
606                       // The extra second-level-page entry is for the sentinel
607                       (secondLevelPages.size() + 1) *
608                           sizeof(unwind_info_section_header_index_entry) +
609                       entriesWithLsda.size() *
610                           sizeof(unwind_info_section_header_lsda_index_entry);
611   unwindInfoSize =
612       level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
613 }
614 
615 // All inputs are relocated and output addresses are known, so write!
616 
617 void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
618   assert(!cuIndices.empty() && "call only if there is unwind info");
619 
620   // section header
621   auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
622   uip->version = 1;
623   uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
624   uip->commonEncodingsArrayCount = commonEncodings.size();
625   uip->personalityArraySectionOffset =
626       uip->commonEncodingsArraySectionOffset +
627       (uip->commonEncodingsArrayCount * sizeof(uint32_t));
628   uip->personalityArrayCount = personalities.size();
629   uip->indexSectionOffset = uip->personalityArraySectionOffset +
630                             (uip->personalityArrayCount * sizeof(uint32_t));
631   uip->indexCount = secondLevelPages.size() + 1;
632 
633   // Common encodings
634   auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
635   for (const auto &encoding : commonEncodings)
636     *i32p++ = encoding.first;
637 
638   // Personalities
639   for (const Symbol *personality : personalities)
640     *i32p++ = personality->getGotVA() - in.header->addr;
641 
642   // FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
643   // ranges. We should do the same too
644 
645   // Level-1 index
646   uint32_t lsdaOffset =
647       uip->indexSectionOffset +
648       uip->indexCount * sizeof(unwind_info_section_header_index_entry);
649   uint64_t l2PagesOffset = level2PagesOffset;
650   auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
651   for (const SecondLevelPage &page : secondLevelPages) {
652     size_t idx = cuIndices[page.entryIndex];
653     iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
654     iep->secondLevelPagesSectionOffset = l2PagesOffset;
655     iep->lsdaIndexArraySectionOffset =
656         lsdaOffset + lsdaIndex.lookup(idx) *
657                          sizeof(unwind_info_section_header_lsda_index_entry);
658     iep++;
659     l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
660   }
661   // Level-1 sentinel
662   // XXX(vyng): Note that LD64 adds +1 here.
663   // Unsure whether it's a bug or it's their workaround for something else.
664   // See comments from https://reviews.llvm.org/D138320.
665   iep->functionOffset = cueEndBoundary - in.header->addr;
666   iep->secondLevelPagesSectionOffset = 0;
667   iep->lsdaIndexArraySectionOffset =
668       lsdaOffset + entriesWithLsda.size() *
669                        sizeof(unwind_info_section_header_lsda_index_entry);
670   iep++;
671 
672   // LSDAs
673   auto *lep =
674       reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
675   for (size_t idx : entriesWithLsda) {
676     const CompactUnwindEntry &cu = cuEntries[idx];
677     lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
678     lep->functionOffset = cu.functionAddress - in.header->addr;
679     lep++;
680   }
681 
682   // Level-2 pages
683   auto *pp = reinterpret_cast<uint32_t *>(lep);
684   for (const SecondLevelPage &page : secondLevelPages) {
685     if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
686       uintptr_t functionAddressBase =
687           cuEntries[cuIndices[page.entryIndex]].functionAddress;
688       auto *p2p =
689           reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
690               pp);
691       p2p->kind = page.kind;
692       p2p->entryPageOffset =
693           sizeof(unwind_info_compressed_second_level_page_header);
694       p2p->entryCount = page.entryCount;
695       p2p->encodingsPageOffset =
696           p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
697       p2p->encodingsCount = page.localEncodings.size();
698       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
699       for (size_t i = 0; i < page.entryCount; i++) {
700         const CompactUnwindEntry &cue =
701             cuEntries[cuIndices[page.entryIndex + i]];
702         auto it = commonEncodingIndexes.find(cue.encoding);
703         if (it == commonEncodingIndexes.end())
704           it = page.localEncodingIndexes.find(cue.encoding);
705         *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
706                 (cue.functionAddress - functionAddressBase);
707       }
708       if (!page.localEncodings.empty())
709         memcpy(ep, page.localEncodings.data(),
710                page.localEncodings.size() * sizeof(uint32_t));
711     } else {
712       auto *p2p =
713           reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
714       p2p->kind = page.kind;
715       p2p->entryPageOffset =
716           sizeof(unwind_info_regular_second_level_page_header);
717       p2p->entryCount = page.entryCount;
718       auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
719       for (size_t i = 0; i < page.entryCount; i++) {
720         const CompactUnwindEntry &cue =
721             cuEntries[cuIndices[page.entryIndex + i]];
722         *ep++ = cue.functionAddress;
723         *ep++ = cue.encoding;
724       }
725     }
726     pp += SECOND_LEVEL_PAGE_WORDS;
727   }
728 }
729 
730 UnwindInfoSection *macho::makeUnwindInfoSection() {
731   return make<UnwindInfoSectionImpl>();
732 }
733