1 //===-- Process.h -----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLDB_TARGET_PROCESS_H
10 #define LLDB_TARGET_PROCESS_H
11 
12 #include "lldb/Host/Config.h"
13 
14 #include <climits>
15 
16 #include <chrono>
17 #include <list>
18 #include <memory>
19 #include <mutex>
20 #include <string>
21 #include <unordered_set>
22 #include <vector>
23 
24 #include "lldb/Breakpoint/BreakpointSiteList.h"
25 #include "lldb/Core/Communication.h"
26 #include "lldb/Core/LoadedModuleInfoList.h"
27 #include "lldb/Core/PluginInterface.h"
28 #include "lldb/Core/ThreadSafeValue.h"
29 #include "lldb/Core/UserSettingsController.h"
30 #include "lldb/Host/HostThread.h"
31 #include "lldb/Host/ProcessLaunchInfo.h"
32 #include "lldb/Host/ProcessRunLock.h"
33 #include "lldb/Symbol/ObjectFile.h"
34 #include "lldb/Target/ExecutionContextScope.h"
35 #include "lldb/Target/InstrumentationRuntime.h"
36 #include "lldb/Target/Memory.h"
37 #include "lldb/Target/MemoryTagManager.h"
38 #include "lldb/Target/QueueList.h"
39 #include "lldb/Target/ThreadList.h"
40 #include "lldb/Target/ThreadPlanStack.h"
41 #include "lldb/Target/Trace.h"
42 #include "lldb/Utility/ArchSpec.h"
43 #include "lldb/Utility/Broadcaster.h"
44 #include "lldb/Utility/Event.h"
45 #include "lldb/Utility/Listener.h"
46 #include "lldb/Utility/NameMatches.h"
47 #include "lldb/Utility/ProcessInfo.h"
48 #include "lldb/Utility/Status.h"
49 #include "lldb/Utility/StructuredData.h"
50 #include "lldb/Utility/TraceGDBRemotePackets.h"
51 #include "lldb/Utility/UnimplementedError.h"
52 #include "lldb/Utility/UserIDResolver.h"
53 #include "lldb/lldb-private.h"
54 
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/Support/Threading.h"
57 #include "llvm/Support/VersionTuple.h"
58 
59 namespace lldb_private {
60 
61 template <typename B, typename S> struct Range;
62 
63 class ProcessExperimentalProperties : public Properties {
64 public:
65   ProcessExperimentalProperties();
66 };
67 
68 class ProcessProperties : public Properties {
69 public:
70   // Pass nullptr for "process" if the ProcessProperties are to be the global
71   // copy
72   ProcessProperties(lldb_private::Process *process);
73 
74   ~ProcessProperties() override;
75 
76   bool GetDisableMemoryCache() const;
77   uint64_t GetMemoryCacheLineSize() const;
78   Args GetExtraStartupCommands() const;
79   void SetExtraStartupCommands(const Args &args);
80   FileSpec GetPythonOSPluginPath() const;
81   uint32_t GetVirtualAddressableBits() const;
82   void SetVirtualAddressableBits(uint32_t bits);
83   void SetPythonOSPluginPath(const FileSpec &file);
84   bool GetIgnoreBreakpointsInExpressions() const;
85   void SetIgnoreBreakpointsInExpressions(bool ignore);
86   bool GetUnwindOnErrorInExpressions() const;
87   void SetUnwindOnErrorInExpressions(bool ignore);
88   bool GetStopOnSharedLibraryEvents() const;
89   void SetStopOnSharedLibraryEvents(bool stop);
90   bool GetDisableLangRuntimeUnwindPlans() const;
91   void SetDisableLangRuntimeUnwindPlans(bool disable);
92   bool GetDetachKeepsStopped() const;
93   void SetDetachKeepsStopped(bool keep_stopped);
94   bool GetWarningsOptimization() const;
95   bool GetWarningsUnsupportedLanguage() const;
96   bool GetStopOnExec() const;
97   std::chrono::seconds GetUtilityExpressionTimeout() const;
98   std::chrono::seconds GetInterruptTimeout() const;
99   bool GetOSPluginReportsAllThreads() const;
100   void SetOSPluginReportsAllThreads(bool does_report);
101   bool GetSteppingRunsAllThreads() const;
102   FollowForkMode GetFollowForkMode() const;
103 
104 protected:
105   Process *m_process; // Can be nullptr for global ProcessProperties
106   std::unique_ptr<ProcessExperimentalProperties> m_experimental_properties_up;
107 };
108 
109 // ProcessAttachInfo
110 //
111 // Describes any information that is required to attach to a process.
112 
113 class ProcessAttachInfo : public ProcessInstanceInfo {
114 public:
115   ProcessAttachInfo() = default;
116 
117   ProcessAttachInfo(const ProcessLaunchInfo &launch_info)
118       : m_resume_count(0), m_wait_for_launch(false), m_ignore_existing(true),
119         m_continue_once_attached(false), m_detach_on_error(true),
120         m_async(false) {
121     ProcessInfo::operator=(launch_info);
122     SetProcessPluginName(launch_info.GetProcessPluginName());
123     SetResumeCount(launch_info.GetResumeCount());
124     SetListener(launch_info.GetListener());
125     SetHijackListener(launch_info.GetHijackListener());
126     m_detach_on_error = launch_info.GetDetachOnError();
127   }
128 
129   bool GetWaitForLaunch() const { return m_wait_for_launch; }
130 
131   void SetWaitForLaunch(bool b) { m_wait_for_launch = b; }
132 
133   bool GetAsync() const { return m_async; }
134 
135   void SetAsync(bool b) { m_async = b; }
136 
137   bool GetIgnoreExisting() const { return m_ignore_existing; }
138 
139   void SetIgnoreExisting(bool b) { m_ignore_existing = b; }
140 
141   bool GetContinueOnceAttached() const { return m_continue_once_attached; }
142 
143   void SetContinueOnceAttached(bool b) { m_continue_once_attached = b; }
144 
145   uint32_t GetResumeCount() const { return m_resume_count; }
146 
147   void SetResumeCount(uint32_t c) { m_resume_count = c; }
148 
149   const char *GetProcessPluginName() const {
150     return (m_plugin_name.empty() ? nullptr : m_plugin_name.c_str());
151   }
152 
153   void SetProcessPluginName(llvm::StringRef plugin) {
154     m_plugin_name = std::string(plugin);
155   }
156 
157   void Clear() {
158     ProcessInstanceInfo::Clear();
159     m_plugin_name.clear();
160     m_resume_count = 0;
161     m_wait_for_launch = false;
162     m_ignore_existing = true;
163     m_continue_once_attached = false;
164   }
165 
166   bool ProcessInfoSpecified() const {
167     if (GetExecutableFile())
168       return true;
169     if (GetProcessID() != LLDB_INVALID_PROCESS_ID)
170       return true;
171     if (GetParentProcessID() != LLDB_INVALID_PROCESS_ID)
172       return true;
173     return false;
174   }
175 
176   lldb::ListenerSP GetHijackListener() const { return m_hijack_listener_sp; }
177 
178   void SetHijackListener(const lldb::ListenerSP &listener_sp) {
179     m_hijack_listener_sp = listener_sp;
180   }
181 
182   bool GetDetachOnError() const { return m_detach_on_error; }
183 
184   void SetDetachOnError(bool enable) { m_detach_on_error = enable; }
185 
186   // Get and set the actual listener that will be used for the process events
187   lldb::ListenerSP GetListener() const { return m_listener_sp; }
188 
189   void SetListener(const lldb::ListenerSP &listener_sp) {
190     m_listener_sp = listener_sp;
191   }
192 
193   lldb::ListenerSP GetListenerForProcess(Debugger &debugger);
194 
195 protected:
196   lldb::ListenerSP m_listener_sp;
197   lldb::ListenerSP m_hijack_listener_sp;
198   std::string m_plugin_name;
199   uint32_t m_resume_count = 0; // How many times do we resume after launching
200   bool m_wait_for_launch = false;
201   bool m_ignore_existing = true;
202   bool m_continue_once_attached = false; // Supports the use-case scenario of
203                                          // immediately continuing the process
204                                          // once attached.
205   bool m_detach_on_error =
206       true; // If we are debugging remotely, instruct the stub to
207             // detach rather than killing the target on error.
208   bool m_async =
209       false; // Use an async attach where we start the attach and return
210              // immediately (used by GUI programs with --waitfor so they can
211              // call SBProcess::Stop() to cancel attach)
212 };
213 
214 // This class tracks the Modification state of the process.  Things that can
215 // currently modify the program are running the program (which will up the
216 // StopID) and writing memory (which will up the MemoryID.)
217 // FIXME: Should we also include modification of register states?
218 
219 class ProcessModID {
220   friend bool operator==(const ProcessModID &lhs, const ProcessModID &rhs);
221 
222 public:
223   ProcessModID() = default;
224 
225   ProcessModID(const ProcessModID &rhs)
226       : m_stop_id(rhs.m_stop_id), m_memory_id(rhs.m_memory_id) {}
227 
228   const ProcessModID &operator=(const ProcessModID &rhs) {
229     if (this != &rhs) {
230       m_stop_id = rhs.m_stop_id;
231       m_memory_id = rhs.m_memory_id;
232     }
233     return *this;
234   }
235 
236   ~ProcessModID() = default;
237 
238   uint32_t BumpStopID() {
239     const uint32_t prev_stop_id = m_stop_id++;
240     if (!IsLastResumeForUserExpression())
241       m_last_natural_stop_id++;
242     return prev_stop_id;
243   }
244 
245   void BumpMemoryID() { m_memory_id++; }
246 
247   void BumpResumeID() {
248     m_resume_id++;
249     if (m_running_user_expression > 0)
250       m_last_user_expression_resume = m_resume_id;
251   }
252 
253   bool IsRunningUtilityFunction() const {
254     return m_running_utility_function > 0;
255   }
256 
257   uint32_t GetStopID() const { return m_stop_id; }
258   uint32_t GetLastNaturalStopID() const { return m_last_natural_stop_id; }
259   uint32_t GetMemoryID() const { return m_memory_id; }
260   uint32_t GetResumeID() const { return m_resume_id; }
261   uint32_t GetLastUserExpressionResumeID() const {
262     return m_last_user_expression_resume;
263   }
264 
265   bool MemoryIDEqual(const ProcessModID &compare) const {
266     return m_memory_id == compare.m_memory_id;
267   }
268 
269   bool StopIDEqual(const ProcessModID &compare) const {
270     return m_stop_id == compare.m_stop_id;
271   }
272 
273   void SetInvalid() { m_stop_id = UINT32_MAX; }
274 
275   bool IsValid() const { return m_stop_id != UINT32_MAX; }
276 
277   bool IsLastResumeForUserExpression() const {
278     // If we haven't yet resumed the target, then it can't be for a user
279     // expression...
280     if (m_resume_id == 0)
281       return false;
282 
283     return m_resume_id == m_last_user_expression_resume;
284   }
285 
286   void SetRunningUserExpression(bool on) {
287     if (on)
288       m_running_user_expression++;
289     else
290       m_running_user_expression--;
291   }
292 
293   void SetRunningUtilityFunction(bool on) {
294     if (on)
295       m_running_utility_function++;
296     else {
297       assert(m_running_utility_function > 0 &&
298              "Called SetRunningUtilityFunction(false) without calling "
299              "SetRunningUtilityFunction(true) before?");
300       m_running_utility_function--;
301     }
302   }
303 
304   void SetStopEventForLastNaturalStopID(lldb::EventSP event_sp) {
305     m_last_natural_stop_event = std::move(event_sp);
306   }
307 
308   lldb::EventSP GetStopEventForStopID(uint32_t stop_id) const {
309     if (stop_id == m_last_natural_stop_id)
310       return m_last_natural_stop_event;
311     return lldb::EventSP();
312   }
313 
314 private:
315   uint32_t m_stop_id = 0;
316   uint32_t m_last_natural_stop_id = 0;
317   uint32_t m_resume_id = 0;
318   uint32_t m_memory_id = 0;
319   uint32_t m_last_user_expression_resume = 0;
320   uint32_t m_running_user_expression = false;
321   uint32_t m_running_utility_function = 0;
322   lldb::EventSP m_last_natural_stop_event;
323 };
324 
325 inline bool operator==(const ProcessModID &lhs, const ProcessModID &rhs) {
326   if (lhs.StopIDEqual(rhs) && lhs.MemoryIDEqual(rhs))
327     return true;
328   else
329     return false;
330 }
331 
332 inline bool operator!=(const ProcessModID &lhs, const ProcessModID &rhs) {
333   return (!lhs.StopIDEqual(rhs) || !lhs.MemoryIDEqual(rhs));
334 }
335 
336 /// \class Process Process.h "lldb/Target/Process.h"
337 /// A plug-in interface definition class for debugging a process.
338 class Process : public std::enable_shared_from_this<Process>,
339                 public ProcessProperties,
340                 public Broadcaster,
341                 public ExecutionContextScope,
342                 public PluginInterface {
343   friend class FunctionCaller; // For WaitForStateChangeEventsPrivate
344   friend class Debugger; // For PopProcessIOHandler and ProcessIOHandlerIsActive
345   friend class DynamicLoader; // For LoadOperatingSystemPlugin
346   friend class ProcessEventData;
347   friend class StopInfo;
348   friend class Target;
349   friend class ThreadList;
350 
351 public:
352   /// Broadcaster event bits definitions.
353   enum {
354     eBroadcastBitStateChanged = (1 << 0),
355     eBroadcastBitInterrupt = (1 << 1),
356     eBroadcastBitSTDOUT = (1 << 2),
357     eBroadcastBitSTDERR = (1 << 3),
358     eBroadcastBitProfileData = (1 << 4),
359     eBroadcastBitStructuredData = (1 << 5),
360   };
361 
362   enum {
363     eBroadcastInternalStateControlStop = (1 << 0),
364     eBroadcastInternalStateControlPause = (1 << 1),
365     eBroadcastInternalStateControlResume = (1 << 2)
366   };
367 
368   typedef Range<lldb::addr_t, lldb::addr_t> LoadRange;
369   // We use a read/write lock to allow on or more clients to access the process
370   // state while the process is stopped (reader). We lock the write lock to
371   // control access to the process while it is running (readers, or clients
372   // that want the process stopped can block waiting for the process to stop,
373   // or just try to lock it to see if they can immediately access the stopped
374   // process. If the try read lock fails, then the process is running.
375   typedef ProcessRunLock::ProcessRunLocker StopLocker;
376 
377   // These two functions fill out the Broadcaster interface:
378 
379   static ConstString &GetStaticBroadcasterClass();
380 
381   ConstString &GetBroadcasterClass() const override {
382     return GetStaticBroadcasterClass();
383   }
384 
385 /// A notification structure that can be used by clients to listen
386 /// for changes in a process's lifetime.
387 ///
388 /// \see RegisterNotificationCallbacks (const Notifications&) @see
389 /// UnregisterNotificationCallbacks (const Notifications&)
390   typedef struct {
391     void *baton;
392     void (*initialize)(void *baton, Process *process);
393     void (*process_state_changed)(void *baton, Process *process,
394                                   lldb::StateType state);
395   } Notifications;
396 
397   class ProcessEventData : public EventData {
398     friend class Process;
399 
400   public:
401     ProcessEventData();
402     ProcessEventData(const lldb::ProcessSP &process, lldb::StateType state);
403 
404     ~ProcessEventData() override;
405 
406     static ConstString GetFlavorString();
407 
408     ConstString GetFlavor() const override;
409 
410     lldb::ProcessSP GetProcessSP() const { return m_process_wp.lock(); }
411 
412     lldb::StateType GetState() const { return m_state; }
413     bool GetRestarted() const { return m_restarted; }
414 
415     size_t GetNumRestartedReasons() { return m_restarted_reasons.size(); }
416 
417     const char *GetRestartedReasonAtIndex(size_t idx) {
418       return ((idx < m_restarted_reasons.size())
419                   ? m_restarted_reasons[idx].c_str()
420                   : nullptr);
421     }
422 
423     bool GetInterrupted() const { return m_interrupted; }
424 
425     void Dump(Stream *s) const override;
426 
427     virtual bool ShouldStop(Event *event_ptr, bool &found_valid_stopinfo);
428 
429     void DoOnRemoval(Event *event_ptr) override;
430 
431     static const Process::ProcessEventData *
432     GetEventDataFromEvent(const Event *event_ptr);
433 
434     static lldb::ProcessSP GetProcessFromEvent(const Event *event_ptr);
435 
436     static lldb::StateType GetStateFromEvent(const Event *event_ptr);
437 
438     static bool GetRestartedFromEvent(const Event *event_ptr);
439 
440     static size_t GetNumRestartedReasons(const Event *event_ptr);
441 
442     static const char *GetRestartedReasonAtIndex(const Event *event_ptr,
443                                                  size_t idx);
444 
445     static void AddRestartedReason(Event *event_ptr, const char *reason);
446 
447     static void SetRestartedInEvent(Event *event_ptr, bool new_value);
448 
449     static bool GetInterruptedFromEvent(const Event *event_ptr);
450 
451     static void SetInterruptedInEvent(Event *event_ptr, bool new_value);
452 
453     static bool SetUpdateStateOnRemoval(Event *event_ptr);
454 
455   private:
456     void SetUpdateStateOnRemoval() { m_update_state++; }
457 
458     void SetRestarted(bool new_value) { m_restarted = new_value; }
459 
460     void SetInterrupted(bool new_value) { m_interrupted = new_value; }
461 
462     void AddRestartedReason(const char *reason) {
463       m_restarted_reasons.push_back(reason);
464     }
465 
466     lldb::ProcessWP m_process_wp;
467     lldb::StateType m_state = lldb::eStateInvalid;
468     std::vector<std::string> m_restarted_reasons;
469     bool m_restarted = false; // For "eStateStopped" events, this is true if the
470                               // target was automatically restarted.
471     int m_update_state = 0;
472     bool m_interrupted = false;
473 
474     ProcessEventData(const ProcessEventData &) = delete;
475     const ProcessEventData &operator=(const ProcessEventData &) = delete;
476   };
477 
478   /// Construct with a shared pointer to a target, and the Process listener.
479   /// Uses the Host UnixSignalsSP by default.
480   Process(lldb::TargetSP target_sp, lldb::ListenerSP listener_sp);
481 
482   /// Construct with a shared pointer to a target, the Process listener, and
483   /// the appropriate UnixSignalsSP for the process.
484   Process(lldb::TargetSP target_sp, lldb::ListenerSP listener_sp,
485           const lldb::UnixSignalsSP &unix_signals_sp);
486 
487   /// Destructor.
488   ///
489   /// The destructor is virtual since this class is designed to be inherited
490   /// from by the plug-in instance.
491   ~Process() override;
492 
493   static void SettingsInitialize();
494 
495   static void SettingsTerminate();
496 
497   static ProcessProperties &GetGlobalProperties();
498 
499   /// Find a Process plug-in that can debug \a module using the currently
500   /// selected architecture.
501   ///
502   /// Scans all loaded plug-in interfaces that implement versions of the
503   /// Process plug-in interface and returns the first instance that can debug
504   /// the file.
505   ///
506   /// \see Process::CanDebug ()
507   static lldb::ProcessSP FindPlugin(lldb::TargetSP target_sp,
508                                     llvm::StringRef plugin_name,
509                                     lldb::ListenerSP listener_sp,
510                                     const FileSpec *crash_file_path,
511                                     bool can_connect);
512 
513   /// Static function that can be used with the \b host function
514   /// Host::StartMonitoringChildProcess ().
515   ///
516   /// This function can be used by lldb_private::Process subclasses when they
517   /// want to watch for a local process and have its exit status automatically
518   /// set when the host child process exits. Subclasses should call
519   /// Host::StartMonitoringChildProcess () with:
520   ///     callback = Process::SetHostProcessExitStatus
521   ///     pid = Process::GetID()
522   ///     monitor_signals = false
523   static bool
524   SetProcessExitStatus(lldb::pid_t pid, // The process ID we want to monitor
525                        bool exited,
526                        int signo,   // Zero for no signal
527                        int status); // Exit value of process if signal is zero
528 
529   lldb::ByteOrder GetByteOrder() const;
530 
531   uint32_t GetAddressByteSize() const;
532 
533   /// Returns the pid of the process or LLDB_INVALID_PROCESS_ID if there is
534   /// no known pid.
535   lldb::pid_t GetID() const { return m_pid; }
536 
537   /// Sets the stored pid.
538   ///
539   /// This does not change the pid of underlying process.
540   void SetID(lldb::pid_t new_pid) { m_pid = new_pid; }
541 
542   uint32_t GetUniqueID() const { return m_process_unique_id; }
543 
544   /// Check if a plug-in instance can debug the file in \a module.
545   ///
546   /// Each plug-in is given a chance to say whether it can debug the file in
547   /// \a module. If the Process plug-in instance can debug a file on the
548   /// current system, it should return \b true.
549   ///
550   /// \return
551   ///     Returns \b true if this Process plug-in instance can
552   ///     debug the executable, \b false otherwise.
553   virtual bool CanDebug(lldb::TargetSP target,
554                         bool plugin_specified_by_name) = 0;
555 
556   /// This object is about to be destroyed, do any necessary cleanup.
557   ///
558   /// Subclasses that override this method should always call this superclass
559   /// method.
560   virtual void Finalize();
561 
562   /// Return whether this object is valid (i.e. has not been finalized.)
563   ///
564   /// \return
565   ///     Returns \b true if this Process has not been finalized
566   ///     and \b false otherwise.
567   bool IsValid() const { return !m_finalizing; }
568 
569   /// Return a multi-word command object that can be used to expose plug-in
570   /// specific commands.
571   ///
572   /// This object will be used to resolve plug-in commands and can be
573   /// triggered by a call to:
574   ///
575   ///     (lldb) process command <args>
576   ///
577   /// \return
578   ///     A CommandObject which can be one of the concrete subclasses
579   ///     of CommandObject like CommandObjectRaw, CommandObjectParsed,
580   ///     or CommandObjectMultiword.
581   virtual CommandObject *GetPluginCommandObject() { return nullptr; }
582 
583   /// Launch a new process.
584   ///
585   /// Launch a new process by spawning a new process using the target object's
586   /// executable module's file as the file to launch.
587   ///
588   /// This function is not meant to be overridden by Process subclasses. It
589   /// will first call Process::WillLaunch (Module *) and if that returns \b
590   /// true, Process::DoLaunch (Module*, char const *[],char const *[],const
591   /// char *,const char *, const char *) will be called to actually do the
592   /// launching. If DoLaunch returns \b true, then Process::DidLaunch() will
593   /// be called.
594   ///
595   /// \param[in] launch_info
596   ///     Details regarding the environment, STDIN/STDOUT/STDERR
597   ///     redirection, working path, etc. related to the requested launch.
598   ///
599   /// \return
600   ///     An error object. Call GetID() to get the process ID if
601   ///     the error object is success.
602   virtual Status Launch(ProcessLaunchInfo &launch_info);
603 
604   virtual Status LoadCore();
605 
606   virtual Status DoLoadCore() {
607     Status error;
608     error.SetErrorStringWithFormatv(
609         "error: {0} does not support loading core files.", GetPluginName());
610     return error;
611   }
612 
613   // FUTURE WORK: GetLoadImageUtilityFunction are the first use we've
614   // had of having other plugins cache data in the Process.  This is handy for
615   // long-living plugins - like the Platform - which manage interactions whose
616   // lifetime is governed by the Process lifetime.  If we find we need to do
617   // this more often, we should construct a general solution to the problem.
618   // The consensus suggestion was that we have a token based registry in the
619   // Process. Some undecided questions are  (1) who manages the tokens.  It's
620   // probably best that you add the element  and get back a token that
621   // represents it.  That will avoid collisions.  But there may be some utility
622   // in the registerer controlling the token? (2) whether the thing added
623   // should be simply owned by Process, and just go away when it does (3)
624   // whether the registree should be notified of the Process' demise.
625   //
626   // We are postponing designing this till we have at least a second use case.
627   /// Get the cached UtilityFunction that assists in loading binary images
628   /// into the process.
629   ///
630   /// \param[in] platform
631   ///     The platform fetching the UtilityFunction.
632   /// \param[in] factory
633   ///     A function that will be called only once per-process in a
634   ///     thread-safe way to create the UtilityFunction if it has not
635   ///     been initialized yet.
636   ///
637   /// \return
638   ///     The cached utility function or null if the platform is not the
639   ///     same as the target's platform.
640   UtilityFunction *GetLoadImageUtilityFunction(
641       Platform *platform,
642       llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory);
643 
644   /// Get the dynamic loader plug-in for this process.
645   ///
646   /// The default action is to let the DynamicLoader plug-ins check the main
647   /// executable and the DynamicLoader will select itself automatically.
648   /// Subclasses can override this if inspecting the executable is not
649   /// desired, or if Process subclasses can only use a specific DynamicLoader
650   /// plug-in.
651   virtual DynamicLoader *GetDynamicLoader();
652 
653   // Returns AUXV structure found in many ELF-based environments.
654   //
655   // The default action is to return an empty data buffer.
656   //
657   // \return
658   //    A data extractor containing the contents of the AUXV data.
659   virtual DataExtractor GetAuxvData();
660 
661   /// Sometimes processes know how to retrieve and load shared libraries. This
662   /// is normally done by DynamicLoader plug-ins, but sometimes the connection
663   /// to the process allows retrieving this information. The dynamic loader
664   /// plug-ins can use this function if they can't determine the current
665   /// shared library load state.
666   ///
667   /// \return
668   ///    A status object indicating if the operation was sucessful or not.
669   virtual llvm::Error LoadModules() {
670     return llvm::make_error<llvm::StringError>("Not implemented.",
671                                                llvm::inconvertibleErrorCode());
672   }
673 
674   /// Query remote GDBServer for a detailed loaded library list
675   /// \return
676   ///    The list of modules currently loaded by the process, or an error.
677   virtual llvm::Expected<LoadedModuleInfoList> GetLoadedModuleList() {
678     return llvm::createStringError(llvm::inconvertibleErrorCode(),
679                                    "Not implemented");
680   }
681 
682   /// Save core dump into the specified file.
683   ///
684   /// \param[in] outfile
685   ///     Path to store core dump in.
686   ///
687   /// \return
688   ///     true if saved successfully, false if saving the core dump
689   ///     is not supported by the plugin, error otherwise.
690   virtual llvm::Expected<bool> SaveCore(llvm::StringRef outfile);
691 
692 protected:
693   virtual JITLoaderList &GetJITLoaders();
694 
695 public:
696   /// Get the system architecture for this process.
697   virtual ArchSpec GetSystemArchitecture() { return {}; }
698 
699   /// Get the system runtime plug-in for this process.
700   ///
701   /// \return
702   ///   Returns a pointer to the SystemRuntime plugin for this Process
703   ///   if one is available.  Else returns nullptr.
704   virtual SystemRuntime *GetSystemRuntime();
705 
706   /// Attach to an existing process using the process attach info.
707   ///
708   /// This function is not meant to be overridden by Process subclasses. It
709   /// will first call WillAttach (lldb::pid_t) or WillAttach (const char *),
710   /// and if that returns \b true, DoAttach (lldb::pid_t) or DoAttach (const
711   /// char *) will be called to actually do the attach. If DoAttach returns \b
712   /// true, then Process::DidAttach() will be called.
713   ///
714   /// \param[in] attach_info
715   ///     The process attach info.
716   ///
717   /// \return
718   ///     Returns \a pid if attaching was successful, or
719   ///     LLDB_INVALID_PROCESS_ID if attaching fails.
720   virtual Status Attach(ProcessAttachInfo &attach_info);
721 
722   /// Attach to a remote system via a URL
723   ///
724   /// \param[in] remote_url
725   ///     The URL format that we are connecting to.
726   ///
727   /// \return
728   ///     Returns an error object.
729   virtual Status ConnectRemote(llvm::StringRef remote_url);
730 
731   bool GetShouldDetach() const { return m_should_detach; }
732 
733   void SetShouldDetach(bool b) { m_should_detach = b; }
734 
735   /// Get the image vector for the current process.
736   ///
737   /// \return
738   ///     The constant reference to the member m_image_tokens.
739   const std::vector<lldb::addr_t>& GetImageTokens() { return m_image_tokens; }
740 
741   /// Get the image information address for the current process.
742   ///
743   /// Some runtimes have system functions that can help dynamic loaders locate
744   /// the dynamic loader information needed to observe shared libraries being
745   /// loaded or unloaded. This function is in the Process interface (as
746   /// opposed to the DynamicLoader interface) to ensure that remote debugging
747   /// can take advantage of this functionality.
748   ///
749   /// \return
750   ///     The address of the dynamic loader information, or
751   ///     LLDB_INVALID_ADDRESS if this is not supported by this
752   ///     interface.
753   virtual lldb::addr_t GetImageInfoAddress();
754 
755   /// Called when the process is about to broadcast a public stop.
756   ///
757   /// There are public and private stops. Private stops are when the process
758   /// is doing things like stepping and the client doesn't need to know about
759   /// starts and stop that implement a thread plan. Single stepping over a
760   /// source line in code might end up being implemented by one or more
761   /// process starts and stops. Public stops are when clients will be notified
762   /// that the process is stopped. These events typically trigger UI updates
763   /// (thread stack frames to be displayed, variables to be displayed, and
764   /// more). This function can be overriden and allows process subclasses to
765   /// do something before the eBroadcastBitStateChanged event is sent to
766   /// public clients.
767   virtual void WillPublicStop() {}
768 
769 /// Register for process and thread notifications.
770 ///
771 /// Clients can register notification callbacks by filling out a
772 /// Process::Notifications structure and calling this function.
773 ///
774 /// \param[in] callbacks
775 ///     A structure that contains the notification baton and
776 ///     callback functions.
777 ///
778 /// \see Process::Notifications
779   void RegisterNotificationCallbacks(const Process::Notifications &callbacks);
780 
781 /// Unregister for process and thread notifications.
782 ///
783 /// Clients can unregister notification callbacks by passing a copy of the
784 /// original baton and callbacks in \a callbacks.
785 ///
786 /// \param[in] callbacks
787 ///     A structure that contains the notification baton and
788 ///     callback functions.
789 ///
790 /// \return
791 ///     Returns \b true if the notification callbacks were
792 ///     successfully removed from the process, \b false otherwise.
793 ///
794 /// \see Process::Notifications
795   bool UnregisterNotificationCallbacks(const Process::Notifications &callbacks);
796 
797   //==================================================================
798   // Built in Process Control functions
799   //==================================================================
800   /// Resumes all of a process's threads as configured using the Thread run
801   /// control functions.
802   ///
803   /// Threads for a process should be updated with one of the run control
804   /// actions (resume, step, or suspend) that they should take when the
805   /// process is resumed. If no run control action is given to a thread it
806   /// will be resumed by default.
807   ///
808   /// This function is not meant to be overridden by Process subclasses. This
809   /// function will take care of disabling any breakpoints that threads may be
810   /// stopped at, single stepping, and re-enabling breakpoints, and enabling
811   /// the basic flow control that the plug-in instances need not worry about.
812   ///
813   /// N.B. This function also sets the Write side of the Run Lock, which is
814   /// unset when the corresponding stop event is pulled off the Public Event
815   /// Queue.  If you need to resume the process without setting the Run Lock,
816   /// use PrivateResume (though you should only do that from inside the
817   /// Process class.
818   ///
819   /// \return
820   ///     Returns an error object.
821   ///
822   /// \see Thread:Resume()
823   /// \see Thread:Step()
824   /// \see Thread:Suspend()
825   Status Resume();
826 
827   Status ResumeSynchronous(Stream *stream);
828 
829   /// Halts a running process.
830   ///
831   /// This function is not meant to be overridden by Process subclasses. If
832   /// the process is successfully halted, a eStateStopped process event with
833   /// GetInterrupted will be broadcast.  If false, we will halt the process
834   /// with no events generated by the halt.
835   ///
836   /// \param[in] clear_thread_plans
837   ///     If true, when the process stops, clear all thread plans.
838   ///
839   /// \param[in] use_run_lock
840   ///     Whether to release the run lock after the stop.
841   ///
842   /// \return
843   ///     Returns an error object.  If the error is empty, the process is
844   ///     halted.
845   ///     otherwise the halt has failed.
846   Status Halt(bool clear_thread_plans = false, bool use_run_lock = true);
847 
848   /// Detaches from a running or stopped process.
849   ///
850   /// This function is not meant to be overridden by Process subclasses.
851   ///
852   /// \param[in] keep_stopped
853   ///     If true, don't resume the process on detach.
854   ///
855   /// \return
856   ///     Returns an error object.
857   Status Detach(bool keep_stopped);
858 
859   /// Kills the process and shuts down all threads that were spawned to track
860   /// and monitor the process.
861   ///
862   /// This function is not meant to be overridden by Process subclasses.
863   ///
864   /// \param[in] force_kill
865   ///     Whether lldb should force a kill (instead of a detach) from
866   ///     the inferior process.  Normally if lldb launched a binary and
867   ///     Destory is called, lldb kills it.  If lldb attached to a
868   ///     running process and Destory is called, lldb detaches.  If
869   ///     this behavior needs to be over-ridden, this is the bool that
870   ///     can be used.
871   ///
872   /// \return
873   ///     Returns an error object.
874   Status Destroy(bool force_kill);
875 
876   /// Sends a process a UNIX signal \a signal.
877   ///
878   /// This function is not meant to be overridden by Process subclasses.
879   ///
880   /// \return
881   ///     Returns an error object.
882   Status Signal(int signal);
883 
884   void SetUnixSignals(lldb::UnixSignalsSP &&signals_sp);
885 
886   const lldb::UnixSignalsSP &GetUnixSignals();
887 
888   //==================================================================
889   // Plug-in Process Control Overrides
890   //==================================================================
891 
892   /// Called before attaching to a process.
893   ///
894   /// Allow Process plug-ins to execute some code before attaching a process.
895   ///
896   /// \return
897   ///     Returns an error object.
898   virtual Status WillAttachToProcessWithID(lldb::pid_t pid) { return Status(); }
899 
900   /// Called before attaching to a process.
901   ///
902   /// Allow Process plug-ins to execute some code before attaching a process.
903   ///
904   /// \return
905   ///     Returns an error object.
906   virtual Status WillAttachToProcessWithName(const char *process_name,
907                                              bool wait_for_launch) {
908     return Status();
909   }
910 
911   /// Attach to a remote system via a URL
912   ///
913   /// \param[in] remote_url
914   ///     The URL format that we are connecting to.
915   ///
916   /// \return
917   ///     Returns an error object.
918   virtual Status DoConnectRemote(llvm::StringRef remote_url) {
919     Status error;
920     error.SetErrorString("remote connections are not supported");
921     return error;
922   }
923 
924   /// Attach to an existing process using a process ID.
925   ///
926   /// \param[in] pid
927   ///     The process ID that we should attempt to attach to.
928   ///
929   /// \param[in] attach_info
930   ///     Information on how to do the attach. For example, GetUserID()
931   ///     will return the uid to attach as.
932   ///
933   /// \return
934   ///     Returns a successful Status attaching was successful, or
935   ///     an appropriate (possibly platform-specific) error code if
936   ///     attaching fails.
937   /// hanming : need flag
938   virtual Status DoAttachToProcessWithID(lldb::pid_t pid,
939                                          const ProcessAttachInfo &attach_info) {
940     Status error;
941     error.SetErrorStringWithFormatv(
942         "error: {0} does not support attaching to a process by pid",
943         GetPluginName());
944     return error;
945   }
946 
947   /// Attach to an existing process using a partial process name.
948   ///
949   /// \param[in] process_name
950   ///     The name of the process to attach to.
951   ///
952   /// \param[in] attach_info
953   ///     Information on how to do the attach. For example, GetUserID()
954   ///     will return the uid to attach as.
955   ///
956   /// \return
957   ///     Returns a successful Status attaching was successful, or
958   ///     an appropriate (possibly platform-specific) error code if
959   ///     attaching fails.
960   virtual Status
961   DoAttachToProcessWithName(const char *process_name,
962                             const ProcessAttachInfo &attach_info) {
963     Status error;
964     error.SetErrorString("attach by name is not supported");
965     return error;
966   }
967 
968   /// Called after attaching a process.
969   ///
970   /// \param[in] process_arch
971   ///     If you can figure out the process architecture after attach, fill it
972   ///     in here.
973   ///
974   /// Allow Process plug-ins to execute some code after attaching to a
975   /// process.
976   virtual void DidAttach(ArchSpec &process_arch) { process_arch.Clear(); }
977 
978   /// Called after a process re-execs itself.
979   ///
980   /// Allow Process plug-ins to execute some code after a process has exec'ed
981   /// itself. Subclasses typically should override DoDidExec() as the
982   /// lldb_private::Process class needs to remove its dynamic loader, runtime,
983   /// ABI and other plug-ins, as well as unload all shared libraries.
984   virtual void DidExec();
985 
986   /// Subclasses of Process should implement this function if they need to do
987   /// anything after a process exec's itself.
988   virtual void DoDidExec() {}
989 
990   /// Called after a reported fork.
991   virtual void DidFork(lldb::pid_t child_pid, lldb::tid_t child_tid) {}
992 
993   /// Called after a reported vfork.
994   virtual void DidVFork(lldb::pid_t child_pid, lldb::tid_t child_tid) {}
995 
996   /// Called after reported vfork completion.
997   virtual void DidVForkDone() {}
998 
999   /// Called before launching to a process.
1000   ///
1001   /// Allow Process plug-ins to execute some code before launching a process.
1002   ///
1003   /// \return
1004   ///     Returns an error object.
1005   virtual Status WillLaunch(Module *module) { return Status(); }
1006 
1007   /// Launch a new process.
1008   ///
1009   /// Launch a new process by spawning a new process using \a exe_module's
1010   /// file as the file to launch. Launch details are provided in \a
1011   /// launch_info.
1012   ///
1013   /// \param[in] exe_module
1014   ///     The module from which to extract the file specification and
1015   ///     launch.
1016   ///
1017   /// \param[in] launch_info
1018   ///     Details (e.g. arguments, stdio redirection, etc.) for the
1019   ///     requested launch.
1020   ///
1021   /// \return
1022   ///     An Status instance indicating success or failure of the
1023   ///     operation.
1024   virtual Status DoLaunch(Module *exe_module, ProcessLaunchInfo &launch_info) {
1025     Status error;
1026     error.SetErrorStringWithFormatv(
1027         "error: {0} does not support launching processes", GetPluginName());
1028     return error;
1029   }
1030 
1031   /// Called after launching a process.
1032   ///
1033   /// Allow Process plug-ins to execute some code after launching a process.
1034   virtual void DidLaunch() {}
1035 
1036   /// Called before resuming to a process.
1037   ///
1038   /// Allow Process plug-ins to execute some code before resuming a process.
1039   ///
1040   /// \return
1041   ///     Returns an error object.
1042   virtual Status WillResume() { return Status(); }
1043 
1044   /// Resumes all of a process's threads as configured using the Thread run
1045   /// control functions.
1046   ///
1047   /// Threads for a process should be updated with one of the run control
1048   /// actions (resume, step, or suspend) that they should take when the
1049   /// process is resumed. If no run control action is given to a thread it
1050   /// will be resumed by default.
1051   ///
1052   /// \return
1053   ///     Returns \b true if the process successfully resumes using
1054   ///     the thread run control actions, \b false otherwise.
1055   ///
1056   /// \see Thread:Resume()
1057   /// \see Thread:Step()
1058   /// \see Thread:Suspend()
1059   virtual Status DoResume() {
1060     Status error;
1061     error.SetErrorStringWithFormatv(
1062         "error: {0} does not support resuming processes", GetPluginName());
1063     return error;
1064   }
1065 
1066   /// Called after resuming a process.
1067   ///
1068   /// Allow Process plug-ins to execute some code after resuming a process.
1069   virtual void DidResume() {}
1070 
1071   /// Called before halting to a process.
1072   ///
1073   /// Allow Process plug-ins to execute some code before halting a process.
1074   ///
1075   /// \return
1076   ///     Returns an error object.
1077   virtual Status WillHalt() { return Status(); }
1078 
1079   /// Halts a running process.
1080   ///
1081   /// DoHalt must produce one and only one stop StateChanged event if it
1082   /// actually stops the process.  If the stop happens through some natural
1083   /// event (for instance a SIGSTOP), then forwarding that event will do.
1084   /// Otherwise, you must generate the event manually. This function is called
1085   /// from the context of the private state thread.
1086   ///
1087   /// \param[out] caused_stop
1088   ///     If true, then this Halt caused the stop, otherwise, the
1089   ///     process was already stopped.
1090   ///
1091   /// \return
1092   ///     Returns \b true if the process successfully halts, \b false
1093   ///     otherwise.
1094   virtual Status DoHalt(bool &caused_stop) {
1095     Status error;
1096     error.SetErrorStringWithFormatv(
1097         "error: {0} does not support halting processes", GetPluginName());
1098     return error;
1099   }
1100 
1101   /// Called after halting a process.
1102   ///
1103   /// Allow Process plug-ins to execute some code after halting a process.
1104   virtual void DidHalt() {}
1105 
1106   /// Called before detaching from a process.
1107   ///
1108   /// Allow Process plug-ins to execute some code before detaching from a
1109   /// process.
1110   ///
1111   /// \return
1112   ///     Returns an error object.
1113   virtual Status WillDetach() { return Status(); }
1114 
1115   /// Detaches from a running or stopped process.
1116   ///
1117   /// \return
1118   ///     Returns \b true if the process successfully detaches, \b
1119   ///     false otherwise.
1120   virtual Status DoDetach(bool keep_stopped) {
1121     Status error;
1122     error.SetErrorStringWithFormatv(
1123         "error: {0} does not support detaching from processes",
1124         GetPluginName());
1125     return error;
1126   }
1127 
1128   /// Called after detaching from a process.
1129   ///
1130   /// Allow Process plug-ins to execute some code after detaching from a
1131   /// process.
1132   virtual void DidDetach() {}
1133 
1134   virtual bool DetachRequiresHalt() { return false; }
1135 
1136   /// Called before sending a signal to a process.
1137   ///
1138   /// Allow Process plug-ins to execute some code before sending a signal to a
1139   /// process.
1140   ///
1141   /// \return
1142   ///     Returns no error if it is safe to proceed with a call to
1143   ///     Process::DoSignal(int), otherwise an error describing what
1144   ///     prevents the signal from being sent.
1145   virtual Status WillSignal() { return Status(); }
1146 
1147   /// Sends a process a UNIX signal \a signal.
1148   ///
1149   /// \return
1150   ///     Returns an error object.
1151   virtual Status DoSignal(int signal) {
1152     Status error;
1153     error.SetErrorStringWithFormatv(
1154         "error: {0} does not support sending signals to processes",
1155         GetPluginName());
1156     return error;
1157   }
1158 
1159   virtual Status WillDestroy() { return Status(); }
1160 
1161   virtual Status DoDestroy() = 0;
1162 
1163   virtual void DidDestroy() {}
1164 
1165   virtual bool DestroyRequiresHalt() { return true; }
1166 
1167   /// Called after sending a signal to a process.
1168   ///
1169   /// Allow Process plug-ins to execute some code after sending a signal to a
1170   /// process.
1171   virtual void DidSignal() {}
1172 
1173   /// Currently called as part of ShouldStop.
1174   /// FIXME: Should really happen when the target stops before the
1175   /// event is taken from the queue...
1176   ///
1177   /// This callback is called as the event
1178   /// is about to be queued up to allow Process plug-ins to execute some code
1179   /// prior to clients being notified that a process was stopped. Common
1180   /// operations include updating the thread list, invalidating any thread
1181   /// state (registers, stack, etc) prior to letting the notification go out.
1182   ///
1183   virtual void RefreshStateAfterStop() = 0;
1184 
1185   /// Sometimes the connection to a process can detect the host OS version
1186   /// that the process is running on. The current platform should be checked
1187   /// first in case the platform is connected, but clients can fall back onto
1188   /// this function if the platform fails to identify the host OS version. The
1189   /// platform should be checked first in case you are running a simulator
1190   /// platform that might itself be running natively, but have different
1191   /// heuristics for figuring out which OS is is emulating.
1192   ///
1193   /// \return
1194   ///     Returns the version tuple of the host OS. In case of failure an empty
1195   ///     VersionTuple is returner.
1196   virtual llvm::VersionTuple GetHostOSVersion() { return llvm::VersionTuple(); }
1197 
1198   /// \return the macCatalyst version of the host OS.
1199   virtual llvm::VersionTuple GetHostMacCatalystVersion() { return {}; }
1200 
1201   /// Get the target object pointer for this module.
1202   ///
1203   /// \return
1204   ///     A Target object pointer to the target that owns this
1205   ///     module.
1206   Target &GetTarget() { return *m_target_wp.lock(); }
1207 
1208   /// Get the const target object pointer for this module.
1209   ///
1210   /// \return
1211   ///     A const Target object pointer to the target that owns this
1212   ///     module.
1213   const Target &GetTarget() const { return *m_target_wp.lock(); }
1214 
1215   /// Flush all data in the process.
1216   ///
1217   /// Flush the memory caches, all threads, and any other cached data in the
1218   /// process.
1219   ///
1220   /// This function can be called after a world changing event like adding a
1221   /// new symbol file, or after the process makes a large context switch (from
1222   /// boot ROM to booted into an OS).
1223   void Flush();
1224 
1225   /// Get accessor for the current process state.
1226   ///
1227   /// \return
1228   ///     The current state of the process.
1229   ///
1230   /// \see lldb::StateType
1231   lldb::StateType GetState();
1232 
1233   lldb::ExpressionResults
1234   RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp,
1235                 const EvaluateExpressionOptions &options,
1236                 DiagnosticManager &diagnostic_manager);
1237 
1238   static const char *ExecutionResultAsCString(lldb::ExpressionResults result);
1239 
1240   void GetStatus(Stream &ostrm);
1241 
1242   size_t GetThreadStatus(Stream &ostrm, bool only_threads_with_stop_reason,
1243                          uint32_t start_frame, uint32_t num_frames,
1244                          uint32_t num_frames_with_source,
1245                          bool stop_format);
1246 
1247   void SendAsyncInterrupt();
1248 
1249   // Notify this process class that modules got loaded.
1250   //
1251   // If subclasses override this method, they must call this version before
1252   // doing anything in the subclass version of the function.
1253   virtual void ModulesDidLoad(ModuleList &module_list);
1254 
1255   /// Retrieve the list of shared libraries that are loaded for this process
1256   /// This method is used on pre-macOS 10.12, pre-iOS 10, pre-tvOS 10, pre-
1257   /// watchOS 3 systems.  The following two methods are for newer versions of
1258   /// those OSes.
1259   ///
1260   /// For certain platforms, the time it takes for the DynamicLoader plugin to
1261   /// read all of the shared libraries out of memory over a slow communication
1262   /// channel may be too long.  In that instance, the gdb-remote stub may be
1263   /// able to retrieve the necessary information about the solibs out of
1264   /// memory and return a concise summary sufficient for the DynamicLoader
1265   /// plugin.
1266   ///
1267   /// \param [in] image_list_address
1268   ///     The address where the table of shared libraries is stored in memory,
1269   ///     if that is appropriate for this platform.  Else this may be
1270   ///     passed as LLDB_INVALID_ADDRESS.
1271   ///
1272   /// \param [in] image_count
1273   ///     The number of shared libraries that are present in this process, if
1274   ///     that is appropriate for this platofrm  Else this may be passed as
1275   ///     LLDB_INVALID_ADDRESS.
1276   ///
1277   /// \return
1278   ///     A StructuredDataSP object which, if non-empty, will contain the
1279   ///     information the DynamicLoader needs to get the initial scan of
1280   ///     solibs resolved.
1281   virtual lldb_private::StructuredData::ObjectSP
1282   GetLoadedDynamicLibrariesInfos(lldb::addr_t image_list_address,
1283                                  lldb::addr_t image_count) {
1284     return StructuredData::ObjectSP();
1285   }
1286 
1287   // On macOS 10.12, tvOS 10, iOS 10, watchOS 3 and newer, debugserver can
1288   // return the full list of loaded shared libraries without needing any input.
1289   virtual lldb_private::StructuredData::ObjectSP
1290   GetLoadedDynamicLibrariesInfos() {
1291     return StructuredData::ObjectSP();
1292   }
1293 
1294   // On macOS 10.12, tvOS 10, iOS 10, watchOS 3 and newer, debugserver can
1295   // return information about binaries given their load addresses.
1296   virtual lldb_private::StructuredData::ObjectSP GetLoadedDynamicLibrariesInfos(
1297       const std::vector<lldb::addr_t> &load_addresses) {
1298     return StructuredData::ObjectSP();
1299   }
1300 
1301   // Get information about the library shared cache, if that exists
1302   //
1303   // On macOS 10.12, tvOS 10, iOS 10, watchOS 3 and newer, debugserver can
1304   // return information about the library shared cache (a set of standard
1305   // libraries that are loaded at the same location for all processes on a
1306   // system) in use.
1307   virtual lldb_private::StructuredData::ObjectSP GetSharedCacheInfo() {
1308     return StructuredData::ObjectSP();
1309   }
1310 
1311   /// Print a user-visible warning about a module being built with
1312   /// optimization
1313   ///
1314   /// Prints a async warning message to the user one time per Module where a
1315   /// function is found that was compiled with optimization, per Process.
1316   ///
1317   /// \param [in] sc
1318   ///     A SymbolContext with eSymbolContextFunction and eSymbolContextModule
1319   ///     pre-computed.
1320   void PrintWarningOptimization(const SymbolContext &sc);
1321 
1322   /// Print a user-visible warning about a function written in a
1323   /// language that this version of LLDB doesn't support.
1324   ///
1325   /// \see PrintWarningOptimization
1326   void PrintWarningUnsupportedLanguage(const SymbolContext &sc);
1327 
1328   virtual bool GetProcessInfo(ProcessInstanceInfo &info);
1329 
1330   /// Get the exit status for a process.
1331   ///
1332   /// \return
1333   ///     The process's return code, or -1 if the current process
1334   ///     state is not eStateExited.
1335   int GetExitStatus();
1336 
1337   /// Get a textual description of what the process exited.
1338   ///
1339   /// \return
1340   ///     The textual description of why the process exited, or nullptr
1341   ///     if there is no description available.
1342   const char *GetExitDescription();
1343 
1344   virtual void DidExit() {}
1345 
1346   lldb::addr_t GetCodeAddressMask();
1347   lldb::addr_t GetDataAddressMask();
1348 
1349   void SetCodeAddressMask(lldb::addr_t code_address_mask) {
1350     m_code_address_mask = code_address_mask;
1351   }
1352 
1353   void SetDataAddressMask(lldb::addr_t data_address_mask) {
1354     m_data_address_mask = data_address_mask;
1355   }
1356 
1357   /// Get the Modification ID of the process.
1358   ///
1359   /// \return
1360   ///     The modification ID of the process.
1361   ProcessModID GetModID() const { return m_mod_id; }
1362 
1363   const ProcessModID &GetModIDRef() const { return m_mod_id; }
1364 
1365   uint32_t GetStopID() const { return m_mod_id.GetStopID(); }
1366 
1367   uint32_t GetResumeID() const { return m_mod_id.GetResumeID(); }
1368 
1369   uint32_t GetLastUserExpressionResumeID() const {
1370     return m_mod_id.GetLastUserExpressionResumeID();
1371   }
1372 
1373   uint32_t GetLastNaturalStopID() const {
1374     return m_mod_id.GetLastNaturalStopID();
1375   }
1376 
1377   lldb::EventSP GetStopEventForStopID(uint32_t stop_id) const {
1378     return m_mod_id.GetStopEventForStopID(stop_id);
1379   }
1380 
1381   /// Set accessor for the process exit status (return code).
1382   ///
1383   /// Sometimes a child exits and the exit can be detected by global functions
1384   /// (signal handler for SIGCHLD for example). This accessor allows the exit
1385   /// status to be set from an external source.
1386   ///
1387   /// Setting this will cause a eStateExited event to be posted to the process
1388   /// event queue.
1389   ///
1390   /// \param[in] exit_status
1391   ///     The value for the process's return code.
1392   ///
1393   /// \see lldb::StateType
1394   virtual bool SetExitStatus(int exit_status, const char *cstr);
1395 
1396   /// Check if a process is still alive.
1397   ///
1398   /// \return
1399   ///     Returns \b true if the process is still valid, \b false
1400   ///     otherwise.
1401   virtual bool IsAlive();
1402 
1403   virtual bool IsLiveDebugSession() const { return true; };
1404 
1405   /// Before lldb detaches from a process, it warns the user that they are
1406   /// about to lose their debug session. In some cases, this warning doesn't
1407   /// need to be emitted -- for instance, with core file debugging where the
1408   /// user can reconstruct the "state" by simply re-running the debugger on
1409   /// the core file.
1410   ///
1411   /// \return
1412   ///     Returns \b true if the user should be warned about detaching from
1413   ///     this process.
1414   virtual bool WarnBeforeDetach() const { return true; }
1415 
1416   /// Read of memory from a process.
1417   ///
1418   /// This function will read memory from the current process's address space
1419   /// and remove any traps that may have been inserted into the memory.
1420   ///
1421   /// This function is not meant to be overridden by Process subclasses, the
1422   /// subclasses should implement Process::DoReadMemory (lldb::addr_t, size_t,
1423   /// void *).
1424   ///
1425   /// \param[in] vm_addr
1426   ///     A virtual load address that indicates where to start reading
1427   ///     memory from.
1428   ///
1429   /// \param[out] buf
1430   ///     A byte buffer that is at least \a size bytes long that
1431   ///     will receive the memory bytes.
1432   ///
1433   /// \param[in] size
1434   ///     The number of bytes to read.
1435   ///
1436   /// \param[out] error
1437   ///     An error that indicates the success or failure of this
1438   ///     operation. If error indicates success (error.Success()),
1439   ///     then the value returned can be trusted, otherwise zero
1440   ///     will be returned.
1441   ///
1442   /// \return
1443   ///     The number of bytes that were actually read into \a buf. If
1444   ///     the returned number is greater than zero, yet less than \a
1445   ///     size, then this function will get called again with \a
1446   ///     vm_addr, \a buf, and \a size updated appropriately. Zero is
1447   ///     returned in the case of an error.
1448   virtual size_t ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size,
1449                             Status &error);
1450 
1451   /// Read of memory from a process.
1452   ///
1453   /// This function has the same semantics of ReadMemory except that it
1454   /// bypasses caching.
1455   ///
1456   /// \param[in] vm_addr
1457   ///     A virtual load address that indicates where to start reading
1458   ///     memory from.
1459   ///
1460   /// \param[out] buf
1461   ///     A byte buffer that is at least \a size bytes long that
1462   ///     will receive the memory bytes.
1463   ///
1464   /// \param[in] size
1465   ///     The number of bytes to read.
1466   ///
1467   /// \param[out] error
1468   ///     An error that indicates the success or failure of this
1469   ///     operation. If error indicates success (error.Success()),
1470   ///     then the value returned can be trusted, otherwise zero
1471   ///     will be returned.
1472   ///
1473   /// \return
1474   ///     The number of bytes that were actually read into \a buf. If
1475   ///     the returned number is greater than zero, yet less than \a
1476   ///     size, then this function will get called again with \a
1477   ///     vm_addr, \a buf, and \a size updated appropriately. Zero is
1478   ///     returned in the case of an error.
1479   size_t ReadMemoryFromInferior(lldb::addr_t vm_addr, void *buf, size_t size,
1480                                 Status &error);
1481 
1482   /// Read a NULL terminated C string from memory
1483   ///
1484   /// This function will read a cache page at a time until the NULL
1485   /// C string terminator is found. It will stop reading if the NULL
1486   /// termination byte isn't found before reading \a cstr_max_len bytes, and
1487   /// the results are always guaranteed to be NULL terminated (at most
1488   /// cstr_max_len - 1 bytes will be read).
1489   size_t ReadCStringFromMemory(lldb::addr_t vm_addr, char *cstr,
1490                                size_t cstr_max_len, Status &error);
1491 
1492   size_t ReadCStringFromMemory(lldb::addr_t vm_addr, std::string &out_str,
1493                                Status &error);
1494 
1495   /// Reads an unsigned integer of the specified byte size from process
1496   /// memory.
1497   ///
1498   /// \param[in] load_addr
1499   ///     A load address of the integer to read.
1500   ///
1501   /// \param[in] byte_size
1502   ///     The size in byte of the integer to read.
1503   ///
1504   /// \param[in] fail_value
1505   ///     The value to return if we fail to read an integer.
1506   ///
1507   /// \param[out] error
1508   ///     An error that indicates the success or failure of this
1509   ///     operation. If error indicates success (error.Success()),
1510   ///     then the value returned can be trusted, otherwise zero
1511   ///     will be returned.
1512   ///
1513   /// \return
1514   ///     The unsigned integer that was read from the process memory
1515   ///     space. If the integer was smaller than a uint64_t, any
1516   ///     unused upper bytes will be zero filled. If the process
1517   ///     byte order differs from the host byte order, the integer
1518   ///     value will be appropriately byte swapped into host byte
1519   ///     order.
1520   uint64_t ReadUnsignedIntegerFromMemory(lldb::addr_t load_addr,
1521                                          size_t byte_size, uint64_t fail_value,
1522                                          Status &error);
1523 
1524   int64_t ReadSignedIntegerFromMemory(lldb::addr_t load_addr, size_t byte_size,
1525                                       int64_t fail_value, Status &error);
1526 
1527   lldb::addr_t ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error);
1528 
1529   bool WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
1530                             Status &error);
1531 
1532   /// Actually do the writing of memory to a process.
1533   ///
1534   /// \param[in] vm_addr
1535   ///     A virtual load address that indicates where to start writing
1536   ///     memory to.
1537   ///
1538   /// \param[in] buf
1539   ///     A byte buffer that is at least \a size bytes long that
1540   ///     contains the data to write.
1541   ///
1542   /// \param[in] size
1543   ///     The number of bytes to write.
1544   ///
1545   /// \param[out] error
1546   ///     An error value in case the memory write fails.
1547   ///
1548   /// \return
1549   ///     The number of bytes that were actually written.
1550   virtual size_t DoWriteMemory(lldb::addr_t vm_addr, const void *buf,
1551                                size_t size, Status &error) {
1552     error.SetErrorStringWithFormatv(
1553         "error: {0} does not support writing to processes", GetPluginName());
1554     return 0;
1555   }
1556 
1557   /// Write all or part of a scalar value to memory.
1558   ///
1559   /// The value contained in \a scalar will be swapped to match the byte order
1560   /// of the process that is being debugged. If \a size is less than the size
1561   /// of scalar, the least significant \a size bytes from scalar will be
1562   /// written. If \a size is larger than the byte size of scalar, then the
1563   /// extra space will be padded with zeros and the scalar value will be
1564   /// placed in the least significant bytes in memory.
1565   ///
1566   /// \param[in] vm_addr
1567   ///     A virtual load address that indicates where to start writing
1568   ///     memory to.
1569   ///
1570   /// \param[in] scalar
1571   ///     The scalar to write to the debugged process.
1572   ///
1573   /// \param[in] size
1574   ///     This value can be smaller or larger than the scalar value
1575   ///     itself. If \a size is smaller than the size of \a scalar,
1576   ///     the least significant bytes in \a scalar will be used. If
1577   ///     \a size is larger than the byte size of \a scalar, then
1578   ///     the extra space will be padded with zeros. If \a size is
1579   ///     set to UINT32_MAX, then the size of \a scalar will be used.
1580   ///
1581   /// \param[out] error
1582   ///     An error value in case the memory write fails.
1583   ///
1584   /// \return
1585   ///     The number of bytes that were actually written.
1586   size_t WriteScalarToMemory(lldb::addr_t vm_addr, const Scalar &scalar,
1587                              size_t size, Status &error);
1588 
1589   size_t ReadScalarIntegerFromMemory(lldb::addr_t addr, uint32_t byte_size,
1590                                      bool is_signed, Scalar &scalar,
1591                                      Status &error);
1592 
1593   /// Write memory to a process.
1594   ///
1595   /// This function will write memory to the current process's address space
1596   /// and maintain any traps that might be present due to software
1597   /// breakpoints.
1598   ///
1599   /// This function is not meant to be overridden by Process subclasses, the
1600   /// subclasses should implement Process::DoWriteMemory (lldb::addr_t,
1601   /// size_t, void *).
1602   ///
1603   /// \param[in] vm_addr
1604   ///     A virtual load address that indicates where to start writing
1605   ///     memory to.
1606   ///
1607   /// \param[in] buf
1608   ///     A byte buffer that is at least \a size bytes long that
1609   ///     contains the data to write.
1610   ///
1611   /// \param[in] size
1612   ///     The number of bytes to write.
1613   ///
1614   /// \return
1615   ///     The number of bytes that were actually written.
1616   // TODO: change this to take an ArrayRef<uint8_t>
1617   size_t WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size,
1618                      Status &error);
1619 
1620   /// Actually allocate memory in the process.
1621   ///
1622   /// This function will allocate memory in the process's address space.  This
1623   /// can't rely on the generic function calling mechanism, since that
1624   /// requires this function.
1625   ///
1626   /// \param[in] size
1627   ///     The size of the allocation requested.
1628   ///
1629   /// \return
1630   ///     The address of the allocated buffer in the process, or
1631   ///     LLDB_INVALID_ADDRESS if the allocation failed.
1632 
1633   virtual lldb::addr_t DoAllocateMemory(size_t size, uint32_t permissions,
1634                                         Status &error) {
1635     error.SetErrorStringWithFormatv(
1636         "error: {0} does not support allocating in the debug process",
1637         GetPluginName());
1638     return LLDB_INVALID_ADDRESS;
1639   }
1640 
1641   virtual Status WriteObjectFile(std::vector<ObjectFile::LoadableData> entries);
1642 
1643   /// The public interface to allocating memory in the process.
1644   ///
1645   /// This function will allocate memory in the process's address space.  This
1646   /// can't rely on the generic function calling mechanism, since that
1647   /// requires this function.
1648   ///
1649   /// \param[in] size
1650   ///     The size of the allocation requested.
1651   ///
1652   /// \param[in] permissions
1653   ///     Or together any of the lldb::Permissions bits.  The permissions on
1654   ///     a given memory allocation can't be changed after allocation.  Note
1655   ///     that a block that isn't set writable can still be written on from
1656   ///     lldb,
1657   ///     just not by the process itself.
1658   ///
1659   /// \param[in,out] error
1660   ///     An error object to fill in if things go wrong.
1661   /// \return
1662   ///     The address of the allocated buffer in the process, or
1663   ///     LLDB_INVALID_ADDRESS if the allocation failed.
1664   lldb::addr_t AllocateMemory(size_t size, uint32_t permissions, Status &error);
1665 
1666   /// The public interface to allocating memory in the process, this also
1667   /// clears the allocated memory.
1668   ///
1669   /// This function will allocate memory in the process's address space.  This
1670   /// can't rely on the generic function calling mechanism, since that
1671   /// requires this function.
1672   ///
1673   /// \param[in] size
1674   ///     The size of the allocation requested.
1675   ///
1676   /// \param[in] permissions
1677   ///     Or together any of the lldb::Permissions bits.  The permissions on
1678   ///     a given memory allocation can't be changed after allocation.  Note
1679   ///     that a block that isn't set writable can still be written on from
1680   ///     lldb,
1681   ///     just not by the process itself.
1682   ///
1683   /// \param[in,out] error
1684   ///     An error object to fill in if things go wrong.
1685   ///
1686   /// \return
1687   ///     The address of the allocated buffer in the process, or
1688   ///     LLDB_INVALID_ADDRESS if the allocation failed.
1689 
1690   lldb::addr_t CallocateMemory(size_t size, uint32_t permissions,
1691                                Status &error);
1692 
1693   /// If this architecture and process supports memory tagging, return a tag
1694   /// manager that can be used to maniupulate those memory tags.
1695   ///
1696   /// \return
1697   ///     Either a valid pointer to a tag manager or an error describing why one
1698   ///     could not be provided.
1699   llvm::Expected<const MemoryTagManager *> GetMemoryTagManager();
1700 
1701   /// Read memory tags for the range addr to addr+len. It is assumed
1702   /// that this range has already been granule aligned.
1703   /// (see MemoryTagManager::MakeTaggedRange)
1704   ///
1705   /// This calls DoReadMemoryTags to do the target specific operations.
1706   ///
1707   /// \param[in] addr
1708   ///     Start of memory range to read tags for.
1709   ///
1710   /// \param[in] len
1711   ///     Length of memory range to read tags for (in bytes).
1712   ///
1713   /// \return
1714   ///     If this architecture or process does not support memory tagging,
1715   ///     an error saying so.
1716   ///     If it does, either the memory tags or an error describing a
1717   ///     failure to read or unpack them.
1718   virtual llvm::Expected<std::vector<lldb::addr_t>>
1719   ReadMemoryTags(lldb::addr_t addr, size_t len);
1720 
1721   /// Write memory tags for a range of memory.
1722   /// (calls DoWriteMemoryTags to do the target specific work)
1723   ///
1724   /// \param[in] addr
1725   ///     The address to start writing tags from. It is assumed that this
1726   ///     address is granule aligned.
1727   ///
1728   /// \param[in] len
1729   ///     The size of the range to write tags for. It is assumed that this
1730   ///     is some multiple of the granule size. This len can be different
1731   ///     from (number of tags * granule size) in the case where you want
1732   ///     lldb-server to repeat tags across the range.
1733   ///
1734   /// \param[in] tags
1735   ///     Allocation tags to be written. Since lldb-server can repeat tags for a
1736   ///     range, the number of tags doesn't have to match the number of granules
1737   ///     in the range. (though most of the time it will)
1738   ///
1739   /// \return
1740   ///     A Status telling you if the write succeeded or not.
1741   Status WriteMemoryTags(lldb::addr_t addr, size_t len,
1742                          const std::vector<lldb::addr_t> &tags);
1743 
1744   /// Resolve dynamically loaded indirect functions.
1745   ///
1746   /// \param[in] address
1747   ///     The load address of the indirect function to resolve.
1748   ///
1749   /// \param[out] error
1750   ///     An error value in case the resolve fails.
1751   ///
1752   /// \return
1753   ///     The address of the resolved function.
1754   ///     LLDB_INVALID_ADDRESS if the resolution failed.
1755   virtual lldb::addr_t ResolveIndirectFunction(const Address *address,
1756                                                Status &error);
1757 
1758   /// Locate the memory region that contains load_addr.
1759   ///
1760   /// If load_addr is within the address space the process has mapped
1761   /// range_info will be filled in with the start and end of that range as
1762   /// well as the permissions for that range and range_info. GetMapped will
1763   /// return true.
1764   ///
1765   /// If load_addr is outside any mapped region then range_info will have its
1766   /// start address set to load_addr and the end of the range will indicate
1767   /// the start of the next mapped range or be set to LLDB_INVALID_ADDRESS if
1768   /// there are no valid mapped ranges between load_addr and the end of the
1769   /// process address space.
1770   ///
1771   /// GetMemoryRegionInfo calls DoGetMemoryRegionInfo. Override that function in
1772   /// process subclasses.
1773   ///
1774   /// \param[in] load_addr
1775   ///     The load address to query the range_info for. May include non
1776   ///     address bits, these will be removed by the the ABI plugin if there is
1777   ///     one.
1778   ///
1779   /// \param[out] range_info
1780   ///     An range_info value containing the details of the range.
1781   ///
1782   /// \return
1783   ///     An error value.
1784   Status GetMemoryRegionInfo(lldb::addr_t load_addr,
1785                              MemoryRegionInfo &range_info);
1786 
1787   /// Obtain all the mapped memory regions within this process.
1788   ///
1789   /// \param[out] region_list
1790   ///     A vector to contain MemoryRegionInfo objects for all mapped
1791   ///     ranges.
1792   ///
1793   /// \return
1794   ///     An error value.
1795   virtual Status
1796   GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list);
1797 
1798   virtual Status GetWatchpointSupportInfo(uint32_t &num) {
1799     Status error;
1800     num = 0;
1801     error.SetErrorString("Process::GetWatchpointSupportInfo() not supported");
1802     return error;
1803   }
1804 
1805   virtual Status GetWatchpointSupportInfo(uint32_t &num, bool &after) {
1806     Status error;
1807     num = 0;
1808     after = true;
1809     error.SetErrorString("Process::GetWatchpointSupportInfo() not supported");
1810     return error;
1811   }
1812 
1813   lldb::ModuleSP ReadModuleFromMemory(const FileSpec &file_spec,
1814                                       lldb::addr_t header_addr,
1815                                       size_t size_to_read = 512);
1816 
1817   /// Attempt to get the attributes for a region of memory in the process.
1818   ///
1819   /// It may be possible for the remote debug server to inspect attributes for
1820   /// a region of memory in the process, such as whether there is a valid page
1821   /// of memory at a given address or whether that page is
1822   /// readable/writable/executable by the process.
1823   ///
1824   /// \param[in] load_addr
1825   ///     The address of interest in the process.
1826   ///
1827   /// \param[out] permissions
1828   ///     If this call returns successfully, this bitmask will have
1829   ///     its Permissions bits set to indicate whether the region is
1830   ///     readable/writable/executable.  If this call fails, the
1831   ///     bitmask values are undefined.
1832   ///
1833   /// \return
1834   ///     Returns true if it was able to determine the attributes of the
1835   ///     memory region.  False if not.
1836   virtual bool GetLoadAddressPermissions(lldb::addr_t load_addr,
1837                                          uint32_t &permissions);
1838 
1839   /// Determines whether executing JIT-compiled code in this process is
1840   /// possible.
1841   ///
1842   /// \return
1843   ///     True if execution of JIT code is possible; false otherwise.
1844   bool CanJIT();
1845 
1846   /// Sets whether executing JIT-compiled code in this process is possible.
1847   ///
1848   /// \param[in] can_jit
1849   ///     True if execution of JIT code is possible; false otherwise.
1850   void SetCanJIT(bool can_jit);
1851 
1852   /// Determines whether executing function calls using the interpreter is
1853   /// possible for this process.
1854   ///
1855   /// \return
1856   ///     True if possible; false otherwise.
1857   bool CanInterpretFunctionCalls() { return m_can_interpret_function_calls; }
1858 
1859   /// Sets whether executing function calls using the interpreter is possible
1860   /// for this process.
1861   ///
1862   /// \param[in] can_interpret_function_calls
1863   ///     True if possible; false otherwise.
1864   void SetCanInterpretFunctionCalls(bool can_interpret_function_calls) {
1865     m_can_interpret_function_calls = can_interpret_function_calls;
1866   }
1867 
1868   /// Sets whether executing code in this process is possible. This could be
1869   /// either through JIT or interpreting.
1870   ///
1871   /// \param[in] can_run_code
1872   ///     True if execution of code is possible; false otherwise.
1873   void SetCanRunCode(bool can_run_code);
1874 
1875   /// Actually deallocate memory in the process.
1876   ///
1877   /// This function will deallocate memory in the process's address space that
1878   /// was allocated with AllocateMemory.
1879   ///
1880   /// \param[in] ptr
1881   ///     A return value from AllocateMemory, pointing to the memory you
1882   ///     want to deallocate.
1883   ///
1884   /// \return
1885   ///     \b true if the memory was deallocated, \b false otherwise.
1886   virtual Status DoDeallocateMemory(lldb::addr_t ptr) {
1887     Status error;
1888     error.SetErrorStringWithFormatv(
1889         "error: {0} does not support deallocating in the debug process",
1890         GetPluginName());
1891     return error;
1892   }
1893 
1894   /// The public interface to deallocating memory in the process.
1895   ///
1896   /// This function will deallocate memory in the process's address space that
1897   /// was allocated with AllocateMemory.
1898   ///
1899   /// \param[in] ptr
1900   ///     A return value from AllocateMemory, pointing to the memory you
1901   ///     want to deallocate.
1902   ///
1903   /// \return
1904   ///     \b true if the memory was deallocated, \b false otherwise.
1905   Status DeallocateMemory(lldb::addr_t ptr);
1906 
1907   /// Get any available STDOUT.
1908   ///
1909   /// Calling this method is a valid operation only if all of the following
1910   /// conditions are true: 1) The process was launched, and not attached to.
1911   /// 2) The process was not launched with eLaunchFlagDisableSTDIO. 3) The
1912   /// process was launched without supplying a valid file path
1913   ///    for STDOUT.
1914   ///
1915   /// Note that the implementation will probably need to start a read thread
1916   /// in the background to make sure that the pipe is drained and the STDOUT
1917   /// buffered appropriately, to prevent the process from deadlocking trying
1918   /// to write to a full buffer.
1919   ///
1920   /// Events will be queued indicating that there is STDOUT available that can
1921   /// be retrieved using this function.
1922   ///
1923   /// \param[out] buf
1924   ///     A buffer that will receive any STDOUT bytes that are
1925   ///     currently available.
1926   ///
1927   /// \param[in] buf_size
1928   ///     The size in bytes for the buffer \a buf.
1929   ///
1930   /// \return
1931   ///     The number of bytes written into \a buf. If this value is
1932   ///     equal to \a buf_size, another call to this function should
1933   ///     be made to retrieve more STDOUT data.
1934   virtual size_t GetSTDOUT(char *buf, size_t buf_size, Status &error);
1935 
1936   /// Get any available STDERR.
1937   ///
1938   /// Calling this method is a valid operation only if all of the following
1939   /// conditions are true: 1) The process was launched, and not attached to.
1940   /// 2) The process was not launched with eLaunchFlagDisableSTDIO. 3) The
1941   /// process was launched without supplying a valid file path
1942   ///    for STDERR.
1943   ///
1944   /// Note that the implementation will probably need to start a read thread
1945   /// in the background to make sure that the pipe is drained and the STDERR
1946   /// buffered appropriately, to prevent the process from deadlocking trying
1947   /// to write to a full buffer.
1948   ///
1949   /// Events will be queued indicating that there is STDERR available that can
1950   /// be retrieved using this function.
1951   ///
1952   /// \param[in] buf
1953   ///     A buffer that will receive any STDERR bytes that are
1954   ///     currently available.
1955   ///
1956   /// \param[out] buf_size
1957   ///     The size in bytes for the buffer \a buf.
1958   ///
1959   /// \return
1960   ///     The number of bytes written into \a buf. If this value is
1961   ///     equal to \a buf_size, another call to this function should
1962   ///     be made to retrieve more STDERR data.
1963   virtual size_t GetSTDERR(char *buf, size_t buf_size, Status &error);
1964 
1965   /// Puts data into this process's STDIN.
1966   ///
1967   /// Calling this method is a valid operation only if all of the following
1968   /// conditions are true: 1) The process was launched, and not attached to.
1969   /// 2) The process was not launched with eLaunchFlagDisableSTDIO. 3) The
1970   /// process was launched without supplying a valid file path
1971   ///    for STDIN.
1972   ///
1973   /// \param[in] buf
1974   ///     A buffer that contains the data to write to the process's STDIN.
1975   ///
1976   /// \param[in] buf_size
1977   ///     The size in bytes for the buffer \a buf.
1978   ///
1979   /// \return
1980   ///     The number of bytes written into \a buf. If this value is
1981   ///     less than \a buf_size, another call to this function should
1982   ///     be made to write the rest of the data.
1983   virtual size_t PutSTDIN(const char *buf, size_t buf_size, Status &error) {
1984     error.SetErrorString("stdin unsupported");
1985     return 0;
1986   }
1987 
1988   /// Get any available profile data.
1989   ///
1990   /// \param[out] buf
1991   ///     A buffer that will receive any profile data bytes that are
1992   ///     currently available.
1993   ///
1994   /// \param[out] buf_size
1995   ///     The size in bytes for the buffer \a buf.
1996   ///
1997   /// \return
1998   ///     The number of bytes written into \a buf. If this value is
1999   ///     equal to \a buf_size, another call to this function should
2000   ///     be made to retrieve more profile data.
2001   virtual size_t GetAsyncProfileData(char *buf, size_t buf_size, Status &error);
2002 
2003   // Process Breakpoints
2004   size_t GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site);
2005 
2006   virtual Status EnableBreakpointSite(BreakpointSite *bp_site) {
2007     Status error;
2008     error.SetErrorStringWithFormatv(
2009         "error: {0} does not support enabling breakpoints", GetPluginName());
2010     return error;
2011   }
2012 
2013   virtual Status DisableBreakpointSite(BreakpointSite *bp_site) {
2014     Status error;
2015     error.SetErrorStringWithFormatv(
2016         "error: {0} does not support disabling breakpoints", GetPluginName());
2017     return error;
2018   }
2019 
2020   // This is implemented completely using the lldb::Process API. Subclasses
2021   // don't need to implement this function unless the standard flow of read
2022   // existing opcode, write breakpoint opcode, verify breakpoint opcode doesn't
2023   // work for a specific process plug-in.
2024   virtual Status EnableSoftwareBreakpoint(BreakpointSite *bp_site);
2025 
2026   // This is implemented completely using the lldb::Process API. Subclasses
2027   // don't need to implement this function unless the standard flow of
2028   // restoring original opcode in memory and verifying the restored opcode
2029   // doesn't work for a specific process plug-in.
2030   virtual Status DisableSoftwareBreakpoint(BreakpointSite *bp_site);
2031 
2032   BreakpointSiteList &GetBreakpointSiteList();
2033 
2034   const BreakpointSiteList &GetBreakpointSiteList() const;
2035 
2036   void DisableAllBreakpointSites();
2037 
2038   Status ClearBreakpointSiteByID(lldb::user_id_t break_id);
2039 
2040   lldb::break_id_t CreateBreakpointSite(const lldb::BreakpointLocationSP &owner,
2041                                         bool use_hardware);
2042 
2043   Status DisableBreakpointSiteByID(lldb::user_id_t break_id);
2044 
2045   Status EnableBreakpointSiteByID(lldb::user_id_t break_id);
2046 
2047   // BreakpointLocations use RemoveOwnerFromBreakpointSite to remove themselves
2048   // from the owner's list of this breakpoint sites.
2049   void RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
2050                                      lldb::user_id_t owner_loc_id,
2051                                      lldb::BreakpointSiteSP &bp_site_sp);
2052 
2053   // Process Watchpoints (optional)
2054   virtual Status EnableWatchpoint(Watchpoint *wp, bool notify = true);
2055 
2056   virtual Status DisableWatchpoint(Watchpoint *wp, bool notify = true);
2057 
2058   // Thread Queries
2059 
2060   /// Update the thread list.
2061   ///
2062   /// This method performs some general clean up before invoking
2063   /// \a DoUpdateThreadList, which should be implemented by each
2064   /// process plugin.
2065   ///
2066   /// \return
2067   ///     \b true if the new thread list could be generated, \b false otherwise.
2068   bool UpdateThreadList(ThreadList &old_thread_list,
2069                         ThreadList &new_thread_list);
2070 
2071   void UpdateThreadListIfNeeded();
2072 
2073   ThreadList &GetThreadList() { return m_thread_list; }
2074 
2075   // When ExtendedBacktraces are requested, the HistoryThreads that are created
2076   // need an owner -- they're saved here in the Process.  The threads in this
2077   // list are not iterated over - driver programs need to request the extended
2078   // backtrace calls starting from a root concrete thread one by one.
2079   ThreadList &GetExtendedThreadList() { return m_extended_thread_list; }
2080 
2081   ThreadList::ThreadIterable Threads() { return m_thread_list.Threads(); }
2082 
2083   uint32_t GetNextThreadIndexID(uint64_t thread_id);
2084 
2085   lldb::ThreadSP CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context);
2086 
2087   // Returns true if an index id has been assigned to a thread.
2088   bool HasAssignedIndexIDToThread(uint64_t sb_thread_id);
2089 
2090   // Given a thread_id, it will assign a more reasonable index id for display
2091   // to the user. If the thread_id has previously been assigned, the same index
2092   // id will be used.
2093   uint32_t AssignIndexIDToThread(uint64_t thread_id);
2094 
2095   // Queue Queries
2096 
2097   void UpdateQueueListIfNeeded();
2098 
2099   QueueList &GetQueueList() {
2100     UpdateQueueListIfNeeded();
2101     return m_queue_list;
2102   }
2103 
2104   QueueList::QueueIterable Queues() {
2105     UpdateQueueListIfNeeded();
2106     return m_queue_list.Queues();
2107   }
2108 
2109   // Event Handling
2110   lldb::StateType GetNextEvent(lldb::EventSP &event_sp);
2111 
2112   // Returns the process state when it is stopped. If specified, event_sp_ptr
2113   // is set to the event which triggered the stop. If wait_always = false, and
2114   // the process is already stopped, this function returns immediately. If the
2115   // process is hijacked and use_run_lock is true (the default), then this
2116   // function releases the run lock after the stop. Setting use_run_lock to
2117   // false will avoid this behavior.
2118   lldb::StateType
2119   WaitForProcessToStop(const Timeout<std::micro> &timeout,
2120                        lldb::EventSP *event_sp_ptr = nullptr,
2121                        bool wait_always = true,
2122                        lldb::ListenerSP hijack_listener = lldb::ListenerSP(),
2123                        Stream *stream = nullptr, bool use_run_lock = true);
2124 
2125   uint32_t GetIOHandlerID() const { return m_iohandler_sync.GetValue(); }
2126 
2127   /// Waits for the process state to be running within a given msec timeout.
2128   ///
2129   /// The main purpose of this is to implement an interlock waiting for
2130   /// HandlePrivateEvent to push an IOHandler.
2131   ///
2132   /// \param[in] timeout
2133   ///     The maximum time length to wait for the process to transition to the
2134   ///     eStateRunning state.
2135   void SyncIOHandler(uint32_t iohandler_id, const Timeout<std::micro> &timeout);
2136 
2137   lldb::StateType GetStateChangedEvents(
2138       lldb::EventSP &event_sp, const Timeout<std::micro> &timeout,
2139       lldb::ListenerSP
2140           hijack_listener); // Pass an empty ListenerSP to use builtin listener
2141 
2142   /// Centralize the code that handles and prints descriptions for process
2143   /// state changes.
2144   ///
2145   /// \param[in] event_sp
2146   ///     The process state changed event
2147   ///
2148   /// \param[in] stream
2149   ///     The output stream to get the state change description
2150   ///
2151   /// \param[in,out] pop_process_io_handler
2152   ///     If this value comes in set to \b true, then pop the Process IOHandler
2153   ///     if needed.
2154   ///     Else this variable will be set to \b true or \b false to indicate if
2155   ///     the process
2156   ///     needs to have its process IOHandler popped.
2157   ///
2158   /// \return
2159   ///     \b true if the event describes a process state changed event, \b false
2160   ///     otherwise.
2161   static bool HandleProcessStateChangedEvent(const lldb::EventSP &event_sp,
2162                                              Stream *stream,
2163                                              bool &pop_process_io_handler);
2164 
2165   Event *PeekAtStateChangedEvents();
2166 
2167   class ProcessEventHijacker {
2168   public:
2169     ProcessEventHijacker(Process &process, lldb::ListenerSP listener_sp)
2170         : m_process(process) {
2171       m_process.HijackProcessEvents(std::move(listener_sp));
2172     }
2173 
2174     ~ProcessEventHijacker() { m_process.RestoreProcessEvents(); }
2175 
2176   private:
2177     Process &m_process;
2178   };
2179 
2180   friend class ProcessEventHijacker;
2181   friend class ProcessProperties;
2182   /// If you need to ensure that you and only you will hear about some public
2183   /// event, then make a new listener, set to listen to process events, and
2184   /// then call this with that listener.  Then you will have to wait on that
2185   /// listener explicitly for events (rather than using the GetNextEvent &
2186   /// WaitFor* calls above.  Be sure to call RestoreProcessEvents when you are
2187   /// done.
2188   ///
2189   /// \param[in] listener_sp
2190   ///     This is the new listener to whom all process events will be delivered.
2191   ///
2192   /// \return
2193   ///     Returns \b true if the new listener could be installed,
2194   ///     \b false otherwise.
2195   bool HijackProcessEvents(lldb::ListenerSP listener_sp);
2196 
2197   /// Restores the process event broadcasting to its normal state.
2198   ///
2199   void RestoreProcessEvents();
2200 
2201   bool StateChangedIsHijackedForSynchronousResume();
2202 
2203   bool StateChangedIsExternallyHijacked();
2204 
2205   const lldb::ABISP &GetABI();
2206 
2207   OperatingSystem *GetOperatingSystem() { return m_os_up.get(); }
2208 
2209   std::vector<LanguageRuntime *> GetLanguageRuntimes();
2210 
2211   LanguageRuntime *GetLanguageRuntime(lldb::LanguageType language);
2212 
2213   bool IsPossibleDynamicValue(ValueObject &in_value);
2214 
2215   bool IsRunning() const;
2216 
2217   DynamicCheckerFunctions *GetDynamicCheckers() {
2218     return m_dynamic_checkers_up.get();
2219   }
2220 
2221   void SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers);
2222 
2223 /// Prune ThreadPlanStacks for unreported threads.
2224 ///
2225 /// \param[in] tid
2226 ///     The tid whose Plan Stack we are seeking to prune.
2227 ///
2228 /// \return
2229 ///     \b true if the TID is found or \b false if not.
2230 bool PruneThreadPlansForTID(lldb::tid_t tid);
2231 
2232 /// Prune ThreadPlanStacks for all unreported threads.
2233 void PruneThreadPlans();
2234 
2235   /// Find the thread plan stack associated with thread with \a tid.
2236   ///
2237   /// \param[in] tid
2238   ///     The tid whose Plan Stack we are seeking.
2239   ///
2240   /// \return
2241   ///     Returns a ThreadPlan if the TID is found or nullptr if not.
2242   ThreadPlanStack *FindThreadPlans(lldb::tid_t tid);
2243 
2244   /// Dump the thread plans associated with thread with \a tid.
2245   ///
2246   /// \param[in,out] strm
2247   ///     The stream to which to dump the output
2248   ///
2249   /// \param[in] tid
2250   ///     The tid whose Plan Stack we are dumping
2251   ///
2252   /// \param[in] desc_level
2253   ///     How much detail to dump
2254   ///
2255   /// \param[in] internal
2256   ///     If \b true dump all plans, if false only user initiated plans
2257   ///
2258   /// \param[in] condense_trivial
2259   ///     If true, only dump a header if the plan stack is just the base plan.
2260   ///
2261   /// \param[in] skip_unreported_plans
2262   ///     If true, only dump a plan if it is currently backed by an
2263   ///     lldb_private::Thread *.
2264   ///
2265   /// \return
2266   ///     Returns \b true if TID was found, \b false otherwise
2267   bool DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
2268                              lldb::DescriptionLevel desc_level, bool internal,
2269                              bool condense_trivial, bool skip_unreported_plans);
2270 
2271   /// Dump all the thread plans for this process.
2272   ///
2273   /// \param[in,out] strm
2274   ///     The stream to which to dump the output
2275   ///
2276   /// \param[in] desc_level
2277   ///     How much detail to dump
2278   ///
2279   /// \param[in] internal
2280   ///     If \b true dump all plans, if false only user initiated plans
2281   ///
2282   /// \param[in] condense_trivial
2283   ///     If true, only dump a header if the plan stack is just the base plan.
2284   ///
2285   /// \param[in] skip_unreported_plans
2286   ///     If true, skip printing all thread plan stacks that don't currently
2287   ///     have a backing lldb_private::Thread *.
2288   void DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
2289                        bool internal, bool condense_trivial,
2290                        bool skip_unreported_plans);
2291 
2292   /// Call this to set the lldb in the mode where it breaks on new thread
2293   /// creations, and then auto-restarts.  This is useful when you are trying
2294   /// to run only one thread, but either that thread or the kernel is creating
2295   /// new threads in the process.  If you stop when the thread is created, you
2296   /// can immediately suspend it, and keep executing only the one thread you
2297   /// intend.
2298   ///
2299   /// \return
2300   ///     Returns \b true if we were able to start up the notification
2301   ///     \b false otherwise.
2302   virtual bool StartNoticingNewThreads() { return true; }
2303 
2304   /// Call this to turn off the stop & notice new threads mode.
2305   ///
2306   /// \return
2307   ///     Returns \b true if we were able to start up the notification
2308   ///     \b false otherwise.
2309   virtual bool StopNoticingNewThreads() { return true; }
2310 
2311   void SetRunningUserExpression(bool on);
2312   void SetRunningUtilityFunction(bool on);
2313 
2314   // lldb::ExecutionContextScope pure virtual functions
2315   lldb::TargetSP CalculateTarget() override;
2316 
2317   lldb::ProcessSP CalculateProcess() override { return shared_from_this(); }
2318 
2319   lldb::ThreadSP CalculateThread() override { return lldb::ThreadSP(); }
2320 
2321   lldb::StackFrameSP CalculateStackFrame() override {
2322     return lldb::StackFrameSP();
2323   }
2324 
2325   void CalculateExecutionContext(ExecutionContext &exe_ctx) override;
2326 
2327   void SetSTDIOFileDescriptor(int file_descriptor);
2328 
2329   // Add a permanent region of memory that should never be read or written to.
2330   // This can be used to ensure that memory reads or writes to certain areas of
2331   // memory never end up being sent to the DoReadMemory or DoWriteMemory
2332   // functions which can improve performance.
2333   void AddInvalidMemoryRegion(const LoadRange &region);
2334 
2335   // Remove a permanent region of memory that should never be read or written
2336   // to that was previously added with AddInvalidMemoryRegion.
2337   bool RemoveInvalidMemoryRange(const LoadRange &region);
2338 
2339   // If the setup code of a thread plan needs to do work that might involve
2340   // calling a function in the target, it should not do that work directly in
2341   // one of the thread plan functions (DidPush/WillResume) because such work
2342   // needs to be handled carefully.  Instead, put that work in a
2343   // PreResumeAction callback, and register it with the process.  It will get
2344   // done before the actual "DoResume" gets called.
2345 
2346   typedef bool(PreResumeActionCallback)(void *);
2347 
2348   void AddPreResumeAction(PreResumeActionCallback callback, void *baton);
2349 
2350   bool RunPreResumeActions();
2351 
2352   void ClearPreResumeActions();
2353 
2354   void ClearPreResumeAction(PreResumeActionCallback callback, void *baton);
2355 
2356   ProcessRunLock &GetRunLock();
2357 
2358   bool CurrentThreadIsPrivateStateThread();
2359 
2360   virtual Status SendEventData(const char *data) {
2361     Status return_error("Sending an event is not supported for this process.");
2362     return return_error;
2363   }
2364 
2365   lldb::ThreadCollectionSP GetHistoryThreads(lldb::addr_t addr);
2366 
2367   lldb::InstrumentationRuntimeSP
2368   GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type);
2369 
2370   /// Try to fetch the module specification for a module with the given file
2371   /// name and architecture. Process sub-classes have to override this method
2372   /// if they support platforms where the Platform object can't get the module
2373   /// spec for all module.
2374   ///
2375   /// \param[in] module_file_spec
2376   ///     The file name of the module to get specification for.
2377   ///
2378   /// \param[in] arch
2379   ///     The architecture of the module to get specification for.
2380   ///
2381   /// \param[out] module_spec
2382   ///     The fetched module specification if the return value is
2383   ///     \b true, unchanged otherwise.
2384   ///
2385   /// \return
2386   ///     Returns \b true if the module spec fetched successfully,
2387   ///     \b false otherwise.
2388   virtual bool GetModuleSpec(const FileSpec &module_file_spec,
2389                              const ArchSpec &arch, ModuleSpec &module_spec);
2390 
2391   virtual void PrefetchModuleSpecs(llvm::ArrayRef<FileSpec> module_file_specs,
2392                                    const llvm::Triple &triple) {}
2393 
2394   /// Try to find the load address of a file.
2395   /// The load address is defined as the address of the first memory region
2396   /// what contains data mapped from the specified file.
2397   ///
2398   /// \param[in] file
2399   ///     The name of the file whose load address we are looking for
2400   ///
2401   /// \param[out] is_loaded
2402   ///     \b True if the file is loaded into the memory and false
2403   ///     otherwise.
2404   ///
2405   /// \param[out] load_addr
2406   ///     The load address of the file if it is loaded into the
2407   ///     processes address space, LLDB_INVALID_ADDRESS otherwise.
2408   virtual Status GetFileLoadAddress(const FileSpec &file, bool &is_loaded,
2409                                     lldb::addr_t &load_addr) {
2410     return Status("Not supported");
2411   }
2412 
2413   size_t AddImageToken(lldb::addr_t image_ptr);
2414 
2415   lldb::addr_t GetImagePtrFromToken(size_t token) const;
2416 
2417   void ResetImageToken(size_t token);
2418 
2419   /// Find the next branch instruction to set a breakpoint on
2420   ///
2421   /// When instruction stepping through a source line, instead of stepping
2422   /// through each instruction, we can put a breakpoint on the next branch
2423   /// instruction (within the range of instructions we are stepping through)
2424   /// and continue the process to there, yielding significant performance
2425   /// benefits over instruction stepping.
2426   ///
2427   /// \param[in] default_stop_addr
2428   ///     The address of the instruction where lldb would put a
2429   ///     breakpoint normally.
2430   ///
2431   /// \param[in] range_bounds
2432   ///     The range which the breakpoint must be contained within.
2433   ///     Typically a source line.
2434   ///
2435   /// \return
2436   ///     The address of the next branch instruction, or the end of
2437   ///     the range provided in range_bounds.  If there are any
2438   ///     problems with the disassembly or getting the instructions,
2439   ///     the original default_stop_addr will be returned.
2440   Address AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
2441                                                 AddressRange range_bounds);
2442 
2443   /// Configure asynchronous structured data feature.
2444   ///
2445   /// Each Process type that supports using an asynchronous StructuredData
2446   /// feature should implement this to enable/disable/configure the feature.
2447   /// The default implementation here will always return an error indiciating
2448   /// the feature is unsupported.
2449   ///
2450   /// StructuredDataPlugin implementations will call this to configure a
2451   /// feature that has been reported as being supported.
2452   ///
2453   /// \param[in] type_name
2454   ///     The StructuredData type name as previously discovered by
2455   ///     the Process-derived instance.
2456   ///
2457   /// \param[in] config_sp
2458   ///     Configuration data for the feature being enabled.  This config
2459   ///     data, which may be null, will be passed along to the feature
2460   ///     to process.  The feature will dictate whether this is a dictionary,
2461   ///     an array or some other object.  If the feature needs to be
2462   ///     set up properly before it can be enabled, then the config should
2463   ///     also take an enable/disable flag.
2464   ///
2465   /// \return
2466   ///     Returns the result of attempting to configure the feature.
2467   virtual Status
2468   ConfigureStructuredData(ConstString type_name,
2469                           const StructuredData::ObjectSP &config_sp);
2470 
2471   /// Broadcasts the given structured data object from the given plugin.
2472   ///
2473   /// StructuredDataPlugin instances can use this to optionally broadcast any
2474   /// of their data if they want to make it available for clients.  The data
2475   /// will come in on the structured data event bit
2476   /// (eBroadcastBitStructuredData).
2477   ///
2478   /// \param[in] object_sp
2479   ///     The structured data object to broadcast.
2480   ///
2481   /// \param[in] plugin_sp
2482   ///     The plugin that will be reported in the event's plugin
2483   ///     parameter.
2484   void BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
2485                                const lldb::StructuredDataPluginSP &plugin_sp);
2486 
2487   /// Returns the StructuredDataPlugin associated with a given type name, if
2488   /// there is one.
2489   ///
2490   /// There will only be a plugin for a given StructuredDataType if the
2491   /// debugged process monitor claims that the feature is supported. This is
2492   /// one way to tell whether a feature is available.
2493   ///
2494   /// \return
2495   ///     The plugin if one is available for the specified feature;
2496   ///     otherwise, returns an empty shared pointer.
2497   lldb::StructuredDataPluginSP
2498   GetStructuredDataPlugin(ConstString type_name) const;
2499 
2500 protected:
2501   friend class Trace;
2502   ///  Get the processor tracing type supported for this process.
2503   ///  Responses might be different depending on the architecture and
2504   ///  capabilities of the underlying OS.
2505   ///
2506   ///  \return
2507   ///     The supported trace type or an \a llvm::Error if tracing is
2508   ///     not supported for the inferior.
2509   virtual llvm::Expected<TraceSupportedResponse> TraceSupported();
2510 
2511   /// Start tracing a process or its threads.
2512   ///
2513   /// \param[in] request
2514   ///     JSON object with the information necessary to start tracing. In the
2515   ///     case of gdb-remote processes, this JSON object should conform to the
2516   ///     jLLDBTraceStart packet.
2517   ///
2518   /// \return
2519   ///     \a llvm::Error::success if the operation was successful, or
2520   ///     \a llvm::Error otherwise.
2521   virtual llvm::Error TraceStart(const llvm::json::Value &request) {
2522     return llvm::make_error<UnimplementedError>();
2523   }
2524 
2525   /// Stop tracing a live process or its threads.
2526   ///
2527   /// \param[in] request
2528   ///     The information determining which threads or process to stop tracing.
2529   ///
2530   /// \return
2531   ///     \a llvm::Error::success if the operation was successful, or
2532   ///     \a llvm::Error otherwise.
2533   virtual llvm::Error TraceStop(const TraceStopRequest &request) {
2534     return llvm::make_error<UnimplementedError>();
2535   }
2536 
2537   /// Get the current tracing state of the process and its threads.
2538   ///
2539   /// \param[in] type
2540   ///     Tracing technology type to consider.
2541   ///
2542   /// \return
2543   ///     A JSON object string with custom data depending on the trace
2544   ///     technology, or an \a llvm::Error in case of errors.
2545   virtual llvm::Expected<std::string> TraceGetState(llvm::StringRef type) {
2546     return llvm::make_error<UnimplementedError>();
2547   }
2548 
2549   /// Get binary data given a trace technology and a data identifier.
2550   ///
2551   /// \param[in] request
2552   ///     Object with the params of the requested data.
2553   ///
2554   /// \return
2555   ///     A vector of bytes with the requested data, or an \a llvm::Error in
2556   ///     case of failures.
2557   virtual llvm::Expected<std::vector<uint8_t>>
2558   TraceGetBinaryData(const TraceGetBinaryDataRequest &request) {
2559     return llvm::make_error<UnimplementedError>();
2560   }
2561 
2562   // This calls a function of the form "void * (*)(void)".
2563   bool CallVoidArgVoidPtrReturn(const Address *address,
2564                                 lldb::addr_t &returned_func,
2565                                 bool trap_exceptions = false);
2566 
2567   /// Update the thread list following process plug-in's specific logic.
2568   ///
2569   /// This method should only be invoked by \a UpdateThreadList.
2570   ///
2571   /// \return
2572   ///     \b true if the new thread list could be generated, \b false otherwise.
2573   virtual bool DoUpdateThreadList(ThreadList &old_thread_list,
2574                                   ThreadList &new_thread_list) = 0;
2575 
2576   /// Actually do the reading of memory from a process.
2577   ///
2578   /// Subclasses must override this function and can return fewer bytes than
2579   /// requested when memory requests are too large. This class will break up
2580   /// the memory requests and keep advancing the arguments along as needed.
2581   ///
2582   /// \param[in] vm_addr
2583   ///     A virtual load address that indicates where to start reading
2584   ///     memory from.
2585   ///
2586   /// \param[in] size
2587   ///     The number of bytes to read.
2588   ///
2589   /// \param[out] buf
2590   ///     A byte buffer that is at least \a size bytes long that
2591   ///     will receive the memory bytes.
2592   ///
2593   /// \param[out] error
2594   ///     An error that indicates the success or failure of this
2595   ///     operation. If error indicates success (error.Success()),
2596   ///     then the value returned can be trusted, otherwise zero
2597   ///     will be returned.
2598   ///
2599   /// \return
2600   ///     The number of bytes that were actually read into \a buf.
2601   ///     Zero is returned in the case of an error.
2602   virtual size_t DoReadMemory(lldb::addr_t vm_addr, void *buf, size_t size,
2603                               Status &error) = 0;
2604 
2605   /// DoGetMemoryRegionInfo is called by GetMemoryRegionInfo after it has
2606   /// removed non address bits from load_addr. Override this method in
2607   /// subclasses of Process.
2608   ///
2609   /// See GetMemoryRegionInfo for details of the logic.
2610   ///
2611   /// \param[in] load_addr
2612   ///     The load address to query the range_info for. (non address bits
2613   ///     removed)
2614   ///
2615   /// \param[out] range_info
2616   ///     An range_info value containing the details of the range.
2617   ///
2618   /// \return
2619   ///     An error value.
2620   virtual Status DoGetMemoryRegionInfo(lldb::addr_t load_addr,
2621                                        MemoryRegionInfo &range_info) {
2622     return Status("Process::DoGetMemoryRegionInfo() not supported");
2623   }
2624 
2625   lldb::StateType GetPrivateState();
2626 
2627   /// The "private" side of resuming a process.  This doesn't alter the state
2628   /// of m_run_lock, but just causes the process to resume.
2629   ///
2630   /// \return
2631   ///     An Status object describing the success or failure of the resume.
2632   Status PrivateResume();
2633 
2634   // Called internally
2635   void CompleteAttach();
2636 
2637   // NextEventAction provides a way to register an action on the next event
2638   // that is delivered to this process.  There is currently only one next event
2639   // action allowed in the process at one time.  If a new "NextEventAction" is
2640   // added while one is already present, the old action will be discarded (with
2641   // HandleBeingUnshipped called after it is discarded.)
2642   //
2643   // If you want to resume the process as a result of a resume action, call
2644   // RequestResume, don't call Resume directly.
2645   class NextEventAction {
2646   public:
2647     enum EventActionResult {
2648       eEventActionSuccess,
2649       eEventActionRetry,
2650       eEventActionExit
2651     };
2652 
2653     NextEventAction(Process *process) : m_process(process) {}
2654 
2655     virtual ~NextEventAction() = default;
2656 
2657     virtual EventActionResult PerformAction(lldb::EventSP &event_sp) = 0;
2658     virtual void HandleBeingUnshipped() {}
2659     virtual EventActionResult HandleBeingInterrupted() = 0;
2660     virtual const char *GetExitString() = 0;
2661     void RequestResume() { m_process->m_resume_requested = true; }
2662 
2663   protected:
2664     Process *m_process;
2665   };
2666 
2667   void SetNextEventAction(Process::NextEventAction *next_event_action) {
2668     if (m_next_event_action_up.get())
2669       m_next_event_action_up->HandleBeingUnshipped();
2670 
2671     m_next_event_action_up.reset(next_event_action);
2672   }
2673 
2674   // This is the completer for Attaching:
2675   class AttachCompletionHandler : public NextEventAction {
2676   public:
2677     AttachCompletionHandler(Process *process, uint32_t exec_count);
2678 
2679     ~AttachCompletionHandler() override = default;
2680 
2681     EventActionResult PerformAction(lldb::EventSP &event_sp) override;
2682     EventActionResult HandleBeingInterrupted() override;
2683     const char *GetExitString() override;
2684 
2685   private:
2686     uint32_t m_exec_count;
2687     std::string m_exit_string;
2688   };
2689 
2690   bool PrivateStateThreadIsValid() const {
2691     lldb::StateType state = m_private_state.GetValue();
2692     return state != lldb::eStateInvalid && state != lldb::eStateDetached &&
2693            state != lldb::eStateExited && m_private_state_thread.IsJoinable();
2694   }
2695 
2696   void ForceNextEventDelivery() { m_force_next_event_delivery = true; }
2697 
2698   /// Loads any plugins associated with asynchronous structured data and maps
2699   /// the relevant supported type name to the plugin.
2700   ///
2701   /// Processes can receive asynchronous structured data from the process
2702   /// monitor.  This method will load and map any structured data plugins that
2703   /// support the given set of supported type names. Later, if any of these
2704   /// features are enabled, the process monitor is free to generate
2705   /// asynchronous structured data.  The data must come in as a single \b
2706   /// StructuredData::Dictionary.  That dictionary must have a string field
2707   /// named 'type', with a value that equals the relevant type name string
2708   /// (one of the values in \b supported_type_names).
2709   ///
2710   /// \param[in] supported_type_names
2711   ///     An array of zero or more type names.  Each must be unique.
2712   ///     For each entry in the list, a StructuredDataPlugin will be
2713   ///     searched for that supports the structured data type name.
2714   void MapSupportedStructuredDataPlugins(
2715       const StructuredData::Array &supported_type_names);
2716 
2717   /// Route the incoming structured data dictionary to the right plugin.
2718   ///
2719   /// The incoming structured data must be a dictionary, and it must have a
2720   /// key named 'type' that stores a string value.  The string value must be
2721   /// the name of the structured data feature that knows how to handle it.
2722   ///
2723   /// \param[in] object_sp
2724   ///     When non-null and pointing to a dictionary, the 'type'
2725   ///     key's string value is used to look up the plugin that
2726   ///     was registered for that structured data type.  It then
2727   ///     calls the following method on the StructuredDataPlugin
2728   ///     instance:
2729   ///
2730   ///     virtual void
2731   ///     HandleArrivalOfStructuredData(Process &process,
2732   ///                                   ConstString type_name,
2733   ///                                   const StructuredData::ObjectSP
2734   ///                                   &object_sp)
2735   ///
2736   /// \return
2737   ///     True if the structured data was routed to a plugin; otherwise,
2738   ///     false.
2739   bool RouteAsyncStructuredData(const StructuredData::ObjectSP object_sp);
2740 
2741   /// Check whether the process supports memory tagging.
2742   ///
2743   /// \return
2744   ///     true if the process supports memory tagging,
2745   ///     false otherwise.
2746   virtual bool SupportsMemoryTagging() { return false; }
2747 
2748   /// Does the final operation to read memory tags. E.g. sending a GDB packet.
2749   /// It assumes that ReadMemoryTags has checked that memory tagging is enabled
2750   /// and has expanded the memory range as needed.
2751   ///
2752   /// \param[in] addr
2753   ///    Start of address range to read memory tags for.
2754   ///
2755   /// \param[in] len
2756   ///    Length of the memory range to read tags for (in bytes).
2757   ///
2758   /// \param[in] type
2759   ///    Type of tags to read (get this from a MemoryTagManager)
2760   ///
2761   /// \return
2762   ///     The packed tag data received from the remote or an error
2763   ///     if the read failed.
2764   virtual llvm::Expected<std::vector<uint8_t>>
2765   DoReadMemoryTags(lldb::addr_t addr, size_t len, int32_t type) {
2766     return llvm::createStringError(
2767         llvm::inconvertibleErrorCode(),
2768         llvm::formatv("{0} does not support reading memory tags",
2769                       GetPluginName()));
2770   }
2771 
2772   /// Does the final operation to write memory tags. E.g. sending a GDB packet.
2773   /// It assumes that WriteMemoryTags has checked that memory tagging is enabled
2774   /// and has packed the tag data.
2775   ///
2776   /// \param[in] addr
2777   ///    Start of address range to write memory tags for.
2778   ///
2779   /// \param[in] len
2780   ///    Length of the memory range to write tags for (in bytes).
2781   ///
2782   /// \param[in] type
2783   ///    Type of tags to read (get this from a MemoryTagManager)
2784   ///
2785   /// \param[in] tags
2786   ///    Packed tags to be written.
2787   ///
2788   /// \return
2789   ///     Status telling you whether the write succeeded.
2790   virtual Status DoWriteMemoryTags(lldb::addr_t addr, size_t len, int32_t type,
2791                                    const std::vector<uint8_t> &tags) {
2792     Status status;
2793     status.SetErrorStringWithFormatv("{0} does not support writing memory tags",
2794                                      GetPluginName());
2795     return status;
2796   }
2797 
2798   // Type definitions
2799   typedef std::map<lldb::LanguageType, lldb::LanguageRuntimeSP>
2800       LanguageRuntimeCollection;
2801 
2802   struct PreResumeCallbackAndBaton {
2803     bool (*callback)(void *);
2804     void *baton;
2805     PreResumeCallbackAndBaton(PreResumeActionCallback in_callback,
2806                               void *in_baton)
2807         : callback(in_callback), baton(in_baton) {}
2808     bool operator== (const PreResumeCallbackAndBaton &rhs) {
2809       return callback == rhs.callback && baton == rhs.baton;
2810     }
2811   };
2812 
2813   using StructuredDataPluginMap =
2814       std::map<ConstString, lldb::StructuredDataPluginSP>;
2815 
2816   // Member variables
2817   std::weak_ptr<Target> m_target_wp; ///< The target that owns this process.
2818   lldb::pid_t m_pid = LLDB_INVALID_PROCESS_ID;
2819   ThreadSafeValue<lldb::StateType> m_public_state;
2820   ThreadSafeValue<lldb::StateType>
2821       m_private_state;                     // The actual state of our process
2822   Broadcaster m_private_state_broadcaster; // This broadcaster feeds state
2823                                            // changed events into the private
2824                                            // state thread's listener.
2825   Broadcaster m_private_state_control_broadcaster; // This is the control
2826                                                    // broadcaster, used to
2827                                                    // pause, resume & stop the
2828                                                    // private state thread.
2829   lldb::ListenerSP m_private_state_listener_sp; // This is the listener for the
2830                                                 // private state thread.
2831   HostThread m_private_state_thread; ///< Thread ID for the thread that watches
2832                                      ///internal state events
2833   ProcessModID m_mod_id; ///< Tracks the state of the process over stops and
2834                          ///other alterations.
2835   uint32_t m_process_unique_id; ///< Each lldb_private::Process class that is
2836                                 ///created gets a unique integer ID that
2837                                 ///increments with each new instance
2838   uint32_t m_thread_index_id;   ///< Each thread is created with a 1 based index
2839                                 ///that won't get re-used.
2840   std::map<uint64_t, uint32_t> m_thread_id_to_index_id_map;
2841   int m_exit_status; ///< The exit status of the process, or -1 if not set.
2842   std::string m_exit_string; ///< A textual description of why a process exited.
2843   std::mutex m_exit_status_mutex; ///< Mutex so m_exit_status m_exit_string can
2844                                   ///be safely accessed from multiple threads
2845   std::recursive_mutex m_thread_mutex;
2846   ThreadList m_thread_list_real; ///< The threads for this process as are known
2847                                  ///to the protocol we are debugging with
2848   ThreadList m_thread_list; ///< The threads for this process as the user will
2849                             ///see them. This is usually the same as
2850   ///< m_thread_list_real, but might be different if there is an OS plug-in
2851   ///creating memory threads
2852   ThreadPlanStackMap m_thread_plans; ///< This is the list of thread plans for
2853                                      /// threads in m_thread_list, as well as
2854                                      /// threads we knew existed, but haven't
2855                                      /// determined that they have died yet.
2856   ThreadList m_extended_thread_list; ///< Owner for extended threads that may be
2857                                      ///generated, cleared on natural stops
2858   uint32_t m_extended_thread_stop_id; ///< The natural stop id when
2859                                       ///extended_thread_list was last updated
2860   QueueList
2861       m_queue_list; ///< The list of libdispatch queues at a given stop point
2862   uint32_t m_queue_list_stop_id; ///< The natural stop id when queue list was
2863                                  ///last fetched
2864   std::vector<Notifications> m_notifications; ///< The list of notifications
2865                                               ///that this process can deliver.
2866   std::vector<lldb::addr_t> m_image_tokens;
2867   lldb::ListenerSP m_listener_sp; ///< Shared pointer to the listener used for
2868                                   ///public events.  Can not be empty.
2869   BreakpointSiteList m_breakpoint_site_list; ///< This is the list of breakpoint
2870                                              ///locations we intend to insert in
2871                                              ///the target.
2872   lldb::DynamicLoaderUP m_dyld_up;
2873   lldb::JITLoaderListUP m_jit_loaders_up;
2874   lldb::DynamicCheckerFunctionsUP m_dynamic_checkers_up; ///< The functions used
2875                                                          /// by the expression
2876                                                          /// parser to validate
2877                                                          /// data that
2878                                                          /// expressions use.
2879   lldb::OperatingSystemUP m_os_up;
2880   lldb::SystemRuntimeUP m_system_runtime_up;
2881   lldb::UnixSignalsSP
2882       m_unix_signals_sp; /// This is the current signal set for this process.
2883   lldb::ABISP m_abi_sp;
2884   lldb::IOHandlerSP m_process_input_reader;
2885   Communication m_stdio_communication;
2886   std::recursive_mutex m_stdio_communication_mutex;
2887   bool m_stdin_forward; /// Remember if stdin must be forwarded to remote debug
2888                         /// server
2889   std::string m_stdout_data;
2890   std::string m_stderr_data;
2891   std::recursive_mutex m_profile_data_comm_mutex;
2892   std::vector<std::string> m_profile_data;
2893   Predicate<uint32_t> m_iohandler_sync;
2894   MemoryCache m_memory_cache;
2895   AllocatedMemoryCache m_allocated_memory_cache;
2896   bool m_should_detach; /// Should we detach if the process object goes away
2897                         /// with an explicit call to Kill or Detach?
2898   LanguageRuntimeCollection m_language_runtimes;
2899   std::recursive_mutex m_language_runtimes_mutex;
2900   InstrumentationRuntimeCollection m_instrumentation_runtimes;
2901   std::unique_ptr<NextEventAction> m_next_event_action_up;
2902   std::vector<PreResumeCallbackAndBaton> m_pre_resume_actions;
2903   ProcessRunLock m_public_run_lock;
2904   ProcessRunLock m_private_run_lock;
2905   bool m_currently_handling_do_on_removals;
2906   bool m_resume_requested; // If m_currently_handling_event or
2907                            // m_currently_handling_do_on_removals are true,
2908                            // Resume will only request a resume, using this
2909                            // flag to check.
2910 
2911   /// This is set at the beginning of Process::Finalize() to stop functions
2912   /// from looking up or creating things during or after a finalize call.
2913   std::atomic<bool> m_finalizing;
2914 
2915   /// Mask for code an data addresses. The default value (0) means no mask is
2916   /// set.  The bits set to 1 indicate bits that are NOT significant for
2917   /// addressing.
2918   /// @{
2919   lldb::addr_t m_code_address_mask = 0;
2920   lldb::addr_t m_data_address_mask = 0;
2921   /// @}
2922 
2923   bool m_clear_thread_plans_on_stop;
2924   bool m_force_next_event_delivery;
2925   lldb::StateType m_last_broadcast_state; /// This helps with the Public event
2926                                           /// coalescing in
2927                                           /// ShouldBroadcastEvent.
2928   std::map<lldb::addr_t, lldb::addr_t> m_resolved_indirect_addresses;
2929   bool m_destroy_in_process;
2930   bool m_can_interpret_function_calls; // Some targets, e.g the OSX kernel,
2931                                        // don't support the ability to modify
2932                                        // the stack.
2933   std::mutex m_run_thread_plan_lock;
2934   StructuredDataPluginMap m_structured_data_plugin_map;
2935 
2936   enum { eCanJITDontKnow = 0, eCanJITYes, eCanJITNo } m_can_jit;
2937 
2938   std::unique_ptr<UtilityFunction> m_dlopen_utility_func_up;
2939   llvm::once_flag m_dlopen_utility_func_flag_once;
2940 
2941   size_t RemoveBreakpointOpcodesFromBuffer(lldb::addr_t addr, size_t size,
2942                                            uint8_t *buf) const;
2943 
2944   void SynchronouslyNotifyStateChanged(lldb::StateType state);
2945 
2946   void SetPublicState(lldb::StateType new_state, bool restarted);
2947 
2948   void SetPrivateState(lldb::StateType state);
2949 
2950   bool StartPrivateStateThread(bool is_secondary_thread = false);
2951 
2952   void StopPrivateStateThread();
2953 
2954   void PausePrivateStateThread();
2955 
2956   void ResumePrivateStateThread();
2957 
2958 private:
2959   // The starts up the private state thread that will watch for events from the
2960   // debugee. Pass true for is_secondary_thread in the case where you have to
2961   // temporarily spin up a secondary state thread to handle events from a hand-
2962   // called function on the primary private state thread.
2963 
2964   lldb::thread_result_t RunPrivateStateThread(bool is_secondary_thread);
2965 
2966 protected:
2967   void HandlePrivateEvent(lldb::EventSP &event_sp);
2968 
2969   Status HaltPrivate();
2970 
2971   lldb::StateType WaitForProcessStopPrivate(lldb::EventSP &event_sp,
2972                                             const Timeout<std::micro> &timeout);
2973 
2974   // This waits for both the state change broadcaster, and the control
2975   // broadcaster. If control_only, it only waits for the control broadcaster.
2976 
2977   bool GetEventsPrivate(lldb::EventSP &event_sp,
2978                         const Timeout<std::micro> &timeout, bool control_only);
2979 
2980   lldb::StateType
2981   GetStateChangedEventsPrivate(lldb::EventSP &event_sp,
2982                                const Timeout<std::micro> &timeout);
2983 
2984   size_t WriteMemoryPrivate(lldb::addr_t addr, const void *buf, size_t size,
2985                             Status &error);
2986 
2987   void AppendSTDOUT(const char *s, size_t len);
2988 
2989   void AppendSTDERR(const char *s, size_t len);
2990 
2991   void BroadcastAsyncProfileData(const std::string &one_profile_data);
2992 
2993   static void STDIOReadThreadBytesReceived(void *baton, const void *src,
2994                                            size_t src_len);
2995 
2996   bool PushProcessIOHandler();
2997 
2998   bool PopProcessIOHandler();
2999 
3000   bool ProcessIOHandlerIsActive();
3001 
3002   bool ProcessIOHandlerExists() const {
3003     return static_cast<bool>(m_process_input_reader);
3004   }
3005 
3006   Status StopForDestroyOrDetach(lldb::EventSP &exit_event_sp);
3007 
3008   virtual Status UpdateAutomaticSignalFiltering();
3009 
3010   void LoadOperatingSystemPlugin(bool flush);
3011 
3012 private:
3013   Status DestroyImpl(bool force_kill);
3014 
3015   /// This is the part of the event handling that for a process event. It
3016   /// decides what to do with the event and returns true if the event needs to
3017   /// be propagated to the user, and false otherwise. If the event is not
3018   /// propagated, this call will most likely set the target to executing
3019   /// again. There is only one place where this call should be called,
3020   /// HandlePrivateEvent. Don't call it from anywhere else...
3021   ///
3022   /// \param[in] event_ptr
3023   ///     This is the event we are handling.
3024   ///
3025   /// \return
3026   ///     Returns \b true if the event should be reported to the
3027   ///     user, \b false otherwise.
3028   bool ShouldBroadcastEvent(Event *event_ptr);
3029 
3030   void ControlPrivateStateThread(uint32_t signal);
3031 
3032   Status LaunchPrivate(ProcessLaunchInfo &launch_info, lldb::StateType &state,
3033                        lldb::EventSP &event_sp);
3034 
3035   Process(const Process &) = delete;
3036   const Process &operator=(const Process &) = delete;
3037 };
3038 
3039 /// RAII guard that should be acquired when an utility function is called within
3040 /// a given process.
3041 class UtilityFunctionScope {
3042   Process *m_process;
3043 
3044 public:
3045   UtilityFunctionScope(Process *p) : m_process(p) {
3046     if (m_process)
3047       m_process->SetRunningUtilityFunction(true);
3048   }
3049   ~UtilityFunctionScope() {
3050     if (m_process)
3051       m_process->SetRunningUtilityFunction(false);
3052   }
3053 };
3054 
3055 } // namespace lldb_private
3056 
3057 #endif // LLDB_TARGET_PROCESS_H
3058