1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLDB_UTILITY_ARCHSPEC_H
10 #define LLDB_UTILITY_ARCHSPEC_H
11 
12 #include "lldb/Utility/CompletionRequest.h"
13 #include "lldb/Utility/ConstString.h"
14 #include "lldb/lldb-enumerations.h"
15 #include "lldb/lldb-forward.h"
16 #include "lldb/lldb-private-enumerations.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include <cstddef>
20 #include <cstdint>
21 #include <string>
22 
23 namespace lldb_private {
24 
25 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
26 /// specification class.
27 ///
28 /// A class designed to be created from a cpu type and subtype, a
29 /// string representation, or an llvm::Triple.  Keeping all of the conversions
30 /// of strings to architecture enumeration values confined to this class
31 /// allows new architecture support to be added easily.
32 class ArchSpec {
33 public:
34   enum MIPSSubType {
35     eMIPSSubType_unknown,
36     eMIPSSubType_mips32,
37     eMIPSSubType_mips32r2,
38     eMIPSSubType_mips32r6,
39     eMIPSSubType_mips32el,
40     eMIPSSubType_mips32r2el,
41     eMIPSSubType_mips32r6el,
42     eMIPSSubType_mips64,
43     eMIPSSubType_mips64r2,
44     eMIPSSubType_mips64r6,
45     eMIPSSubType_mips64el,
46     eMIPSSubType_mips64r2el,
47     eMIPSSubType_mips64r6el,
48   };
49 
50   // Masks for the ases word of an ABI flags structure.
51   enum MIPSASE {
52     eMIPSAse_dsp = 0x00000001,       // DSP ASE
53     eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
54     eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
55     eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
56     eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
57     eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
58     eMIPSAse_mt = 0x00000040,        // MT ASE
59     eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
60     eMIPSAse_virt = 0x00000100,      // VZ ASE
61     eMIPSAse_msa = 0x00000200,       // MSA ASE
62     eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
63     eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
64     eMIPSAse_xpa = 0x00001000,       // XPA ASE
65     eMIPSAse_mask = 0x00001fff,
66     eMIPSABI_O32 = 0x00002000,
67     eMIPSABI_N32 = 0x00004000,
68     eMIPSABI_N64 = 0x00008000,
69     eMIPSABI_O64 = 0x00020000,
70     eMIPSABI_EABI32 = 0x00040000,
71     eMIPSABI_EABI64 = 0x00080000,
72     eMIPSABI_mask = 0x000ff000
73   };
74 
75   // MIPS Floating point ABI Values
76   enum MIPS_ABI_FP {
77     eMIPS_ABI_FP_ANY = 0x00000000,
78     eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
79     eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
80     eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
81     eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
82     eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
83     eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
84     eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
85     eMIPS_ABI_FP_mask = 0x00700000
86   };
87 
88   // ARM specific e_flags
89   enum ARMeflags {
90     eARM_abi_soft_float = 0x00000200,
91     eARM_abi_hard_float = 0x00000400
92   };
93 
94   enum RISCVeflags {
95     eRISCV_rvc              = 0x00000001, /// RVC, +c
96     eRISCV_float_abi_soft   = 0x00000000, /// soft float
97     eRISCV_float_abi_single = 0x00000002, /// single precision floating point, +f
98     eRISCV_float_abi_double = 0x00000004, /// double precision floating point, +d
99     eRISCV_float_abi_quad   = 0x00000006, /// quad precision floating point, +q
100     eRISCV_float_abi_mask   = 0x00000006,
101     eRISCV_rve              = 0x00000008, /// RVE, +e
102     eRISCV_tso              = 0x00000010, /// RVTSO (total store ordering)
103   };
104 
105   enum RISCVSubType {
106     eRISCVSubType_unknown,
107     eRISCVSubType_riscv32,
108     eRISCVSubType_riscv64,
109   };
110 
111   enum LoongArchSubType {
112     eLoongArchSubType_unknown,
113     eLoongArchSubType_loongarch32,
114     eLoongArchSubType_loongarch64,
115   };
116 
117   enum Core {
118     eCore_arm_generic,
119     eCore_arm_armv4,
120     eCore_arm_armv4t,
121     eCore_arm_armv5,
122     eCore_arm_armv5e,
123     eCore_arm_armv5t,
124     eCore_arm_armv6,
125     eCore_arm_armv6m,
126     eCore_arm_armv7,
127     eCore_arm_armv7l,
128     eCore_arm_armv7f,
129     eCore_arm_armv7s,
130     eCore_arm_armv7k,
131     eCore_arm_armv7m,
132     eCore_arm_armv7em,
133     eCore_arm_xscale,
134 
135     eCore_thumb,
136     eCore_thumbv4t,
137     eCore_thumbv5,
138     eCore_thumbv5e,
139     eCore_thumbv6,
140     eCore_thumbv6m,
141     eCore_thumbv7,
142     eCore_thumbv7s,
143     eCore_thumbv7k,
144     eCore_thumbv7f,
145     eCore_thumbv7m,
146     eCore_thumbv7em,
147     eCore_arm_arm64,
148     eCore_arm_armv8,
149     eCore_arm_armv8l,
150     eCore_arm_arm64e,
151     eCore_arm_arm64_32,
152     eCore_arm_aarch64,
153 
154     eCore_mips32,
155     eCore_mips32r2,
156     eCore_mips32r3,
157     eCore_mips32r5,
158     eCore_mips32r6,
159     eCore_mips32el,
160     eCore_mips32r2el,
161     eCore_mips32r3el,
162     eCore_mips32r5el,
163     eCore_mips32r6el,
164     eCore_mips64,
165     eCore_mips64r2,
166     eCore_mips64r3,
167     eCore_mips64r5,
168     eCore_mips64r6,
169     eCore_mips64el,
170     eCore_mips64r2el,
171     eCore_mips64r3el,
172     eCore_mips64r5el,
173     eCore_mips64r6el,
174 
175     eCore_ppc_generic,
176     eCore_ppc_ppc601,
177     eCore_ppc_ppc602,
178     eCore_ppc_ppc603,
179     eCore_ppc_ppc603e,
180     eCore_ppc_ppc603ev,
181     eCore_ppc_ppc604,
182     eCore_ppc_ppc604e,
183     eCore_ppc_ppc620,
184     eCore_ppc_ppc750,
185     eCore_ppc_ppc7400,
186     eCore_ppc_ppc7450,
187     eCore_ppc_ppc970,
188 
189     eCore_ppc64le_generic,
190     eCore_ppc64_generic,
191     eCore_ppc64_ppc970_64,
192 
193     eCore_s390x_generic,
194 
195     eCore_sparc_generic,
196 
197     eCore_sparc9_generic,
198 
199     eCore_x86_32_i386,
200     eCore_x86_32_i486,
201     eCore_x86_32_i486sx,
202     eCore_x86_32_i686,
203 
204     eCore_x86_64_x86_64,
205     eCore_x86_64_x86_64h, // Haswell enabled x86_64
206     eCore_hexagon_generic,
207     eCore_hexagon_hexagonv4,
208     eCore_hexagon_hexagonv5,
209 
210     eCore_riscv32,
211     eCore_riscv64,
212 
213     eCore_loongarch32,
214     eCore_loongarch64,
215 
216     eCore_uknownMach32,
217     eCore_uknownMach64,
218 
219     eCore_arc, // little endian ARC
220 
221     eCore_avr,
222 
223     eCore_wasm32,
224 
225     kNumCores,
226 
227     kCore_invalid,
228     // The following constants are used for wildcard matching only
229     kCore_any,
230     kCore_arm_any,
231     kCore_ppc_any,
232     kCore_ppc64_any,
233     kCore_x86_32_any,
234     kCore_x86_64_any,
235     kCore_hexagon_any,
236 
237     kCore_arm_first = eCore_arm_generic,
238     kCore_arm_last = eCore_arm_xscale,
239 
240     kCore_thumb_first = eCore_thumb,
241     kCore_thumb_last = eCore_thumbv7em,
242 
243     kCore_ppc_first = eCore_ppc_generic,
244     kCore_ppc_last = eCore_ppc_ppc970,
245 
246     kCore_ppc64_first = eCore_ppc64_generic,
247     kCore_ppc64_last = eCore_ppc64_ppc970_64,
248 
249     kCore_x86_32_first = eCore_x86_32_i386,
250     kCore_x86_32_last = eCore_x86_32_i686,
251 
252     kCore_x86_64_first = eCore_x86_64_x86_64,
253     kCore_x86_64_last = eCore_x86_64_x86_64h,
254 
255     kCore_hexagon_first = eCore_hexagon_generic,
256     kCore_hexagon_last = eCore_hexagon_hexagonv5,
257 
258     kCore_mips32_first = eCore_mips32,
259     kCore_mips32_last = eCore_mips32r6,
260 
261     kCore_mips32el_first = eCore_mips32el,
262     kCore_mips32el_last = eCore_mips32r6el,
263 
264     kCore_mips64_first = eCore_mips64,
265     kCore_mips64_last = eCore_mips64r6,
266 
267     kCore_mips64el_first = eCore_mips64el,
268     kCore_mips64el_last = eCore_mips64r6el,
269 
270     kCore_mips_first = eCore_mips32,
271     kCore_mips_last = eCore_mips64r6el
272 
273   };
274 
275   /// Default constructor.
276   ///
277   /// Default constructor that initializes the object with invalid cpu type
278   /// and subtype values.
279   ArchSpec();
280 
281   /// Constructor over triple.
282   ///
283   /// Constructs an ArchSpec with properties consistent with the given Triple.
284   explicit ArchSpec(const llvm::Triple &triple);
285   explicit ArchSpec(const char *triple_cstr);
286   explicit ArchSpec(llvm::StringRef triple_str);
287   /// Constructor over architecture name.
288   ///
289   /// Constructs an ArchSpec with properties consistent with the given object
290   /// type and architecture name.
291   explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
292                     uint32_t cpu_subtype);
293 
294   /// Destructor.
295   ~ArchSpec();
296 
297   /// Returns true if the OS, vendor and environment fields of the triple are
298   /// unset. The triple is expected to be normalized
299   /// (llvm::Triple::normalize).
300   static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
301 
302   static void ListSupportedArchNames(StringList &list);
303   static void AutoComplete(CompletionRequest &request);
304 
305   /// Returns a static string representing the current architecture.
306   ///
307   /// \return A static string corresponding to the current
308   ///         architecture.
309   const char *GetArchitectureName() const;
310 
311   /// if MIPS architecture return true.
312   ///
313   ///  \return a boolean value.
314   bool IsMIPS() const;
315 
316   /// Returns a string representing current architecture as a target CPU for
317   /// tools like compiler, disassembler etc.
318   ///
319   /// \return A string representing target CPU for the current
320   ///         architecture.
321   std::string GetClangTargetCPU() const;
322 
323   /// Return a string representing target application ABI.
324   ///
325   /// \return A string representing target application ABI.
326   std::string GetTargetABI() const;
327 
328   /// Clears the object state.
329   ///
330   /// Clears the object state back to a default invalid state.
331   void Clear();
332 
333   /// Returns the size in bytes of an address of the current architecture.
334   ///
335   /// \return The byte size of an address of the current architecture.
336   uint32_t GetAddressByteSize() const;
337 
338   /// Returns a machine family for the current architecture.
339   ///
340   /// \return An LLVM arch type.
341   llvm::Triple::ArchType GetMachine() const;
342 
343   /// Returns the distribution id of the architecture.
344   ///
345   /// This will be something like "ubuntu", "fedora", etc. on Linux.
346   ///
347   /// \return A ConstString ref containing the distribution id,
348   ///         potentially empty.
349   ConstString GetDistributionId() const;
350 
351   /// Set the distribution id of the architecture.
352   ///
353   /// This will be something like "ubuntu", "fedora", etc. on Linux. This
354   /// should be the same value returned by HostInfo::GetDistributionId ().
355   void SetDistributionId(const char *distribution_id);
356 
357   /// Tests if this ArchSpec is valid.
358   ///
359   /// \return True if the current architecture is valid, false
360   ///         otherwise.
361   bool IsValid() const {
362     return m_core >= eCore_arm_generic && m_core < kNumCores;
363   }
364   explicit operator bool() const { return IsValid(); }
365 
366   bool TripleVendorWasSpecified() const {
367     return !m_triple.getVendorName().empty();
368   }
369 
370   bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
371 
372   bool TripleEnvironmentWasSpecified() const {
373     return m_triple.hasEnvironment();
374   }
375 
376   /// Merges fields from another ArchSpec into this ArchSpec.
377   ///
378   /// This will use the supplied ArchSpec to fill in any fields of the triple
379   /// in this ArchSpec which were unspecified.  This can be used to refine a
380   /// generic ArchSpec with a more specific one. For example, if this
381   /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
382   /// have a triple which is x64-pc-windows-msvc, then merging that triple
383   /// into this one will result in the triple i386-pc-windows-msvc.
384   ///
385   void MergeFrom(const ArchSpec &other);
386 
387   /// Change the architecture object type, CPU type and OS type.
388   ///
389   /// \param[in] arch_type The object type of this ArchSpec.
390   ///
391   /// \param[in] cpu The required CPU type.
392   ///
393   /// \param[in] os The optional OS type
394   /// The default value of 0 was chosen to from the ELF spec value
395   /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
396   /// format uses this parameter and 0 does not work, use a value over
397   /// 255 because in the ELF header this is value is only a byte.
398   ///
399   /// \return True if the object, and CPU were successfully set.
400   ///
401   /// As a side effect, the vendor value is usually set to unknown. The
402   /// exceptions are
403   ///   aarch64-apple-ios
404   ///   arm-apple-ios
405   ///   thumb-apple-ios
406   ///   x86-apple-
407   ///   x86_64-apple-
408   ///
409   /// As a side effect, the os value is usually set to unknown The exceptions
410   /// are
411   ///   *-*-aix
412   ///   aarch64-apple-ios
413   ///   arm-apple-ios
414   ///   thumb-apple-ios
415   ///   powerpc-apple-darwin
416   ///   *-*-freebsd
417   ///   *-*-linux
418   ///   *-*-netbsd
419   ///   *-*-openbsd
420   ///   *-*-solaris
421   bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
422                        uint32_t os = 0);
423 
424   /// Returns the byte order for the architecture specification.
425   ///
426   /// \return The endian enumeration for the current endianness of
427   ///     the architecture specification
428   lldb::ByteOrder GetByteOrder() const;
429 
430   /// Sets this ArchSpec's byte order.
431   ///
432   /// In the common case there is no need to call this method as the byte
433   /// order can almost always be determined by the architecture. However, many
434   /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
435   /// byte order may be incorrect.
436   void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
437 
438   uint32_t GetMinimumOpcodeByteSize() const;
439 
440   uint32_t GetMaximumOpcodeByteSize() const;
441 
442   Core GetCore() const { return m_core; }
443 
444   uint32_t GetMachOCPUType() const;
445 
446   uint32_t GetMachOCPUSubType() const;
447 
448   /// Architecture data byte width accessor
449   ///
450   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
451   /// from the Architecture's data bus
452   uint32_t GetDataByteSize() const;
453 
454   /// Architecture code byte width accessor
455   ///
456   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
457   /// from the Architecture's code bus
458   uint32_t GetCodeByteSize() const;
459 
460   /// Architecture triple accessor.
461   ///
462   /// \return A triple describing this ArchSpec.
463   llvm::Triple &GetTriple() { return m_triple; }
464 
465   /// Architecture triple accessor.
466   ///
467   /// \return A triple describing this ArchSpec.
468   const llvm::Triple &GetTriple() const { return m_triple; }
469 
470   void DumpTriple(llvm::raw_ostream &s) const;
471 
472   /// Architecture triple setter.
473   ///
474   /// Configures this ArchSpec according to the given triple.  If the triple
475   /// has unknown components in all of the vendor, OS, and the optional
476   /// environment field (i.e. "i386-unknown-unknown") then default values are
477   /// taken from the host.  Architecture and environment components are used
478   /// to further resolve the CPU type and subtype, endian characteristics,
479   /// etc.
480   ///
481   /// \return A triple describing this ArchSpec.
482   bool SetTriple(const llvm::Triple &triple);
483 
484   bool SetTriple(llvm::StringRef triple_str);
485 
486   /// Returns the default endianness of the architecture.
487   ///
488   /// \return The endian enumeration for the default endianness of
489   ///         the architecture.
490   lldb::ByteOrder GetDefaultEndian() const;
491 
492   /// Returns true if 'char' is a signed type by default in the architecture
493   /// false otherwise
494   ///
495   /// \return True if 'char' is a signed type by default on the
496   ///         architecture and false otherwise.
497   bool CharIsSignedByDefault() const;
498 
499   enum MatchType : bool { CompatibleMatch, ExactMatch };
500 
501   /// Compare this ArchSpec to another ArchSpec. \a match specifies the kind of
502   /// matching that is to be done. CompatibleMatch requires only a compatible
503   /// cpu type (e.g., armv7s is compatible with armv7). ExactMatch requires an
504   /// exact match (armv7s is not an exact match with armv7).
505   ///
506   /// \return true if the two ArchSpecs match.
507   bool IsMatch(const ArchSpec &rhs, MatchType match) const;
508 
509   /// Shorthand for IsMatch(rhs, ExactMatch).
510   bool IsExactMatch(const ArchSpec &rhs) const {
511     return IsMatch(rhs, ExactMatch);
512   }
513 
514   /// Shorthand for IsMatch(rhs, CompatibleMatch).
515   bool IsCompatibleMatch(const ArchSpec &rhs) const {
516     return IsMatch(rhs, CompatibleMatch);
517   }
518 
519   bool IsFullySpecifiedTriple() const;
520 
521   void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different,
522                               bool &vendor_different, bool &os_different,
523                               bool &os_version_different,
524                               bool &env_different) const;
525 
526   /// Detect whether this architecture uses thumb code exclusively
527   ///
528   /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
529   /// the Thumb instructions, never Arm.  We should normally pick up
530   /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
531   /// on each function - but when doing bare-boards low level debugging
532   /// (especially common with these embedded processors), we may not have
533   /// those things easily accessible.
534   ///
535   /// \return true if this is an arm ArchSpec which can only execute Thumb
536   ///         instructions
537   bool IsAlwaysThumbInstructions() const;
538 
539   uint32_t GetFlags() const { return m_flags; }
540 
541   void SetFlags(uint32_t flags) { m_flags = flags; }
542 
543   void SetFlags(const std::string &elf_abi);
544 
545 protected:
546   void UpdateCore();
547 
548   llvm::Triple m_triple;
549   Core m_core = kCore_invalid;
550   lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
551 
552   // Additional arch flags which we cannot get from triple and core For MIPS
553   // these are application specific extensions like micromips, mips16 etc.
554   uint32_t m_flags = 0;
555 
556   ConstString m_distribution_id;
557 
558   // Called when m_def or m_entry are changed.  Fills in all remaining members
559   // with default values.
560   void CoreUpdated(bool update_triple);
561 };
562 
563 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
564 /// operator.
565 ///
566 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
567 ///
568 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
569 /// rhs The Left Hand Side ArchSpec object to compare.
570 ///
571 /// \return true if \a lhs is less than \a rhs
572 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
573 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
574 
575 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
576 
577 } // namespace lldb_private
578 
579 #endif // LLDB_UTILITY_ARCHSPEC_H
580