1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/ValueObjectMemory.h"
14 #include "lldb/Expression/ExpressionVariable.h"
15 #include "lldb/Host/OptionParser.h"
16 #include "lldb/Interpreter/CommandOptionArgumentTable.h"
17 #include "lldb/Interpreter/CommandReturnObject.h"
18 #include "lldb/Interpreter/OptionArgParser.h"
19 #include "lldb/Interpreter/OptionGroupFormat.h"
20 #include "lldb/Interpreter/OptionGroupMemoryTag.h"
21 #include "lldb/Interpreter/OptionGroupOutputFile.h"
22 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
23 #include "lldb/Interpreter/OptionValueLanguage.h"
24 #include "lldb/Interpreter/OptionValueString.h"
25 #include "lldb/Interpreter/Options.h"
26 #include "lldb/Symbol/SymbolFile.h"
27 #include "lldb/Symbol/TypeList.h"
28 #include "lldb/Target/ABI.h"
29 #include "lldb/Target/Language.h"
30 #include "lldb/Target/MemoryHistory.h"
31 #include "lldb/Target/MemoryRegionInfo.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/StackFrame.h"
34 #include "lldb/Target/Target.h"
35 #include "lldb/Target/Thread.h"
36 #include "lldb/Utility/Args.h"
37 #include "lldb/Utility/DataBufferHeap.h"
38 #include "lldb/Utility/StreamString.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <cinttypes>
41 #include <memory>
42 #include <optional>
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 
47 #define LLDB_OPTIONS_memory_read
48 #include "CommandOptions.inc"
49 
50 class OptionGroupReadMemory : public OptionGroup {
51 public:
52   OptionGroupReadMemory()
53       : m_num_per_line(1, 1), m_offset(0, 0),
54         m_language_for_type(eLanguageTypeUnknown) {}
55 
56   ~OptionGroupReadMemory() override = default;
57 
58   llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
59     return llvm::ArrayRef(g_memory_read_options);
60   }
61 
62   Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
63                         ExecutionContext *execution_context) override {
64     Status error;
65     const int short_option = g_memory_read_options[option_idx].short_option;
66 
67     switch (short_option) {
68     case 'l':
69       error = m_num_per_line.SetValueFromString(option_value);
70       if (m_num_per_line.GetCurrentValue() == 0)
71         error.SetErrorStringWithFormat(
72             "invalid value for --num-per-line option '%s'",
73             option_value.str().c_str());
74       break;
75 
76     case 'b':
77       m_output_as_binary = true;
78       break;
79 
80     case 't':
81       error = m_view_as_type.SetValueFromString(option_value);
82       break;
83 
84     case 'r':
85       m_force = true;
86       break;
87 
88     case 'x':
89       error = m_language_for_type.SetValueFromString(option_value);
90       break;
91 
92     case 'E':
93       error = m_offset.SetValueFromString(option_value);
94       break;
95 
96     default:
97       llvm_unreachable("Unimplemented option");
98     }
99     return error;
100   }
101 
102   void OptionParsingStarting(ExecutionContext *execution_context) override {
103     m_num_per_line.Clear();
104     m_output_as_binary = false;
105     m_view_as_type.Clear();
106     m_force = false;
107     m_offset.Clear();
108     m_language_for_type.Clear();
109   }
110 
111   Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
112     Status error;
113     OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
114     OptionValueUInt64 &count_value = format_options.GetCountValue();
115     const bool byte_size_option_set = byte_size_value.OptionWasSet();
116     const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
117     const bool count_option_set = format_options.GetCountValue().OptionWasSet();
118 
119     switch (format_options.GetFormat()) {
120     default:
121       break;
122 
123     case eFormatBoolean:
124       if (!byte_size_option_set)
125         byte_size_value = 1;
126       if (!num_per_line_option_set)
127         m_num_per_line = 1;
128       if (!count_option_set)
129         format_options.GetCountValue() = 8;
130       break;
131 
132     case eFormatCString:
133       break;
134 
135     case eFormatInstruction:
136       if (count_option_set)
137         byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
138       m_num_per_line = 1;
139       break;
140 
141     case eFormatAddressInfo:
142       if (!byte_size_option_set)
143         byte_size_value = target->GetArchitecture().GetAddressByteSize();
144       m_num_per_line = 1;
145       if (!count_option_set)
146         format_options.GetCountValue() = 8;
147       break;
148 
149     case eFormatPointer:
150       byte_size_value = target->GetArchitecture().GetAddressByteSize();
151       if (!num_per_line_option_set)
152         m_num_per_line = 4;
153       if (!count_option_set)
154         format_options.GetCountValue() = 8;
155       break;
156 
157     case eFormatBinary:
158     case eFormatFloat:
159     case eFormatOctal:
160     case eFormatDecimal:
161     case eFormatEnum:
162     case eFormatUnicode8:
163     case eFormatUnicode16:
164     case eFormatUnicode32:
165     case eFormatUnsigned:
166     case eFormatHexFloat:
167       if (!byte_size_option_set)
168         byte_size_value = 4;
169       if (!num_per_line_option_set)
170         m_num_per_line = 1;
171       if (!count_option_set)
172         format_options.GetCountValue() = 8;
173       break;
174 
175     case eFormatBytes:
176     case eFormatBytesWithASCII:
177       if (byte_size_option_set) {
178         if (byte_size_value > 1)
179           error.SetErrorStringWithFormat(
180               "display format (bytes/bytes with ASCII) conflicts with the "
181               "specified byte size %" PRIu64 "\n"
182               "\tconsider using a different display format or don't specify "
183               "the byte size.",
184               byte_size_value.GetCurrentValue());
185       } else
186         byte_size_value = 1;
187       if (!num_per_line_option_set)
188         m_num_per_line = 16;
189       if (!count_option_set)
190         format_options.GetCountValue() = 32;
191       break;
192 
193     case eFormatCharArray:
194     case eFormatChar:
195     case eFormatCharPrintable:
196       if (!byte_size_option_set)
197         byte_size_value = 1;
198       if (!num_per_line_option_set)
199         m_num_per_line = 32;
200       if (!count_option_set)
201         format_options.GetCountValue() = 64;
202       break;
203 
204     case eFormatComplex:
205       if (!byte_size_option_set)
206         byte_size_value = 8;
207       if (!num_per_line_option_set)
208         m_num_per_line = 1;
209       if (!count_option_set)
210         format_options.GetCountValue() = 8;
211       break;
212 
213     case eFormatComplexInteger:
214       if (!byte_size_option_set)
215         byte_size_value = 8;
216       if (!num_per_line_option_set)
217         m_num_per_line = 1;
218       if (!count_option_set)
219         format_options.GetCountValue() = 8;
220       break;
221 
222     case eFormatHex:
223       if (!byte_size_option_set)
224         byte_size_value = 4;
225       if (!num_per_line_option_set) {
226         switch (byte_size_value) {
227         case 1:
228         case 2:
229           m_num_per_line = 8;
230           break;
231         case 4:
232           m_num_per_line = 4;
233           break;
234         case 8:
235           m_num_per_line = 2;
236           break;
237         default:
238           m_num_per_line = 1;
239           break;
240         }
241       }
242       if (!count_option_set)
243         count_value = 8;
244       break;
245 
246     case eFormatVectorOfChar:
247     case eFormatVectorOfSInt8:
248     case eFormatVectorOfUInt8:
249     case eFormatVectorOfSInt16:
250     case eFormatVectorOfUInt16:
251     case eFormatVectorOfSInt32:
252     case eFormatVectorOfUInt32:
253     case eFormatVectorOfSInt64:
254     case eFormatVectorOfUInt64:
255     case eFormatVectorOfFloat16:
256     case eFormatVectorOfFloat32:
257     case eFormatVectorOfFloat64:
258     case eFormatVectorOfUInt128:
259       if (!byte_size_option_set)
260         byte_size_value = 128;
261       if (!num_per_line_option_set)
262         m_num_per_line = 1;
263       if (!count_option_set)
264         count_value = 4;
265       break;
266     }
267     return error;
268   }
269 
270   bool AnyOptionWasSet() const {
271     return m_num_per_line.OptionWasSet() || m_output_as_binary ||
272            m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
273            m_language_for_type.OptionWasSet();
274   }
275 
276   OptionValueUInt64 m_num_per_line;
277   bool m_output_as_binary = false;
278   OptionValueString m_view_as_type;
279   bool m_force = false;
280   OptionValueUInt64 m_offset;
281   OptionValueLanguage m_language_for_type;
282 };
283 
284 // Read memory from the inferior process
285 class CommandObjectMemoryRead : public CommandObjectParsed {
286 public:
287   CommandObjectMemoryRead(CommandInterpreter &interpreter)
288       : CommandObjectParsed(
289             interpreter, "memory read",
290             "Read from the memory of the current target process.", nullptr,
291             eCommandRequiresTarget | eCommandProcessMustBePaused),
292         m_format_options(eFormatBytesWithASCII, 1, 8),
293         m_memory_tag_options(/*note_binary=*/true),
294         m_prev_format_options(eFormatBytesWithASCII, 1, 8) {
295     CommandArgumentEntry arg1;
296     CommandArgumentEntry arg2;
297     CommandArgumentData start_addr_arg;
298     CommandArgumentData end_addr_arg;
299 
300     // Define the first (and only) variant of this arg.
301     start_addr_arg.arg_type = eArgTypeAddressOrExpression;
302     start_addr_arg.arg_repetition = eArgRepeatPlain;
303 
304     // There is only one variant this argument could be; put it into the
305     // argument entry.
306     arg1.push_back(start_addr_arg);
307 
308     // Define the first (and only) variant of this arg.
309     end_addr_arg.arg_type = eArgTypeAddressOrExpression;
310     end_addr_arg.arg_repetition = eArgRepeatOptional;
311 
312     // There is only one variant this argument could be; put it into the
313     // argument entry.
314     arg2.push_back(end_addr_arg);
315 
316     // Push the data for the first argument into the m_arguments vector.
317     m_arguments.push_back(arg1);
318     m_arguments.push_back(arg2);
319 
320     // Add the "--format" and "--count" options to group 1 and 3
321     m_option_group.Append(&m_format_options,
322                           OptionGroupFormat::OPTION_GROUP_FORMAT |
323                               OptionGroupFormat::OPTION_GROUP_COUNT,
324                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
325     m_option_group.Append(&m_format_options,
326                           OptionGroupFormat::OPTION_GROUP_GDB_FMT,
327                           LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
328     // Add the "--size" option to group 1 and 2
329     m_option_group.Append(&m_format_options,
330                           OptionGroupFormat::OPTION_GROUP_SIZE,
331                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
332     m_option_group.Append(&m_memory_options);
333     m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
334                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
335     m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
336     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
337                           LLDB_OPT_SET_ALL);
338     m_option_group.Finalize();
339   }
340 
341   ~CommandObjectMemoryRead() override = default;
342 
343   Options *GetOptions() override { return &m_option_group; }
344 
345   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
346                                               uint32_t index) override {
347     return m_cmd_name;
348   }
349 
350 protected:
351   bool DoExecute(Args &command, CommandReturnObject &result) override {
352     // No need to check "target" for validity as eCommandRequiresTarget ensures
353     // it is valid
354     Target *target = m_exe_ctx.GetTargetPtr();
355 
356     const size_t argc = command.GetArgumentCount();
357 
358     if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
359       result.AppendErrorWithFormat("%s takes a start address expression with "
360                                    "an optional end address expression.\n",
361                                    m_cmd_name.c_str());
362       result.AppendWarning("Expressions should be quoted if they contain "
363                            "spaces or other special characters.");
364       return false;
365     }
366 
367     CompilerType compiler_type;
368     Status error;
369 
370     const char *view_as_type_cstr =
371         m_memory_options.m_view_as_type.GetCurrentValue();
372     if (view_as_type_cstr && view_as_type_cstr[0]) {
373       // We are viewing memory as a type
374 
375       const bool exact_match = false;
376       TypeList type_list;
377       uint32_t reference_count = 0;
378       uint32_t pointer_count = 0;
379       size_t idx;
380 
381 #define ALL_KEYWORDS                                                           \
382   KEYWORD("const")                                                             \
383   KEYWORD("volatile")                                                          \
384   KEYWORD("restrict")                                                          \
385   KEYWORD("struct")                                                            \
386   KEYWORD("class")                                                             \
387   KEYWORD("union")
388 
389 #define KEYWORD(s) s,
390       static const char *g_keywords[] = {ALL_KEYWORDS};
391 #undef KEYWORD
392 
393 #define KEYWORD(s) (sizeof(s) - 1),
394       static const int g_keyword_lengths[] = {ALL_KEYWORDS};
395 #undef KEYWORD
396 
397 #undef ALL_KEYWORDS
398 
399       static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
400       std::string type_str(view_as_type_cstr);
401 
402       // Remove all instances of g_keywords that are followed by spaces
403       for (size_t i = 0; i < g_num_keywords; ++i) {
404         const char *keyword = g_keywords[i];
405         int keyword_len = g_keyword_lengths[i];
406 
407         idx = 0;
408         while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
409           if (type_str[idx + keyword_len] == ' ' ||
410               type_str[idx + keyword_len] == '\t') {
411             type_str.erase(idx, keyword_len + 1);
412             idx = 0;
413           } else {
414             idx += keyword_len;
415           }
416         }
417       }
418       bool done = type_str.empty();
419       //
420       idx = type_str.find_first_not_of(" \t");
421       if (idx > 0 && idx != std::string::npos)
422         type_str.erase(0, idx);
423       while (!done) {
424         // Strip trailing spaces
425         if (type_str.empty())
426           done = true;
427         else {
428           switch (type_str[type_str.size() - 1]) {
429           case '*':
430             ++pointer_count;
431             [[fallthrough]];
432           case ' ':
433           case '\t':
434             type_str.erase(type_str.size() - 1);
435             break;
436 
437           case '&':
438             if (reference_count == 0) {
439               reference_count = 1;
440               type_str.erase(type_str.size() - 1);
441             } else {
442               result.AppendErrorWithFormat("invalid type string: '%s'\n",
443                                            view_as_type_cstr);
444               return false;
445             }
446             break;
447 
448           default:
449             done = true;
450             break;
451           }
452         }
453       }
454 
455       llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files;
456       ConstString lookup_type_name(type_str.c_str());
457       StackFrame *frame = m_exe_ctx.GetFramePtr();
458       ModuleSP search_first;
459       if (frame) {
460         search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
461       }
462       target->GetImages().FindTypes(search_first.get(), lookup_type_name,
463                                     exact_match, 1, searched_symbol_files,
464                                     type_list);
465 
466       if (type_list.GetSize() == 0 && lookup_type_name.GetCString()) {
467         LanguageType language_for_type =
468             m_memory_options.m_language_for_type.GetCurrentValue();
469         std::set<LanguageType> languages_to_check;
470         if (language_for_type != eLanguageTypeUnknown) {
471           languages_to_check.insert(language_for_type);
472         } else {
473           languages_to_check = Language::GetSupportedLanguages();
474         }
475 
476         std::set<CompilerType> user_defined_types;
477         for (auto lang : languages_to_check) {
478           if (auto *persistent_vars =
479                   target->GetPersistentExpressionStateForLanguage(lang)) {
480             if (std::optional<CompilerType> type =
481                     persistent_vars->GetCompilerTypeFromPersistentDecl(
482                         lookup_type_name)) {
483               user_defined_types.emplace(*type);
484             }
485           }
486         }
487 
488         if (user_defined_types.size() > 1) {
489           result.AppendErrorWithFormat(
490               "Mutiple types found matching raw type '%s', please disambiguate "
491               "by specifying the language with -x",
492               lookup_type_name.GetCString());
493           return false;
494         }
495 
496         if (user_defined_types.size() == 1) {
497           compiler_type = *user_defined_types.begin();
498         }
499       }
500 
501       if (!compiler_type.IsValid()) {
502         if (type_list.GetSize() == 0) {
503           result.AppendErrorWithFormat("unable to find any types that match "
504                                        "the raw type '%s' for full type '%s'\n",
505                                        lookup_type_name.GetCString(),
506                                        view_as_type_cstr);
507           return false;
508         } else {
509           TypeSP type_sp(type_list.GetTypeAtIndex(0));
510           compiler_type = type_sp->GetFullCompilerType();
511         }
512       }
513 
514       while (pointer_count > 0) {
515         CompilerType pointer_type = compiler_type.GetPointerType();
516         if (pointer_type.IsValid())
517           compiler_type = pointer_type;
518         else {
519           result.AppendError("unable make a pointer type\n");
520           return false;
521         }
522         --pointer_count;
523       }
524 
525       std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
526       if (!size) {
527         result.AppendErrorWithFormat(
528             "unable to get the byte size of the type '%s'\n",
529             view_as_type_cstr);
530         return false;
531       }
532       m_format_options.GetByteSizeValue() = *size;
533 
534       if (!m_format_options.GetCountValue().OptionWasSet())
535         m_format_options.GetCountValue() = 1;
536     } else {
537       error = m_memory_options.FinalizeSettings(target, m_format_options);
538     }
539 
540     // Look for invalid combinations of settings
541     if (error.Fail()) {
542       result.AppendError(error.AsCString());
543       return false;
544     }
545 
546     lldb::addr_t addr;
547     size_t total_byte_size = 0;
548     if (argc == 0) {
549       // Use the last address and byte size and all options as they were if no
550       // options have been set
551       addr = m_next_addr;
552       total_byte_size = m_prev_byte_size;
553       compiler_type = m_prev_compiler_type;
554       if (!m_format_options.AnyOptionWasSet() &&
555           !m_memory_options.AnyOptionWasSet() &&
556           !m_outfile_options.AnyOptionWasSet() &&
557           !m_varobj_options.AnyOptionWasSet() &&
558           !m_memory_tag_options.AnyOptionWasSet()) {
559         m_format_options = m_prev_format_options;
560         m_memory_options = m_prev_memory_options;
561         m_outfile_options = m_prev_outfile_options;
562         m_varobj_options = m_prev_varobj_options;
563         m_memory_tag_options = m_prev_memory_tag_options;
564       }
565     }
566 
567     size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
568 
569     // TODO For non-8-bit byte addressable architectures this needs to be
570     // revisited to fully support all lldb's range of formatting options.
571     // Furthermore code memory reads (for those architectures) will not be
572     // correctly formatted even w/o formatting options.
573     size_t item_byte_size =
574         target->GetArchitecture().GetDataByteSize() > 1
575             ? target->GetArchitecture().GetDataByteSize()
576             : m_format_options.GetByteSizeValue().GetCurrentValue();
577 
578     const size_t num_per_line =
579         m_memory_options.m_num_per_line.GetCurrentValue();
580 
581     if (total_byte_size == 0) {
582       total_byte_size = item_count * item_byte_size;
583       if (total_byte_size == 0)
584         total_byte_size = 32;
585     }
586 
587     if (argc > 0)
588       addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
589                                         LLDB_INVALID_ADDRESS, &error);
590 
591     if (addr == LLDB_INVALID_ADDRESS) {
592       result.AppendError("invalid start address expression.");
593       result.AppendError(error.AsCString());
594       return false;
595     }
596 
597     ABISP abi;
598     if (Process *proc = m_exe_ctx.GetProcessPtr())
599       abi = proc->GetABI();
600 
601     if (abi)
602       addr = abi->FixDataAddress(addr);
603 
604     if (argc == 2) {
605       lldb::addr_t end_addr = OptionArgParser::ToAddress(
606           &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
607       if (end_addr != LLDB_INVALID_ADDRESS && abi)
608         end_addr = abi->FixDataAddress(end_addr);
609 
610       if (end_addr == LLDB_INVALID_ADDRESS) {
611         result.AppendError("invalid end address expression.");
612         result.AppendError(error.AsCString());
613         return false;
614       } else if (end_addr <= addr) {
615         result.AppendErrorWithFormat(
616             "end address (0x%" PRIx64
617             ") must be greater than the start address (0x%" PRIx64 ").\n",
618             end_addr, addr);
619         return false;
620       } else if (m_format_options.GetCountValue().OptionWasSet()) {
621         result.AppendErrorWithFormat(
622             "specify either the end address (0x%" PRIx64
623             ") or the count (--count %" PRIu64 "), not both.\n",
624             end_addr, (uint64_t)item_count);
625         return false;
626       }
627 
628       total_byte_size = end_addr - addr;
629       item_count = total_byte_size / item_byte_size;
630     }
631 
632     uint32_t max_unforced_size = target->GetMaximumMemReadSize();
633 
634     if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
635       result.AppendErrorWithFormat(
636           "Normally, \'memory read\' will not read over %" PRIu32
637           " bytes of data.\n",
638           max_unforced_size);
639       result.AppendErrorWithFormat(
640           "Please use --force to override this restriction just once.\n");
641       result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
642                                    "will often need a larger limit.\n");
643       return false;
644     }
645 
646     WritableDataBufferSP data_sp;
647     size_t bytes_read = 0;
648     if (compiler_type.GetOpaqueQualType()) {
649       // Make sure we don't display our type as ASCII bytes like the default
650       // memory read
651       if (!m_format_options.GetFormatValue().OptionWasSet())
652         m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
653 
654       std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
655       if (!size) {
656         result.AppendError("can't get size of type");
657         return false;
658       }
659       bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
660 
661       if (argc > 0)
662         addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
663     } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
664                eFormatCString) {
665       data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
666       if (data_sp->GetBytes() == nullptr) {
667         result.AppendErrorWithFormat(
668             "can't allocate 0x%" PRIx32
669             " bytes for the memory read buffer, specify a smaller size to read",
670             (uint32_t)total_byte_size);
671         return false;
672       }
673 
674       Address address(addr, nullptr);
675       bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
676                                       data_sp->GetByteSize(), error, true);
677       if (bytes_read == 0) {
678         const char *error_cstr = error.AsCString();
679         if (error_cstr && error_cstr[0]) {
680           result.AppendError(error_cstr);
681         } else {
682           result.AppendErrorWithFormat(
683               "failed to read memory from 0x%" PRIx64 ".\n", addr);
684         }
685         return false;
686       }
687 
688       if (bytes_read < total_byte_size)
689         result.AppendWarningWithFormat(
690             "Not all bytes (%" PRIu64 "/%" PRIu64
691             ") were able to be read from 0x%" PRIx64 ".\n",
692             (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
693     } else {
694       // we treat c-strings as a special case because they do not have a fixed
695       // size
696       if (m_format_options.GetByteSizeValue().OptionWasSet() &&
697           !m_format_options.HasGDBFormat())
698         item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
699       else
700         item_byte_size = target->GetMaximumSizeOfStringSummary();
701       if (!m_format_options.GetCountValue().OptionWasSet())
702         item_count = 1;
703       data_sp = std::make_shared<DataBufferHeap>(
704           (item_byte_size + 1) * item_count,
705           '\0'); // account for NULLs as necessary
706       if (data_sp->GetBytes() == nullptr) {
707         result.AppendErrorWithFormat(
708             "can't allocate 0x%" PRIx64
709             " bytes for the memory read buffer, specify a smaller size to read",
710             (uint64_t)((item_byte_size + 1) * item_count));
711         return false;
712       }
713       uint8_t *data_ptr = data_sp->GetBytes();
714       auto data_addr = addr;
715       auto count = item_count;
716       item_count = 0;
717       bool break_on_no_NULL = false;
718       while (item_count < count) {
719         std::string buffer;
720         buffer.resize(item_byte_size + 1, 0);
721         Status error;
722         size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
723                                                     item_byte_size + 1, error);
724         if (error.Fail()) {
725           result.AppendErrorWithFormat(
726               "failed to read memory from 0x%" PRIx64 ".\n", addr);
727           return false;
728         }
729 
730         if (item_byte_size == read) {
731           result.AppendWarningWithFormat(
732               "unable to find a NULL terminated string at 0x%" PRIx64
733               ". Consider increasing the maximum read length.\n",
734               data_addr);
735           --read;
736           break_on_no_NULL = true;
737         } else
738           ++read; // account for final NULL byte
739 
740         memcpy(data_ptr, &buffer[0], read);
741         data_ptr += read;
742         data_addr += read;
743         bytes_read += read;
744         item_count++; // if we break early we know we only read item_count
745                       // strings
746 
747         if (break_on_no_NULL)
748           break;
749       }
750       data_sp =
751           std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
752     }
753 
754     m_next_addr = addr + bytes_read;
755     m_prev_byte_size = bytes_read;
756     m_prev_format_options = m_format_options;
757     m_prev_memory_options = m_memory_options;
758     m_prev_outfile_options = m_outfile_options;
759     m_prev_varobj_options = m_varobj_options;
760     m_prev_memory_tag_options = m_memory_tag_options;
761     m_prev_compiler_type = compiler_type;
762 
763     std::unique_ptr<Stream> output_stream_storage;
764     Stream *output_stream_p = nullptr;
765     const FileSpec &outfile_spec =
766         m_outfile_options.GetFile().GetCurrentValue();
767 
768     std::string path = outfile_spec.GetPath();
769     if (outfile_spec) {
770 
771       File::OpenOptions open_options =
772           File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate;
773       const bool append = m_outfile_options.GetAppend().GetCurrentValue();
774       open_options |=
775           append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
776 
777       auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
778 
779       if (outfile) {
780         auto outfile_stream_up =
781             std::make_unique<StreamFile>(std::move(outfile.get()));
782         if (m_memory_options.m_output_as_binary) {
783           const size_t bytes_written =
784               outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
785           if (bytes_written > 0) {
786             result.GetOutputStream().Printf(
787                 "%zi bytes %s to '%s'\n", bytes_written,
788                 append ? "appended" : "written", path.c_str());
789             return true;
790           } else {
791             result.AppendErrorWithFormat("Failed to write %" PRIu64
792                                          " bytes to '%s'.\n",
793                                          (uint64_t)bytes_read, path.c_str());
794             return false;
795           }
796         } else {
797           // We are going to write ASCII to the file just point the
798           // output_stream to our outfile_stream...
799           output_stream_storage = std::move(outfile_stream_up);
800           output_stream_p = output_stream_storage.get();
801         }
802       } else {
803         result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
804                                      path.c_str(), append ? "append" : "write");
805 
806         result.AppendError(llvm::toString(outfile.takeError()));
807         return false;
808       }
809     } else {
810       output_stream_p = &result.GetOutputStream();
811     }
812 
813     ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
814     if (compiler_type.GetOpaqueQualType()) {
815       for (uint32_t i = 0; i < item_count; ++i) {
816         addr_t item_addr = addr + (i * item_byte_size);
817         Address address(item_addr);
818         StreamString name_strm;
819         name_strm.Printf("0x%" PRIx64, item_addr);
820         ValueObjectSP valobj_sp(ValueObjectMemory::Create(
821             exe_scope, name_strm.GetString(), address, compiler_type));
822         if (valobj_sp) {
823           Format format = m_format_options.GetFormat();
824           if (format != eFormatDefault)
825             valobj_sp->SetFormat(format);
826 
827           DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
828               eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
829 
830           valobj_sp->Dump(*output_stream_p, options);
831         } else {
832           result.AppendErrorWithFormat(
833               "failed to create a value object for: (%s) %s\n",
834               view_as_type_cstr, name_strm.GetData());
835           return false;
836         }
837       }
838       return true;
839     }
840 
841     result.SetStatus(eReturnStatusSuccessFinishResult);
842     DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
843                        target->GetArchitecture().GetAddressByteSize(),
844                        target->GetArchitecture().GetDataByteSize());
845 
846     Format format = m_format_options.GetFormat();
847     if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
848         (item_byte_size != 1)) {
849       // if a count was not passed, or it is 1
850       if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
851         // this turns requests such as
852         // memory read -fc -s10 -c1 *charPtrPtr
853         // which make no sense (what is a char of size 10?) into a request for
854         // fetching 10 chars of size 1 from the same memory location
855         format = eFormatCharArray;
856         item_count = item_byte_size;
857         item_byte_size = 1;
858       } else {
859         // here we passed a count, and it was not 1 so we have a byte_size and
860         // a count we could well multiply those, but instead let's just fail
861         result.AppendErrorWithFormat(
862             "reading memory as characters of size %" PRIu64 " is not supported",
863             (uint64_t)item_byte_size);
864         return false;
865       }
866     }
867 
868     assert(output_stream_p);
869     size_t bytes_dumped = DumpDataExtractor(
870         data, output_stream_p, 0, format, item_byte_size, item_count,
871         num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
872         exe_scope, m_memory_tag_options.GetShowTags().GetCurrentValue());
873     m_next_addr = addr + bytes_dumped;
874     output_stream_p->EOL();
875     return true;
876   }
877 
878   OptionGroupOptions m_option_group;
879   OptionGroupFormat m_format_options;
880   OptionGroupReadMemory m_memory_options;
881   OptionGroupOutputFile m_outfile_options;
882   OptionGroupValueObjectDisplay m_varobj_options;
883   OptionGroupMemoryTag m_memory_tag_options;
884   lldb::addr_t m_next_addr = LLDB_INVALID_ADDRESS;
885   lldb::addr_t m_prev_byte_size = 0;
886   OptionGroupFormat m_prev_format_options;
887   OptionGroupReadMemory m_prev_memory_options;
888   OptionGroupOutputFile m_prev_outfile_options;
889   OptionGroupValueObjectDisplay m_prev_varobj_options;
890   OptionGroupMemoryTag m_prev_memory_tag_options;
891   CompilerType m_prev_compiler_type;
892 };
893 
894 #define LLDB_OPTIONS_memory_find
895 #include "CommandOptions.inc"
896 
897 // Find the specified data in memory
898 class CommandObjectMemoryFind : public CommandObjectParsed {
899 public:
900   class OptionGroupFindMemory : public OptionGroup {
901   public:
902     OptionGroupFindMemory() : m_count(1), m_offset(0) {}
903 
904     ~OptionGroupFindMemory() override = default;
905 
906     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
907       return llvm::ArrayRef(g_memory_find_options);
908     }
909 
910     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
911                           ExecutionContext *execution_context) override {
912       Status error;
913       const int short_option = g_memory_find_options[option_idx].short_option;
914 
915       switch (short_option) {
916       case 'e':
917         m_expr.SetValueFromString(option_value);
918         break;
919 
920       case 's':
921         m_string.SetValueFromString(option_value);
922         break;
923 
924       case 'c':
925         if (m_count.SetValueFromString(option_value).Fail())
926           error.SetErrorString("unrecognized value for count");
927         break;
928 
929       case 'o':
930         if (m_offset.SetValueFromString(option_value).Fail())
931           error.SetErrorString("unrecognized value for dump-offset");
932         break;
933 
934       default:
935         llvm_unreachable("Unimplemented option");
936       }
937       return error;
938     }
939 
940     void OptionParsingStarting(ExecutionContext *execution_context) override {
941       m_expr.Clear();
942       m_string.Clear();
943       m_count.Clear();
944     }
945 
946     OptionValueString m_expr;
947     OptionValueString m_string;
948     OptionValueUInt64 m_count;
949     OptionValueUInt64 m_offset;
950   };
951 
952   CommandObjectMemoryFind(CommandInterpreter &interpreter)
953       : CommandObjectParsed(
954             interpreter, "memory find",
955             "Find a value in the memory of the current target process.",
956             nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
957     CommandArgumentEntry arg1;
958     CommandArgumentEntry arg2;
959     CommandArgumentData addr_arg;
960     CommandArgumentData value_arg;
961 
962     // Define the first (and only) variant of this arg.
963     addr_arg.arg_type = eArgTypeAddressOrExpression;
964     addr_arg.arg_repetition = eArgRepeatPlain;
965 
966     // There is only one variant this argument could be; put it into the
967     // argument entry.
968     arg1.push_back(addr_arg);
969 
970     // Define the first (and only) variant of this arg.
971     value_arg.arg_type = eArgTypeAddressOrExpression;
972     value_arg.arg_repetition = eArgRepeatPlain;
973 
974     // There is only one variant this argument could be; put it into the
975     // argument entry.
976     arg2.push_back(value_arg);
977 
978     // Push the data for the first argument into the m_arguments vector.
979     m_arguments.push_back(arg1);
980     m_arguments.push_back(arg2);
981 
982     m_option_group.Append(&m_memory_options);
983     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
984                           LLDB_OPT_SET_ALL);
985     m_option_group.Finalize();
986   }
987 
988   ~CommandObjectMemoryFind() override = default;
989 
990   Options *GetOptions() override { return &m_option_group; }
991 
992 protected:
993   class ProcessMemoryIterator {
994   public:
995     ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base)
996         : m_process_sp(process_sp), m_base_addr(base) {
997       lldbassert(process_sp.get() != nullptr);
998     }
999 
1000     bool IsValid() { return m_is_valid; }
1001 
1002     uint8_t operator[](lldb::addr_t offset) {
1003       if (!IsValid())
1004         return 0;
1005 
1006       uint8_t retval = 0;
1007       Status error;
1008       if (0 ==
1009           m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) {
1010         m_is_valid = false;
1011         return 0;
1012       }
1013 
1014       return retval;
1015     }
1016 
1017   private:
1018     ProcessSP m_process_sp;
1019     lldb::addr_t m_base_addr;
1020     bool m_is_valid = true;
1021   };
1022   bool DoExecute(Args &command, CommandReturnObject &result) override {
1023     // No need to check "process" for validity as eCommandRequiresProcess
1024     // ensures it is valid
1025     Process *process = m_exe_ctx.GetProcessPtr();
1026 
1027     const size_t argc = command.GetArgumentCount();
1028 
1029     if (argc != 2) {
1030       result.AppendError("two addresses needed for memory find");
1031       return false;
1032     }
1033 
1034     Status error;
1035     lldb::addr_t low_addr = OptionArgParser::ToAddress(
1036         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1037     if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1038       result.AppendError("invalid low address");
1039       return false;
1040     }
1041     lldb::addr_t high_addr = OptionArgParser::ToAddress(
1042         &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1043     if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1044       result.AppendError("invalid high address");
1045       return false;
1046     }
1047 
1048     ABISP abi = m_exe_ctx.GetProcessPtr()->GetABI();
1049     if (abi) {
1050       low_addr = abi->FixDataAddress(low_addr);
1051       high_addr = abi->FixDataAddress(high_addr);
1052     }
1053 
1054     if (high_addr <= low_addr) {
1055       result.AppendError(
1056           "starting address must be smaller than ending address");
1057       return false;
1058     }
1059 
1060     lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1061 
1062     DataBufferHeap buffer;
1063 
1064     if (m_memory_options.m_string.OptionWasSet()) {
1065       llvm::StringRef str = m_memory_options.m_string.GetStringValue();
1066       if (str.empty()) {
1067         result.AppendError("search string must have non-zero length.");
1068         return false;
1069       }
1070       buffer.CopyData(str);
1071     } else if (m_memory_options.m_expr.OptionWasSet()) {
1072       StackFrame *frame = m_exe_ctx.GetFramePtr();
1073       ValueObjectSP result_sp;
1074       if ((eExpressionCompleted ==
1075            process->GetTarget().EvaluateExpression(
1076                m_memory_options.m_expr.GetStringValue(), frame, result_sp)) &&
1077           result_sp) {
1078         uint64_t value = result_sp->GetValueAsUnsigned(0);
1079         std::optional<uint64_t> size =
1080             result_sp->GetCompilerType().GetByteSize(nullptr);
1081         if (!size)
1082           return false;
1083         switch (*size) {
1084         case 1: {
1085           uint8_t byte = (uint8_t)value;
1086           buffer.CopyData(&byte, 1);
1087         } break;
1088         case 2: {
1089           uint16_t word = (uint16_t)value;
1090           buffer.CopyData(&word, 2);
1091         } break;
1092         case 4: {
1093           uint32_t lword = (uint32_t)value;
1094           buffer.CopyData(&lword, 4);
1095         } break;
1096         case 8: {
1097           buffer.CopyData(&value, 8);
1098         } break;
1099         case 3:
1100         case 5:
1101         case 6:
1102         case 7:
1103           result.AppendError("unknown type. pass a string instead");
1104           return false;
1105         default:
1106           result.AppendError(
1107               "result size larger than 8 bytes. pass a string instead");
1108           return false;
1109         }
1110       } else {
1111         result.AppendError(
1112             "expression evaluation failed. pass a string instead");
1113         return false;
1114       }
1115     } else {
1116       result.AppendError(
1117           "please pass either a block of text, or an expression to evaluate.");
1118       return false;
1119     }
1120 
1121     size_t count = m_memory_options.m_count.GetCurrentValue();
1122     found_location = low_addr;
1123     bool ever_found = false;
1124     while (count) {
1125       found_location = FastSearch(found_location, high_addr, buffer.GetBytes(),
1126                                   buffer.GetByteSize());
1127       if (found_location == LLDB_INVALID_ADDRESS) {
1128         if (!ever_found) {
1129           result.AppendMessage("data not found within the range.\n");
1130           result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1131         } else
1132           result.AppendMessage("no more matches within the range.\n");
1133         break;
1134       }
1135       result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1136                                      found_location);
1137 
1138       DataBufferHeap dumpbuffer(32, 0);
1139       process->ReadMemory(
1140           found_location + m_memory_options.m_offset.GetCurrentValue(),
1141           dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1142       if (!error.Fail()) {
1143         DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1144                            process->GetByteOrder(),
1145                            process->GetAddressByteSize());
1146         DumpDataExtractor(
1147             data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1148             dumpbuffer.GetByteSize(), 16,
1149             found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0,
1150             m_exe_ctx.GetBestExecutionContextScope(),
1151             m_memory_tag_options.GetShowTags().GetCurrentValue());
1152         result.GetOutputStream().EOL();
1153       }
1154 
1155       --count;
1156       found_location++;
1157       ever_found = true;
1158     }
1159 
1160     result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1161     return true;
1162   }
1163 
1164   lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer,
1165                           size_t buffer_size) {
1166     const size_t region_size = high - low;
1167 
1168     if (region_size < buffer_size)
1169       return LLDB_INVALID_ADDRESS;
1170 
1171     std::vector<size_t> bad_char_heuristic(256, buffer_size);
1172     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1173     ProcessMemoryIterator iterator(process_sp, low);
1174 
1175     for (size_t idx = 0; idx < buffer_size - 1; idx++) {
1176       decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx];
1177       bad_char_heuristic[bcu_idx] = buffer_size - idx - 1;
1178     }
1179     for (size_t s = 0; s <= (region_size - buffer_size);) {
1180       int64_t j = buffer_size - 1;
1181       while (j >= 0 && buffer[j] == iterator[s + j])
1182         j--;
1183       if (j < 0)
1184         return low + s;
1185       else
1186         s += bad_char_heuristic[iterator[s + buffer_size - 1]];
1187     }
1188 
1189     return LLDB_INVALID_ADDRESS;
1190   }
1191 
1192   OptionGroupOptions m_option_group;
1193   OptionGroupFindMemory m_memory_options;
1194   OptionGroupMemoryTag m_memory_tag_options;
1195 };
1196 
1197 #define LLDB_OPTIONS_memory_write
1198 #include "CommandOptions.inc"
1199 
1200 // Write memory to the inferior process
1201 class CommandObjectMemoryWrite : public CommandObjectParsed {
1202 public:
1203   class OptionGroupWriteMemory : public OptionGroup {
1204   public:
1205     OptionGroupWriteMemory() = default;
1206 
1207     ~OptionGroupWriteMemory() override = default;
1208 
1209     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1210       return llvm::ArrayRef(g_memory_write_options);
1211     }
1212 
1213     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1214                           ExecutionContext *execution_context) override {
1215       Status error;
1216       const int short_option = g_memory_write_options[option_idx].short_option;
1217 
1218       switch (short_option) {
1219       case 'i':
1220         m_infile.SetFile(option_value, FileSpec::Style::native);
1221         FileSystem::Instance().Resolve(m_infile);
1222         if (!FileSystem::Instance().Exists(m_infile)) {
1223           m_infile.Clear();
1224           error.SetErrorStringWithFormat("input file does not exist: '%s'",
1225                                          option_value.str().c_str());
1226         }
1227         break;
1228 
1229       case 'o': {
1230         if (option_value.getAsInteger(0, m_infile_offset)) {
1231           m_infile_offset = 0;
1232           error.SetErrorStringWithFormat("invalid offset string '%s'",
1233                                          option_value.str().c_str());
1234         }
1235       } break;
1236 
1237       default:
1238         llvm_unreachable("Unimplemented option");
1239       }
1240       return error;
1241     }
1242 
1243     void OptionParsingStarting(ExecutionContext *execution_context) override {
1244       m_infile.Clear();
1245       m_infile_offset = 0;
1246     }
1247 
1248     FileSpec m_infile;
1249     off_t m_infile_offset;
1250   };
1251 
1252   CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1253       : CommandObjectParsed(
1254             interpreter, "memory write",
1255             "Write to the memory of the current target process.", nullptr,
1256             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1257         m_format_options(
1258             eFormatBytes, 1, UINT64_MAX,
1259             {std::make_tuple(
1260                  eArgTypeFormat,
1261                  "The format to use for each of the value to be written."),
1262              std::make_tuple(eArgTypeByteSize,
1263                              "The size in bytes to write from input file or "
1264                              "each value.")}) {
1265     CommandArgumentEntry arg1;
1266     CommandArgumentEntry arg2;
1267     CommandArgumentData addr_arg;
1268     CommandArgumentData value_arg;
1269 
1270     // Define the first (and only) variant of this arg.
1271     addr_arg.arg_type = eArgTypeAddress;
1272     addr_arg.arg_repetition = eArgRepeatPlain;
1273 
1274     // There is only one variant this argument could be; put it into the
1275     // argument entry.
1276     arg1.push_back(addr_arg);
1277 
1278     // Define the first (and only) variant of this arg.
1279     value_arg.arg_type = eArgTypeValue;
1280     value_arg.arg_repetition = eArgRepeatPlus;
1281     value_arg.arg_opt_set_association = LLDB_OPT_SET_1;
1282 
1283     // There is only one variant this argument could be; put it into the
1284     // argument entry.
1285     arg2.push_back(value_arg);
1286 
1287     // Push the data for the first argument into the m_arguments vector.
1288     m_arguments.push_back(arg1);
1289     m_arguments.push_back(arg2);
1290 
1291     m_option_group.Append(&m_format_options,
1292                           OptionGroupFormat::OPTION_GROUP_FORMAT,
1293                           LLDB_OPT_SET_1);
1294     m_option_group.Append(&m_format_options,
1295                           OptionGroupFormat::OPTION_GROUP_SIZE,
1296                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1297     m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1298     m_option_group.Finalize();
1299   }
1300 
1301   ~CommandObjectMemoryWrite() override = default;
1302 
1303   Options *GetOptions() override { return &m_option_group; }
1304 
1305 protected:
1306   bool DoExecute(Args &command, CommandReturnObject &result) override {
1307     // No need to check "process" for validity as eCommandRequiresProcess
1308     // ensures it is valid
1309     Process *process = m_exe_ctx.GetProcessPtr();
1310 
1311     const size_t argc = command.GetArgumentCount();
1312 
1313     if (m_memory_options.m_infile) {
1314       if (argc < 1) {
1315         result.AppendErrorWithFormat(
1316             "%s takes a destination address when writing file contents.\n",
1317             m_cmd_name.c_str());
1318         return false;
1319       }
1320       if (argc > 1) {
1321         result.AppendErrorWithFormat(
1322             "%s takes only a destination address when writing file contents.\n",
1323             m_cmd_name.c_str());
1324         return false;
1325       }
1326     } else if (argc < 2) {
1327       result.AppendErrorWithFormat(
1328           "%s takes a destination address and at least one value.\n",
1329           m_cmd_name.c_str());
1330       return false;
1331     }
1332 
1333     StreamString buffer(
1334         Stream::eBinary,
1335         process->GetTarget().GetArchitecture().GetAddressByteSize(),
1336         process->GetTarget().GetArchitecture().GetByteOrder());
1337 
1338     OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1339     size_t item_byte_size = byte_size_value.GetCurrentValue();
1340 
1341     Status error;
1342     lldb::addr_t addr = OptionArgParser::ToAddress(
1343         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1344 
1345     if (addr == LLDB_INVALID_ADDRESS) {
1346       result.AppendError("invalid address expression\n");
1347       result.AppendError(error.AsCString());
1348       return false;
1349     }
1350 
1351     if (m_memory_options.m_infile) {
1352       size_t length = SIZE_MAX;
1353       if (item_byte_size > 1)
1354         length = item_byte_size;
1355       auto data_sp = FileSystem::Instance().CreateDataBuffer(
1356           m_memory_options.m_infile.GetPath(), length,
1357           m_memory_options.m_infile_offset);
1358       if (data_sp) {
1359         length = data_sp->GetByteSize();
1360         if (length > 0) {
1361           Status error;
1362           size_t bytes_written =
1363               process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1364 
1365           if (bytes_written == length) {
1366             // All bytes written
1367             result.GetOutputStream().Printf(
1368                 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1369                 (uint64_t)bytes_written, addr);
1370             result.SetStatus(eReturnStatusSuccessFinishResult);
1371           } else if (bytes_written > 0) {
1372             // Some byte written
1373             result.GetOutputStream().Printf(
1374                 "%" PRIu64 " bytes of %" PRIu64
1375                 " requested were written to 0x%" PRIx64 "\n",
1376                 (uint64_t)bytes_written, (uint64_t)length, addr);
1377             result.SetStatus(eReturnStatusSuccessFinishResult);
1378           } else {
1379             result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1380                                          " failed: %s.\n",
1381                                          addr, error.AsCString());
1382           }
1383         }
1384       } else {
1385         result.AppendErrorWithFormat("Unable to read contents of file.\n");
1386       }
1387       return result.Succeeded();
1388     } else if (item_byte_size == 0) {
1389       if (m_format_options.GetFormat() == eFormatPointer)
1390         item_byte_size = buffer.GetAddressByteSize();
1391       else
1392         item_byte_size = 1;
1393     }
1394 
1395     command.Shift(); // shift off the address argument
1396     uint64_t uval64;
1397     int64_t sval64;
1398     bool success = false;
1399     for (auto &entry : command) {
1400       switch (m_format_options.GetFormat()) {
1401       case kNumFormats:
1402       case eFormatFloat: // TODO: add support for floats soon
1403       case eFormatCharPrintable:
1404       case eFormatBytesWithASCII:
1405       case eFormatComplex:
1406       case eFormatEnum:
1407       case eFormatUnicode8:
1408       case eFormatUnicode16:
1409       case eFormatUnicode32:
1410       case eFormatVectorOfChar:
1411       case eFormatVectorOfSInt8:
1412       case eFormatVectorOfUInt8:
1413       case eFormatVectorOfSInt16:
1414       case eFormatVectorOfUInt16:
1415       case eFormatVectorOfSInt32:
1416       case eFormatVectorOfUInt32:
1417       case eFormatVectorOfSInt64:
1418       case eFormatVectorOfUInt64:
1419       case eFormatVectorOfFloat16:
1420       case eFormatVectorOfFloat32:
1421       case eFormatVectorOfFloat64:
1422       case eFormatVectorOfUInt128:
1423       case eFormatOSType:
1424       case eFormatComplexInteger:
1425       case eFormatAddressInfo:
1426       case eFormatHexFloat:
1427       case eFormatInstruction:
1428       case eFormatVoid:
1429         result.AppendError("unsupported format for writing memory");
1430         return false;
1431 
1432       case eFormatDefault:
1433       case eFormatBytes:
1434       case eFormatHex:
1435       case eFormatHexUppercase:
1436       case eFormatPointer: {
1437         // Decode hex bytes
1438         // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1439         // have to special case that:
1440         bool success = false;
1441         if (entry.ref().startswith("0x"))
1442           success = !entry.ref().getAsInteger(0, uval64);
1443         if (!success)
1444           success = !entry.ref().getAsInteger(16, uval64);
1445         if (!success) {
1446           result.AppendErrorWithFormat(
1447               "'%s' is not a valid hex string value.\n", entry.c_str());
1448           return false;
1449         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1450           result.AppendErrorWithFormat("Value 0x%" PRIx64
1451                                        " is too large to fit in a %" PRIu64
1452                                        " byte unsigned integer value.\n",
1453                                        uval64, (uint64_t)item_byte_size);
1454           return false;
1455         }
1456         buffer.PutMaxHex64(uval64, item_byte_size);
1457         break;
1458       }
1459       case eFormatBoolean:
1460         uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1461         if (!success) {
1462           result.AppendErrorWithFormat(
1463               "'%s' is not a valid boolean string value.\n", entry.c_str());
1464           return false;
1465         }
1466         buffer.PutMaxHex64(uval64, item_byte_size);
1467         break;
1468 
1469       case eFormatBinary:
1470         if (entry.ref().getAsInteger(2, uval64)) {
1471           result.AppendErrorWithFormat(
1472               "'%s' is not a valid binary string value.\n", entry.c_str());
1473           return false;
1474         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1475           result.AppendErrorWithFormat("Value 0x%" PRIx64
1476                                        " is too large to fit in a %" PRIu64
1477                                        " byte unsigned integer value.\n",
1478                                        uval64, (uint64_t)item_byte_size);
1479           return false;
1480         }
1481         buffer.PutMaxHex64(uval64, item_byte_size);
1482         break;
1483 
1484       case eFormatCharArray:
1485       case eFormatChar:
1486       case eFormatCString: {
1487         if (entry.ref().empty())
1488           break;
1489 
1490         size_t len = entry.ref().size();
1491         // Include the NULL for C strings...
1492         if (m_format_options.GetFormat() == eFormatCString)
1493           ++len;
1494         Status error;
1495         if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1496           addr += len;
1497         } else {
1498           result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1499                                        " failed: %s.\n",
1500                                        addr, error.AsCString());
1501           return false;
1502         }
1503         break;
1504       }
1505       case eFormatDecimal:
1506         if (entry.ref().getAsInteger(0, sval64)) {
1507           result.AppendErrorWithFormat(
1508               "'%s' is not a valid signed decimal value.\n", entry.c_str());
1509           return false;
1510         } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1511           result.AppendErrorWithFormat(
1512               "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1513               " byte signed integer value.\n",
1514               sval64, (uint64_t)item_byte_size);
1515           return false;
1516         }
1517         buffer.PutMaxHex64(sval64, item_byte_size);
1518         break;
1519 
1520       case eFormatUnsigned:
1521 
1522         if (entry.ref().getAsInteger(0, uval64)) {
1523           result.AppendErrorWithFormat(
1524               "'%s' is not a valid unsigned decimal string value.\n",
1525               entry.c_str());
1526           return false;
1527         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1528           result.AppendErrorWithFormat("Value %" PRIu64
1529                                        " is too large to fit in a %" PRIu64
1530                                        " byte unsigned integer value.\n",
1531                                        uval64, (uint64_t)item_byte_size);
1532           return false;
1533         }
1534         buffer.PutMaxHex64(uval64, item_byte_size);
1535         break;
1536 
1537       case eFormatOctal:
1538         if (entry.ref().getAsInteger(8, uval64)) {
1539           result.AppendErrorWithFormat(
1540               "'%s' is not a valid octal string value.\n", entry.c_str());
1541           return false;
1542         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1543           result.AppendErrorWithFormat("Value %" PRIo64
1544                                        " is too large to fit in a %" PRIu64
1545                                        " byte unsigned integer value.\n",
1546                                        uval64, (uint64_t)item_byte_size);
1547           return false;
1548         }
1549         buffer.PutMaxHex64(uval64, item_byte_size);
1550         break;
1551       }
1552     }
1553 
1554     if (!buffer.GetString().empty()) {
1555       Status error;
1556       if (process->WriteMemory(addr, buffer.GetString().data(),
1557                                buffer.GetString().size(),
1558                                error) == buffer.GetString().size())
1559         return true;
1560       else {
1561         result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1562                                      " failed: %s.\n",
1563                                      addr, error.AsCString());
1564         return false;
1565       }
1566     }
1567     return true;
1568   }
1569 
1570   OptionGroupOptions m_option_group;
1571   OptionGroupFormat m_format_options;
1572   OptionGroupWriteMemory m_memory_options;
1573 };
1574 
1575 // Get malloc/free history of a memory address.
1576 class CommandObjectMemoryHistory : public CommandObjectParsed {
1577 public:
1578   CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1579       : CommandObjectParsed(interpreter, "memory history",
1580                             "Print recorded stack traces for "
1581                             "allocation/deallocation events "
1582                             "associated with an address.",
1583                             nullptr,
1584                             eCommandRequiresTarget | eCommandRequiresProcess |
1585                                 eCommandProcessMustBePaused |
1586                                 eCommandProcessMustBeLaunched) {
1587     CommandArgumentEntry arg1;
1588     CommandArgumentData addr_arg;
1589 
1590     // Define the first (and only) variant of this arg.
1591     addr_arg.arg_type = eArgTypeAddress;
1592     addr_arg.arg_repetition = eArgRepeatPlain;
1593 
1594     // There is only one variant this argument could be; put it into the
1595     // argument entry.
1596     arg1.push_back(addr_arg);
1597 
1598     // Push the data for the first argument into the m_arguments vector.
1599     m_arguments.push_back(arg1);
1600   }
1601 
1602   ~CommandObjectMemoryHistory() override = default;
1603 
1604   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1605                                               uint32_t index) override {
1606     return m_cmd_name;
1607   }
1608 
1609 protected:
1610   bool DoExecute(Args &command, CommandReturnObject &result) override {
1611     const size_t argc = command.GetArgumentCount();
1612 
1613     if (argc == 0 || argc > 1) {
1614       result.AppendErrorWithFormat("%s takes an address expression",
1615                                    m_cmd_name.c_str());
1616       return false;
1617     }
1618 
1619     Status error;
1620     lldb::addr_t addr = OptionArgParser::ToAddress(
1621         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1622 
1623     if (addr == LLDB_INVALID_ADDRESS) {
1624       result.AppendError("invalid address expression");
1625       result.AppendError(error.AsCString());
1626       return false;
1627     }
1628 
1629     Stream *output_stream = &result.GetOutputStream();
1630 
1631     const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1632     const MemoryHistorySP &memory_history =
1633         MemoryHistory::FindPlugin(process_sp);
1634 
1635     if (!memory_history) {
1636       result.AppendError("no available memory history provider");
1637       return false;
1638     }
1639 
1640     HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1641 
1642     const bool stop_format = false;
1643     for (auto thread : thread_list) {
1644       thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format);
1645     }
1646 
1647     result.SetStatus(eReturnStatusSuccessFinishResult);
1648 
1649     return true;
1650   }
1651 };
1652 
1653 // CommandObjectMemoryRegion
1654 #pragma mark CommandObjectMemoryRegion
1655 
1656 #define LLDB_OPTIONS_memory_region
1657 #include "CommandOptions.inc"
1658 
1659 class CommandObjectMemoryRegion : public CommandObjectParsed {
1660 public:
1661   class OptionGroupMemoryRegion : public OptionGroup {
1662   public:
1663     OptionGroupMemoryRegion() : m_all(false, false) {}
1664 
1665     ~OptionGroupMemoryRegion() override = default;
1666 
1667     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1668       return llvm::ArrayRef(g_memory_region_options);
1669     }
1670 
1671     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1672                           ExecutionContext *execution_context) override {
1673       Status status;
1674       const int short_option = g_memory_region_options[option_idx].short_option;
1675 
1676       switch (short_option) {
1677       case 'a':
1678         m_all.SetCurrentValue(true);
1679         m_all.SetOptionWasSet();
1680         break;
1681       default:
1682         llvm_unreachable("Unimplemented option");
1683       }
1684 
1685       return status;
1686     }
1687 
1688     void OptionParsingStarting(ExecutionContext *execution_context) override {
1689       m_all.Clear();
1690     }
1691 
1692     OptionValueBoolean m_all;
1693   };
1694 
1695   CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1696       : CommandObjectParsed(interpreter, "memory region",
1697                             "Get information on the memory region containing "
1698                             "an address in the current target process.",
1699                             "memory region <address-expression> (or --all)",
1700                             eCommandRequiresProcess | eCommandTryTargetAPILock |
1701                                 eCommandProcessMustBeLaunched) {
1702     // Address in option set 1.
1703     m_arguments.push_back(CommandArgumentEntry{CommandArgumentData(
1704         eArgTypeAddressOrExpression, eArgRepeatPlain, LLDB_OPT_SET_1)});
1705     // "--all" will go in option set 2.
1706     m_option_group.Append(&m_memory_region_options);
1707     m_option_group.Finalize();
1708   }
1709 
1710   ~CommandObjectMemoryRegion() override = default;
1711 
1712   Options *GetOptions() override { return &m_option_group; }
1713 
1714 protected:
1715   void DumpRegion(CommandReturnObject &result, Target &target,
1716                   const MemoryRegionInfo &range_info, lldb::addr_t load_addr) {
1717     lldb_private::Address addr;
1718     ConstString section_name;
1719     if (target.ResolveLoadAddress(load_addr, addr)) {
1720       SectionSP section_sp(addr.GetSection());
1721       if (section_sp) {
1722         // Got the top most section, not the deepest section
1723         while (section_sp->GetParent())
1724           section_sp = section_sp->GetParent();
1725         section_name = section_sp->GetName();
1726       }
1727     }
1728 
1729     ConstString name = range_info.GetName();
1730     result.AppendMessageWithFormatv(
1731         "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1732         range_info.GetRange().GetRangeBase(),
1733         range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1734         range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1735         name, section_name ? " " : "", section_name);
1736     MemoryRegionInfo::OptionalBool memory_tagged = range_info.GetMemoryTagged();
1737     if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1738       result.AppendMessage("memory tagging: enabled");
1739 
1740     const std::optional<std::vector<addr_t>> &dirty_page_list =
1741         range_info.GetDirtyPageList();
1742     if (dirty_page_list) {
1743       const size_t page_count = dirty_page_list->size();
1744       result.AppendMessageWithFormat(
1745           "Modified memory (dirty) page list provided, %zu entries.\n",
1746           page_count);
1747       if (page_count > 0) {
1748         bool print_comma = false;
1749         result.AppendMessageWithFormat("Dirty pages: ");
1750         for (size_t i = 0; i < page_count; i++) {
1751           if (print_comma)
1752             result.AppendMessageWithFormat(", ");
1753           else
1754             print_comma = true;
1755           result.AppendMessageWithFormat("0x%" PRIx64, (*dirty_page_list)[i]);
1756         }
1757         result.AppendMessageWithFormat(".\n");
1758       }
1759     }
1760   }
1761 
1762   bool DoExecute(Args &command, CommandReturnObject &result) override {
1763     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1764     if (!process_sp) {
1765       m_prev_end_addr = LLDB_INVALID_ADDRESS;
1766       result.AppendError("invalid process");
1767       return false;
1768     }
1769 
1770     Status error;
1771     lldb::addr_t load_addr = m_prev_end_addr;
1772     m_prev_end_addr = LLDB_INVALID_ADDRESS;
1773 
1774     const size_t argc = command.GetArgumentCount();
1775     const lldb::ABISP &abi = process_sp->GetABI();
1776 
1777     if (argc == 1) {
1778       if (m_memory_region_options.m_all) {
1779         result.AppendError(
1780             "The \"--all\" option cannot be used when an address "
1781             "argument is given");
1782         return false;
1783       }
1784 
1785       auto load_addr_str = command[0].ref();
1786       // Non-address bits in this will be handled later by GetMemoryRegion
1787       load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1788                                              LLDB_INVALID_ADDRESS, &error);
1789       if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1790         result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1791                                      command[0].c_str(), error.AsCString());
1792         return false;
1793       }
1794     } else if (argc > 1 ||
1795                // When we're repeating the command, the previous end address is
1796                // used for load_addr. If that was 0xF...F then we must have
1797                // reached the end of memory.
1798                (argc == 0 && !m_memory_region_options.m_all &&
1799                 load_addr == LLDB_INVALID_ADDRESS) ||
1800                // If the target has non-address bits (tags, limited virtual
1801                // address size, etc.), the end of mappable memory will be lower
1802                // than that. So if we find any non-address bit set, we must be
1803                // at the end of the mappable range.
1804                (abi && (abi->FixAnyAddress(load_addr) != load_addr))) {
1805       result.AppendErrorWithFormat(
1806           "'%s' takes one argument or \"--all\" option:\nUsage: %s\n",
1807           m_cmd_name.c_str(), m_cmd_syntax.c_str());
1808       return false;
1809     }
1810 
1811     // Is is important that we track the address used to request the region as
1812     // this will give the correct section name in the case that regions overlap.
1813     // On Windows we get mutliple regions that start at the same place but are
1814     // different sizes and refer to different sections.
1815     std::vector<std::pair<lldb_private::MemoryRegionInfo, lldb::addr_t>>
1816         region_list;
1817     if (m_memory_region_options.m_all) {
1818       // We don't use GetMemoryRegions here because it doesn't include unmapped
1819       // areas like repeating the command would. So instead, emulate doing that.
1820       lldb::addr_t addr = 0;
1821       while (error.Success() && addr != LLDB_INVALID_ADDRESS &&
1822              // When there are non-address bits the last range will not extend
1823              // to LLDB_INVALID_ADDRESS but to the max virtual address.
1824              // This prevents us looping forever if that is the case.
1825              (!abi || (abi->FixAnyAddress(addr) == addr))) {
1826         lldb_private::MemoryRegionInfo region_info;
1827         error = process_sp->GetMemoryRegionInfo(addr, region_info);
1828 
1829         if (error.Success()) {
1830           region_list.push_back({region_info, addr});
1831           addr = region_info.GetRange().GetRangeEnd();
1832         }
1833       }
1834     } else {
1835       lldb_private::MemoryRegionInfo region_info;
1836       error = process_sp->GetMemoryRegionInfo(load_addr, region_info);
1837       if (error.Success())
1838         region_list.push_back({region_info, load_addr});
1839     }
1840 
1841     if (error.Success()) {
1842       for (std::pair<MemoryRegionInfo, addr_t> &range : region_list) {
1843         DumpRegion(result, process_sp->GetTarget(), range.first, range.second);
1844         m_prev_end_addr = range.first.GetRange().GetRangeEnd();
1845       }
1846 
1847       result.SetStatus(eReturnStatusSuccessFinishResult);
1848       return true;
1849     }
1850 
1851     result.AppendErrorWithFormat("%s\n", error.AsCString());
1852     return false;
1853   }
1854 
1855   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1856                                               uint32_t index) override {
1857     // If we repeat this command, repeat it without any arguments so we can
1858     // show the next memory range
1859     return m_cmd_name;
1860   }
1861 
1862   lldb::addr_t m_prev_end_addr = LLDB_INVALID_ADDRESS;
1863 
1864   OptionGroupOptions m_option_group;
1865   OptionGroupMemoryRegion m_memory_region_options;
1866 };
1867 
1868 // CommandObjectMemory
1869 
1870 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1871     : CommandObjectMultiword(
1872           interpreter, "memory",
1873           "Commands for operating on memory in the current target process.",
1874           "memory <subcommand> [<subcommand-options>]") {
1875   LoadSubCommand("find",
1876                  CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1877   LoadSubCommand("read",
1878                  CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1879   LoadSubCommand("write",
1880                  CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1881   LoadSubCommand("history",
1882                  CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1883   LoadSubCommand("region",
1884                  CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1885   LoadSubCommand("tag",
1886                  CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1887 }
1888 
1889 CommandObjectMemory::~CommandObjectMemory() = default;
1890