1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/ValueObjectMemory.h"
14 #include "lldb/Expression/ExpressionVariable.h"
15 #include "lldb/Host/OptionParser.h"
16 #include "lldb/Interpreter/CommandOptionArgumentTable.h"
17 #include "lldb/Interpreter/CommandReturnObject.h"
18 #include "lldb/Interpreter/OptionArgParser.h"
19 #include "lldb/Interpreter/OptionGroupFormat.h"
20 #include "lldb/Interpreter/OptionGroupMemoryTag.h"
21 #include "lldb/Interpreter/OptionGroupOutputFile.h"
22 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
23 #include "lldb/Interpreter/OptionValueLanguage.h"
24 #include "lldb/Interpreter/OptionValueString.h"
25 #include "lldb/Interpreter/Options.h"
26 #include "lldb/Symbol/SymbolFile.h"
27 #include "lldb/Symbol/TypeList.h"
28 #include "lldb/Target/ABI.h"
29 #include "lldb/Target/Language.h"
30 #include "lldb/Target/MemoryHistory.h"
31 #include "lldb/Target/MemoryRegionInfo.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/StackFrame.h"
34 #include "lldb/Target/Target.h"
35 #include "lldb/Target/Thread.h"
36 #include "lldb/Utility/Args.h"
37 #include "lldb/Utility/DataBufferHeap.h"
38 #include "lldb/Utility/StreamString.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <cinttypes>
41 #include <memory>
42 #include <optional>
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 
47 #define LLDB_OPTIONS_memory_read
48 #include "CommandOptions.inc"
49 
50 class OptionGroupReadMemory : public OptionGroup {
51 public:
52   OptionGroupReadMemory()
53       : m_num_per_line(1, 1), m_offset(0, 0),
54         m_language_for_type(eLanguageTypeUnknown) {}
55 
56   ~OptionGroupReadMemory() override = default;
57 
58   llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
59     return llvm::ArrayRef(g_memory_read_options);
60   }
61 
62   Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
63                         ExecutionContext *execution_context) override {
64     Status error;
65     const int short_option = g_memory_read_options[option_idx].short_option;
66 
67     switch (short_option) {
68     case 'l':
69       error = m_num_per_line.SetValueFromString(option_value);
70       if (m_num_per_line.GetCurrentValue() == 0)
71         error.SetErrorStringWithFormat(
72             "invalid value for --num-per-line option '%s'",
73             option_value.str().c_str());
74       break;
75 
76     case 'b':
77       m_output_as_binary = true;
78       break;
79 
80     case 't':
81       error = m_view_as_type.SetValueFromString(option_value);
82       break;
83 
84     case 'r':
85       m_force = true;
86       break;
87 
88     case 'x':
89       error = m_language_for_type.SetValueFromString(option_value);
90       break;
91 
92     case 'E':
93       error = m_offset.SetValueFromString(option_value);
94       break;
95 
96     default:
97       llvm_unreachable("Unimplemented option");
98     }
99     return error;
100   }
101 
102   void OptionParsingStarting(ExecutionContext *execution_context) override {
103     m_num_per_line.Clear();
104     m_output_as_binary = false;
105     m_view_as_type.Clear();
106     m_force = false;
107     m_offset.Clear();
108     m_language_for_type.Clear();
109   }
110 
111   Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
112     Status error;
113     OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
114     OptionValueUInt64 &count_value = format_options.GetCountValue();
115     const bool byte_size_option_set = byte_size_value.OptionWasSet();
116     const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
117     const bool count_option_set = format_options.GetCountValue().OptionWasSet();
118 
119     switch (format_options.GetFormat()) {
120     default:
121       break;
122 
123     case eFormatBoolean:
124       if (!byte_size_option_set)
125         byte_size_value = 1;
126       if (!num_per_line_option_set)
127         m_num_per_line = 1;
128       if (!count_option_set)
129         format_options.GetCountValue() = 8;
130       break;
131 
132     case eFormatCString:
133       break;
134 
135     case eFormatInstruction:
136       if (count_option_set)
137         byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
138       m_num_per_line = 1;
139       break;
140 
141     case eFormatAddressInfo:
142       if (!byte_size_option_set)
143         byte_size_value = target->GetArchitecture().GetAddressByteSize();
144       m_num_per_line = 1;
145       if (!count_option_set)
146         format_options.GetCountValue() = 8;
147       break;
148 
149     case eFormatPointer:
150       byte_size_value = target->GetArchitecture().GetAddressByteSize();
151       if (!num_per_line_option_set)
152         m_num_per_line = 4;
153       if (!count_option_set)
154         format_options.GetCountValue() = 8;
155       break;
156 
157     case eFormatBinary:
158     case eFormatFloat:
159     case eFormatOctal:
160     case eFormatDecimal:
161     case eFormatEnum:
162     case eFormatUnicode8:
163     case eFormatUnicode16:
164     case eFormatUnicode32:
165     case eFormatUnsigned:
166     case eFormatHexFloat:
167       if (!byte_size_option_set)
168         byte_size_value = 4;
169       if (!num_per_line_option_set)
170         m_num_per_line = 1;
171       if (!count_option_set)
172         format_options.GetCountValue() = 8;
173       break;
174 
175     case eFormatBytes:
176     case eFormatBytesWithASCII:
177       if (byte_size_option_set) {
178         if (byte_size_value > 1)
179           error.SetErrorStringWithFormat(
180               "display format (bytes/bytes with ASCII) conflicts with the "
181               "specified byte size %" PRIu64 "\n"
182               "\tconsider using a different display format or don't specify "
183               "the byte size.",
184               byte_size_value.GetCurrentValue());
185       } else
186         byte_size_value = 1;
187       if (!num_per_line_option_set)
188         m_num_per_line = 16;
189       if (!count_option_set)
190         format_options.GetCountValue() = 32;
191       break;
192 
193     case eFormatCharArray:
194     case eFormatChar:
195     case eFormatCharPrintable:
196       if (!byte_size_option_set)
197         byte_size_value = 1;
198       if (!num_per_line_option_set)
199         m_num_per_line = 32;
200       if (!count_option_set)
201         format_options.GetCountValue() = 64;
202       break;
203 
204     case eFormatComplex:
205       if (!byte_size_option_set)
206         byte_size_value = 8;
207       if (!num_per_line_option_set)
208         m_num_per_line = 1;
209       if (!count_option_set)
210         format_options.GetCountValue() = 8;
211       break;
212 
213     case eFormatComplexInteger:
214       if (!byte_size_option_set)
215         byte_size_value = 8;
216       if (!num_per_line_option_set)
217         m_num_per_line = 1;
218       if (!count_option_set)
219         format_options.GetCountValue() = 8;
220       break;
221 
222     case eFormatHex:
223       if (!byte_size_option_set)
224         byte_size_value = 4;
225       if (!num_per_line_option_set) {
226         switch (byte_size_value) {
227         case 1:
228         case 2:
229           m_num_per_line = 8;
230           break;
231         case 4:
232           m_num_per_line = 4;
233           break;
234         case 8:
235           m_num_per_line = 2;
236           break;
237         default:
238           m_num_per_line = 1;
239           break;
240         }
241       }
242       if (!count_option_set)
243         count_value = 8;
244       break;
245 
246     case eFormatVectorOfChar:
247     case eFormatVectorOfSInt8:
248     case eFormatVectorOfUInt8:
249     case eFormatVectorOfSInt16:
250     case eFormatVectorOfUInt16:
251     case eFormatVectorOfSInt32:
252     case eFormatVectorOfUInt32:
253     case eFormatVectorOfSInt64:
254     case eFormatVectorOfUInt64:
255     case eFormatVectorOfFloat16:
256     case eFormatVectorOfFloat32:
257     case eFormatVectorOfFloat64:
258     case eFormatVectorOfUInt128:
259       if (!byte_size_option_set)
260         byte_size_value = 128;
261       if (!num_per_line_option_set)
262         m_num_per_line = 1;
263       if (!count_option_set)
264         count_value = 4;
265       break;
266     }
267     return error;
268   }
269 
270   bool AnyOptionWasSet() const {
271     return m_num_per_line.OptionWasSet() || m_output_as_binary ||
272            m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
273            m_language_for_type.OptionWasSet();
274   }
275 
276   OptionValueUInt64 m_num_per_line;
277   bool m_output_as_binary = false;
278   OptionValueString m_view_as_type;
279   bool m_force = false;
280   OptionValueUInt64 m_offset;
281   OptionValueLanguage m_language_for_type;
282 };
283 
284 // Read memory from the inferior process
285 class CommandObjectMemoryRead : public CommandObjectParsed {
286 public:
287   CommandObjectMemoryRead(CommandInterpreter &interpreter)
288       : CommandObjectParsed(
289             interpreter, "memory read",
290             "Read from the memory of the current target process.", nullptr,
291             eCommandRequiresTarget | eCommandProcessMustBePaused),
292         m_format_options(eFormatBytesWithASCII, 1, 8),
293         m_memory_tag_options(/*note_binary=*/true),
294         m_prev_format_options(eFormatBytesWithASCII, 1, 8) {
295     CommandArgumentEntry arg1;
296     CommandArgumentEntry arg2;
297     CommandArgumentData start_addr_arg;
298     CommandArgumentData end_addr_arg;
299 
300     // Define the first (and only) variant of this arg.
301     start_addr_arg.arg_type = eArgTypeAddressOrExpression;
302     start_addr_arg.arg_repetition = eArgRepeatPlain;
303 
304     // There is only one variant this argument could be; put it into the
305     // argument entry.
306     arg1.push_back(start_addr_arg);
307 
308     // Define the first (and only) variant of this arg.
309     end_addr_arg.arg_type = eArgTypeAddressOrExpression;
310     end_addr_arg.arg_repetition = eArgRepeatOptional;
311 
312     // There is only one variant this argument could be; put it into the
313     // argument entry.
314     arg2.push_back(end_addr_arg);
315 
316     // Push the data for the first argument into the m_arguments vector.
317     m_arguments.push_back(arg1);
318     m_arguments.push_back(arg2);
319 
320     // Add the "--format" and "--count" options to group 1 and 3
321     m_option_group.Append(&m_format_options,
322                           OptionGroupFormat::OPTION_GROUP_FORMAT |
323                               OptionGroupFormat::OPTION_GROUP_COUNT,
324                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
325     m_option_group.Append(&m_format_options,
326                           OptionGroupFormat::OPTION_GROUP_GDB_FMT,
327                           LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
328     // Add the "--size" option to group 1 and 2
329     m_option_group.Append(&m_format_options,
330                           OptionGroupFormat::OPTION_GROUP_SIZE,
331                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
332     m_option_group.Append(&m_memory_options);
333     m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
334                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
335     m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
336     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
337                           LLDB_OPT_SET_ALL);
338     m_option_group.Finalize();
339   }
340 
341   ~CommandObjectMemoryRead() override = default;
342 
343   Options *GetOptions() override { return &m_option_group; }
344 
345   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
346                                               uint32_t index) override {
347     return m_cmd_name;
348   }
349 
350 protected:
351   bool DoExecute(Args &command, CommandReturnObject &result) override {
352     // No need to check "target" for validity as eCommandRequiresTarget ensures
353     // it is valid
354     Target *target = m_exe_ctx.GetTargetPtr();
355 
356     const size_t argc = command.GetArgumentCount();
357 
358     if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
359       result.AppendErrorWithFormat("%s takes a start address expression with "
360                                    "an optional end address expression.\n",
361                                    m_cmd_name.c_str());
362       result.AppendWarning("Expressions should be quoted if they contain "
363                            "spaces or other special characters.");
364       return false;
365     }
366 
367     CompilerType compiler_type;
368     Status error;
369 
370     const char *view_as_type_cstr =
371         m_memory_options.m_view_as_type.GetCurrentValue();
372     if (view_as_type_cstr && view_as_type_cstr[0]) {
373       // We are viewing memory as a type
374 
375       const bool exact_match = false;
376       TypeList type_list;
377       uint32_t reference_count = 0;
378       uint32_t pointer_count = 0;
379       size_t idx;
380 
381 #define ALL_KEYWORDS                                                           \
382   KEYWORD("const")                                                             \
383   KEYWORD("volatile")                                                          \
384   KEYWORD("restrict")                                                          \
385   KEYWORD("struct")                                                            \
386   KEYWORD("class")                                                             \
387   KEYWORD("union")
388 
389 #define KEYWORD(s) s,
390       static const char *g_keywords[] = {ALL_KEYWORDS};
391 #undef KEYWORD
392 
393 #define KEYWORD(s) (sizeof(s) - 1),
394       static const int g_keyword_lengths[] = {ALL_KEYWORDS};
395 #undef KEYWORD
396 
397 #undef ALL_KEYWORDS
398 
399       static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
400       std::string type_str(view_as_type_cstr);
401 
402       // Remove all instances of g_keywords that are followed by spaces
403       for (size_t i = 0; i < g_num_keywords; ++i) {
404         const char *keyword = g_keywords[i];
405         int keyword_len = g_keyword_lengths[i];
406 
407         idx = 0;
408         while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
409           if (type_str[idx + keyword_len] == ' ' ||
410               type_str[idx + keyword_len] == '\t') {
411             type_str.erase(idx, keyword_len + 1);
412             idx = 0;
413           } else {
414             idx += keyword_len;
415           }
416         }
417       }
418       bool done = type_str.empty();
419       //
420       idx = type_str.find_first_not_of(" \t");
421       if (idx > 0 && idx != std::string::npos)
422         type_str.erase(0, idx);
423       while (!done) {
424         // Strip trailing spaces
425         if (type_str.empty())
426           done = true;
427         else {
428           switch (type_str[type_str.size() - 1]) {
429           case '*':
430             ++pointer_count;
431             [[fallthrough]];
432           case ' ':
433           case '\t':
434             type_str.erase(type_str.size() - 1);
435             break;
436 
437           case '&':
438             if (reference_count == 0) {
439               reference_count = 1;
440               type_str.erase(type_str.size() - 1);
441             } else {
442               result.AppendErrorWithFormat("invalid type string: '%s'\n",
443                                            view_as_type_cstr);
444               return false;
445             }
446             break;
447 
448           default:
449             done = true;
450             break;
451           }
452         }
453       }
454 
455       llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files;
456       ConstString lookup_type_name(type_str.c_str());
457       StackFrame *frame = m_exe_ctx.GetFramePtr();
458       ModuleSP search_first;
459       if (frame) {
460         search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
461       }
462       target->GetImages().FindTypes(search_first.get(), lookup_type_name,
463                                     exact_match, 1, searched_symbol_files,
464                                     type_list);
465 
466       if (type_list.GetSize() == 0 && lookup_type_name.GetCString()) {
467         LanguageType language_for_type =
468             m_memory_options.m_language_for_type.GetCurrentValue();
469         std::set<LanguageType> languages_to_check;
470         if (language_for_type != eLanguageTypeUnknown) {
471           languages_to_check.insert(language_for_type);
472         } else {
473           languages_to_check = Language::GetSupportedLanguages();
474         }
475 
476         std::set<CompilerType> user_defined_types;
477         for (auto lang : languages_to_check) {
478           if (auto *persistent_vars =
479                   target->GetPersistentExpressionStateForLanguage(lang)) {
480             if (std::optional<CompilerType> type =
481                     persistent_vars->GetCompilerTypeFromPersistentDecl(
482                         lookup_type_name)) {
483               user_defined_types.emplace(*type);
484             }
485           }
486         }
487 
488         if (user_defined_types.size() > 1) {
489           result.AppendErrorWithFormat(
490               "Mutiple types found matching raw type '%s', please disambiguate "
491               "by specifying the language with -x",
492               lookup_type_name.GetCString());
493           return false;
494         }
495 
496         if (user_defined_types.size() == 1) {
497           compiler_type = *user_defined_types.begin();
498         }
499       }
500 
501       if (!compiler_type.IsValid()) {
502         if (type_list.GetSize() == 0) {
503           result.AppendErrorWithFormat("unable to find any types that match "
504                                        "the raw type '%s' for full type '%s'\n",
505                                        lookup_type_name.GetCString(),
506                                        view_as_type_cstr);
507           return false;
508         } else {
509           TypeSP type_sp(type_list.GetTypeAtIndex(0));
510           compiler_type = type_sp->GetFullCompilerType();
511         }
512       }
513 
514       while (pointer_count > 0) {
515         CompilerType pointer_type = compiler_type.GetPointerType();
516         if (pointer_type.IsValid())
517           compiler_type = pointer_type;
518         else {
519           result.AppendError("unable make a pointer type\n");
520           return false;
521         }
522         --pointer_count;
523       }
524 
525       std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
526       if (!size) {
527         result.AppendErrorWithFormat(
528             "unable to get the byte size of the type '%s'\n",
529             view_as_type_cstr);
530         return false;
531       }
532       m_format_options.GetByteSizeValue() = *size;
533 
534       if (!m_format_options.GetCountValue().OptionWasSet())
535         m_format_options.GetCountValue() = 1;
536     } else {
537       error = m_memory_options.FinalizeSettings(target, m_format_options);
538     }
539 
540     // Look for invalid combinations of settings
541     if (error.Fail()) {
542       result.AppendError(error.AsCString());
543       return false;
544     }
545 
546     lldb::addr_t addr;
547     size_t total_byte_size = 0;
548     if (argc == 0) {
549       // Use the last address and byte size and all options as they were if no
550       // options have been set
551       addr = m_next_addr;
552       total_byte_size = m_prev_byte_size;
553       compiler_type = m_prev_compiler_type;
554       if (!m_format_options.AnyOptionWasSet() &&
555           !m_memory_options.AnyOptionWasSet() &&
556           !m_outfile_options.AnyOptionWasSet() &&
557           !m_varobj_options.AnyOptionWasSet() &&
558           !m_memory_tag_options.AnyOptionWasSet()) {
559         m_format_options = m_prev_format_options;
560         m_memory_options = m_prev_memory_options;
561         m_outfile_options = m_prev_outfile_options;
562         m_varobj_options = m_prev_varobj_options;
563         m_memory_tag_options = m_prev_memory_tag_options;
564       }
565     }
566 
567     size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
568 
569     // TODO For non-8-bit byte addressable architectures this needs to be
570     // revisited to fully support all lldb's range of formatting options.
571     // Furthermore code memory reads (for those architectures) will not be
572     // correctly formatted even w/o formatting options.
573     size_t item_byte_size =
574         target->GetArchitecture().GetDataByteSize() > 1
575             ? target->GetArchitecture().GetDataByteSize()
576             : m_format_options.GetByteSizeValue().GetCurrentValue();
577 
578     const size_t num_per_line =
579         m_memory_options.m_num_per_line.GetCurrentValue();
580 
581     if (total_byte_size == 0) {
582       total_byte_size = item_count * item_byte_size;
583       if (total_byte_size == 0)
584         total_byte_size = 32;
585     }
586 
587     if (argc > 0)
588       addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
589                                         LLDB_INVALID_ADDRESS, &error);
590 
591     if (addr == LLDB_INVALID_ADDRESS) {
592       result.AppendError("invalid start address expression.");
593       result.AppendError(error.AsCString());
594       return false;
595     }
596 
597     if (argc == 2) {
598       lldb::addr_t end_addr = OptionArgParser::ToAddress(
599           &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
600 
601       if (end_addr == LLDB_INVALID_ADDRESS) {
602         result.AppendError("invalid end address expression.");
603         result.AppendError(error.AsCString());
604         return false;
605       } else if (end_addr <= addr) {
606         result.AppendErrorWithFormat(
607             "end address (0x%" PRIx64
608             ") must be greater than the start address (0x%" PRIx64 ").\n",
609             end_addr, addr);
610         return false;
611       } else if (m_format_options.GetCountValue().OptionWasSet()) {
612         result.AppendErrorWithFormat(
613             "specify either the end address (0x%" PRIx64
614             ") or the count (--count %" PRIu64 "), not both.\n",
615             end_addr, (uint64_t)item_count);
616         return false;
617       }
618 
619       total_byte_size = end_addr - addr;
620       item_count = total_byte_size / item_byte_size;
621     }
622 
623     uint32_t max_unforced_size = target->GetMaximumMemReadSize();
624 
625     if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
626       result.AppendErrorWithFormat(
627           "Normally, \'memory read\' will not read over %" PRIu32
628           " bytes of data.\n",
629           max_unforced_size);
630       result.AppendErrorWithFormat(
631           "Please use --force to override this restriction just once.\n");
632       result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
633                                    "will often need a larger limit.\n");
634       return false;
635     }
636 
637     WritableDataBufferSP data_sp;
638     size_t bytes_read = 0;
639     if (compiler_type.GetOpaqueQualType()) {
640       // Make sure we don't display our type as ASCII bytes like the default
641       // memory read
642       if (!m_format_options.GetFormatValue().OptionWasSet())
643         m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
644 
645       std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
646       if (!size) {
647         result.AppendError("can't get size of type");
648         return false;
649       }
650       bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
651 
652       if (argc > 0)
653         addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
654     } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
655                eFormatCString) {
656       data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
657       if (data_sp->GetBytes() == nullptr) {
658         result.AppendErrorWithFormat(
659             "can't allocate 0x%" PRIx32
660             " bytes for the memory read buffer, specify a smaller size to read",
661             (uint32_t)total_byte_size);
662         return false;
663       }
664 
665       Address address(addr, nullptr);
666       bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
667                                       data_sp->GetByteSize(), error, true);
668       if (bytes_read == 0) {
669         const char *error_cstr = error.AsCString();
670         if (error_cstr && error_cstr[0]) {
671           result.AppendError(error_cstr);
672         } else {
673           result.AppendErrorWithFormat(
674               "failed to read memory from 0x%" PRIx64 ".\n", addr);
675         }
676         return false;
677       }
678 
679       if (bytes_read < total_byte_size)
680         result.AppendWarningWithFormat(
681             "Not all bytes (%" PRIu64 "/%" PRIu64
682             ") were able to be read from 0x%" PRIx64 ".\n",
683             (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
684     } else {
685       // we treat c-strings as a special case because they do not have a fixed
686       // size
687       if (m_format_options.GetByteSizeValue().OptionWasSet() &&
688           !m_format_options.HasGDBFormat())
689         item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
690       else
691         item_byte_size = target->GetMaximumSizeOfStringSummary();
692       if (!m_format_options.GetCountValue().OptionWasSet())
693         item_count = 1;
694       data_sp = std::make_shared<DataBufferHeap>(
695           (item_byte_size + 1) * item_count,
696           '\0'); // account for NULLs as necessary
697       if (data_sp->GetBytes() == nullptr) {
698         result.AppendErrorWithFormat(
699             "can't allocate 0x%" PRIx64
700             " bytes for the memory read buffer, specify a smaller size to read",
701             (uint64_t)((item_byte_size + 1) * item_count));
702         return false;
703       }
704       uint8_t *data_ptr = data_sp->GetBytes();
705       auto data_addr = addr;
706       auto count = item_count;
707       item_count = 0;
708       bool break_on_no_NULL = false;
709       while (item_count < count) {
710         std::string buffer;
711         buffer.resize(item_byte_size + 1, 0);
712         Status error;
713         size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
714                                                     item_byte_size + 1, error);
715         if (error.Fail()) {
716           result.AppendErrorWithFormat(
717               "failed to read memory from 0x%" PRIx64 ".\n", addr);
718           return false;
719         }
720 
721         if (item_byte_size == read) {
722           result.AppendWarningWithFormat(
723               "unable to find a NULL terminated string at 0x%" PRIx64
724               ". Consider increasing the maximum read length.\n",
725               data_addr);
726           --read;
727           break_on_no_NULL = true;
728         } else
729           ++read; // account for final NULL byte
730 
731         memcpy(data_ptr, &buffer[0], read);
732         data_ptr += read;
733         data_addr += read;
734         bytes_read += read;
735         item_count++; // if we break early we know we only read item_count
736                       // strings
737 
738         if (break_on_no_NULL)
739           break;
740       }
741       data_sp =
742           std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
743     }
744 
745     m_next_addr = addr + bytes_read;
746     m_prev_byte_size = bytes_read;
747     m_prev_format_options = m_format_options;
748     m_prev_memory_options = m_memory_options;
749     m_prev_outfile_options = m_outfile_options;
750     m_prev_varobj_options = m_varobj_options;
751     m_prev_memory_tag_options = m_memory_tag_options;
752     m_prev_compiler_type = compiler_type;
753 
754     std::unique_ptr<Stream> output_stream_storage;
755     Stream *output_stream_p = nullptr;
756     const FileSpec &outfile_spec =
757         m_outfile_options.GetFile().GetCurrentValue();
758 
759     std::string path = outfile_spec.GetPath();
760     if (outfile_spec) {
761 
762       File::OpenOptions open_options =
763           File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate;
764       const bool append = m_outfile_options.GetAppend().GetCurrentValue();
765       open_options |=
766           append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
767 
768       auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
769 
770       if (outfile) {
771         auto outfile_stream_up =
772             std::make_unique<StreamFile>(std::move(outfile.get()));
773         if (m_memory_options.m_output_as_binary) {
774           const size_t bytes_written =
775               outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
776           if (bytes_written > 0) {
777             result.GetOutputStream().Printf(
778                 "%zi bytes %s to '%s'\n", bytes_written,
779                 append ? "appended" : "written", path.c_str());
780             return true;
781           } else {
782             result.AppendErrorWithFormat("Failed to write %" PRIu64
783                                          " bytes to '%s'.\n",
784                                          (uint64_t)bytes_read, path.c_str());
785             return false;
786           }
787         } else {
788           // We are going to write ASCII to the file just point the
789           // output_stream to our outfile_stream...
790           output_stream_storage = std::move(outfile_stream_up);
791           output_stream_p = output_stream_storage.get();
792         }
793       } else {
794         result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
795                                      path.c_str(), append ? "append" : "write");
796 
797         result.AppendError(llvm::toString(outfile.takeError()));
798         return false;
799       }
800     } else {
801       output_stream_p = &result.GetOutputStream();
802     }
803 
804     ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
805     if (compiler_type.GetOpaqueQualType()) {
806       for (uint32_t i = 0; i < item_count; ++i) {
807         addr_t item_addr = addr + (i * item_byte_size);
808         Address address(item_addr);
809         StreamString name_strm;
810         name_strm.Printf("0x%" PRIx64, item_addr);
811         ValueObjectSP valobj_sp(ValueObjectMemory::Create(
812             exe_scope, name_strm.GetString(), address, compiler_type));
813         if (valobj_sp) {
814           Format format = m_format_options.GetFormat();
815           if (format != eFormatDefault)
816             valobj_sp->SetFormat(format);
817 
818           DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
819               eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
820 
821           valobj_sp->Dump(*output_stream_p, options);
822         } else {
823           result.AppendErrorWithFormat(
824               "failed to create a value object for: (%s) %s\n",
825               view_as_type_cstr, name_strm.GetData());
826           return false;
827         }
828       }
829       return true;
830     }
831 
832     result.SetStatus(eReturnStatusSuccessFinishResult);
833     DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
834                        target->GetArchitecture().GetAddressByteSize(),
835                        target->GetArchitecture().GetDataByteSize());
836 
837     Format format = m_format_options.GetFormat();
838     if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
839         (item_byte_size != 1)) {
840       // if a count was not passed, or it is 1
841       if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
842         // this turns requests such as
843         // memory read -fc -s10 -c1 *charPtrPtr
844         // which make no sense (what is a char of size 10?) into a request for
845         // fetching 10 chars of size 1 from the same memory location
846         format = eFormatCharArray;
847         item_count = item_byte_size;
848         item_byte_size = 1;
849       } else {
850         // here we passed a count, and it was not 1 so we have a byte_size and
851         // a count we could well multiply those, but instead let's just fail
852         result.AppendErrorWithFormat(
853             "reading memory as characters of size %" PRIu64 " is not supported",
854             (uint64_t)item_byte_size);
855         return false;
856       }
857     }
858 
859     assert(output_stream_p);
860     size_t bytes_dumped = DumpDataExtractor(
861         data, output_stream_p, 0, format, item_byte_size, item_count,
862         num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
863         exe_scope, m_memory_tag_options.GetShowTags().GetCurrentValue());
864     m_next_addr = addr + bytes_dumped;
865     output_stream_p->EOL();
866     return true;
867   }
868 
869   OptionGroupOptions m_option_group;
870   OptionGroupFormat m_format_options;
871   OptionGroupReadMemory m_memory_options;
872   OptionGroupOutputFile m_outfile_options;
873   OptionGroupValueObjectDisplay m_varobj_options;
874   OptionGroupMemoryTag m_memory_tag_options;
875   lldb::addr_t m_next_addr = LLDB_INVALID_ADDRESS;
876   lldb::addr_t m_prev_byte_size = 0;
877   OptionGroupFormat m_prev_format_options;
878   OptionGroupReadMemory m_prev_memory_options;
879   OptionGroupOutputFile m_prev_outfile_options;
880   OptionGroupValueObjectDisplay m_prev_varobj_options;
881   OptionGroupMemoryTag m_prev_memory_tag_options;
882   CompilerType m_prev_compiler_type;
883 };
884 
885 #define LLDB_OPTIONS_memory_find
886 #include "CommandOptions.inc"
887 
888 // Find the specified data in memory
889 class CommandObjectMemoryFind : public CommandObjectParsed {
890 public:
891   class OptionGroupFindMemory : public OptionGroup {
892   public:
893     OptionGroupFindMemory() : m_count(1), m_offset(0) {}
894 
895     ~OptionGroupFindMemory() override = default;
896 
897     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
898       return llvm::ArrayRef(g_memory_find_options);
899     }
900 
901     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
902                           ExecutionContext *execution_context) override {
903       Status error;
904       const int short_option = g_memory_find_options[option_idx].short_option;
905 
906       switch (short_option) {
907       case 'e':
908         m_expr.SetValueFromString(option_value);
909         break;
910 
911       case 's':
912         m_string.SetValueFromString(option_value);
913         break;
914 
915       case 'c':
916         if (m_count.SetValueFromString(option_value).Fail())
917           error.SetErrorString("unrecognized value for count");
918         break;
919 
920       case 'o':
921         if (m_offset.SetValueFromString(option_value).Fail())
922           error.SetErrorString("unrecognized value for dump-offset");
923         break;
924 
925       default:
926         llvm_unreachable("Unimplemented option");
927       }
928       return error;
929     }
930 
931     void OptionParsingStarting(ExecutionContext *execution_context) override {
932       m_expr.Clear();
933       m_string.Clear();
934       m_count.Clear();
935     }
936 
937     OptionValueString m_expr;
938     OptionValueString m_string;
939     OptionValueUInt64 m_count;
940     OptionValueUInt64 m_offset;
941   };
942 
943   CommandObjectMemoryFind(CommandInterpreter &interpreter)
944       : CommandObjectParsed(
945             interpreter, "memory find",
946             "Find a value in the memory of the current target process.",
947             nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
948     CommandArgumentEntry arg1;
949     CommandArgumentEntry arg2;
950     CommandArgumentData addr_arg;
951     CommandArgumentData value_arg;
952 
953     // Define the first (and only) variant of this arg.
954     addr_arg.arg_type = eArgTypeAddressOrExpression;
955     addr_arg.arg_repetition = eArgRepeatPlain;
956 
957     // There is only one variant this argument could be; put it into the
958     // argument entry.
959     arg1.push_back(addr_arg);
960 
961     // Define the first (and only) variant of this arg.
962     value_arg.arg_type = eArgTypeAddressOrExpression;
963     value_arg.arg_repetition = eArgRepeatPlain;
964 
965     // There is only one variant this argument could be; put it into the
966     // argument entry.
967     arg2.push_back(value_arg);
968 
969     // Push the data for the first argument into the m_arguments vector.
970     m_arguments.push_back(arg1);
971     m_arguments.push_back(arg2);
972 
973     m_option_group.Append(&m_memory_options);
974     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
975                           LLDB_OPT_SET_ALL);
976     m_option_group.Finalize();
977   }
978 
979   ~CommandObjectMemoryFind() override = default;
980 
981   Options *GetOptions() override { return &m_option_group; }
982 
983 protected:
984   class ProcessMemoryIterator {
985   public:
986     ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base)
987         : m_process_sp(process_sp), m_base_addr(base) {
988       lldbassert(process_sp.get() != nullptr);
989     }
990 
991     bool IsValid() { return m_is_valid; }
992 
993     uint8_t operator[](lldb::addr_t offset) {
994       if (!IsValid())
995         return 0;
996 
997       uint8_t retval = 0;
998       Status error;
999       if (0 ==
1000           m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) {
1001         m_is_valid = false;
1002         return 0;
1003       }
1004 
1005       return retval;
1006     }
1007 
1008   private:
1009     ProcessSP m_process_sp;
1010     lldb::addr_t m_base_addr;
1011     bool m_is_valid = true;
1012   };
1013   bool DoExecute(Args &command, CommandReturnObject &result) override {
1014     // No need to check "process" for validity as eCommandRequiresProcess
1015     // ensures it is valid
1016     Process *process = m_exe_ctx.GetProcessPtr();
1017 
1018     const size_t argc = command.GetArgumentCount();
1019 
1020     if (argc != 2) {
1021       result.AppendError("two addresses needed for memory find");
1022       return false;
1023     }
1024 
1025     Status error;
1026     lldb::addr_t low_addr = OptionArgParser::ToAddress(
1027         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1028     if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1029       result.AppendError("invalid low address");
1030       return false;
1031     }
1032     lldb::addr_t high_addr = OptionArgParser::ToAddress(
1033         &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1034     if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1035       result.AppendError("invalid high address");
1036       return false;
1037     }
1038 
1039     if (high_addr <= low_addr) {
1040       result.AppendError(
1041           "starting address must be smaller than ending address");
1042       return false;
1043     }
1044 
1045     lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1046 
1047     DataBufferHeap buffer;
1048 
1049     if (m_memory_options.m_string.OptionWasSet()) {
1050       llvm::StringRef str =
1051           m_memory_options.m_string.GetValueAs<llvm::StringRef>().value_or("");
1052       if (str.empty()) {
1053         result.AppendError("search string must have non-zero length.");
1054         return false;
1055       }
1056       buffer.CopyData(str);
1057     } else if (m_memory_options.m_expr.OptionWasSet()) {
1058       StackFrame *frame = m_exe_ctx.GetFramePtr();
1059       ValueObjectSP result_sp;
1060       if ((eExpressionCompleted ==
1061            process->GetTarget().EvaluateExpression(
1062                m_memory_options.m_expr.GetValueAs<llvm::StringRef>().value_or(
1063                    ""),
1064                frame, result_sp)) &&
1065           result_sp) {
1066         uint64_t value = result_sp->GetValueAsUnsigned(0);
1067         std::optional<uint64_t> size =
1068             result_sp->GetCompilerType().GetByteSize(nullptr);
1069         if (!size)
1070           return false;
1071         switch (*size) {
1072         case 1: {
1073           uint8_t byte = (uint8_t)value;
1074           buffer.CopyData(&byte, 1);
1075         } break;
1076         case 2: {
1077           uint16_t word = (uint16_t)value;
1078           buffer.CopyData(&word, 2);
1079         } break;
1080         case 4: {
1081           uint32_t lword = (uint32_t)value;
1082           buffer.CopyData(&lword, 4);
1083         } break;
1084         case 8: {
1085           buffer.CopyData(&value, 8);
1086         } break;
1087         case 3:
1088         case 5:
1089         case 6:
1090         case 7:
1091           result.AppendError("unknown type. pass a string instead");
1092           return false;
1093         default:
1094           result.AppendError(
1095               "result size larger than 8 bytes. pass a string instead");
1096           return false;
1097         }
1098       } else {
1099         result.AppendError(
1100             "expression evaluation failed. pass a string instead");
1101         return false;
1102       }
1103     } else {
1104       result.AppendError(
1105           "please pass either a block of text, or an expression to evaluate.");
1106       return false;
1107     }
1108 
1109     size_t count = m_memory_options.m_count.GetCurrentValue();
1110     found_location = low_addr;
1111     bool ever_found = false;
1112     while (count) {
1113       found_location = FastSearch(found_location, high_addr, buffer.GetBytes(),
1114                                   buffer.GetByteSize());
1115       if (found_location == LLDB_INVALID_ADDRESS) {
1116         if (!ever_found) {
1117           result.AppendMessage("data not found within the range.\n");
1118           result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1119         } else
1120           result.AppendMessage("no more matches within the range.\n");
1121         break;
1122       }
1123       result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1124                                      found_location);
1125 
1126       DataBufferHeap dumpbuffer(32, 0);
1127       process->ReadMemory(
1128           found_location + m_memory_options.m_offset.GetCurrentValue(),
1129           dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1130       if (!error.Fail()) {
1131         DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1132                            process->GetByteOrder(),
1133                            process->GetAddressByteSize());
1134         DumpDataExtractor(
1135             data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1136             dumpbuffer.GetByteSize(), 16,
1137             found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0,
1138             m_exe_ctx.GetBestExecutionContextScope(),
1139             m_memory_tag_options.GetShowTags().GetCurrentValue());
1140         result.GetOutputStream().EOL();
1141       }
1142 
1143       --count;
1144       found_location++;
1145       ever_found = true;
1146     }
1147 
1148     result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1149     return true;
1150   }
1151 
1152   lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer,
1153                           size_t buffer_size) {
1154     const size_t region_size = high - low;
1155 
1156     if (region_size < buffer_size)
1157       return LLDB_INVALID_ADDRESS;
1158 
1159     std::vector<size_t> bad_char_heuristic(256, buffer_size);
1160     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1161     ProcessMemoryIterator iterator(process_sp, low);
1162 
1163     for (size_t idx = 0; idx < buffer_size - 1; idx++) {
1164       decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx];
1165       bad_char_heuristic[bcu_idx] = buffer_size - idx - 1;
1166     }
1167     for (size_t s = 0; s <= (region_size - buffer_size);) {
1168       int64_t j = buffer_size - 1;
1169       while (j >= 0 && buffer[j] == iterator[s + j])
1170         j--;
1171       if (j < 0)
1172         return low + s;
1173       else
1174         s += bad_char_heuristic[iterator[s + buffer_size - 1]];
1175     }
1176 
1177     return LLDB_INVALID_ADDRESS;
1178   }
1179 
1180   OptionGroupOptions m_option_group;
1181   OptionGroupFindMemory m_memory_options;
1182   OptionGroupMemoryTag m_memory_tag_options;
1183 };
1184 
1185 #define LLDB_OPTIONS_memory_write
1186 #include "CommandOptions.inc"
1187 
1188 // Write memory to the inferior process
1189 class CommandObjectMemoryWrite : public CommandObjectParsed {
1190 public:
1191   class OptionGroupWriteMemory : public OptionGroup {
1192   public:
1193     OptionGroupWriteMemory() = default;
1194 
1195     ~OptionGroupWriteMemory() override = default;
1196 
1197     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1198       return llvm::ArrayRef(g_memory_write_options);
1199     }
1200 
1201     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1202                           ExecutionContext *execution_context) override {
1203       Status error;
1204       const int short_option = g_memory_write_options[option_idx].short_option;
1205 
1206       switch (short_option) {
1207       case 'i':
1208         m_infile.SetFile(option_value, FileSpec::Style::native);
1209         FileSystem::Instance().Resolve(m_infile);
1210         if (!FileSystem::Instance().Exists(m_infile)) {
1211           m_infile.Clear();
1212           error.SetErrorStringWithFormat("input file does not exist: '%s'",
1213                                          option_value.str().c_str());
1214         }
1215         break;
1216 
1217       case 'o': {
1218         if (option_value.getAsInteger(0, m_infile_offset)) {
1219           m_infile_offset = 0;
1220           error.SetErrorStringWithFormat("invalid offset string '%s'",
1221                                          option_value.str().c_str());
1222         }
1223       } break;
1224 
1225       default:
1226         llvm_unreachable("Unimplemented option");
1227       }
1228       return error;
1229     }
1230 
1231     void OptionParsingStarting(ExecutionContext *execution_context) override {
1232       m_infile.Clear();
1233       m_infile_offset = 0;
1234     }
1235 
1236     FileSpec m_infile;
1237     off_t m_infile_offset;
1238   };
1239 
1240   CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1241       : CommandObjectParsed(
1242             interpreter, "memory write",
1243             "Write to the memory of the current target process.", nullptr,
1244             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1245         m_format_options(
1246             eFormatBytes, 1, UINT64_MAX,
1247             {std::make_tuple(
1248                  eArgTypeFormat,
1249                  "The format to use for each of the value to be written."),
1250              std::make_tuple(eArgTypeByteSize,
1251                              "The size in bytes to write from input file or "
1252                              "each value.")}) {
1253     CommandArgumentEntry arg1;
1254     CommandArgumentEntry arg2;
1255     CommandArgumentData addr_arg;
1256     CommandArgumentData value_arg;
1257 
1258     // Define the first (and only) variant of this arg.
1259     addr_arg.arg_type = eArgTypeAddress;
1260     addr_arg.arg_repetition = eArgRepeatPlain;
1261 
1262     // There is only one variant this argument could be; put it into the
1263     // argument entry.
1264     arg1.push_back(addr_arg);
1265 
1266     // Define the first (and only) variant of this arg.
1267     value_arg.arg_type = eArgTypeValue;
1268     value_arg.arg_repetition = eArgRepeatPlus;
1269     value_arg.arg_opt_set_association = LLDB_OPT_SET_1;
1270 
1271     // There is only one variant this argument could be; put it into the
1272     // argument entry.
1273     arg2.push_back(value_arg);
1274 
1275     // Push the data for the first argument into the m_arguments vector.
1276     m_arguments.push_back(arg1);
1277     m_arguments.push_back(arg2);
1278 
1279     m_option_group.Append(&m_format_options,
1280                           OptionGroupFormat::OPTION_GROUP_FORMAT,
1281                           LLDB_OPT_SET_1);
1282     m_option_group.Append(&m_format_options,
1283                           OptionGroupFormat::OPTION_GROUP_SIZE,
1284                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1285     m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1286     m_option_group.Finalize();
1287   }
1288 
1289   ~CommandObjectMemoryWrite() override = default;
1290 
1291   Options *GetOptions() override { return &m_option_group; }
1292 
1293 protected:
1294   bool DoExecute(Args &command, CommandReturnObject &result) override {
1295     // No need to check "process" for validity as eCommandRequiresProcess
1296     // ensures it is valid
1297     Process *process = m_exe_ctx.GetProcessPtr();
1298 
1299     const size_t argc = command.GetArgumentCount();
1300 
1301     if (m_memory_options.m_infile) {
1302       if (argc < 1) {
1303         result.AppendErrorWithFormat(
1304             "%s takes a destination address when writing file contents.\n",
1305             m_cmd_name.c_str());
1306         return false;
1307       }
1308       if (argc > 1) {
1309         result.AppendErrorWithFormat(
1310             "%s takes only a destination address when writing file contents.\n",
1311             m_cmd_name.c_str());
1312         return false;
1313       }
1314     } else if (argc < 2) {
1315       result.AppendErrorWithFormat(
1316           "%s takes a destination address and at least one value.\n",
1317           m_cmd_name.c_str());
1318       return false;
1319     }
1320 
1321     StreamString buffer(
1322         Stream::eBinary,
1323         process->GetTarget().GetArchitecture().GetAddressByteSize(),
1324         process->GetTarget().GetArchitecture().GetByteOrder());
1325 
1326     OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1327     size_t item_byte_size = byte_size_value.GetCurrentValue();
1328 
1329     Status error;
1330     lldb::addr_t addr = OptionArgParser::ToAddress(
1331         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1332 
1333     if (addr == LLDB_INVALID_ADDRESS) {
1334       result.AppendError("invalid address expression\n");
1335       result.AppendError(error.AsCString());
1336       return false;
1337     }
1338 
1339     if (m_memory_options.m_infile) {
1340       size_t length = SIZE_MAX;
1341       if (item_byte_size > 1)
1342         length = item_byte_size;
1343       auto data_sp = FileSystem::Instance().CreateDataBuffer(
1344           m_memory_options.m_infile.GetPath(), length,
1345           m_memory_options.m_infile_offset);
1346       if (data_sp) {
1347         length = data_sp->GetByteSize();
1348         if (length > 0) {
1349           Status error;
1350           size_t bytes_written =
1351               process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1352 
1353           if (bytes_written == length) {
1354             // All bytes written
1355             result.GetOutputStream().Printf(
1356                 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1357                 (uint64_t)bytes_written, addr);
1358             result.SetStatus(eReturnStatusSuccessFinishResult);
1359           } else if (bytes_written > 0) {
1360             // Some byte written
1361             result.GetOutputStream().Printf(
1362                 "%" PRIu64 " bytes of %" PRIu64
1363                 " requested were written to 0x%" PRIx64 "\n",
1364                 (uint64_t)bytes_written, (uint64_t)length, addr);
1365             result.SetStatus(eReturnStatusSuccessFinishResult);
1366           } else {
1367             result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1368                                          " failed: %s.\n",
1369                                          addr, error.AsCString());
1370           }
1371         }
1372       } else {
1373         result.AppendErrorWithFormat("Unable to read contents of file.\n");
1374       }
1375       return result.Succeeded();
1376     } else if (item_byte_size == 0) {
1377       if (m_format_options.GetFormat() == eFormatPointer)
1378         item_byte_size = buffer.GetAddressByteSize();
1379       else
1380         item_byte_size = 1;
1381     }
1382 
1383     command.Shift(); // shift off the address argument
1384     uint64_t uval64;
1385     int64_t sval64;
1386     bool success = false;
1387     for (auto &entry : command) {
1388       switch (m_format_options.GetFormat()) {
1389       case kNumFormats:
1390       case eFormatFloat: // TODO: add support for floats soon
1391       case eFormatCharPrintable:
1392       case eFormatBytesWithASCII:
1393       case eFormatComplex:
1394       case eFormatEnum:
1395       case eFormatUnicode8:
1396       case eFormatUnicode16:
1397       case eFormatUnicode32:
1398       case eFormatVectorOfChar:
1399       case eFormatVectorOfSInt8:
1400       case eFormatVectorOfUInt8:
1401       case eFormatVectorOfSInt16:
1402       case eFormatVectorOfUInt16:
1403       case eFormatVectorOfSInt32:
1404       case eFormatVectorOfUInt32:
1405       case eFormatVectorOfSInt64:
1406       case eFormatVectorOfUInt64:
1407       case eFormatVectorOfFloat16:
1408       case eFormatVectorOfFloat32:
1409       case eFormatVectorOfFloat64:
1410       case eFormatVectorOfUInt128:
1411       case eFormatOSType:
1412       case eFormatComplexInteger:
1413       case eFormatAddressInfo:
1414       case eFormatHexFloat:
1415       case eFormatInstruction:
1416       case eFormatVoid:
1417         result.AppendError("unsupported format for writing memory");
1418         return false;
1419 
1420       case eFormatDefault:
1421       case eFormatBytes:
1422       case eFormatHex:
1423       case eFormatHexUppercase:
1424       case eFormatPointer: {
1425         // Decode hex bytes
1426         // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1427         // have to special case that:
1428         bool success = false;
1429         if (entry.ref().startswith("0x"))
1430           success = !entry.ref().getAsInteger(0, uval64);
1431         if (!success)
1432           success = !entry.ref().getAsInteger(16, uval64);
1433         if (!success) {
1434           result.AppendErrorWithFormat(
1435               "'%s' is not a valid hex string value.\n", entry.c_str());
1436           return false;
1437         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1438           result.AppendErrorWithFormat("Value 0x%" PRIx64
1439                                        " is too large to fit in a %" PRIu64
1440                                        " byte unsigned integer value.\n",
1441                                        uval64, (uint64_t)item_byte_size);
1442           return false;
1443         }
1444         buffer.PutMaxHex64(uval64, item_byte_size);
1445         break;
1446       }
1447       case eFormatBoolean:
1448         uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1449         if (!success) {
1450           result.AppendErrorWithFormat(
1451               "'%s' is not a valid boolean string value.\n", entry.c_str());
1452           return false;
1453         }
1454         buffer.PutMaxHex64(uval64, item_byte_size);
1455         break;
1456 
1457       case eFormatBinary:
1458         if (entry.ref().getAsInteger(2, uval64)) {
1459           result.AppendErrorWithFormat(
1460               "'%s' is not a valid binary string value.\n", entry.c_str());
1461           return false;
1462         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1463           result.AppendErrorWithFormat("Value 0x%" PRIx64
1464                                        " is too large to fit in a %" PRIu64
1465                                        " byte unsigned integer value.\n",
1466                                        uval64, (uint64_t)item_byte_size);
1467           return false;
1468         }
1469         buffer.PutMaxHex64(uval64, item_byte_size);
1470         break;
1471 
1472       case eFormatCharArray:
1473       case eFormatChar:
1474       case eFormatCString: {
1475         if (entry.ref().empty())
1476           break;
1477 
1478         size_t len = entry.ref().size();
1479         // Include the NULL for C strings...
1480         if (m_format_options.GetFormat() == eFormatCString)
1481           ++len;
1482         Status error;
1483         if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1484           addr += len;
1485         } else {
1486           result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1487                                        " failed: %s.\n",
1488                                        addr, error.AsCString());
1489           return false;
1490         }
1491         break;
1492       }
1493       case eFormatDecimal:
1494         if (entry.ref().getAsInteger(0, sval64)) {
1495           result.AppendErrorWithFormat(
1496               "'%s' is not a valid signed decimal value.\n", entry.c_str());
1497           return false;
1498         } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1499           result.AppendErrorWithFormat(
1500               "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1501               " byte signed integer value.\n",
1502               sval64, (uint64_t)item_byte_size);
1503           return false;
1504         }
1505         buffer.PutMaxHex64(sval64, item_byte_size);
1506         break;
1507 
1508       case eFormatUnsigned:
1509 
1510         if (entry.ref().getAsInteger(0, uval64)) {
1511           result.AppendErrorWithFormat(
1512               "'%s' is not a valid unsigned decimal string value.\n",
1513               entry.c_str());
1514           return false;
1515         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1516           result.AppendErrorWithFormat("Value %" PRIu64
1517                                        " is too large to fit in a %" PRIu64
1518                                        " byte unsigned integer value.\n",
1519                                        uval64, (uint64_t)item_byte_size);
1520           return false;
1521         }
1522         buffer.PutMaxHex64(uval64, item_byte_size);
1523         break;
1524 
1525       case eFormatOctal:
1526         if (entry.ref().getAsInteger(8, uval64)) {
1527           result.AppendErrorWithFormat(
1528               "'%s' is not a valid octal string value.\n", entry.c_str());
1529           return false;
1530         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1531           result.AppendErrorWithFormat("Value %" PRIo64
1532                                        " is too large to fit in a %" PRIu64
1533                                        " byte unsigned integer value.\n",
1534                                        uval64, (uint64_t)item_byte_size);
1535           return false;
1536         }
1537         buffer.PutMaxHex64(uval64, item_byte_size);
1538         break;
1539       }
1540     }
1541 
1542     if (!buffer.GetString().empty()) {
1543       Status error;
1544       if (process->WriteMemory(addr, buffer.GetString().data(),
1545                                buffer.GetString().size(),
1546                                error) == buffer.GetString().size())
1547         return true;
1548       else {
1549         result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1550                                      " failed: %s.\n",
1551                                      addr, error.AsCString());
1552         return false;
1553       }
1554     }
1555     return true;
1556   }
1557 
1558   OptionGroupOptions m_option_group;
1559   OptionGroupFormat m_format_options;
1560   OptionGroupWriteMemory m_memory_options;
1561 };
1562 
1563 // Get malloc/free history of a memory address.
1564 class CommandObjectMemoryHistory : public CommandObjectParsed {
1565 public:
1566   CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1567       : CommandObjectParsed(interpreter, "memory history",
1568                             "Print recorded stack traces for "
1569                             "allocation/deallocation events "
1570                             "associated with an address.",
1571                             nullptr,
1572                             eCommandRequiresTarget | eCommandRequiresProcess |
1573                                 eCommandProcessMustBePaused |
1574                                 eCommandProcessMustBeLaunched) {
1575     CommandArgumentEntry arg1;
1576     CommandArgumentData addr_arg;
1577 
1578     // Define the first (and only) variant of this arg.
1579     addr_arg.arg_type = eArgTypeAddress;
1580     addr_arg.arg_repetition = eArgRepeatPlain;
1581 
1582     // There is only one variant this argument could be; put it into the
1583     // argument entry.
1584     arg1.push_back(addr_arg);
1585 
1586     // Push the data for the first argument into the m_arguments vector.
1587     m_arguments.push_back(arg1);
1588   }
1589 
1590   ~CommandObjectMemoryHistory() override = default;
1591 
1592   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1593                                               uint32_t index) override {
1594     return m_cmd_name;
1595   }
1596 
1597 protected:
1598   bool DoExecute(Args &command, CommandReturnObject &result) override {
1599     const size_t argc = command.GetArgumentCount();
1600 
1601     if (argc == 0 || argc > 1) {
1602       result.AppendErrorWithFormat("%s takes an address expression",
1603                                    m_cmd_name.c_str());
1604       return false;
1605     }
1606 
1607     Status error;
1608     lldb::addr_t addr = OptionArgParser::ToAddress(
1609         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1610 
1611     if (addr == LLDB_INVALID_ADDRESS) {
1612       result.AppendError("invalid address expression");
1613       result.AppendError(error.AsCString());
1614       return false;
1615     }
1616 
1617     Stream *output_stream = &result.GetOutputStream();
1618 
1619     const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1620     const MemoryHistorySP &memory_history =
1621         MemoryHistory::FindPlugin(process_sp);
1622 
1623     if (!memory_history) {
1624       result.AppendError("no available memory history provider");
1625       return false;
1626     }
1627 
1628     HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1629 
1630     const bool stop_format = false;
1631     for (auto thread : thread_list) {
1632       thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format);
1633     }
1634 
1635     result.SetStatus(eReturnStatusSuccessFinishResult);
1636 
1637     return true;
1638   }
1639 };
1640 
1641 // CommandObjectMemoryRegion
1642 #pragma mark CommandObjectMemoryRegion
1643 
1644 #define LLDB_OPTIONS_memory_region
1645 #include "CommandOptions.inc"
1646 
1647 class CommandObjectMemoryRegion : public CommandObjectParsed {
1648 public:
1649   class OptionGroupMemoryRegion : public OptionGroup {
1650   public:
1651     OptionGroupMemoryRegion() : m_all(false, false) {}
1652 
1653     ~OptionGroupMemoryRegion() override = default;
1654 
1655     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1656       return llvm::ArrayRef(g_memory_region_options);
1657     }
1658 
1659     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1660                           ExecutionContext *execution_context) override {
1661       Status status;
1662       const int short_option = g_memory_region_options[option_idx].short_option;
1663 
1664       switch (short_option) {
1665       case 'a':
1666         m_all.SetCurrentValue(true);
1667         m_all.SetOptionWasSet();
1668         break;
1669       default:
1670         llvm_unreachable("Unimplemented option");
1671       }
1672 
1673       return status;
1674     }
1675 
1676     void OptionParsingStarting(ExecutionContext *execution_context) override {
1677       m_all.Clear();
1678     }
1679 
1680     OptionValueBoolean m_all;
1681   };
1682 
1683   CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1684       : CommandObjectParsed(interpreter, "memory region",
1685                             "Get information on the memory region containing "
1686                             "an address in the current target process.",
1687                             "memory region <address-expression> (or --all)",
1688                             eCommandRequiresProcess | eCommandTryTargetAPILock |
1689                                 eCommandProcessMustBeLaunched) {
1690     // Address in option set 1.
1691     m_arguments.push_back(CommandArgumentEntry{CommandArgumentData(
1692         eArgTypeAddressOrExpression, eArgRepeatPlain, LLDB_OPT_SET_1)});
1693     // "--all" will go in option set 2.
1694     m_option_group.Append(&m_memory_region_options);
1695     m_option_group.Finalize();
1696   }
1697 
1698   ~CommandObjectMemoryRegion() override = default;
1699 
1700   Options *GetOptions() override { return &m_option_group; }
1701 
1702 protected:
1703   void DumpRegion(CommandReturnObject &result, Target &target,
1704                   const MemoryRegionInfo &range_info, lldb::addr_t load_addr) {
1705     lldb_private::Address addr;
1706     ConstString section_name;
1707     if (target.ResolveLoadAddress(load_addr, addr)) {
1708       SectionSP section_sp(addr.GetSection());
1709       if (section_sp) {
1710         // Got the top most section, not the deepest section
1711         while (section_sp->GetParent())
1712           section_sp = section_sp->GetParent();
1713         section_name = section_sp->GetName();
1714       }
1715     }
1716 
1717     ConstString name = range_info.GetName();
1718     result.AppendMessageWithFormatv(
1719         "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1720         range_info.GetRange().GetRangeBase(),
1721         range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1722         range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1723         name, section_name ? " " : "", section_name);
1724     MemoryRegionInfo::OptionalBool memory_tagged = range_info.GetMemoryTagged();
1725     if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1726       result.AppendMessage("memory tagging: enabled");
1727 
1728     const std::optional<std::vector<addr_t>> &dirty_page_list =
1729         range_info.GetDirtyPageList();
1730     if (dirty_page_list) {
1731       const size_t page_count = dirty_page_list->size();
1732       result.AppendMessageWithFormat(
1733           "Modified memory (dirty) page list provided, %zu entries.\n",
1734           page_count);
1735       if (page_count > 0) {
1736         bool print_comma = false;
1737         result.AppendMessageWithFormat("Dirty pages: ");
1738         for (size_t i = 0; i < page_count; i++) {
1739           if (print_comma)
1740             result.AppendMessageWithFormat(", ");
1741           else
1742             print_comma = true;
1743           result.AppendMessageWithFormat("0x%" PRIx64, (*dirty_page_list)[i]);
1744         }
1745         result.AppendMessageWithFormat(".\n");
1746       }
1747     }
1748   }
1749 
1750   bool DoExecute(Args &command, CommandReturnObject &result) override {
1751     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1752     if (!process_sp) {
1753       m_prev_end_addr = LLDB_INVALID_ADDRESS;
1754       result.AppendError("invalid process");
1755       return false;
1756     }
1757 
1758     Status error;
1759     lldb::addr_t load_addr = m_prev_end_addr;
1760     m_prev_end_addr = LLDB_INVALID_ADDRESS;
1761 
1762     const size_t argc = command.GetArgumentCount();
1763     const lldb::ABISP &abi = process_sp->GetABI();
1764 
1765     if (argc == 1) {
1766       if (m_memory_region_options.m_all) {
1767         result.AppendError(
1768             "The \"--all\" option cannot be used when an address "
1769             "argument is given");
1770         return false;
1771       }
1772 
1773       auto load_addr_str = command[0].ref();
1774       load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1775                                              LLDB_INVALID_ADDRESS, &error);
1776       if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1777         result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1778                                      command[0].c_str(), error.AsCString());
1779         return false;
1780       }
1781     } else if (argc > 1 ||
1782                // When we're repeating the command, the previous end address is
1783                // used for load_addr. If that was 0xF...F then we must have
1784                // reached the end of memory.
1785                (argc == 0 && !m_memory_region_options.m_all &&
1786                 load_addr == LLDB_INVALID_ADDRESS) ||
1787                // If the target has non-address bits (tags, limited virtual
1788                // address size, etc.), the end of mappable memory will be lower
1789                // than that. So if we find any non-address bit set, we must be
1790                // at the end of the mappable range.
1791                (abi && (abi->FixAnyAddress(load_addr) != load_addr))) {
1792       result.AppendErrorWithFormat(
1793           "'%s' takes one argument or \"--all\" option:\nUsage: %s\n",
1794           m_cmd_name.c_str(), m_cmd_syntax.c_str());
1795       return false;
1796     }
1797 
1798     // Is is important that we track the address used to request the region as
1799     // this will give the correct section name in the case that regions overlap.
1800     // On Windows we get mutliple regions that start at the same place but are
1801     // different sizes and refer to different sections.
1802     std::vector<std::pair<lldb_private::MemoryRegionInfo, lldb::addr_t>>
1803         region_list;
1804     if (m_memory_region_options.m_all) {
1805       // We don't use GetMemoryRegions here because it doesn't include unmapped
1806       // areas like repeating the command would. So instead, emulate doing that.
1807       lldb::addr_t addr = 0;
1808       while (error.Success() && addr != LLDB_INVALID_ADDRESS &&
1809              // When there are non-address bits the last range will not extend
1810              // to LLDB_INVALID_ADDRESS but to the max virtual address.
1811              // This prevents us looping forever if that is the case.
1812              (!abi || (abi->FixAnyAddress(addr) == addr))) {
1813         lldb_private::MemoryRegionInfo region_info;
1814         error = process_sp->GetMemoryRegionInfo(addr, region_info);
1815 
1816         if (error.Success()) {
1817           region_list.push_back({region_info, addr});
1818           addr = region_info.GetRange().GetRangeEnd();
1819         }
1820       }
1821     } else {
1822       lldb_private::MemoryRegionInfo region_info;
1823       error = process_sp->GetMemoryRegionInfo(load_addr, region_info);
1824       if (error.Success())
1825         region_list.push_back({region_info, load_addr});
1826     }
1827 
1828     if (error.Success()) {
1829       for (std::pair<MemoryRegionInfo, addr_t> &range : region_list) {
1830         DumpRegion(result, process_sp->GetTarget(), range.first, range.second);
1831         m_prev_end_addr = range.first.GetRange().GetRangeEnd();
1832       }
1833 
1834       result.SetStatus(eReturnStatusSuccessFinishResult);
1835       return true;
1836     }
1837 
1838     result.AppendErrorWithFormat("%s\n", error.AsCString());
1839     return false;
1840   }
1841 
1842   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1843                                               uint32_t index) override {
1844     // If we repeat this command, repeat it without any arguments so we can
1845     // show the next memory range
1846     return m_cmd_name;
1847   }
1848 
1849   lldb::addr_t m_prev_end_addr = LLDB_INVALID_ADDRESS;
1850 
1851   OptionGroupOptions m_option_group;
1852   OptionGroupMemoryRegion m_memory_region_options;
1853 };
1854 
1855 // CommandObjectMemory
1856 
1857 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1858     : CommandObjectMultiword(
1859           interpreter, "memory",
1860           "Commands for operating on memory in the current target process.",
1861           "memory <subcommand> [<subcommand-options>]") {
1862   LoadSubCommand("find",
1863                  CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1864   LoadSubCommand("read",
1865                  CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1866   LoadSubCommand("write",
1867                  CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1868   LoadSubCommand("history",
1869                  CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1870   LoadSubCommand("region",
1871                  CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1872   LoadSubCommand("tag",
1873                  CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1874 }
1875 
1876 CommandObjectMemory::~CommandObjectMemory() = default;
1877