1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <optional>
14 #include <vector>
15 
16 #include "lldb/Core/Module.h"
17 #include "lldb/Core/Value.h"
18 #include "lldb/Core/dwarf.h"
19 #include "lldb/Utility/DataEncoder.h"
20 #include "lldb/Utility/LLDBLog.h"
21 #include "lldb/Utility/Log.h"
22 #include "lldb/Utility/RegisterValue.h"
23 #include "lldb/Utility/Scalar.h"
24 #include "lldb/Utility/StreamString.h"
25 #include "lldb/Utility/VMRange.h"
26 
27 #include "lldb/Host/Host.h"
28 #include "lldb/Utility/Endian.h"
29 
30 #include "lldb/Symbol/Function.h"
31 
32 #include "lldb/Target/ABI.h"
33 #include "lldb/Target/ExecutionContext.h"
34 #include "lldb/Target/Process.h"
35 #include "lldb/Target/RegisterContext.h"
36 #include "lldb/Target/StackFrame.h"
37 #include "lldb/Target/StackID.h"
38 #include "lldb/Target/Target.h"
39 #include "lldb/Target/Thread.h"
40 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
41 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
42 
43 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
44 
45 using namespace lldb;
46 using namespace lldb_private;
47 using namespace lldb_private::dwarf;
48 using namespace lldb_private::plugin::dwarf;
49 
50 // DWARFExpression constructor
51 DWARFExpression::DWARFExpression() : m_data() {}
52 
53 DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
54 
55 // Destructor
56 DWARFExpression::~DWARFExpression() = default;
57 
58 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
59 
60 void DWARFExpression::UpdateValue(uint64_t const_value,
61                                   lldb::offset_t const_value_byte_size,
62                                   uint8_t addr_byte_size) {
63   if (!const_value_byte_size)
64     return;
65 
66   m_data.SetData(
67       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
68   m_data.SetByteOrder(endian::InlHostByteOrder());
69   m_data.SetAddressByteSize(addr_byte_size);
70 }
71 
72 void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level,
73                                    ABI *abi) const {
74   auto *MCRegInfo = abi ? &abi->GetMCRegisterInfo() : nullptr;
75   auto GetRegName = [&MCRegInfo](uint64_t DwarfRegNum,
76                                  bool IsEH) -> llvm::StringRef {
77     if (!MCRegInfo)
78       return {};
79     if (std::optional<unsigned> LLVMRegNum =
80             MCRegInfo->getLLVMRegNum(DwarfRegNum, IsEH))
81       if (const char *RegName = MCRegInfo->getName(*LLVMRegNum))
82         return llvm::StringRef(RegName);
83     return {};
84   };
85   llvm::DIDumpOptions DumpOpts;
86   DumpOpts.GetNameForDWARFReg = GetRegName;
87   llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
88       .print(s->AsRawOstream(), DumpOpts, nullptr);
89 }
90 
91 RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; }
92 
93 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
94   m_reg_kind = reg_kind;
95 }
96 
97 
98 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
99                                       lldb::RegisterKind reg_kind,
100                                       uint32_t reg_num, Status *error_ptr,
101                                       Value &value) {
102   if (reg_ctx == nullptr) {
103     if (error_ptr)
104       error_ptr->SetErrorString("No register context in frame.\n");
105   } else {
106     uint32_t native_reg =
107         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
108     if (native_reg == LLDB_INVALID_REGNUM) {
109       if (error_ptr)
110         error_ptr->SetErrorStringWithFormat("Unable to convert register "
111                                             "kind=%u reg_num=%u to a native "
112                                             "register number.\n",
113                                             reg_kind, reg_num);
114     } else {
115       const RegisterInfo *reg_info =
116           reg_ctx->GetRegisterInfoAtIndex(native_reg);
117       RegisterValue reg_value;
118       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
119         if (reg_value.GetScalarValue(value.GetScalar())) {
120           value.SetValueType(Value::ValueType::Scalar);
121           value.SetContext(Value::ContextType::RegisterInfo,
122                            const_cast<RegisterInfo *>(reg_info));
123           if (error_ptr)
124             error_ptr->Clear();
125           return true;
126         } else {
127           // If we get this error, then we need to implement a value buffer in
128           // the dwarf expression evaluation function...
129           if (error_ptr)
130             error_ptr->SetErrorStringWithFormat(
131                 "register %s can't be converted to a scalar value",
132                 reg_info->name);
133         }
134       } else {
135         if (error_ptr)
136           error_ptr->SetErrorStringWithFormat("register %s is not available",
137                                               reg_info->name);
138       }
139     }
140   }
141   return false;
142 }
143 
144 /// Return the length in bytes of the set of operands for \p op. No guarantees
145 /// are made on the state of \p data after this call.
146 static offset_t GetOpcodeDataSize(const DataExtractor &data,
147                                   const lldb::offset_t data_offset,
148                                   const uint8_t op, const DWARFUnit *dwarf_cu) {
149   lldb::offset_t offset = data_offset;
150   switch (op) {
151   case DW_OP_addr:
152   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
153     return data.GetAddressByteSize();
154 
155   // Opcodes with no arguments
156   case DW_OP_deref:                // 0x06
157   case DW_OP_dup:                  // 0x12
158   case DW_OP_drop:                 // 0x13
159   case DW_OP_over:                 // 0x14
160   case DW_OP_swap:                 // 0x16
161   case DW_OP_rot:                  // 0x17
162   case DW_OP_xderef:               // 0x18
163   case DW_OP_abs:                  // 0x19
164   case DW_OP_and:                  // 0x1a
165   case DW_OP_div:                  // 0x1b
166   case DW_OP_minus:                // 0x1c
167   case DW_OP_mod:                  // 0x1d
168   case DW_OP_mul:                  // 0x1e
169   case DW_OP_neg:                  // 0x1f
170   case DW_OP_not:                  // 0x20
171   case DW_OP_or:                   // 0x21
172   case DW_OP_plus:                 // 0x22
173   case DW_OP_shl:                  // 0x24
174   case DW_OP_shr:                  // 0x25
175   case DW_OP_shra:                 // 0x26
176   case DW_OP_xor:                  // 0x27
177   case DW_OP_eq:                   // 0x29
178   case DW_OP_ge:                   // 0x2a
179   case DW_OP_gt:                   // 0x2b
180   case DW_OP_le:                   // 0x2c
181   case DW_OP_lt:                   // 0x2d
182   case DW_OP_ne:                   // 0x2e
183   case DW_OP_lit0:                 // 0x30
184   case DW_OP_lit1:                 // 0x31
185   case DW_OP_lit2:                 // 0x32
186   case DW_OP_lit3:                 // 0x33
187   case DW_OP_lit4:                 // 0x34
188   case DW_OP_lit5:                 // 0x35
189   case DW_OP_lit6:                 // 0x36
190   case DW_OP_lit7:                 // 0x37
191   case DW_OP_lit8:                 // 0x38
192   case DW_OP_lit9:                 // 0x39
193   case DW_OP_lit10:                // 0x3A
194   case DW_OP_lit11:                // 0x3B
195   case DW_OP_lit12:                // 0x3C
196   case DW_OP_lit13:                // 0x3D
197   case DW_OP_lit14:                // 0x3E
198   case DW_OP_lit15:                // 0x3F
199   case DW_OP_lit16:                // 0x40
200   case DW_OP_lit17:                // 0x41
201   case DW_OP_lit18:                // 0x42
202   case DW_OP_lit19:                // 0x43
203   case DW_OP_lit20:                // 0x44
204   case DW_OP_lit21:                // 0x45
205   case DW_OP_lit22:                // 0x46
206   case DW_OP_lit23:                // 0x47
207   case DW_OP_lit24:                // 0x48
208   case DW_OP_lit25:                // 0x49
209   case DW_OP_lit26:                // 0x4A
210   case DW_OP_lit27:                // 0x4B
211   case DW_OP_lit28:                // 0x4C
212   case DW_OP_lit29:                // 0x4D
213   case DW_OP_lit30:                // 0x4E
214   case DW_OP_lit31:                // 0x4f
215   case DW_OP_reg0:                 // 0x50
216   case DW_OP_reg1:                 // 0x51
217   case DW_OP_reg2:                 // 0x52
218   case DW_OP_reg3:                 // 0x53
219   case DW_OP_reg4:                 // 0x54
220   case DW_OP_reg5:                 // 0x55
221   case DW_OP_reg6:                 // 0x56
222   case DW_OP_reg7:                 // 0x57
223   case DW_OP_reg8:                 // 0x58
224   case DW_OP_reg9:                 // 0x59
225   case DW_OP_reg10:                // 0x5A
226   case DW_OP_reg11:                // 0x5B
227   case DW_OP_reg12:                // 0x5C
228   case DW_OP_reg13:                // 0x5D
229   case DW_OP_reg14:                // 0x5E
230   case DW_OP_reg15:                // 0x5F
231   case DW_OP_reg16:                // 0x60
232   case DW_OP_reg17:                // 0x61
233   case DW_OP_reg18:                // 0x62
234   case DW_OP_reg19:                // 0x63
235   case DW_OP_reg20:                // 0x64
236   case DW_OP_reg21:                // 0x65
237   case DW_OP_reg22:                // 0x66
238   case DW_OP_reg23:                // 0x67
239   case DW_OP_reg24:                // 0x68
240   case DW_OP_reg25:                // 0x69
241   case DW_OP_reg26:                // 0x6A
242   case DW_OP_reg27:                // 0x6B
243   case DW_OP_reg28:                // 0x6C
244   case DW_OP_reg29:                // 0x6D
245   case DW_OP_reg30:                // 0x6E
246   case DW_OP_reg31:                // 0x6F
247   case DW_OP_nop:                  // 0x96
248   case DW_OP_push_object_address:  // 0x97 DWARF3
249   case DW_OP_form_tls_address:     // 0x9b DWARF3
250   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
251   case DW_OP_stack_value:          // 0x9f DWARF4
252   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
253     return 0;
254 
255   // Opcodes with a single 1 byte arguments
256   case DW_OP_const1u:     // 0x08 1 1-byte constant
257   case DW_OP_const1s:     // 0x09 1 1-byte constant
258   case DW_OP_pick:        // 0x15 1 1-byte stack index
259   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
260   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
261     return 1;
262 
263   // Opcodes with a single 2 byte arguments
264   case DW_OP_const2u: // 0x0a 1 2-byte constant
265   case DW_OP_const2s: // 0x0b 1 2-byte constant
266   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
267   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
268   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
269     return 2;
270 
271   // Opcodes with a single 4 byte arguments
272   case DW_OP_const4u: // 0x0c 1 4-byte constant
273   case DW_OP_const4s: // 0x0d 1 4-byte constant
274   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
275     return 4;
276 
277   // Opcodes with a single 8 byte arguments
278   case DW_OP_const8u: // 0x0e 1 8-byte constant
279   case DW_OP_const8s: // 0x0f 1 8-byte constant
280     return 8;
281 
282   // All opcodes that have a single ULEB (signed or unsigned) argument
283   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
284   case DW_OP_constu:          // 0x10 1 ULEB128 constant
285   case DW_OP_consts:          // 0x11 1 SLEB128 constant
286   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
287   case DW_OP_breg0:           // 0x70 1 ULEB128 register
288   case DW_OP_breg1:           // 0x71 1 ULEB128 register
289   case DW_OP_breg2:           // 0x72 1 ULEB128 register
290   case DW_OP_breg3:           // 0x73 1 ULEB128 register
291   case DW_OP_breg4:           // 0x74 1 ULEB128 register
292   case DW_OP_breg5:           // 0x75 1 ULEB128 register
293   case DW_OP_breg6:           // 0x76 1 ULEB128 register
294   case DW_OP_breg7:           // 0x77 1 ULEB128 register
295   case DW_OP_breg8:           // 0x78 1 ULEB128 register
296   case DW_OP_breg9:           // 0x79 1 ULEB128 register
297   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
298   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
299   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
300   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
301   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
302   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
303   case DW_OP_breg16:          // 0x80 1 ULEB128 register
304   case DW_OP_breg17:          // 0x81 1 ULEB128 register
305   case DW_OP_breg18:          // 0x82 1 ULEB128 register
306   case DW_OP_breg19:          // 0x83 1 ULEB128 register
307   case DW_OP_breg20:          // 0x84 1 ULEB128 register
308   case DW_OP_breg21:          // 0x85 1 ULEB128 register
309   case DW_OP_breg22:          // 0x86 1 ULEB128 register
310   case DW_OP_breg23:          // 0x87 1 ULEB128 register
311   case DW_OP_breg24:          // 0x88 1 ULEB128 register
312   case DW_OP_breg25:          // 0x89 1 ULEB128 register
313   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
314   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
315   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
316   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
317   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
318   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
319   case DW_OP_regx:            // 0x90 1 ULEB128 register
320   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
321   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
322   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
323   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
324     data.Skip_LEB128(&offset);
325     return offset - data_offset;
326 
327   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
328   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
329   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
330     data.Skip_LEB128(&offset);
331     data.Skip_LEB128(&offset);
332     return offset - data_offset;
333 
334   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
335                              // (DWARF4)
336   {
337     uint64_t block_len = data.Skip_LEB128(&offset);
338     offset += block_len;
339     return offset - data_offset;
340   }
341 
342   case DW_OP_GNU_entry_value:
343   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
344   {
345     uint64_t subexpr_len = data.GetULEB128(&offset);
346     return (offset - data_offset) + subexpr_len;
347   }
348 
349   default:
350     if (!dwarf_cu) {
351       return LLDB_INVALID_OFFSET;
352     }
353     return dwarf_cu->GetSymbolFileDWARF().GetVendorDWARFOpcodeSize(
354         data, data_offset, op);
355   }
356 }
357 
358 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu,
359                                                      bool &error) const {
360   error = false;
361   lldb::offset_t offset = 0;
362   while (m_data.ValidOffset(offset)) {
363     const uint8_t op = m_data.GetU8(&offset);
364 
365     if (op == DW_OP_addr)
366       return m_data.GetAddress(&offset);
367     if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
368       uint64_t index = m_data.GetULEB128(&offset);
369       if (dwarf_cu)
370         return dwarf_cu->ReadAddressFromDebugAddrSection(index);
371       error = true;
372       break;
373     }
374     const offset_t op_arg_size =
375         GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
376     if (op_arg_size == LLDB_INVALID_OFFSET) {
377       error = true;
378       break;
379     }
380     offset += op_arg_size;
381   }
382   return LLDB_INVALID_ADDRESS;
383 }
384 
385 bool DWARFExpression::Update_DW_OP_addr(const DWARFUnit *dwarf_cu,
386                                         lldb::addr_t file_addr) {
387   lldb::offset_t offset = 0;
388   while (m_data.ValidOffset(offset)) {
389     const uint8_t op = m_data.GetU8(&offset);
390 
391     if (op == DW_OP_addr) {
392       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
393       // We have to make a copy of the data as we don't know if this data is
394       // from a read only memory mapped buffer, so we duplicate all of the data
395       // first, then modify it, and if all goes well, we then replace the data
396       // for this expression
397 
398       // Make en encoder that contains a copy of the location expression data
399       // so we can write the address into the buffer using the correct byte
400       // order.
401       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
402                           m_data.GetByteOrder(), addr_byte_size);
403 
404       // Replace the address in the new buffer
405       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
406         return false;
407 
408       // All went well, so now we can reset the data using a shared pointer to
409       // the heap data so "m_data" will now correctly manage the heap data.
410       m_data.SetData(encoder.GetDataBuffer());
411       return true;
412     }
413     if (op == DW_OP_addrx) {
414       // Replace DW_OP_addrx with DW_OP_addr, since we can't modify the
415       // read-only debug_addr table.
416       // Subtract one to account for the opcode.
417       llvm::ArrayRef data_before_op = m_data.GetData().take_front(offset - 1);
418 
419       // Read the addrx index to determine how many bytes it needs.
420       const lldb::offset_t old_offset = offset;
421       m_data.GetULEB128(&offset);
422       if (old_offset == offset)
423         return false;
424       llvm::ArrayRef data_after_op = m_data.GetData().drop_front(offset);
425 
426       DataEncoder encoder(m_data.GetByteOrder(), m_data.GetAddressByteSize());
427       encoder.AppendData(data_before_op);
428       encoder.AppendU8(DW_OP_addr);
429       encoder.AppendAddress(file_addr);
430       encoder.AppendData(data_after_op);
431       m_data.SetData(encoder.GetDataBuffer());
432       return true;
433     }
434     const offset_t op_arg_size =
435         GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
436     if (op_arg_size == LLDB_INVALID_OFFSET)
437       break;
438     offset += op_arg_size;
439   }
440   return false;
441 }
442 
443 bool DWARFExpression::ContainsThreadLocalStorage(
444     const DWARFUnit *dwarf_cu) const {
445   lldb::offset_t offset = 0;
446   while (m_data.ValidOffset(offset)) {
447     const uint8_t op = m_data.GetU8(&offset);
448 
449     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
450       return true;
451     const offset_t op_arg_size =
452         GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
453     if (op_arg_size == LLDB_INVALID_OFFSET)
454       return false;
455     offset += op_arg_size;
456   }
457   return false;
458 }
459 bool DWARFExpression::LinkThreadLocalStorage(
460     const DWARFUnit *dwarf_cu,
461     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
462         &link_address_callback) {
463   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
464   // We have to make a copy of the data as we don't know if this data is from a
465   // read only memory mapped buffer, so we duplicate all of the data first,
466   // then modify it, and if all goes well, we then replace the data for this
467   // expression.
468   // Make en encoder that contains a copy of the location expression data so we
469   // can write the address into the buffer using the correct byte order.
470   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
471                       m_data.GetByteOrder(), addr_byte_size);
472 
473   lldb::offset_t offset = 0;
474   lldb::offset_t const_offset = 0;
475   lldb::addr_t const_value = 0;
476   size_t const_byte_size = 0;
477   while (m_data.ValidOffset(offset)) {
478     const uint8_t op = m_data.GetU8(&offset);
479 
480     bool decoded_data = false;
481     switch (op) {
482     case DW_OP_const4u:
483       // Remember the const offset in case we later have a
484       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
485       const_offset = offset;
486       const_value = m_data.GetU32(&offset);
487       decoded_data = true;
488       const_byte_size = 4;
489       break;
490 
491     case DW_OP_const8u:
492       // Remember the const offset in case we later have a
493       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
494       const_offset = offset;
495       const_value = m_data.GetU64(&offset);
496       decoded_data = true;
497       const_byte_size = 8;
498       break;
499 
500     case DW_OP_form_tls_address:
501     case DW_OP_GNU_push_tls_address:
502       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
503       // by a file address on the stack. We assume that DW_OP_const4u or
504       // DW_OP_const8u is used for these values, and we check that the last
505       // opcode we got before either of these was DW_OP_const4u or
506       // DW_OP_const8u. If so, then we can link the value accordingly. For
507       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
508       // address of a structure that contains a function pointer, the pthread
509       // key and the offset into the data pointed to by the pthread key. So we
510       // must link this address and also set the module of this expression to
511       // the new_module_sp so we can resolve the file address correctly
512       if (const_byte_size > 0) {
513         lldb::addr_t linked_file_addr = link_address_callback(const_value);
514         if (linked_file_addr == LLDB_INVALID_ADDRESS)
515           return false;
516         // Replace the address in the new buffer
517         if (encoder.PutUnsigned(const_offset, const_byte_size,
518                                 linked_file_addr) == UINT32_MAX)
519           return false;
520       }
521       break;
522 
523     default:
524       const_offset = 0;
525       const_value = 0;
526       const_byte_size = 0;
527       break;
528     }
529 
530     if (!decoded_data) {
531       const offset_t op_arg_size =
532           GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
533       if (op_arg_size == LLDB_INVALID_OFFSET)
534         return false;
535       else
536         offset += op_arg_size;
537     }
538   }
539 
540   m_data.SetData(encoder.GetDataBuffer());
541   return true;
542 }
543 
544 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
545                                        ExecutionContext *exe_ctx,
546                                        RegisterContext *reg_ctx,
547                                        const DataExtractor &opcodes,
548                                        lldb::offset_t &opcode_offset,
549                                        Status *error_ptr, Log *log) {
550   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
551   // function entry: this variable location is presumed to be optimized out at
552   // the current PC value.  The caller of the function may have call site
553   // information that describes an alternate location for the variable (e.g. a
554   // constant literal, or a spilled stack value) in the parent frame.
555   //
556   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
557   //
558   //     void child(int &sink, int x) {
559   //       ...
560   //       /* "x" gets optimized out. */
561   //
562   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
563   //       ++sink;
564   //     }
565   //
566   //     void parent() {
567   //       int sink;
568   //
569   //       /*
570   //        * The callsite information emitted here is:
571   //        *
572   //        * DW_TAG_call_site
573   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
574   //        *   DW_TAG_call_site_parameter (for "sink")
575   //        *     DW_AT_location   ($reg1)
576   //        *     DW_AT_call_value ($SP - 8)
577   //        *   DW_TAG_call_site_parameter (for "x")
578   //        *     DW_AT_location   ($reg2)
579   //        *     DW_AT_call_value ($literal 123)
580   //        *
581   //        * DW_TAG_call_site
582   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
583   //        *   ...
584   //        */
585   //       child(sink, 123);
586   //       child(sink, 456);
587   //     }
588   //
589   // When the program stops at "++sink" within `child`, the debugger determines
590   // the call site by analyzing the return address. Once the call site is found,
591   // the debugger determines which parameter is referenced by DW_OP_entry_value
592   // and evaluates the corresponding location for that parameter in `parent`.
593 
594   // 1. Find the function which pushed the current frame onto the stack.
595   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
596     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
597     return false;
598   }
599 
600   StackFrame *current_frame = exe_ctx->GetFramePtr();
601   Thread *thread = exe_ctx->GetThreadPtr();
602   if (!current_frame || !thread) {
603     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
604     return false;
605   }
606 
607   Target &target = exe_ctx->GetTargetRef();
608   StackFrameSP parent_frame = nullptr;
609   addr_t return_pc = LLDB_INVALID_ADDRESS;
610   uint32_t current_frame_idx = current_frame->GetFrameIndex();
611   uint32_t num_frames = thread->GetStackFrameCount();
612   for (uint32_t parent_frame_idx = current_frame_idx + 1;
613        parent_frame_idx < num_frames; ++parent_frame_idx) {
614     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
615     // Require a valid sequence of frames.
616     if (!parent_frame)
617       break;
618 
619     // Record the first valid return address, even if this is an inlined frame,
620     // in order to look up the associated call edge in the first non-inlined
621     // parent frame.
622     if (return_pc == LLDB_INVALID_ADDRESS) {
623       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
624       LLDB_LOG(log,
625                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
626                return_pc);
627     }
628 
629     // If we've found an inlined frame, skip it (these have no call site
630     // parameters).
631     if (parent_frame->IsInlined())
632       continue;
633 
634     // We've found the first non-inlined parent frame.
635     break;
636   }
637   if (!parent_frame || !parent_frame->GetRegisterContext()) {
638     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
639     return false;
640   }
641 
642   Function *parent_func =
643       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
644   if (!parent_func) {
645     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
646     return false;
647   }
648 
649   // 2. Find the call edge in the parent function responsible for creating the
650   //    current activation.
651   Function *current_func =
652       current_frame->GetSymbolContext(eSymbolContextFunction).function;
653   if (!current_func) {
654     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
655     return false;
656   }
657 
658   CallEdge *call_edge = nullptr;
659   ModuleList &modlist = target.GetImages();
660   ExecutionContext parent_exe_ctx = *exe_ctx;
661   parent_exe_ctx.SetFrameSP(parent_frame);
662   if (!parent_frame->IsArtificial()) {
663     // If the parent frame is not artificial, the current activation may be
664     // produced by an ambiguous tail call. In this case, refuse to proceed.
665     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
666     if (!call_edge) {
667       LLDB_LOG(log,
668                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
669                "in parent frame {1}",
670                return_pc, parent_func->GetName());
671       return false;
672     }
673     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
674     if (callee_func != current_func) {
675       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
676                     "can't find real parent frame");
677       return false;
678     }
679   } else {
680     // The StackFrameList solver machinery has deduced that an unambiguous tail
681     // call sequence that produced the current activation.  The first edge in
682     // the parent that points to the current function must be valid.
683     for (auto &edge : parent_func->GetTailCallingEdges()) {
684       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
685         call_edge = edge.get();
686         break;
687       }
688     }
689   }
690   if (!call_edge) {
691     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
692                   "to current function");
693     return false;
694   }
695 
696   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
697   //    available call site parameters. If found, evaluate the corresponding
698   //    parameter in the context of the parent frame.
699   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
700   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
701   if (!subexpr_data) {
702     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
703     return false;
704   }
705 
706   const CallSiteParameter *matched_param = nullptr;
707   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
708     DataExtractor param_subexpr_extractor;
709     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
710       continue;
711     lldb::offset_t param_subexpr_offset = 0;
712     const void *param_subexpr_data =
713         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
714     if (!param_subexpr_data ||
715         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
716       continue;
717 
718     // At this point, the DW_OP_entry_value sub-expression and the callee-side
719     // expression in the call site parameter are known to have the same length.
720     // Check whether they are equal.
721     //
722     // Note that an equality check is sufficient: the contents of the
723     // DW_OP_entry_value subexpression are only used to identify the right call
724     // site parameter in the parent, and do not require any special handling.
725     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
726       matched_param = &param;
727       break;
728     }
729   }
730   if (!matched_param) {
731     LLDB_LOG(log,
732              "Evaluate_DW_OP_entry_value: no matching call site param found");
733     return false;
734   }
735 
736   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
737   // subexpresion whenever llvm does.
738   Value result;
739   const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
740   if (!param_expr.Evaluate(&parent_exe_ctx,
741                            parent_frame->GetRegisterContext().get(),
742                            LLDB_INVALID_ADDRESS,
743                            /*initial_value_ptr=*/nullptr,
744                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
745     LLDB_LOG(log,
746              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
747     return false;
748   }
749 
750   stack.push_back(result);
751   return true;
752 }
753 
754 namespace {
755 /// The location description kinds described by the DWARF v5
756 /// specification.  Composite locations are handled out-of-band and
757 /// thus aren't part of the enum.
758 enum LocationDescriptionKind {
759   Empty,
760   Memory,
761   Register,
762   Implicit
763   /* Composite*/
764 };
765 /// Adjust value's ValueType according to the kind of location description.
766 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
767                                             LocationDescriptionKind kind,
768                                             Value *value = nullptr) {
769   // Note that this function is conflating DWARF expressions with
770   // DWARF location descriptions. Perhaps it would be better to define
771   // a wrapper for DWARFExpression::Eval() that deals with DWARF
772   // location descriptions (which consist of one or more DWARF
773   // expressions). But doing this would mean we'd also need factor the
774   // handling of DW_OP_(bit_)piece out of this function.
775   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
776     const char *log_msg = "DWARF location description kind: %s";
777     switch (kind) {
778     case Empty:
779       LLDB_LOGF(log, log_msg, "Empty");
780       break;
781     case Memory:
782       LLDB_LOGF(log, log_msg, "Memory");
783       if (value->GetValueType() == Value::ValueType::Scalar)
784         value->SetValueType(Value::ValueType::LoadAddress);
785       break;
786     case Register:
787       LLDB_LOGF(log, log_msg, "Register");
788       value->SetValueType(Value::ValueType::Scalar);
789       break;
790     case Implicit:
791       LLDB_LOGF(log, log_msg, "Implicit");
792       if (value->GetValueType() == Value::ValueType::LoadAddress)
793         value->SetValueType(Value::ValueType::Scalar);
794       break;
795     }
796   }
797 }
798 } // namespace
799 
800 /// Helper function to move common code used to resolve a file address and turn
801 /// into a load address.
802 ///
803 /// \param exe_ctx Pointer to the execution context
804 /// \param module_sp shared_ptr contains the module if we have one
805 /// \param error_ptr pointer to Status object if we have one
806 /// \param dw_op_type C-style string used to vary the error output
807 /// \param file_addr the file address we are trying to resolve and turn into a
808 ///                  load address
809 /// \param so_addr out parameter, will be set to load address or section offset
810 /// \param check_sectionoffset bool which determines if having a section offset
811 ///                            but not a load address is considerd a success
812 /// \returns std::optional containing the load address if resolving and getting
813 ///          the load address succeed or an empty Optinal otherwise. If
814 ///          check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
815 ///          success if so_addr.IsSectionOffset() is true.
816 static std::optional<lldb::addr_t>
817 ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp,
818                    Status *error_ptr, const char *dw_op_type,
819                    lldb::addr_t file_addr, Address &so_addr,
820                    bool check_sectionoffset = false) {
821   if (!module_sp) {
822     if (error_ptr)
823       error_ptr->SetErrorStringWithFormat(
824           "need module to resolve file address for %s", dw_op_type);
825     return {};
826   }
827 
828   if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
829     if (error_ptr)
830       error_ptr->SetErrorString("failed to resolve file address in module");
831     return {};
832   }
833 
834   addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
835 
836   if (load_addr == LLDB_INVALID_ADDRESS &&
837       (check_sectionoffset && !so_addr.IsSectionOffset())) {
838     if (error_ptr)
839       error_ptr->SetErrorString("failed to resolve load address");
840     return {};
841   }
842 
843   return load_addr;
844 }
845 
846 /// Helper function to move common code used to load sized data from a uint8_t
847 /// buffer.
848 ///
849 /// \param addr_bytes uint8_t buffer containg raw data
850 /// \param size_addr_bytes how large is the underlying raw data
851 /// \param byte_order what is the byter order of the underlyig data
852 /// \param size How much of the underlying data we want to use
853 /// \return The underlying data converted into a Scalar
854 static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
855                                          size_t size_addr_bytes,
856                                          ByteOrder byte_order, size_t size) {
857   DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
858 
859   lldb::offset_t addr_data_offset = 0;
860   if (size <= 8)
861     return addr_data.GetMaxU64(&addr_data_offset, size);
862   else
863     return addr_data.GetAddress(&addr_data_offset);
864 }
865 
866 bool DWARFExpression::Evaluate(
867     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
868     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
869     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
870     const Value *initial_value_ptr, const Value *object_address_ptr,
871     Value &result, Status *error_ptr) {
872 
873   if (opcodes.GetByteSize() == 0) {
874     if (error_ptr)
875       error_ptr->SetErrorString(
876           "no location, value may have been optimized out");
877     return false;
878   }
879   std::vector<Value> stack;
880 
881   Process *process = nullptr;
882   StackFrame *frame = nullptr;
883   Target *target = nullptr;
884 
885   if (exe_ctx) {
886     process = exe_ctx->GetProcessPtr();
887     frame = exe_ctx->GetFramePtr();
888     target = exe_ctx->GetTargetPtr();
889   }
890   if (reg_ctx == nullptr && frame)
891     reg_ctx = frame->GetRegisterContext().get();
892 
893   if (initial_value_ptr)
894     stack.push_back(*initial_value_ptr);
895 
896   lldb::offset_t offset = 0;
897   Value tmp;
898   uint32_t reg_num;
899 
900   /// Insertion point for evaluating multi-piece expression.
901   uint64_t op_piece_offset = 0;
902   Value pieces; // Used for DW_OP_piece
903 
904   Log *log = GetLog(LLDBLog::Expressions);
905   // A generic type is "an integral type that has the size of an address and an
906   // unspecified signedness". For now, just use the signedness of the operand.
907   // TODO: Implement a real typed stack, and store the genericness of the value
908   // there.
909   auto to_generic = [&](auto v) {
910     bool is_signed = std::is_signed<decltype(v)>::value;
911     return Scalar(llvm::APSInt(
912         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
913         !is_signed));
914   };
915 
916   // The default kind is a memory location. This is updated by any
917   // operation that changes this, such as DW_OP_stack_value, and reset
918   // by composition operations like DW_OP_piece.
919   LocationDescriptionKind dwarf4_location_description_kind = Memory;
920 
921   while (opcodes.ValidOffset(offset)) {
922     const lldb::offset_t op_offset = offset;
923     const uint8_t op = opcodes.GetU8(&offset);
924 
925     if (log && log->GetVerbose()) {
926       size_t count = stack.size();
927       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
928                 (uint64_t)count);
929       for (size_t i = 0; i < count; ++i) {
930         StreamString new_value;
931         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
932         stack[i].Dump(&new_value);
933         LLDB_LOGF(log, "  %s", new_value.GetData());
934       }
935       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
936                 DW_OP_value_to_name(op));
937     }
938 
939     switch (op) {
940     // The DW_OP_addr operation has a single operand that encodes a machine
941     // address and whose size is the size of an address on the target machine.
942     case DW_OP_addr:
943       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
944       if (target &&
945           target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
946         // wasm file sections aren't mapped into memory, therefore addresses can
947         // never point into a file section and are always LoadAddresses.
948         stack.back().SetValueType(Value::ValueType::LoadAddress);
949       } else {
950         stack.back().SetValueType(Value::ValueType::FileAddress);
951       }
952       break;
953 
954     // The DW_OP_addr_sect_offset4 is used for any location expressions in
955     // shared libraries that have a location like:
956     //  DW_OP_addr(0x1000)
957     // If this address resides in a shared library, then this virtual address
958     // won't make sense when it is evaluated in the context of a running
959     // process where shared libraries have been slid. To account for this, this
960     // new address type where we can store the section pointer and a 4 byte
961     // offset.
962     //      case DW_OP_addr_sect_offset4:
963     //          {
964     //              result_type = eResultTypeFileAddress;
965     //              lldb::Section *sect = (lldb::Section
966     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
967     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
968     //
969     //              Address so_addr (sect, sect_offset);
970     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
971     //              if (load_addr != LLDB_INVALID_ADDRESS)
972     //              {
973     //                  // We successfully resolve a file address to a load
974     //                  // address.
975     //                  stack.push_back(load_addr);
976     //                  break;
977     //              }
978     //              else
979     //              {
980     //                  // We were able
981     //                  if (error_ptr)
982     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
983     //                      %s is not currently loaded.\n",
984     //                      sect->GetName().AsCString(),
985     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
986     //                  return false;
987     //              }
988     //          }
989     //          break;
990 
991     // OPCODE: DW_OP_deref
992     // OPERANDS: none
993     // DESCRIPTION: Pops the top stack entry and treats it as an address.
994     // The value retrieved from that address is pushed. The size of the data
995     // retrieved from the dereferenced address is the size of an address on the
996     // target machine.
997     case DW_OP_deref: {
998       if (stack.empty()) {
999         if (error_ptr)
1000           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1001         return false;
1002       }
1003       Value::ValueType value_type = stack.back().GetValueType();
1004       switch (value_type) {
1005       case Value::ValueType::HostAddress: {
1006         void *src = (void *)stack.back().GetScalar().ULongLong();
1007         intptr_t ptr;
1008         ::memcpy(&ptr, src, sizeof(void *));
1009         stack.back().GetScalar() = ptr;
1010         stack.back().ClearContext();
1011       } break;
1012       case Value::ValueType::FileAddress: {
1013         auto file_addr = stack.back().GetScalar().ULongLong(
1014             LLDB_INVALID_ADDRESS);
1015 
1016         Address so_addr;
1017         auto maybe_load_addr = ResolveLoadAddress(
1018             exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
1019 
1020         if (!maybe_load_addr)
1021           return false;
1022 
1023         stack.back().GetScalar() = *maybe_load_addr;
1024         // Fall through to load address promotion code below.
1025       }
1026         [[fallthrough]];
1027       case Value::ValueType::Scalar:
1028         // Promote Scalar to LoadAddress and fall through.
1029         stack.back().SetValueType(Value::ValueType::LoadAddress);
1030         [[fallthrough]];
1031       case Value::ValueType::LoadAddress:
1032         if (exe_ctx) {
1033           if (process) {
1034             lldb::addr_t pointer_addr =
1035                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1036             Status error;
1037             lldb::addr_t pointer_value =
1038                 process->ReadPointerFromMemory(pointer_addr, error);
1039             if (pointer_value != LLDB_INVALID_ADDRESS) {
1040               if (ABISP abi_sp = process->GetABI())
1041                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1042               stack.back().GetScalar() = pointer_value;
1043               stack.back().ClearContext();
1044             } else {
1045               if (error_ptr)
1046                 error_ptr->SetErrorStringWithFormat(
1047                     "Failed to dereference pointer from 0x%" PRIx64
1048                     " for DW_OP_deref: %s\n",
1049                     pointer_addr, error.AsCString());
1050               return false;
1051             }
1052           } else {
1053             if (error_ptr)
1054               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1055             return false;
1056           }
1057         } else {
1058           if (error_ptr)
1059             error_ptr->SetErrorString(
1060                 "NULL execution context for DW_OP_deref.\n");
1061           return false;
1062         }
1063         break;
1064 
1065       case Value::ValueType::Invalid:
1066         if (error_ptr)
1067           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1068         return false;
1069       }
1070 
1071     } break;
1072 
1073     // OPCODE: DW_OP_deref_size
1074     // OPERANDS: 1
1075     //  1 - uint8_t that specifies the size of the data to dereference.
1076     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1077     // stack entry and treats it as an address. The value retrieved from that
1078     // address is pushed. In the DW_OP_deref_size operation, however, the size
1079     // in bytes of the data retrieved from the dereferenced address is
1080     // specified by the single operand. This operand is a 1-byte unsigned
1081     // integral constant whose value may not be larger than the size of an
1082     // address on the target machine. The data retrieved is zero extended to
1083     // the size of an address on the target machine before being pushed on the
1084     // expression stack.
1085     case DW_OP_deref_size: {
1086       if (stack.empty()) {
1087         if (error_ptr)
1088           error_ptr->SetErrorString(
1089               "Expression stack empty for DW_OP_deref_size.");
1090         return false;
1091       }
1092       uint8_t size = opcodes.GetU8(&offset);
1093       if (size > 8) {
1094         if (error_ptr)
1095               error_ptr->SetErrorStringWithFormat(
1096                   "Invalid address size for DW_OP_deref_size: %d\n",
1097                   size);
1098         return false;
1099       }
1100       Value::ValueType value_type = stack.back().GetValueType();
1101       switch (value_type) {
1102       case Value::ValueType::HostAddress: {
1103         void *src = (void *)stack.back().GetScalar().ULongLong();
1104         intptr_t ptr;
1105         ::memcpy(&ptr, src, sizeof(void *));
1106         // I can't decide whether the size operand should apply to the bytes in
1107         // their
1108         // lldb-host endianness or the target endianness.. I doubt this'll ever
1109         // come up but I'll opt for assuming big endian regardless.
1110         switch (size) {
1111         case 1:
1112           ptr = ptr & 0xff;
1113           break;
1114         case 2:
1115           ptr = ptr & 0xffff;
1116           break;
1117         case 3:
1118           ptr = ptr & 0xffffff;
1119           break;
1120         case 4:
1121           ptr = ptr & 0xffffffff;
1122           break;
1123         // the casts are added to work around the case where intptr_t is a 32
1124         // bit quantity;
1125         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1126         // program.
1127         case 5:
1128           ptr = (intptr_t)ptr & 0xffffffffffULL;
1129           break;
1130         case 6:
1131           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1132           break;
1133         case 7:
1134           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1135           break;
1136         default:
1137           break;
1138         }
1139         stack.back().GetScalar() = ptr;
1140         stack.back().ClearContext();
1141       } break;
1142       case Value::ValueType::FileAddress: {
1143         auto file_addr =
1144             stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1145         Address so_addr;
1146         auto maybe_load_addr =
1147             ResolveLoadAddress(exe_ctx, module_sp, error_ptr,
1148                                       "DW_OP_deref_size", file_addr, so_addr,
1149                                       /*check_sectionoffset=*/true);
1150 
1151         if (!maybe_load_addr)
1152           return false;
1153 
1154         addr_t load_addr = *maybe_load_addr;
1155 
1156         if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1157           uint8_t addr_bytes[8];
1158           Status error;
1159 
1160           if (target &&
1161               target->ReadMemory(so_addr, &addr_bytes, size, error,
1162                                  /*force_live_memory=*/false) == size) {
1163             ObjectFile *objfile = module_sp->GetObjectFile();
1164 
1165             stack.back().GetScalar() = DerefSizeExtractDataHelper(
1166                 addr_bytes, size, objfile->GetByteOrder(), size);
1167             stack.back().ClearContext();
1168             break;
1169           } else {
1170             if (error_ptr)
1171               error_ptr->SetErrorStringWithFormat(
1172                   "Failed to dereference pointer for DW_OP_deref_size: "
1173                   "%s\n",
1174                   error.AsCString());
1175             return false;
1176           }
1177         }
1178         stack.back().GetScalar() = load_addr;
1179         // Fall through to load address promotion code below.
1180       }
1181 
1182         [[fallthrough]];
1183       case Value::ValueType::Scalar:
1184       case Value::ValueType::LoadAddress:
1185         if (exe_ctx) {
1186           if (process) {
1187             lldb::addr_t pointer_addr =
1188                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1189             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1190             Status error;
1191             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1192                 size) {
1193 
1194               stack.back().GetScalar() =
1195                   DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1196                                              process->GetByteOrder(), size);
1197               stack.back().ClearContext();
1198             } else {
1199               if (error_ptr)
1200                 error_ptr->SetErrorStringWithFormat(
1201                     "Failed to dereference pointer from 0x%" PRIx64
1202                     " for DW_OP_deref: %s\n",
1203                     pointer_addr, error.AsCString());
1204               return false;
1205             }
1206           } else {
1207             if (error_ptr)
1208               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1209             return false;
1210           }
1211         } else {
1212           if (error_ptr)
1213             error_ptr->SetErrorString(
1214                 "NULL execution context for DW_OP_deref_size.\n");
1215           return false;
1216         }
1217         break;
1218 
1219       case Value::ValueType::Invalid:
1220         if (error_ptr)
1221           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1222         return false;
1223       }
1224 
1225     } break;
1226 
1227     // OPCODE: DW_OP_xderef_size
1228     // OPERANDS: 1
1229     //  1 - uint8_t that specifies the size of the data to dereference.
1230     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1231     // the top of the stack is treated as an address. The second stack entry is
1232     // treated as an "address space identifier" for those architectures that
1233     // support multiple address spaces. The top two stack elements are popped,
1234     // a data item is retrieved through an implementation-defined address
1235     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1236     // operation, however, the size in bytes of the data retrieved from the
1237     // dereferenced address is specified by the single operand. This operand is
1238     // a 1-byte unsigned integral constant whose value may not be larger than
1239     // the size of an address on the target machine. The data retrieved is zero
1240     // extended to the size of an address on the target machine before being
1241     // pushed on the expression stack.
1242     case DW_OP_xderef_size:
1243       if (error_ptr)
1244         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1245       return false;
1246     // OPCODE: DW_OP_xderef
1247     // OPERANDS: none
1248     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1249     // the top of the stack is treated as an address. The second stack entry is
1250     // treated as an "address space identifier" for those architectures that
1251     // support multiple address spaces. The top two stack elements are popped,
1252     // a data item is retrieved through an implementation-defined address
1253     // calculation and pushed as the new stack top. The size of the data
1254     // retrieved from the dereferenced address is the size of an address on the
1255     // target machine.
1256     case DW_OP_xderef:
1257       if (error_ptr)
1258         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1259       return false;
1260 
1261     // All DW_OP_constXXX opcodes have a single operand as noted below:
1262     //
1263     // Opcode           Operand 1
1264     // DW_OP_const1u    1-byte unsigned integer constant
1265     // DW_OP_const1s    1-byte signed integer constant
1266     // DW_OP_const2u    2-byte unsigned integer constant
1267     // DW_OP_const2s    2-byte signed integer constant
1268     // DW_OP_const4u    4-byte unsigned integer constant
1269     // DW_OP_const4s    4-byte signed integer constant
1270     // DW_OP_const8u    8-byte unsigned integer constant
1271     // DW_OP_const8s    8-byte signed integer constant
1272     // DW_OP_constu     unsigned LEB128 integer constant
1273     // DW_OP_consts     signed LEB128 integer constant
1274     case DW_OP_const1u:
1275       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1276       break;
1277     case DW_OP_const1s:
1278       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1279       break;
1280     case DW_OP_const2u:
1281       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1282       break;
1283     case DW_OP_const2s:
1284       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1285       break;
1286     case DW_OP_const4u:
1287       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1288       break;
1289     case DW_OP_const4s:
1290       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1291       break;
1292     case DW_OP_const8u:
1293       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1294       break;
1295     case DW_OP_const8s:
1296       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1297       break;
1298     // These should also use to_generic, but we can't do that due to a
1299     // producer-side bug in llvm. See llvm.org/pr48087.
1300     case DW_OP_constu:
1301       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1302       break;
1303     case DW_OP_consts:
1304       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1305       break;
1306 
1307     // OPCODE: DW_OP_dup
1308     // OPERANDS: none
1309     // DESCRIPTION: duplicates the value at the top of the stack
1310     case DW_OP_dup:
1311       if (stack.empty()) {
1312         if (error_ptr)
1313           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1314         return false;
1315       } else
1316         stack.push_back(stack.back());
1317       break;
1318 
1319     // OPCODE: DW_OP_drop
1320     // OPERANDS: none
1321     // DESCRIPTION: pops the value at the top of the stack
1322     case DW_OP_drop:
1323       if (stack.empty()) {
1324         if (error_ptr)
1325           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1326         return false;
1327       } else
1328         stack.pop_back();
1329       break;
1330 
1331     // OPCODE: DW_OP_over
1332     // OPERANDS: none
1333     // DESCRIPTION: Duplicates the entry currently second in the stack at
1334     // the top of the stack.
1335     case DW_OP_over:
1336       if (stack.size() < 2) {
1337         if (error_ptr)
1338           error_ptr->SetErrorString(
1339               "Expression stack needs at least 2 items for DW_OP_over.");
1340         return false;
1341       } else
1342         stack.push_back(stack[stack.size() - 2]);
1343       break;
1344 
1345     // OPCODE: DW_OP_pick
1346     // OPERANDS: uint8_t index into the current stack
1347     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1348     // inclusive) is pushed on the stack
1349     case DW_OP_pick: {
1350       uint8_t pick_idx = opcodes.GetU8(&offset);
1351       if (pick_idx < stack.size())
1352         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1353       else {
1354         if (error_ptr)
1355           error_ptr->SetErrorStringWithFormat(
1356               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1357         return false;
1358       }
1359     } break;
1360 
1361     // OPCODE: DW_OP_swap
1362     // OPERANDS: none
1363     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1364     // of the stack becomes the second stack entry, and the second entry
1365     // becomes the top of the stack
1366     case DW_OP_swap:
1367       if (stack.size() < 2) {
1368         if (error_ptr)
1369           error_ptr->SetErrorString(
1370               "Expression stack needs at least 2 items for DW_OP_swap.");
1371         return false;
1372       } else {
1373         tmp = stack.back();
1374         stack.back() = stack[stack.size() - 2];
1375         stack[stack.size() - 2] = tmp;
1376       }
1377       break;
1378 
1379     // OPCODE: DW_OP_rot
1380     // OPERANDS: none
1381     // DESCRIPTION: Rotates the first three stack entries. The entry at
1382     // the top of the stack becomes the third stack entry, the second entry
1383     // becomes the top of the stack, and the third entry becomes the second
1384     // entry.
1385     case DW_OP_rot:
1386       if (stack.size() < 3) {
1387         if (error_ptr)
1388           error_ptr->SetErrorString(
1389               "Expression stack needs at least 3 items for DW_OP_rot.");
1390         return false;
1391       } else {
1392         size_t last_idx = stack.size() - 1;
1393         Value old_top = stack[last_idx];
1394         stack[last_idx] = stack[last_idx - 1];
1395         stack[last_idx - 1] = stack[last_idx - 2];
1396         stack[last_idx - 2] = old_top;
1397       }
1398       break;
1399 
1400     // OPCODE: DW_OP_abs
1401     // OPERANDS: none
1402     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1403     // value and pushes its absolute value. If the absolute value can not be
1404     // represented, the result is undefined.
1405     case DW_OP_abs:
1406       if (stack.empty()) {
1407         if (error_ptr)
1408           error_ptr->SetErrorString(
1409               "Expression stack needs at least 1 item for DW_OP_abs.");
1410         return false;
1411       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1412         if (error_ptr)
1413           error_ptr->SetErrorString(
1414               "Failed to take the absolute value of the first stack item.");
1415         return false;
1416       }
1417       break;
1418 
1419     // OPCODE: DW_OP_and
1420     // OPERANDS: none
1421     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1422     // operation on the two, and pushes the result.
1423     case DW_OP_and:
1424       if (stack.size() < 2) {
1425         if (error_ptr)
1426           error_ptr->SetErrorString(
1427               "Expression stack needs at least 2 items for DW_OP_and.");
1428         return false;
1429       } else {
1430         tmp = stack.back();
1431         stack.pop_back();
1432         stack.back().ResolveValue(exe_ctx) =
1433             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1434       }
1435       break;
1436 
1437     // OPCODE: DW_OP_div
1438     // OPERANDS: none
1439     // DESCRIPTION: pops the top two stack values, divides the former second
1440     // entry by the former top of the stack using signed division, and pushes
1441     // the result.
1442     case DW_OP_div:
1443       if (stack.size() < 2) {
1444         if (error_ptr)
1445           error_ptr->SetErrorString(
1446               "Expression stack needs at least 2 items for DW_OP_div.");
1447         return false;
1448       } else {
1449         tmp = stack.back();
1450         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1451           if (error_ptr)
1452             error_ptr->SetErrorString("Divide by zero.");
1453           return false;
1454         } else {
1455           stack.pop_back();
1456           Scalar divisor, dividend;
1457           divisor = tmp.ResolveValue(exe_ctx);
1458           dividend = stack.back().ResolveValue(exe_ctx);
1459           divisor.MakeSigned();
1460           dividend.MakeSigned();
1461           stack.back() = dividend / divisor;
1462           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1463             if (error_ptr)
1464               error_ptr->SetErrorString("Divide failed.");
1465             return false;
1466           }
1467         }
1468       }
1469       break;
1470 
1471     // OPCODE: DW_OP_minus
1472     // OPERANDS: none
1473     // DESCRIPTION: pops the top two stack values, subtracts the former top
1474     // of the stack from the former second entry, and pushes the result.
1475     case DW_OP_minus:
1476       if (stack.size() < 2) {
1477         if (error_ptr)
1478           error_ptr->SetErrorString(
1479               "Expression stack needs at least 2 items for DW_OP_minus.");
1480         return false;
1481       } else {
1482         tmp = stack.back();
1483         stack.pop_back();
1484         stack.back().ResolveValue(exe_ctx) =
1485             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1486       }
1487       break;
1488 
1489     // OPCODE: DW_OP_mod
1490     // OPERANDS: none
1491     // DESCRIPTION: pops the top two stack values and pushes the result of
1492     // the calculation: former second stack entry modulo the former top of the
1493     // stack.
1494     case DW_OP_mod:
1495       if (stack.size() < 2) {
1496         if (error_ptr)
1497           error_ptr->SetErrorString(
1498               "Expression stack needs at least 2 items for DW_OP_mod.");
1499         return false;
1500       } else {
1501         tmp = stack.back();
1502         stack.pop_back();
1503         stack.back().ResolveValue(exe_ctx) =
1504             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1505       }
1506       break;
1507 
1508     // OPCODE: DW_OP_mul
1509     // OPERANDS: none
1510     // DESCRIPTION: pops the top two stack entries, multiplies them
1511     // together, and pushes the result.
1512     case DW_OP_mul:
1513       if (stack.size() < 2) {
1514         if (error_ptr)
1515           error_ptr->SetErrorString(
1516               "Expression stack needs at least 2 items for DW_OP_mul.");
1517         return false;
1518       } else {
1519         tmp = stack.back();
1520         stack.pop_back();
1521         stack.back().ResolveValue(exe_ctx) =
1522             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1523       }
1524       break;
1525 
1526     // OPCODE: DW_OP_neg
1527     // OPERANDS: none
1528     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1529     case DW_OP_neg:
1530       if (stack.empty()) {
1531         if (error_ptr)
1532           error_ptr->SetErrorString(
1533               "Expression stack needs at least 1 item for DW_OP_neg.");
1534         return false;
1535       } else {
1536         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1537           if (error_ptr)
1538             error_ptr->SetErrorString("Unary negate failed.");
1539           return false;
1540         }
1541       }
1542       break;
1543 
1544     // OPCODE: DW_OP_not
1545     // OPERANDS: none
1546     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1547     // complement
1548     case DW_OP_not:
1549       if (stack.empty()) {
1550         if (error_ptr)
1551           error_ptr->SetErrorString(
1552               "Expression stack needs at least 1 item for DW_OP_not.");
1553         return false;
1554       } else {
1555         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1556           if (error_ptr)
1557             error_ptr->SetErrorString("Logical NOT failed.");
1558           return false;
1559         }
1560       }
1561       break;
1562 
1563     // OPCODE: DW_OP_or
1564     // OPERANDS: none
1565     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1566     // operation on the two, and pushes the result.
1567     case DW_OP_or:
1568       if (stack.size() < 2) {
1569         if (error_ptr)
1570           error_ptr->SetErrorString(
1571               "Expression stack needs at least 2 items for DW_OP_or.");
1572         return false;
1573       } else {
1574         tmp = stack.back();
1575         stack.pop_back();
1576         stack.back().ResolveValue(exe_ctx) =
1577             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1578       }
1579       break;
1580 
1581     // OPCODE: DW_OP_plus
1582     // OPERANDS: none
1583     // DESCRIPTION: pops the top two stack entries, adds them together, and
1584     // pushes the result.
1585     case DW_OP_plus:
1586       if (stack.size() < 2) {
1587         if (error_ptr)
1588           error_ptr->SetErrorString(
1589               "Expression stack needs at least 2 items for DW_OP_plus.");
1590         return false;
1591       } else {
1592         tmp = stack.back();
1593         stack.pop_back();
1594         stack.back().GetScalar() += tmp.GetScalar();
1595       }
1596       break;
1597 
1598     // OPCODE: DW_OP_plus_uconst
1599     // OPERANDS: none
1600     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1601     // constant operand and pushes the result.
1602     case DW_OP_plus_uconst:
1603       if (stack.empty()) {
1604         if (error_ptr)
1605           error_ptr->SetErrorString(
1606               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1607         return false;
1608       } else {
1609         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1610         // Implicit conversion from a UINT to a Scalar...
1611         stack.back().GetScalar() += uconst_value;
1612         if (!stack.back().GetScalar().IsValid()) {
1613           if (error_ptr)
1614             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1615           return false;
1616         }
1617       }
1618       break;
1619 
1620     // OPCODE: DW_OP_shl
1621     // OPERANDS: none
1622     // DESCRIPTION:  pops the top two stack entries, shifts the former
1623     // second entry left by the number of bits specified by the former top of
1624     // the stack, and pushes the result.
1625     case DW_OP_shl:
1626       if (stack.size() < 2) {
1627         if (error_ptr)
1628           error_ptr->SetErrorString(
1629               "Expression stack needs at least 2 items for DW_OP_shl.");
1630         return false;
1631       } else {
1632         tmp = stack.back();
1633         stack.pop_back();
1634         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1635       }
1636       break;
1637 
1638     // OPCODE: DW_OP_shr
1639     // OPERANDS: none
1640     // DESCRIPTION: pops the top two stack entries, shifts the former second
1641     // entry right logically (filling with zero bits) by the number of bits
1642     // specified by the former top of the stack, and pushes the result.
1643     case DW_OP_shr:
1644       if (stack.size() < 2) {
1645         if (error_ptr)
1646           error_ptr->SetErrorString(
1647               "Expression stack needs at least 2 items for DW_OP_shr.");
1648         return false;
1649       } else {
1650         tmp = stack.back();
1651         stack.pop_back();
1652         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1653                 tmp.ResolveValue(exe_ctx))) {
1654           if (error_ptr)
1655             error_ptr->SetErrorString("DW_OP_shr failed.");
1656           return false;
1657         }
1658       }
1659       break;
1660 
1661     // OPCODE: DW_OP_shra
1662     // OPERANDS: none
1663     // DESCRIPTION: pops the top two stack entries, shifts the former second
1664     // entry right arithmetically (divide the magnitude by 2, keep the same
1665     // sign for the result) by the number of bits specified by the former top
1666     // of the stack, and pushes the result.
1667     case DW_OP_shra:
1668       if (stack.size() < 2) {
1669         if (error_ptr)
1670           error_ptr->SetErrorString(
1671               "Expression stack needs at least 2 items for DW_OP_shra.");
1672         return false;
1673       } else {
1674         tmp = stack.back();
1675         stack.pop_back();
1676         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1677       }
1678       break;
1679 
1680     // OPCODE: DW_OP_xor
1681     // OPERANDS: none
1682     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1683     // exclusive-or operation on the two, and pushes the result.
1684     case DW_OP_xor:
1685       if (stack.size() < 2) {
1686         if (error_ptr)
1687           error_ptr->SetErrorString(
1688               "Expression stack needs at least 2 items for DW_OP_xor.");
1689         return false;
1690       } else {
1691         tmp = stack.back();
1692         stack.pop_back();
1693         stack.back().ResolveValue(exe_ctx) =
1694             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1695       }
1696       break;
1697 
1698     // OPCODE: DW_OP_skip
1699     // OPERANDS: int16_t
1700     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1701     // signed integer constant. The 2-byte constant is the number of bytes of
1702     // the DWARF expression to skip forward or backward from the current
1703     // operation, beginning after the 2-byte constant.
1704     case DW_OP_skip: {
1705       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1706       lldb::offset_t new_offset = offset + skip_offset;
1707       // New offset can point at the end of the data, in this case we should
1708       // terminate the DWARF expression evaluation (will happen in the loop
1709       // condition).
1710       if (new_offset <= opcodes.GetByteSize())
1711         offset = new_offset;
1712       else {
1713         if (error_ptr)
1714           error_ptr->SetErrorStringWithFormatv(
1715               "Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}", offset,
1716               skip_offset, opcodes.GetByteSize());
1717         return false;
1718       }
1719     } break;
1720 
1721     // OPCODE: DW_OP_bra
1722     // OPERANDS: int16_t
1723     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1724     // signed integer constant. This operation pops the top of stack. If the
1725     // value popped is not the constant 0, the 2-byte constant operand is the
1726     // number of bytes of the DWARF expression to skip forward or backward from
1727     // the current operation, beginning after the 2-byte constant.
1728     case DW_OP_bra:
1729       if (stack.empty()) {
1730         if (error_ptr)
1731           error_ptr->SetErrorString(
1732               "Expression stack needs at least 1 item for DW_OP_bra.");
1733         return false;
1734       } else {
1735         tmp = stack.back();
1736         stack.pop_back();
1737         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1738         Scalar zero(0);
1739         if (tmp.ResolveValue(exe_ctx) != zero) {
1740           lldb::offset_t new_offset = offset + bra_offset;
1741           // New offset can point at the end of the data, in this case we should
1742           // terminate the DWARF expression evaluation (will happen in the loop
1743           // condition).
1744           if (new_offset <= opcodes.GetByteSize())
1745             offset = new_offset;
1746           else {
1747             if (error_ptr)
1748               error_ptr->SetErrorStringWithFormatv(
1749                   "Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}", offset,
1750                   bra_offset, opcodes.GetByteSize());
1751             return false;
1752           }
1753         }
1754       }
1755       break;
1756 
1757     // OPCODE: DW_OP_eq
1758     // OPERANDS: none
1759     // DESCRIPTION: pops the top two stack values, compares using the
1760     // equals (==) operator.
1761     // STACK RESULT: push the constant value 1 onto the stack if the result
1762     // of the operation is true or the constant value 0 if the result of the
1763     // operation is false.
1764     case DW_OP_eq:
1765       if (stack.size() < 2) {
1766         if (error_ptr)
1767           error_ptr->SetErrorString(
1768               "Expression stack needs at least 2 items for DW_OP_eq.");
1769         return false;
1770       } else {
1771         tmp = stack.back();
1772         stack.pop_back();
1773         stack.back().ResolveValue(exe_ctx) =
1774             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1775       }
1776       break;
1777 
1778     // OPCODE: DW_OP_ge
1779     // OPERANDS: none
1780     // DESCRIPTION: pops the top two stack values, compares using the
1781     // greater than or equal to (>=) operator.
1782     // STACK RESULT: push the constant value 1 onto the stack if the result
1783     // of the operation is true or the constant value 0 if the result of the
1784     // operation is false.
1785     case DW_OP_ge:
1786       if (stack.size() < 2) {
1787         if (error_ptr)
1788           error_ptr->SetErrorString(
1789               "Expression stack needs at least 2 items for DW_OP_ge.");
1790         return false;
1791       } else {
1792         tmp = stack.back();
1793         stack.pop_back();
1794         stack.back().ResolveValue(exe_ctx) =
1795             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1796       }
1797       break;
1798 
1799     // OPCODE: DW_OP_gt
1800     // OPERANDS: none
1801     // DESCRIPTION: pops the top two stack values, compares using the
1802     // greater than (>) operator.
1803     // STACK RESULT: push the constant value 1 onto the stack if the result
1804     // of the operation is true or the constant value 0 if the result of the
1805     // operation is false.
1806     case DW_OP_gt:
1807       if (stack.size() < 2) {
1808         if (error_ptr)
1809           error_ptr->SetErrorString(
1810               "Expression stack needs at least 2 items for DW_OP_gt.");
1811         return false;
1812       } else {
1813         tmp = stack.back();
1814         stack.pop_back();
1815         stack.back().ResolveValue(exe_ctx) =
1816             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1817       }
1818       break;
1819 
1820     // OPCODE: DW_OP_le
1821     // OPERANDS: none
1822     // DESCRIPTION: pops the top two stack values, compares using the
1823     // less than or equal to (<=) operator.
1824     // STACK RESULT: push the constant value 1 onto the stack if the result
1825     // of the operation is true or the constant value 0 if the result of the
1826     // operation is false.
1827     case DW_OP_le:
1828       if (stack.size() < 2) {
1829         if (error_ptr)
1830           error_ptr->SetErrorString(
1831               "Expression stack needs at least 2 items for DW_OP_le.");
1832         return false;
1833       } else {
1834         tmp = stack.back();
1835         stack.pop_back();
1836         stack.back().ResolveValue(exe_ctx) =
1837             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1838       }
1839       break;
1840 
1841     // OPCODE: DW_OP_lt
1842     // OPERANDS: none
1843     // DESCRIPTION: pops the top two stack values, compares using the
1844     // less than (<) operator.
1845     // STACK RESULT: push the constant value 1 onto the stack if the result
1846     // of the operation is true or the constant value 0 if the result of the
1847     // operation is false.
1848     case DW_OP_lt:
1849       if (stack.size() < 2) {
1850         if (error_ptr)
1851           error_ptr->SetErrorString(
1852               "Expression stack needs at least 2 items for DW_OP_lt.");
1853         return false;
1854       } else {
1855         tmp = stack.back();
1856         stack.pop_back();
1857         stack.back().ResolveValue(exe_ctx) =
1858             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1859       }
1860       break;
1861 
1862     // OPCODE: DW_OP_ne
1863     // OPERANDS: none
1864     // DESCRIPTION: pops the top two stack values, compares using the
1865     // not equal (!=) operator.
1866     // STACK RESULT: push the constant value 1 onto the stack if the result
1867     // of the operation is true or the constant value 0 if the result of the
1868     // operation is false.
1869     case DW_OP_ne:
1870       if (stack.size() < 2) {
1871         if (error_ptr)
1872           error_ptr->SetErrorString(
1873               "Expression stack needs at least 2 items for DW_OP_ne.");
1874         return false;
1875       } else {
1876         tmp = stack.back();
1877         stack.pop_back();
1878         stack.back().ResolveValue(exe_ctx) =
1879             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1880       }
1881       break;
1882 
1883     // OPCODE: DW_OP_litn
1884     // OPERANDS: none
1885     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1886     // STACK RESULT: push the unsigned literal constant value onto the top
1887     // of the stack.
1888     case DW_OP_lit0:
1889     case DW_OP_lit1:
1890     case DW_OP_lit2:
1891     case DW_OP_lit3:
1892     case DW_OP_lit4:
1893     case DW_OP_lit5:
1894     case DW_OP_lit6:
1895     case DW_OP_lit7:
1896     case DW_OP_lit8:
1897     case DW_OP_lit9:
1898     case DW_OP_lit10:
1899     case DW_OP_lit11:
1900     case DW_OP_lit12:
1901     case DW_OP_lit13:
1902     case DW_OP_lit14:
1903     case DW_OP_lit15:
1904     case DW_OP_lit16:
1905     case DW_OP_lit17:
1906     case DW_OP_lit18:
1907     case DW_OP_lit19:
1908     case DW_OP_lit20:
1909     case DW_OP_lit21:
1910     case DW_OP_lit22:
1911     case DW_OP_lit23:
1912     case DW_OP_lit24:
1913     case DW_OP_lit25:
1914     case DW_OP_lit26:
1915     case DW_OP_lit27:
1916     case DW_OP_lit28:
1917     case DW_OP_lit29:
1918     case DW_OP_lit30:
1919     case DW_OP_lit31:
1920       stack.push_back(to_generic(op - DW_OP_lit0));
1921       break;
1922 
1923     // OPCODE: DW_OP_regN
1924     // OPERANDS: none
1925     // DESCRIPTION: Push the value in register n on the top of the stack.
1926     case DW_OP_reg0:
1927     case DW_OP_reg1:
1928     case DW_OP_reg2:
1929     case DW_OP_reg3:
1930     case DW_OP_reg4:
1931     case DW_OP_reg5:
1932     case DW_OP_reg6:
1933     case DW_OP_reg7:
1934     case DW_OP_reg8:
1935     case DW_OP_reg9:
1936     case DW_OP_reg10:
1937     case DW_OP_reg11:
1938     case DW_OP_reg12:
1939     case DW_OP_reg13:
1940     case DW_OP_reg14:
1941     case DW_OP_reg15:
1942     case DW_OP_reg16:
1943     case DW_OP_reg17:
1944     case DW_OP_reg18:
1945     case DW_OP_reg19:
1946     case DW_OP_reg20:
1947     case DW_OP_reg21:
1948     case DW_OP_reg22:
1949     case DW_OP_reg23:
1950     case DW_OP_reg24:
1951     case DW_OP_reg25:
1952     case DW_OP_reg26:
1953     case DW_OP_reg27:
1954     case DW_OP_reg28:
1955     case DW_OP_reg29:
1956     case DW_OP_reg30:
1957     case DW_OP_reg31: {
1958       dwarf4_location_description_kind = Register;
1959       reg_num = op - DW_OP_reg0;
1960 
1961       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1962         stack.push_back(tmp);
1963       else
1964         return false;
1965     } break;
1966     // OPCODE: DW_OP_regx
1967     // OPERANDS:
1968     //      ULEB128 literal operand that encodes the register.
1969     // DESCRIPTION: Push the value in register on the top of the stack.
1970     case DW_OP_regx: {
1971       dwarf4_location_description_kind = Register;
1972       reg_num = opcodes.GetULEB128(&offset);
1973       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1974         stack.push_back(tmp);
1975       else
1976         return false;
1977     } break;
1978 
1979     // OPCODE: DW_OP_bregN
1980     // OPERANDS:
1981     //      SLEB128 offset from register N
1982     // DESCRIPTION: Value is in memory at the address specified by register
1983     // N plus an offset.
1984     case DW_OP_breg0:
1985     case DW_OP_breg1:
1986     case DW_OP_breg2:
1987     case DW_OP_breg3:
1988     case DW_OP_breg4:
1989     case DW_OP_breg5:
1990     case DW_OP_breg6:
1991     case DW_OP_breg7:
1992     case DW_OP_breg8:
1993     case DW_OP_breg9:
1994     case DW_OP_breg10:
1995     case DW_OP_breg11:
1996     case DW_OP_breg12:
1997     case DW_OP_breg13:
1998     case DW_OP_breg14:
1999     case DW_OP_breg15:
2000     case DW_OP_breg16:
2001     case DW_OP_breg17:
2002     case DW_OP_breg18:
2003     case DW_OP_breg19:
2004     case DW_OP_breg20:
2005     case DW_OP_breg21:
2006     case DW_OP_breg22:
2007     case DW_OP_breg23:
2008     case DW_OP_breg24:
2009     case DW_OP_breg25:
2010     case DW_OP_breg26:
2011     case DW_OP_breg27:
2012     case DW_OP_breg28:
2013     case DW_OP_breg29:
2014     case DW_OP_breg30:
2015     case DW_OP_breg31: {
2016       reg_num = op - DW_OP_breg0;
2017 
2018       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2019                                     tmp)) {
2020         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2021         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2022         tmp.ClearContext();
2023         stack.push_back(tmp);
2024         stack.back().SetValueType(Value::ValueType::LoadAddress);
2025       } else
2026         return false;
2027     } break;
2028     // OPCODE: DW_OP_bregx
2029     // OPERANDS: 2
2030     //      ULEB128 literal operand that encodes the register.
2031     //      SLEB128 offset from register N
2032     // DESCRIPTION: Value is in memory at the address specified by register
2033     // N plus an offset.
2034     case DW_OP_bregx: {
2035       reg_num = opcodes.GetULEB128(&offset);
2036 
2037       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2038                                     tmp)) {
2039         int64_t breg_offset = opcodes.GetSLEB128(&offset);
2040         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2041         tmp.ClearContext();
2042         stack.push_back(tmp);
2043         stack.back().SetValueType(Value::ValueType::LoadAddress);
2044       } else
2045         return false;
2046     } break;
2047 
2048     case DW_OP_fbreg:
2049       if (exe_ctx) {
2050         if (frame) {
2051           Scalar value;
2052           if (frame->GetFrameBaseValue(value, error_ptr)) {
2053             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2054             value += fbreg_offset;
2055             stack.push_back(value);
2056             stack.back().SetValueType(Value::ValueType::LoadAddress);
2057           } else
2058             return false;
2059         } else {
2060           if (error_ptr)
2061             error_ptr->SetErrorString(
2062                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2063           return false;
2064         }
2065       } else {
2066         if (error_ptr)
2067           error_ptr->SetErrorString(
2068               "NULL execution context for DW_OP_fbreg.\n");
2069         return false;
2070       }
2071 
2072       break;
2073 
2074     // OPCODE: DW_OP_nop
2075     // OPERANDS: none
2076     // DESCRIPTION: A place holder. It has no effect on the location stack
2077     // or any of its values.
2078     case DW_OP_nop:
2079       break;
2080 
2081     // OPCODE: DW_OP_piece
2082     // OPERANDS: 1
2083     //      ULEB128: byte size of the piece
2084     // DESCRIPTION: The operand describes the size in bytes of the piece of
2085     // the object referenced by the DWARF expression whose result is at the top
2086     // of the stack. If the piece is located in a register, but does not occupy
2087     // the entire register, the placement of the piece within that register is
2088     // defined by the ABI.
2089     //
2090     // Many compilers store a single variable in sets of registers, or store a
2091     // variable partially in memory and partially in registers. DW_OP_piece
2092     // provides a way of describing how large a part of a variable a particular
2093     // DWARF expression refers to.
2094     case DW_OP_piece: {
2095       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2096       // Reset for the next piece.
2097       dwarf4_location_description_kind = Memory;
2098 
2099       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2100 
2101       if (piece_byte_size > 0) {
2102         Value curr_piece;
2103 
2104         if (stack.empty()) {
2105           UpdateValueTypeFromLocationDescription(
2106               log, dwarf_cu, LocationDescriptionKind::Empty);
2107           // In a multi-piece expression, this means that the current piece is
2108           // not available. Fill with zeros for now by resizing the data and
2109           // appending it
2110           curr_piece.ResizeData(piece_byte_size);
2111           // Note that "0" is not a correct value for the unknown bits.
2112           // It would be better to also return a mask of valid bits together
2113           // with the expression result, so the debugger can print missing
2114           // members as "<optimized out>" or something.
2115           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2116           pieces.AppendDataToHostBuffer(curr_piece);
2117         } else {
2118           Status error;
2119           // Extract the current piece into "curr_piece"
2120           Value curr_piece_source_value(stack.back());
2121           stack.pop_back();
2122           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2123                                                  &curr_piece_source_value);
2124 
2125           const Value::ValueType curr_piece_source_value_type =
2126               curr_piece_source_value.GetValueType();
2127           switch (curr_piece_source_value_type) {
2128           case Value::ValueType::Invalid:
2129             return false;
2130           case Value::ValueType::LoadAddress:
2131             if (process) {
2132               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2133                 lldb::addr_t load_addr =
2134                     curr_piece_source_value.GetScalar().ULongLong(
2135                         LLDB_INVALID_ADDRESS);
2136                 if (process->ReadMemory(
2137                         load_addr, curr_piece.GetBuffer().GetBytes(),
2138                         piece_byte_size, error) != piece_byte_size) {
2139                   if (error_ptr)
2140                     error_ptr->SetErrorStringWithFormat(
2141                         "failed to read memory DW_OP_piece(%" PRIu64
2142                         ") from 0x%" PRIx64,
2143                         piece_byte_size, load_addr);
2144                   return false;
2145                 }
2146               } else {
2147                 if (error_ptr)
2148                   error_ptr->SetErrorStringWithFormat(
2149                       "failed to resize the piece memory buffer for "
2150                       "DW_OP_piece(%" PRIu64 ")",
2151                       piece_byte_size);
2152                 return false;
2153               }
2154             }
2155             break;
2156 
2157           case Value::ValueType::FileAddress:
2158           case Value::ValueType::HostAddress:
2159             if (error_ptr) {
2160               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2161                   LLDB_INVALID_ADDRESS);
2162               error_ptr->SetErrorStringWithFormat(
2163                   "failed to read memory DW_OP_piece(%" PRIu64
2164                   ") from %s address 0x%" PRIx64,
2165                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2166                                            Value::ValueType::FileAddress
2167                                        ? "file"
2168                                        : "host",
2169                   addr);
2170             }
2171             return false;
2172 
2173           case Value::ValueType::Scalar: {
2174             uint32_t bit_size = piece_byte_size * 8;
2175             uint32_t bit_offset = 0;
2176             Scalar &scalar = curr_piece_source_value.GetScalar();
2177             if (!scalar.ExtractBitfield(
2178                     bit_size, bit_offset)) {
2179               if (error_ptr)
2180                 error_ptr->SetErrorStringWithFormat(
2181                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2182                     " byte scalar value.",
2183                     piece_byte_size,
2184                     (uint64_t)curr_piece_source_value.GetScalar()
2185                         .GetByteSize());
2186               return false;
2187             }
2188             // Create curr_piece with bit_size. By default Scalar
2189             // grows to the nearest host integer type.
2190             llvm::APInt fail_value(1, 0, false);
2191             llvm::APInt ap_int = scalar.UInt128(fail_value);
2192             assert(ap_int.getBitWidth() >= bit_size);
2193             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2194                                          ap_int.getNumWords()};
2195             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2196           } break;
2197           }
2198 
2199           // Check if this is the first piece?
2200           if (op_piece_offset == 0) {
2201             // This is the first piece, we should push it back onto the stack
2202             // so subsequent pieces will be able to access this piece and add
2203             // to it.
2204             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2205               if (error_ptr)
2206                 error_ptr->SetErrorString("failed to append piece data");
2207               return false;
2208             }
2209           } else {
2210             // If this is the second or later piece there should be a value on
2211             // the stack.
2212             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2213               if (error_ptr)
2214                 error_ptr->SetErrorStringWithFormat(
2215                     "DW_OP_piece for offset %" PRIu64
2216                     " but top of stack is of size %" PRIu64,
2217                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2218               return false;
2219             }
2220 
2221             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2222               if (error_ptr)
2223                 error_ptr->SetErrorString("failed to append piece data");
2224               return false;
2225             }
2226           }
2227         }
2228         op_piece_offset += piece_byte_size;
2229       }
2230     } break;
2231 
2232     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2233       if (stack.size() < 1) {
2234         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2235                                                LocationDescriptionKind::Empty);
2236         // Reset for the next piece.
2237         dwarf4_location_description_kind = Memory;
2238         if (error_ptr)
2239           error_ptr->SetErrorString(
2240               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2241         return false;
2242       } else {
2243         UpdateValueTypeFromLocationDescription(
2244             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2245         // Reset for the next piece.
2246         dwarf4_location_description_kind = Memory;
2247         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2248         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2249         switch (stack.back().GetValueType()) {
2250         case Value::ValueType::Invalid:
2251           return false;
2252         case Value::ValueType::Scalar: {
2253           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2254                                                         piece_bit_offset)) {
2255             if (error_ptr)
2256               error_ptr->SetErrorStringWithFormat(
2257                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2258                   " bit offset from a %" PRIu64 " bit scalar value.",
2259                   piece_bit_size, piece_bit_offset,
2260                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2261             return false;
2262           }
2263         } break;
2264 
2265         case Value::ValueType::FileAddress:
2266         case Value::ValueType::LoadAddress:
2267         case Value::ValueType::HostAddress:
2268           if (error_ptr) {
2269             error_ptr->SetErrorStringWithFormat(
2270                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2271                 ", bit_offset = %" PRIu64 ") from an address value.",
2272                 piece_bit_size, piece_bit_offset);
2273           }
2274           return false;
2275         }
2276       }
2277       break;
2278 
2279     // OPCODE: DW_OP_implicit_value
2280     // OPERANDS: 2
2281     //      ULEB128  size of the value block in bytes
2282     //      uint8_t* block bytes encoding value in target's memory
2283     //      representation
2284     // DESCRIPTION: Value is immediately stored in block in the debug info with
2285     // the memory representation of the target.
2286     case DW_OP_implicit_value: {
2287       dwarf4_location_description_kind = Implicit;
2288 
2289       const uint32_t len = opcodes.GetULEB128(&offset);
2290       const void *data = opcodes.GetData(&offset, len);
2291 
2292       if (!data) {
2293         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2294         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2295                     DW_OP_value_to_name(op));
2296         return false;
2297       }
2298 
2299       Value result(data, len);
2300       stack.push_back(result);
2301       break;
2302     }
2303 
2304     case DW_OP_implicit_pointer: {
2305       dwarf4_location_description_kind = Implicit;
2306       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2307       return false;
2308     }
2309 
2310     // OPCODE: DW_OP_push_object_address
2311     // OPERANDS: none
2312     // DESCRIPTION: Pushes the address of the object currently being
2313     // evaluated as part of evaluation of a user presented expression. This
2314     // object may correspond to an independent variable described by its own
2315     // DIE or it may be a component of an array, structure, or class whose
2316     // address has been dynamically determined by an earlier step during user
2317     // expression evaluation.
2318     case DW_OP_push_object_address:
2319       if (object_address_ptr)
2320         stack.push_back(*object_address_ptr);
2321       else {
2322         if (error_ptr)
2323           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2324                                     "specifying an object address");
2325         return false;
2326       }
2327       break;
2328 
2329     // OPCODE: DW_OP_call2
2330     // OPERANDS:
2331     //      uint16_t compile unit relative offset of a DIE
2332     // DESCRIPTION: Performs subroutine calls during evaluation
2333     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2334     // debugging information entry in the current compilation unit.
2335     //
2336     // Operand interpretation is exactly like that for DW_FORM_ref2.
2337     //
2338     // This operation transfers control of DWARF expression evaluation to the
2339     // DW_AT_location attribute of the referenced DIE. If there is no such
2340     // attribute, then there is no effect. Execution of the DWARF expression of
2341     // a DW_AT_location attribute may add to and/or remove from values on the
2342     // stack. Execution returns to the point following the call when the end of
2343     // the attribute is reached. Values on the stack at the time of the call
2344     // may be used as parameters by the called expression and values left on
2345     // the stack by the called expression may be used as return values by prior
2346     // agreement between the calling and called expressions.
2347     case DW_OP_call2:
2348       if (error_ptr)
2349         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2350       return false;
2351     // OPCODE: DW_OP_call4
2352     // OPERANDS: 1
2353     //      uint32_t compile unit relative offset of a DIE
2354     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2355     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2356     // a debugging information entry in  the current compilation unit.
2357     //
2358     // Operand interpretation DW_OP_call4 is exactly like that for
2359     // DW_FORM_ref4.
2360     //
2361     // This operation transfers control of DWARF expression evaluation to the
2362     // DW_AT_location attribute of the referenced DIE. If there is no such
2363     // attribute, then there is no effect. Execution of the DWARF expression of
2364     // a DW_AT_location attribute may add to and/or remove from values on the
2365     // stack. Execution returns to the point following the call when the end of
2366     // the attribute is reached. Values on the stack at the time of the call
2367     // may be used as parameters by the called expression and values left on
2368     // the stack by the called expression may be used as return values by prior
2369     // agreement between the calling and called expressions.
2370     case DW_OP_call4:
2371       if (error_ptr)
2372         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2373       return false;
2374 
2375     // OPCODE: DW_OP_stack_value
2376     // OPERANDS: None
2377     // DESCRIPTION: Specifies that the object does not exist in memory but
2378     // rather is a constant value.  The value from the top of the stack is the
2379     // value to be used.  This is the actual object value and not the location.
2380     case DW_OP_stack_value:
2381       dwarf4_location_description_kind = Implicit;
2382       if (stack.empty()) {
2383         if (error_ptr)
2384           error_ptr->SetErrorString(
2385               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2386         return false;
2387       }
2388       stack.back().SetValueType(Value::ValueType::Scalar);
2389       break;
2390 
2391     // OPCODE: DW_OP_convert
2392     // OPERANDS: 1
2393     //      A ULEB128 that is either a DIE offset of a
2394     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2395     //
2396     // DESCRIPTION: Pop the top stack element, convert it to a
2397     // different type, and push the result.
2398     case DW_OP_convert: {
2399       if (stack.size() < 1) {
2400         if (error_ptr)
2401           error_ptr->SetErrorString(
2402               "Expression stack needs at least 1 item for DW_OP_convert.");
2403         return false;
2404       }
2405       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2406       uint64_t bit_size;
2407       bool sign;
2408       if (die_offset == 0) {
2409         // The generic type has the size of an address on the target
2410         // machine and an unspecified signedness. Scalar has no
2411         // "unspecified signedness", so we use unsigned types.
2412         if (!module_sp) {
2413           if (error_ptr)
2414             error_ptr->SetErrorString("No module");
2415           return false;
2416         }
2417         sign = false;
2418         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2419         if (!bit_size) {
2420           if (error_ptr)
2421             error_ptr->SetErrorString("unspecified architecture");
2422           return false;
2423         }
2424       } else {
2425         // Retrieve the type DIE that the value is being converted to. This
2426         // offset is compile unit relative so we need to fix it up.
2427         const uint64_t abs_die_offset = die_offset +  dwarf_cu->GetOffset();
2428         // FIXME: the constness has annoying ripple effects.
2429         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(abs_die_offset);
2430         if (!die) {
2431           if (error_ptr)
2432             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2433           return false;
2434         }
2435         uint64_t encoding =
2436             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2437         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2438         if (!bit_size)
2439           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2440         if (!bit_size) {
2441           if (error_ptr)
2442             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2443           return false;
2444         }
2445         switch (encoding) {
2446         case DW_ATE_signed:
2447         case DW_ATE_signed_char:
2448           sign = true;
2449           break;
2450         case DW_ATE_unsigned:
2451         case DW_ATE_unsigned_char:
2452           sign = false;
2453           break;
2454         default:
2455           if (error_ptr)
2456             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2457           return false;
2458         }
2459       }
2460       Scalar &top = stack.back().ResolveValue(exe_ctx);
2461       top.TruncOrExtendTo(bit_size, sign);
2462       break;
2463     }
2464 
2465     // OPCODE: DW_OP_call_frame_cfa
2466     // OPERANDS: None
2467     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2468     // the canonical frame address consistent with the call frame information
2469     // located in .debug_frame (or in the FDEs of the eh_frame section).
2470     case DW_OP_call_frame_cfa:
2471       if (frame) {
2472         // Note that we don't have to parse FDEs because this DWARF expression
2473         // is commonly evaluated with a valid stack frame.
2474         StackID id = frame->GetStackID();
2475         addr_t cfa = id.GetCallFrameAddress();
2476         if (cfa != LLDB_INVALID_ADDRESS) {
2477           stack.push_back(Scalar(cfa));
2478           stack.back().SetValueType(Value::ValueType::LoadAddress);
2479         } else if (error_ptr)
2480           error_ptr->SetErrorString("Stack frame does not include a canonical "
2481                                     "frame address for DW_OP_call_frame_cfa "
2482                                     "opcode.");
2483       } else {
2484         if (error_ptr)
2485           error_ptr->SetErrorString("Invalid stack frame in context for "
2486                                     "DW_OP_call_frame_cfa opcode.");
2487         return false;
2488       }
2489       break;
2490 
2491     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2492     // opcode, DW_OP_GNU_push_tls_address)
2493     // OPERANDS: none
2494     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2495     // an address in the current thread's thread-local storage block, and
2496     // pushes it on the stack.
2497     case DW_OP_form_tls_address:
2498     case DW_OP_GNU_push_tls_address: {
2499       if (stack.size() < 1) {
2500         if (error_ptr) {
2501           if (op == DW_OP_form_tls_address)
2502             error_ptr->SetErrorString(
2503                 "DW_OP_form_tls_address needs an argument.");
2504           else
2505             error_ptr->SetErrorString(
2506                 "DW_OP_GNU_push_tls_address needs an argument.");
2507         }
2508         return false;
2509       }
2510 
2511       if (!exe_ctx || !module_sp) {
2512         if (error_ptr)
2513           error_ptr->SetErrorString("No context to evaluate TLS within.");
2514         return false;
2515       }
2516 
2517       Thread *thread = exe_ctx->GetThreadPtr();
2518       if (!thread) {
2519         if (error_ptr)
2520           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2521         return false;
2522       }
2523 
2524       // Lookup the TLS block address for this thread and module.
2525       const addr_t tls_file_addr =
2526           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2527       const addr_t tls_load_addr =
2528           thread->GetThreadLocalData(module_sp, tls_file_addr);
2529 
2530       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2531         if (error_ptr)
2532           error_ptr->SetErrorString(
2533               "No TLS data currently exists for this thread.");
2534         return false;
2535       }
2536 
2537       stack.back().GetScalar() = tls_load_addr;
2538       stack.back().SetValueType(Value::ValueType::LoadAddress);
2539     } break;
2540 
2541     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2542     // OPERANDS: 1
2543     //      ULEB128: index to the .debug_addr section
2544     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2545     // section with the base address specified by the DW_AT_addr_base attribute
2546     // and the 0 based index is the ULEB128 encoded index.
2547     case DW_OP_addrx:
2548     case DW_OP_GNU_addr_index: {
2549       if (!dwarf_cu) {
2550         if (error_ptr)
2551           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2552                                     "compile unit being specified");
2553         return false;
2554       }
2555       uint64_t index = opcodes.GetULEB128(&offset);
2556       lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2557       stack.push_back(Scalar(value));
2558       if (target &&
2559           target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
2560         // wasm file sections aren't mapped into memory, therefore addresses can
2561         // never point into a file section and are always LoadAddresses.
2562         stack.back().SetValueType(Value::ValueType::LoadAddress);
2563       } else {
2564         stack.back().SetValueType(Value::ValueType::FileAddress);
2565       }
2566     } break;
2567 
2568     // OPCODE: DW_OP_GNU_const_index
2569     // OPERANDS: 1
2570     //      ULEB128: index to the .debug_addr section
2571     // DESCRIPTION: Pushes an constant with the size of a machine address to
2572     // the stack from the .debug_addr section with the base address specified
2573     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2574     // encoded index.
2575     case DW_OP_GNU_const_index: {
2576       if (!dwarf_cu) {
2577         if (error_ptr)
2578           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2579                                     "compile unit being specified");
2580         return false;
2581       }
2582       uint64_t index = opcodes.GetULEB128(&offset);
2583       lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2584       stack.push_back(Scalar(value));
2585     } break;
2586 
2587     case DW_OP_GNU_entry_value:
2588     case DW_OP_entry_value: {
2589       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2590                                       error_ptr, log)) {
2591         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2592                     DW_OP_value_to_name(op));
2593         return false;
2594       }
2595       break;
2596     }
2597 
2598     default:
2599       if (dwarf_cu) {
2600         if (dwarf_cu->GetSymbolFileDWARF().ParseVendorDWARFOpcode(
2601                 op, opcodes, offset, stack)) {
2602           break;
2603         }
2604       }
2605       if (error_ptr)
2606         error_ptr->SetErrorStringWithFormatv(
2607             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2608       return false;
2609     }
2610   }
2611 
2612   if (stack.empty()) {
2613     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2614     // or DW_OP_bit_piece opcodes
2615     if (pieces.GetBuffer().GetByteSize()) {
2616       result = pieces;
2617       return true;
2618     }
2619     if (error_ptr)
2620       error_ptr->SetErrorString("Stack empty after evaluation.");
2621     return false;
2622   }
2623 
2624   UpdateValueTypeFromLocationDescription(
2625       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2626 
2627   if (log && log->GetVerbose()) {
2628     size_t count = stack.size();
2629     LLDB_LOGF(log,
2630               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2631     for (size_t i = 0; i < count; ++i) {
2632       StreamString new_value;
2633       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2634       stack[i].Dump(&new_value);
2635       LLDB_LOGF(log, "  %s", new_value.GetData());
2636     }
2637   }
2638   result = stack.back();
2639   return true; // Return true on success
2640 }
2641 
2642 bool DWARFExpression::ParseDWARFLocationList(
2643     const DWARFUnit *dwarf_cu, const DataExtractor &data,
2644     DWARFExpressionList *location_list) {
2645   location_list->Clear();
2646   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2647       dwarf_cu->GetLocationTable(data);
2648   Log *log = GetLog(LLDBLog::Expressions);
2649   auto lookup_addr =
2650       [&](uint32_t index) -> std::optional<llvm::object::SectionedAddress> {
2651     addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2652     if (address == LLDB_INVALID_ADDRESS)
2653       return std::nullopt;
2654     return llvm::object::SectionedAddress{address};
2655   };
2656   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2657     if (!loc) {
2658       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2659       return true;
2660     }
2661     auto buffer_sp =
2662         std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2663     DWARFExpression expr = DWARFExpression(DataExtractor(
2664         buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2665     location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2666     return true;
2667   };
2668   llvm::Error error = loctable_up->visitAbsoluteLocationList(
2669       0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2670       lookup_addr, process_list);
2671   location_list->Sort();
2672   if (error) {
2673     LLDB_LOG_ERROR(log, std::move(error), "{0}");
2674     return false;
2675   }
2676   return true;
2677 }
2678 
2679 bool DWARFExpression::MatchesOperand(
2680     StackFrame &frame, const Instruction::Operand &operand) const {
2681   using namespace OperandMatchers;
2682 
2683   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2684   if (!reg_ctx_sp) {
2685     return false;
2686   }
2687 
2688   DataExtractor opcodes(m_data);
2689 
2690   lldb::offset_t op_offset = 0;
2691   uint8_t opcode = opcodes.GetU8(&op_offset);
2692 
2693   if (opcode == DW_OP_fbreg) {
2694     int64_t offset = opcodes.GetSLEB128(&op_offset);
2695 
2696     DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2697     if (!fb_expr) {
2698       return false;
2699     }
2700 
2701     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2702       return fb_expr->MatchesOperand(frame, child);
2703     };
2704 
2705     if (!offset &&
2706         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2707                      recurse)(operand)) {
2708       return true;
2709     }
2710 
2711     return MatchUnaryOp(
2712         MatchOpType(Instruction::Operand::Type::Dereference),
2713         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2714                       MatchImmOp(offset), recurse))(operand);
2715   }
2716 
2717   bool dereference = false;
2718   const RegisterInfo *reg = nullptr;
2719   int64_t offset = 0;
2720 
2721   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2722     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2723   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2724     offset = opcodes.GetSLEB128(&op_offset);
2725     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2726   } else if (opcode == DW_OP_regx) {
2727     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2728     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2729   } else if (opcode == DW_OP_bregx) {
2730     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2731     offset = opcodes.GetSLEB128(&op_offset);
2732     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2733   } else {
2734     return false;
2735   }
2736 
2737   if (!reg) {
2738     return false;
2739   }
2740 
2741   if (dereference) {
2742     if (!offset &&
2743         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2744                      MatchRegOp(*reg))(operand)) {
2745       return true;
2746     }
2747 
2748     return MatchUnaryOp(
2749         MatchOpType(Instruction::Operand::Type::Dereference),
2750         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2751                       MatchRegOp(*reg),
2752                       MatchImmOp(offset)))(operand);
2753   } else {
2754     return MatchRegOp(*reg)(operand);
2755   }
2756 }
2757