1 //===-- DWARFExpression.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Expression/DWARFExpression.h"
10 
11 #include <cinttypes>
12 
13 #include <vector>
14 
15 #include "lldb/Core/Module.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/dwarf.h"
18 #include "lldb/Utility/DataEncoder.h"
19 #include "lldb/Utility/LLDBLog.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/RegisterValue.h"
22 #include "lldb/Utility/Scalar.h"
23 #include "lldb/Utility/StreamString.h"
24 #include "lldb/Utility/VMRange.h"
25 
26 #include "lldb/Host/Host.h"
27 #include "lldb/Utility/Endian.h"
28 
29 #include "lldb/Symbol/Function.h"
30 
31 #include "lldb/Target/ABI.h"
32 #include "lldb/Target/ExecutionContext.h"
33 #include "lldb/Target/Process.h"
34 #include "lldb/Target/RegisterContext.h"
35 #include "lldb/Target/StackFrame.h"
36 #include "lldb/Target/StackID.h"
37 #include "lldb/Target/Target.h"
38 #include "lldb/Target/Thread.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
40 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
41 
42 #include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 using namespace lldb_private::dwarf;
47 
48 // DWARFExpression constructor
49 DWARFExpression::DWARFExpression() : m_data() {}
50 
51 DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
52 
53 // Destructor
54 DWARFExpression::~DWARFExpression() = default;
55 
56 bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
57 
58 void DWARFExpression::UpdateValue(uint64_t const_value,
59                                   lldb::offset_t const_value_byte_size,
60                                   uint8_t addr_byte_size) {
61   if (!const_value_byte_size)
62     return;
63 
64   m_data.SetData(
65       DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
66   m_data.SetByteOrder(endian::InlHostByteOrder());
67   m_data.SetAddressByteSize(addr_byte_size);
68 }
69 
70 void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level,
71                                    ABI *abi) const {
72   llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
73       .print(s->AsRawOstream(), llvm::DIDumpOptions(),
74              abi ? &abi->GetMCRegisterInfo() : nullptr, nullptr);
75 }
76 
77 RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; }
78 
79 void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
80   m_reg_kind = reg_kind;
81 }
82 
83 
84 static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
85                                       lldb::RegisterKind reg_kind,
86                                       uint32_t reg_num, Status *error_ptr,
87                                       Value &value) {
88   if (reg_ctx == nullptr) {
89     if (error_ptr)
90       error_ptr->SetErrorString("No register context in frame.\n");
91   } else {
92     uint32_t native_reg =
93         reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
94     if (native_reg == LLDB_INVALID_REGNUM) {
95       if (error_ptr)
96         error_ptr->SetErrorStringWithFormat("Unable to convert register "
97                                             "kind=%u reg_num=%u to a native "
98                                             "register number.\n",
99                                             reg_kind, reg_num);
100     } else {
101       const RegisterInfo *reg_info =
102           reg_ctx->GetRegisterInfoAtIndex(native_reg);
103       RegisterValue reg_value;
104       if (reg_ctx->ReadRegister(reg_info, reg_value)) {
105         if (reg_value.GetScalarValue(value.GetScalar())) {
106           value.SetValueType(Value::ValueType::Scalar);
107           value.SetContext(Value::ContextType::RegisterInfo,
108                            const_cast<RegisterInfo *>(reg_info));
109           if (error_ptr)
110             error_ptr->Clear();
111           return true;
112         } else {
113           // If we get this error, then we need to implement a value buffer in
114           // the dwarf expression evaluation function...
115           if (error_ptr)
116             error_ptr->SetErrorStringWithFormat(
117                 "register %s can't be converted to a scalar value",
118                 reg_info->name);
119         }
120       } else {
121         if (error_ptr)
122           error_ptr->SetErrorStringWithFormat("register %s is not available",
123                                               reg_info->name);
124       }
125     }
126   }
127   return false;
128 }
129 
130 /// Return the length in bytes of the set of operands for \p op. No guarantees
131 /// are made on the state of \p data after this call.
132 static offset_t GetOpcodeDataSize(const DataExtractor &data,
133                                   const lldb::offset_t data_offset,
134                                   const uint8_t op) {
135   lldb::offset_t offset = data_offset;
136   switch (op) {
137   case DW_OP_addr:
138   case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
139     return data.GetAddressByteSize();
140 
141   // Opcodes with no arguments
142   case DW_OP_deref:                // 0x06
143   case DW_OP_dup:                  // 0x12
144   case DW_OP_drop:                 // 0x13
145   case DW_OP_over:                 // 0x14
146   case DW_OP_swap:                 // 0x16
147   case DW_OP_rot:                  // 0x17
148   case DW_OP_xderef:               // 0x18
149   case DW_OP_abs:                  // 0x19
150   case DW_OP_and:                  // 0x1a
151   case DW_OP_div:                  // 0x1b
152   case DW_OP_minus:                // 0x1c
153   case DW_OP_mod:                  // 0x1d
154   case DW_OP_mul:                  // 0x1e
155   case DW_OP_neg:                  // 0x1f
156   case DW_OP_not:                  // 0x20
157   case DW_OP_or:                   // 0x21
158   case DW_OP_plus:                 // 0x22
159   case DW_OP_shl:                  // 0x24
160   case DW_OP_shr:                  // 0x25
161   case DW_OP_shra:                 // 0x26
162   case DW_OP_xor:                  // 0x27
163   case DW_OP_eq:                   // 0x29
164   case DW_OP_ge:                   // 0x2a
165   case DW_OP_gt:                   // 0x2b
166   case DW_OP_le:                   // 0x2c
167   case DW_OP_lt:                   // 0x2d
168   case DW_OP_ne:                   // 0x2e
169   case DW_OP_lit0:                 // 0x30
170   case DW_OP_lit1:                 // 0x31
171   case DW_OP_lit2:                 // 0x32
172   case DW_OP_lit3:                 // 0x33
173   case DW_OP_lit4:                 // 0x34
174   case DW_OP_lit5:                 // 0x35
175   case DW_OP_lit6:                 // 0x36
176   case DW_OP_lit7:                 // 0x37
177   case DW_OP_lit8:                 // 0x38
178   case DW_OP_lit9:                 // 0x39
179   case DW_OP_lit10:                // 0x3A
180   case DW_OP_lit11:                // 0x3B
181   case DW_OP_lit12:                // 0x3C
182   case DW_OP_lit13:                // 0x3D
183   case DW_OP_lit14:                // 0x3E
184   case DW_OP_lit15:                // 0x3F
185   case DW_OP_lit16:                // 0x40
186   case DW_OP_lit17:                // 0x41
187   case DW_OP_lit18:                // 0x42
188   case DW_OP_lit19:                // 0x43
189   case DW_OP_lit20:                // 0x44
190   case DW_OP_lit21:                // 0x45
191   case DW_OP_lit22:                // 0x46
192   case DW_OP_lit23:                // 0x47
193   case DW_OP_lit24:                // 0x48
194   case DW_OP_lit25:                // 0x49
195   case DW_OP_lit26:                // 0x4A
196   case DW_OP_lit27:                // 0x4B
197   case DW_OP_lit28:                // 0x4C
198   case DW_OP_lit29:                // 0x4D
199   case DW_OP_lit30:                // 0x4E
200   case DW_OP_lit31:                // 0x4f
201   case DW_OP_reg0:                 // 0x50
202   case DW_OP_reg1:                 // 0x51
203   case DW_OP_reg2:                 // 0x52
204   case DW_OP_reg3:                 // 0x53
205   case DW_OP_reg4:                 // 0x54
206   case DW_OP_reg5:                 // 0x55
207   case DW_OP_reg6:                 // 0x56
208   case DW_OP_reg7:                 // 0x57
209   case DW_OP_reg8:                 // 0x58
210   case DW_OP_reg9:                 // 0x59
211   case DW_OP_reg10:                // 0x5A
212   case DW_OP_reg11:                // 0x5B
213   case DW_OP_reg12:                // 0x5C
214   case DW_OP_reg13:                // 0x5D
215   case DW_OP_reg14:                // 0x5E
216   case DW_OP_reg15:                // 0x5F
217   case DW_OP_reg16:                // 0x60
218   case DW_OP_reg17:                // 0x61
219   case DW_OP_reg18:                // 0x62
220   case DW_OP_reg19:                // 0x63
221   case DW_OP_reg20:                // 0x64
222   case DW_OP_reg21:                // 0x65
223   case DW_OP_reg22:                // 0x66
224   case DW_OP_reg23:                // 0x67
225   case DW_OP_reg24:                // 0x68
226   case DW_OP_reg25:                // 0x69
227   case DW_OP_reg26:                // 0x6A
228   case DW_OP_reg27:                // 0x6B
229   case DW_OP_reg28:                // 0x6C
230   case DW_OP_reg29:                // 0x6D
231   case DW_OP_reg30:                // 0x6E
232   case DW_OP_reg31:                // 0x6F
233   case DW_OP_nop:                  // 0x96
234   case DW_OP_push_object_address:  // 0x97 DWARF3
235   case DW_OP_form_tls_address:     // 0x9b DWARF3
236   case DW_OP_call_frame_cfa:       // 0x9c DWARF3
237   case DW_OP_stack_value:          // 0x9f DWARF4
238   case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
239     return 0;
240 
241   // Opcodes with a single 1 byte arguments
242   case DW_OP_const1u:     // 0x08 1 1-byte constant
243   case DW_OP_const1s:     // 0x09 1 1-byte constant
244   case DW_OP_pick:        // 0x15 1 1-byte stack index
245   case DW_OP_deref_size:  // 0x94 1 1-byte size of data retrieved
246   case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
247     return 1;
248 
249   // Opcodes with a single 2 byte arguments
250   case DW_OP_const2u: // 0x0a 1 2-byte constant
251   case DW_OP_const2s: // 0x0b 1 2-byte constant
252   case DW_OP_skip:    // 0x2f 1 signed 2-byte constant
253   case DW_OP_bra:     // 0x28 1 signed 2-byte constant
254   case DW_OP_call2:   // 0x98 1 2-byte offset of DIE (DWARF3)
255     return 2;
256 
257   // Opcodes with a single 4 byte arguments
258   case DW_OP_const4u: // 0x0c 1 4-byte constant
259   case DW_OP_const4s: // 0x0d 1 4-byte constant
260   case DW_OP_call4:   // 0x99 1 4-byte offset of DIE (DWARF3)
261     return 4;
262 
263   // Opcodes with a single 8 byte arguments
264   case DW_OP_const8u: // 0x0e 1 8-byte constant
265   case DW_OP_const8s: // 0x0f 1 8-byte constant
266     return 8;
267 
268   // All opcodes that have a single ULEB (signed or unsigned) argument
269   case DW_OP_addrx:           // 0xa1 1 ULEB128 index
270   case DW_OP_constu:          // 0x10 1 ULEB128 constant
271   case DW_OP_consts:          // 0x11 1 SLEB128 constant
272   case DW_OP_plus_uconst:     // 0x23 1 ULEB128 addend
273   case DW_OP_breg0:           // 0x70 1 ULEB128 register
274   case DW_OP_breg1:           // 0x71 1 ULEB128 register
275   case DW_OP_breg2:           // 0x72 1 ULEB128 register
276   case DW_OP_breg3:           // 0x73 1 ULEB128 register
277   case DW_OP_breg4:           // 0x74 1 ULEB128 register
278   case DW_OP_breg5:           // 0x75 1 ULEB128 register
279   case DW_OP_breg6:           // 0x76 1 ULEB128 register
280   case DW_OP_breg7:           // 0x77 1 ULEB128 register
281   case DW_OP_breg8:           // 0x78 1 ULEB128 register
282   case DW_OP_breg9:           // 0x79 1 ULEB128 register
283   case DW_OP_breg10:          // 0x7a 1 ULEB128 register
284   case DW_OP_breg11:          // 0x7b 1 ULEB128 register
285   case DW_OP_breg12:          // 0x7c 1 ULEB128 register
286   case DW_OP_breg13:          // 0x7d 1 ULEB128 register
287   case DW_OP_breg14:          // 0x7e 1 ULEB128 register
288   case DW_OP_breg15:          // 0x7f 1 ULEB128 register
289   case DW_OP_breg16:          // 0x80 1 ULEB128 register
290   case DW_OP_breg17:          // 0x81 1 ULEB128 register
291   case DW_OP_breg18:          // 0x82 1 ULEB128 register
292   case DW_OP_breg19:          // 0x83 1 ULEB128 register
293   case DW_OP_breg20:          // 0x84 1 ULEB128 register
294   case DW_OP_breg21:          // 0x85 1 ULEB128 register
295   case DW_OP_breg22:          // 0x86 1 ULEB128 register
296   case DW_OP_breg23:          // 0x87 1 ULEB128 register
297   case DW_OP_breg24:          // 0x88 1 ULEB128 register
298   case DW_OP_breg25:          // 0x89 1 ULEB128 register
299   case DW_OP_breg26:          // 0x8a 1 ULEB128 register
300   case DW_OP_breg27:          // 0x8b 1 ULEB128 register
301   case DW_OP_breg28:          // 0x8c 1 ULEB128 register
302   case DW_OP_breg29:          // 0x8d 1 ULEB128 register
303   case DW_OP_breg30:          // 0x8e 1 ULEB128 register
304   case DW_OP_breg31:          // 0x8f 1 ULEB128 register
305   case DW_OP_regx:            // 0x90 1 ULEB128 register
306   case DW_OP_fbreg:           // 0x91 1 SLEB128 offset
307   case DW_OP_piece:           // 0x93 1 ULEB128 size of piece addressed
308   case DW_OP_GNU_addr_index:  // 0xfb 1 ULEB128 index
309   case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
310     data.Skip_LEB128(&offset);
311     return offset - data_offset;
312 
313   // All opcodes that have a 2 ULEB (signed or unsigned) arguments
314   case DW_OP_bregx:     // 0x92 2 ULEB128 register followed by SLEB128 offset
315   case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
316     data.Skip_LEB128(&offset);
317     data.Skip_LEB128(&offset);
318     return offset - data_offset;
319 
320   case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
321                              // (DWARF4)
322   {
323     uint64_t block_len = data.Skip_LEB128(&offset);
324     offset += block_len;
325     return offset - data_offset;
326   }
327 
328   case DW_OP_GNU_entry_value:
329   case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
330   {
331     uint64_t subexpr_len = data.GetULEB128(&offset);
332     return (offset - data_offset) + subexpr_len;
333   }
334 
335   default:
336     break;
337   }
338   return LLDB_INVALID_OFFSET;
339 }
340 
341 lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu,
342                                                      uint32_t op_addr_idx,
343                                                      bool &error) const {
344   error = false;
345   lldb::offset_t offset = 0;
346   uint32_t curr_op_addr_idx = 0;
347   while (m_data.ValidOffset(offset)) {
348     const uint8_t op = m_data.GetU8(&offset);
349 
350     if (op == DW_OP_addr) {
351       const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
352       if (curr_op_addr_idx == op_addr_idx)
353         return op_file_addr;
354       ++curr_op_addr_idx;
355     } else if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
356       uint64_t index = m_data.GetULEB128(&offset);
357       if (curr_op_addr_idx == op_addr_idx) {
358         if (!dwarf_cu) {
359           error = true;
360           break;
361         }
362 
363         return dwarf_cu->ReadAddressFromDebugAddrSection(index);
364       }
365       ++curr_op_addr_idx;
366     } else {
367       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
368       if (op_arg_size == LLDB_INVALID_OFFSET) {
369         error = true;
370         break;
371       }
372       offset += op_arg_size;
373     }
374   }
375   return LLDB_INVALID_ADDRESS;
376 }
377 
378 bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) {
379   lldb::offset_t offset = 0;
380   while (m_data.ValidOffset(offset)) {
381     const uint8_t op = m_data.GetU8(&offset);
382 
383     if (op == DW_OP_addr) {
384       const uint32_t addr_byte_size = m_data.GetAddressByteSize();
385       // We have to make a copy of the data as we don't know if this data is
386       // from a read only memory mapped buffer, so we duplicate all of the data
387       // first, then modify it, and if all goes well, we then replace the data
388       // for this expression
389 
390       // Make en encoder that contains a copy of the location expression data
391       // so we can write the address into the buffer using the correct byte
392       // order.
393       DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
394                           m_data.GetByteOrder(), addr_byte_size);
395 
396       // Replace the address in the new buffer
397       if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
398         return false;
399 
400       // All went well, so now we can reset the data using a shared pointer to
401       // the heap data so "m_data" will now correctly manage the heap data.
402       m_data.SetData(encoder.GetDataBuffer());
403       return true;
404     } else {
405       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
406       if (op_arg_size == LLDB_INVALID_OFFSET)
407         break;
408       offset += op_arg_size;
409     }
410   }
411   return false;
412 }
413 
414 bool DWARFExpression::ContainsThreadLocalStorage() const {
415   lldb::offset_t offset = 0;
416   while (m_data.ValidOffset(offset)) {
417     const uint8_t op = m_data.GetU8(&offset);
418 
419     if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
420       return true;
421     const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
422     if (op_arg_size == LLDB_INVALID_OFFSET)
423       return false;
424     offset += op_arg_size;
425   }
426   return false;
427 }
428 bool DWARFExpression::LinkThreadLocalStorage(
429     std::function<lldb::addr_t(lldb::addr_t file_addr)> const
430         &link_address_callback) {
431   const uint32_t addr_byte_size = m_data.GetAddressByteSize();
432   // We have to make a copy of the data as we don't know if this data is from a
433   // read only memory mapped buffer, so we duplicate all of the data first,
434   // then modify it, and if all goes well, we then replace the data for this
435   // expression.
436   // Make en encoder that contains a copy of the location expression data so we
437   // can write the address into the buffer using the correct byte order.
438   DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
439                       m_data.GetByteOrder(), addr_byte_size);
440 
441   lldb::offset_t offset = 0;
442   lldb::offset_t const_offset = 0;
443   lldb::addr_t const_value = 0;
444   size_t const_byte_size = 0;
445   while (m_data.ValidOffset(offset)) {
446     const uint8_t op = m_data.GetU8(&offset);
447 
448     bool decoded_data = false;
449     switch (op) {
450     case DW_OP_const4u:
451       // Remember the const offset in case we later have a
452       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
453       const_offset = offset;
454       const_value = m_data.GetU32(&offset);
455       decoded_data = true;
456       const_byte_size = 4;
457       break;
458 
459     case DW_OP_const8u:
460       // Remember the const offset in case we later have a
461       // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
462       const_offset = offset;
463       const_value = m_data.GetU64(&offset);
464       decoded_data = true;
465       const_byte_size = 8;
466       break;
467 
468     case DW_OP_form_tls_address:
469     case DW_OP_GNU_push_tls_address:
470       // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
471       // by a file address on the stack. We assume that DW_OP_const4u or
472       // DW_OP_const8u is used for these values, and we check that the last
473       // opcode we got before either of these was DW_OP_const4u or
474       // DW_OP_const8u. If so, then we can link the value accodingly. For
475       // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
476       // address of a structure that contains a function pointer, the pthread
477       // key and the offset into the data pointed to by the pthread key. So we
478       // must link this address and also set the module of this expression to
479       // the new_module_sp so we can resolve the file address correctly
480       if (const_byte_size > 0) {
481         lldb::addr_t linked_file_addr = link_address_callback(const_value);
482         if (linked_file_addr == LLDB_INVALID_ADDRESS)
483           return false;
484         // Replace the address in the new buffer
485         if (encoder.PutUnsigned(const_offset, const_byte_size,
486                                 linked_file_addr) == UINT32_MAX)
487           return false;
488       }
489       break;
490 
491     default:
492       const_offset = 0;
493       const_value = 0;
494       const_byte_size = 0;
495       break;
496     }
497 
498     if (!decoded_data) {
499       const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op);
500       if (op_arg_size == LLDB_INVALID_OFFSET)
501         return false;
502       else
503         offset += op_arg_size;
504     }
505   }
506 
507   m_data.SetData(encoder.GetDataBuffer());
508   return true;
509 }
510 
511 static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
512                                        ExecutionContext *exe_ctx,
513                                        RegisterContext *reg_ctx,
514                                        const DataExtractor &opcodes,
515                                        lldb::offset_t &opcode_offset,
516                                        Status *error_ptr, Log *log) {
517   // DW_OP_entry_value(sub-expr) describes the location a variable had upon
518   // function entry: this variable location is presumed to be optimized out at
519   // the current PC value.  The caller of the function may have call site
520   // information that describes an alternate location for the variable (e.g. a
521   // constant literal, or a spilled stack value) in the parent frame.
522   //
523   // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
524   //
525   //     void child(int &sink, int x) {
526   //       ...
527   //       /* "x" gets optimized out. */
528   //
529   //       /* The location of "x" here is: DW_OP_entry_value($reg2). */
530   //       ++sink;
531   //     }
532   //
533   //     void parent() {
534   //       int sink;
535   //
536   //       /*
537   //        * The callsite information emitted here is:
538   //        *
539   //        * DW_TAG_call_site
540   //        *   DW_AT_return_pc ... (for "child(sink, 123);")
541   //        *   DW_TAG_call_site_parameter (for "sink")
542   //        *     DW_AT_location   ($reg1)
543   //        *     DW_AT_call_value ($SP - 8)
544   //        *   DW_TAG_call_site_parameter (for "x")
545   //        *     DW_AT_location   ($reg2)
546   //        *     DW_AT_call_value ($literal 123)
547   //        *
548   //        * DW_TAG_call_site
549   //        *   DW_AT_return_pc ... (for "child(sink, 456);")
550   //        *   ...
551   //        */
552   //       child(sink, 123);
553   //       child(sink, 456);
554   //     }
555   //
556   // When the program stops at "++sink" within `child`, the debugger determines
557   // the call site by analyzing the return address. Once the call site is found,
558   // the debugger determines which parameter is referenced by DW_OP_entry_value
559   // and evaluates the corresponding location for that parameter in `parent`.
560 
561   // 1. Find the function which pushed the current frame onto the stack.
562   if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
563     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
564     return false;
565   }
566 
567   StackFrame *current_frame = exe_ctx->GetFramePtr();
568   Thread *thread = exe_ctx->GetThreadPtr();
569   if (!current_frame || !thread) {
570     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
571     return false;
572   }
573 
574   Target &target = exe_ctx->GetTargetRef();
575   StackFrameSP parent_frame = nullptr;
576   addr_t return_pc = LLDB_INVALID_ADDRESS;
577   uint32_t current_frame_idx = current_frame->GetFrameIndex();
578   uint32_t num_frames = thread->GetStackFrameCount();
579   for (uint32_t parent_frame_idx = current_frame_idx + 1;
580        parent_frame_idx < num_frames; ++parent_frame_idx) {
581     parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
582     // Require a valid sequence of frames.
583     if (!parent_frame)
584       break;
585 
586     // Record the first valid return address, even if this is an inlined frame,
587     // in order to look up the associated call edge in the first non-inlined
588     // parent frame.
589     if (return_pc == LLDB_INVALID_ADDRESS) {
590       return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
591       LLDB_LOG(log,
592                "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
593                return_pc);
594     }
595 
596     // If we've found an inlined frame, skip it (these have no call site
597     // parameters).
598     if (parent_frame->IsInlined())
599       continue;
600 
601     // We've found the first non-inlined parent frame.
602     break;
603   }
604   if (!parent_frame || !parent_frame->GetRegisterContext()) {
605     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
606     return false;
607   }
608 
609   Function *parent_func =
610       parent_frame->GetSymbolContext(eSymbolContextFunction).function;
611   if (!parent_func) {
612     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
613     return false;
614   }
615 
616   // 2. Find the call edge in the parent function responsible for creating the
617   //    current activation.
618   Function *current_func =
619       current_frame->GetSymbolContext(eSymbolContextFunction).function;
620   if (!current_func) {
621     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
622     return false;
623   }
624 
625   CallEdge *call_edge = nullptr;
626   ModuleList &modlist = target.GetImages();
627   ExecutionContext parent_exe_ctx = *exe_ctx;
628   parent_exe_ctx.SetFrameSP(parent_frame);
629   if (!parent_frame->IsArtificial()) {
630     // If the parent frame is not artificial, the current activation may be
631     // produced by an ambiguous tail call. In this case, refuse to proceed.
632     call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
633     if (!call_edge) {
634       LLDB_LOG(log,
635                "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
636                "in parent frame {1}",
637                return_pc, parent_func->GetName());
638       return false;
639     }
640     Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
641     if (callee_func != current_func) {
642       LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
643                     "can't find real parent frame");
644       return false;
645     }
646   } else {
647     // The StackFrameList solver machinery has deduced that an unambiguous tail
648     // call sequence that produced the current activation.  The first edge in
649     // the parent that points to the current function must be valid.
650     for (auto &edge : parent_func->GetTailCallingEdges()) {
651       if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
652         call_edge = edge.get();
653         break;
654       }
655     }
656   }
657   if (!call_edge) {
658     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
659                   "to current function");
660     return false;
661   }
662 
663   // 3. Attempt to locate the DW_OP_entry_value expression in the set of
664   //    available call site parameters. If found, evaluate the corresponding
665   //    parameter in the context of the parent frame.
666   const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
667   const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
668   if (!subexpr_data) {
669     LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
670     return false;
671   }
672 
673   const CallSiteParameter *matched_param = nullptr;
674   for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
675     DataExtractor param_subexpr_extractor;
676     if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
677       continue;
678     lldb::offset_t param_subexpr_offset = 0;
679     const void *param_subexpr_data =
680         param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
681     if (!param_subexpr_data ||
682         param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
683       continue;
684 
685     // At this point, the DW_OP_entry_value sub-expression and the callee-side
686     // expression in the call site parameter are known to have the same length.
687     // Check whether they are equal.
688     //
689     // Note that an equality check is sufficient: the contents of the
690     // DW_OP_entry_value subexpression are only used to identify the right call
691     // site parameter in the parent, and do not require any special handling.
692     if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
693       matched_param = &param;
694       break;
695     }
696   }
697   if (!matched_param) {
698     LLDB_LOG(log,
699              "Evaluate_DW_OP_entry_value: no matching call site param found");
700     return false;
701   }
702 
703   // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
704   // subexpresion whenever llvm does.
705   Value result;
706   const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
707   if (!param_expr.Evaluate(&parent_exe_ctx,
708                            parent_frame->GetRegisterContext().get(),
709                            LLDB_INVALID_ADDRESS,
710                            /*initial_value_ptr=*/nullptr,
711                            /*object_address_ptr=*/nullptr, result, error_ptr)) {
712     LLDB_LOG(log,
713              "Evaluate_DW_OP_entry_value: call site param evaluation failed");
714     return false;
715   }
716 
717   stack.push_back(result);
718   return true;
719 }
720 
721 namespace {
722 /// The location description kinds described by the DWARF v5
723 /// specification.  Composite locations are handled out-of-band and
724 /// thus aren't part of the enum.
725 enum LocationDescriptionKind {
726   Empty,
727   Memory,
728   Register,
729   Implicit
730   /* Composite*/
731 };
732 /// Adjust value's ValueType according to the kind of location description.
733 void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
734                                             LocationDescriptionKind kind,
735                                             Value *value = nullptr) {
736   // Note that this function is conflating DWARF expressions with
737   // DWARF location descriptions. Perhaps it would be better to define
738   // a wrapper for DWARFExpresssion::Eval() that deals with DWARF
739   // location descriptions (which consist of one or more DWARF
740   // expressions). But doing this would mean we'd also need factor the
741   // handling of DW_OP_(bit_)piece out of this function.
742   if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
743     const char *log_msg = "DWARF location description kind: %s";
744     switch (kind) {
745     case Empty:
746       LLDB_LOGF(log, log_msg, "Empty");
747       break;
748     case Memory:
749       LLDB_LOGF(log, log_msg, "Memory");
750       if (value->GetValueType() == Value::ValueType::Scalar)
751         value->SetValueType(Value::ValueType::LoadAddress);
752       break;
753     case Register:
754       LLDB_LOGF(log, log_msg, "Register");
755       value->SetValueType(Value::ValueType::Scalar);
756       break;
757     case Implicit:
758       LLDB_LOGF(log, log_msg, "Implicit");
759       if (value->GetValueType() == Value::ValueType::LoadAddress)
760         value->SetValueType(Value::ValueType::Scalar);
761       break;
762     }
763   }
764 }
765 } // namespace
766 
767 /// Helper function to move common code used to resolve a file address and turn
768 /// into a load address.
769 ///
770 /// \param exe_ctx Pointer to the execution context
771 /// \param module_sp shared_ptr contains the module if we have one
772 /// \param error_ptr pointer to Status object if we have one
773 /// \param dw_op_type C-style string used to vary the error output
774 /// \param file_addr the file address we are trying to resolve and turn into a
775 ///                  load address
776 /// \param so_addr out parameter, will be set to load addresss or section offset
777 /// \param check_sectionoffset bool which determines if having a section offset
778 ///                            but not a load address is considerd a success
779 /// \returns llvm::Optional containing the load address if resolving and getting
780 ///          the load address succeed or an empty Optinal otherwise. If
781 ///          check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
782 ///          success if so_addr.IsSectionOffset() is true.
783 static llvm::Optional<lldb::addr_t>
784 ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp,
785                           Status *error_ptr, const char *dw_op_type,
786                           lldb::addr_t file_addr, Address &so_addr,
787                           bool check_sectionoffset = false) {
788   if (!module_sp) {
789     if (error_ptr)
790       error_ptr->SetErrorStringWithFormat(
791           "need module to resolve file address for %s", dw_op_type);
792     return {};
793   }
794 
795   if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
796     if (error_ptr)
797       error_ptr->SetErrorString("failed to resolve file address in module");
798     return {};
799   }
800 
801   addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
802 
803   if (load_addr == LLDB_INVALID_ADDRESS &&
804       (check_sectionoffset && !so_addr.IsSectionOffset())) {
805     if (error_ptr)
806       error_ptr->SetErrorString("failed to resolve load address");
807     return {};
808   }
809 
810   return load_addr;
811 }
812 
813 /// Helper function to move common code used to load sized data from a uint8_t
814 /// buffer.
815 ///
816 /// \param addr_bytes uint8_t buffer containg raw data
817 /// \param size_addr_bytes how large is the underlying raw data
818 /// \param byte_order what is the byter order of the underlyig data
819 /// \param size How much of the underlying data we want to use
820 /// \return The underlying data converted into a Scalar
821 static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
822                                          size_t size_addr_bytes,
823                                          ByteOrder byte_order, size_t size) {
824   DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
825 
826   lldb::offset_t addr_data_offset = 0;
827   if (size <= 8)
828     return addr_data.GetMaxU64(&addr_data_offset, size);
829   else
830     return addr_data.GetAddress(&addr_data_offset);
831 }
832 
833 bool DWARFExpression::Evaluate(
834     ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
835     lldb::ModuleSP module_sp, const DataExtractor &opcodes,
836     const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
837     const Value *initial_value_ptr, const Value *object_address_ptr,
838     Value &result, Status *error_ptr) {
839 
840   if (opcodes.GetByteSize() == 0) {
841     if (error_ptr)
842       error_ptr->SetErrorString(
843           "no location, value may have been optimized out");
844     return false;
845   }
846   std::vector<Value> stack;
847 
848   Process *process = nullptr;
849   StackFrame *frame = nullptr;
850 
851   if (exe_ctx) {
852     process = exe_ctx->GetProcessPtr();
853     frame = exe_ctx->GetFramePtr();
854   }
855   if (reg_ctx == nullptr && frame)
856     reg_ctx = frame->GetRegisterContext().get();
857 
858   if (initial_value_ptr)
859     stack.push_back(*initial_value_ptr);
860 
861   lldb::offset_t offset = 0;
862   Value tmp;
863   uint32_t reg_num;
864 
865   /// Insertion point for evaluating multi-piece expression.
866   uint64_t op_piece_offset = 0;
867   Value pieces; // Used for DW_OP_piece
868 
869   Log *log = GetLog(LLDBLog::Expressions);
870   // A generic type is "an integral type that has the size of an address and an
871   // unspecified signedness". For now, just use the signedness of the operand.
872   // TODO: Implement a real typed stack, and store the genericness of the value
873   // there.
874   auto to_generic = [&](auto v) {
875     bool is_signed = std::is_signed<decltype(v)>::value;
876     return Scalar(llvm::APSInt(
877         llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
878         !is_signed));
879   };
880 
881   // The default kind is a memory location. This is updated by any
882   // operation that changes this, such as DW_OP_stack_value, and reset
883   // by composition operations like DW_OP_piece.
884   LocationDescriptionKind dwarf4_location_description_kind = Memory;
885 
886   while (opcodes.ValidOffset(offset)) {
887     const lldb::offset_t op_offset = offset;
888     const uint8_t op = opcodes.GetU8(&offset);
889 
890     if (log && log->GetVerbose()) {
891       size_t count = stack.size();
892       LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
893                 (uint64_t)count);
894       for (size_t i = 0; i < count; ++i) {
895         StreamString new_value;
896         new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
897         stack[i].Dump(&new_value);
898         LLDB_LOGF(log, "  %s", new_value.GetData());
899       }
900       LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
901                 DW_OP_value_to_name(op));
902     }
903 
904     switch (op) {
905     // The DW_OP_addr operation has a single operand that encodes a machine
906     // address and whose size is the size of an address on the target machine.
907     case DW_OP_addr:
908       stack.push_back(Scalar(opcodes.GetAddress(&offset)));
909       stack.back().SetValueType(Value::ValueType::FileAddress);
910       // Convert the file address to a load address, so subsequent
911       // DWARF operators can operate on it.
912       if (frame)
913         stack.back().ConvertToLoadAddress(module_sp.get(),
914                                           frame->CalculateTarget().get());
915       break;
916 
917     // The DW_OP_addr_sect_offset4 is used for any location expressions in
918     // shared libraries that have a location like:
919     //  DW_OP_addr(0x1000)
920     // If this address resides in a shared library, then this virtual address
921     // won't make sense when it is evaluated in the context of a running
922     // process where shared libraries have been slid. To account for this, this
923     // new address type where we can store the section pointer and a 4 byte
924     // offset.
925     //      case DW_OP_addr_sect_offset4:
926     //          {
927     //              result_type = eResultTypeFileAddress;
928     //              lldb::Section *sect = (lldb::Section
929     //              *)opcodes.GetMaxU64(&offset, sizeof(void *));
930     //              lldb::addr_t sect_offset = opcodes.GetU32(&offset);
931     //
932     //              Address so_addr (sect, sect_offset);
933     //              lldb::addr_t load_addr = so_addr.GetLoadAddress();
934     //              if (load_addr != LLDB_INVALID_ADDRESS)
935     //              {
936     //                  // We successfully resolve a file address to a load
937     //                  // address.
938     //                  stack.push_back(load_addr);
939     //                  break;
940     //              }
941     //              else
942     //              {
943     //                  // We were able
944     //                  if (error_ptr)
945     //                      error_ptr->SetErrorStringWithFormat ("Section %s in
946     //                      %s is not currently loaded.\n",
947     //                      sect->GetName().AsCString(),
948     //                      sect->GetModule()->GetFileSpec().GetFilename().AsCString());
949     //                  return false;
950     //              }
951     //          }
952     //          break;
953 
954     // OPCODE: DW_OP_deref
955     // OPERANDS: none
956     // DESCRIPTION: Pops the top stack entry and treats it as an address.
957     // The value retrieved from that address is pushed. The size of the data
958     // retrieved from the dereferenced address is the size of an address on the
959     // target machine.
960     case DW_OP_deref: {
961       if (stack.empty()) {
962         if (error_ptr)
963           error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
964         return false;
965       }
966       Value::ValueType value_type = stack.back().GetValueType();
967       switch (value_type) {
968       case Value::ValueType::HostAddress: {
969         void *src = (void *)stack.back().GetScalar().ULongLong();
970         intptr_t ptr;
971         ::memcpy(&ptr, src, sizeof(void *));
972         stack.back().GetScalar() = ptr;
973         stack.back().ClearContext();
974       } break;
975       case Value::ValueType::FileAddress: {
976         auto file_addr = stack.back().GetScalar().ULongLong(
977             LLDB_INVALID_ADDRESS);
978 
979         Address so_addr;
980         auto maybe_load_addr = ResolveLoadAddress(
981             exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
982 
983         if (!maybe_load_addr)
984           return false;
985 
986         stack.back().GetScalar() = *maybe_load_addr;
987         // Fall through to load address promotion code below.
988       } LLVM_FALLTHROUGH;
989       case Value::ValueType::Scalar:
990         // Promote Scalar to LoadAddress and fall through.
991         stack.back().SetValueType(Value::ValueType::LoadAddress);
992         LLVM_FALLTHROUGH;
993       case Value::ValueType::LoadAddress:
994         if (exe_ctx) {
995           if (process) {
996             lldb::addr_t pointer_addr =
997                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
998             Status error;
999             lldb::addr_t pointer_value =
1000                 process->ReadPointerFromMemory(pointer_addr, error);
1001             if (pointer_value != LLDB_INVALID_ADDRESS) {
1002               if (ABISP abi_sp = process->GetABI())
1003                 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1004               stack.back().GetScalar() = pointer_value;
1005               stack.back().ClearContext();
1006             } else {
1007               if (error_ptr)
1008                 error_ptr->SetErrorStringWithFormat(
1009                     "Failed to dereference pointer from 0x%" PRIx64
1010                     " for DW_OP_deref: %s\n",
1011                     pointer_addr, error.AsCString());
1012               return false;
1013             }
1014           } else {
1015             if (error_ptr)
1016               error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1017             return false;
1018           }
1019         } else {
1020           if (error_ptr)
1021             error_ptr->SetErrorString(
1022                 "NULL execution context for DW_OP_deref.\n");
1023           return false;
1024         }
1025         break;
1026 
1027       case Value::ValueType::Invalid:
1028         if (error_ptr)
1029           error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1030         return false;
1031       }
1032 
1033     } break;
1034 
1035     // OPCODE: DW_OP_deref_size
1036     // OPERANDS: 1
1037     //  1 - uint8_t that specifies the size of the data to dereference.
1038     // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1039     // stack entry and treats it as an address. The value retrieved from that
1040     // address is pushed. In the DW_OP_deref_size operation, however, the size
1041     // in bytes of the data retrieved from the dereferenced address is
1042     // specified by the single operand. This operand is a 1-byte unsigned
1043     // integral constant whose value may not be larger than the size of an
1044     // address on the target machine. The data retrieved is zero extended to
1045     // the size of an address on the target machine before being pushed on the
1046     // expression stack.
1047     case DW_OP_deref_size: {
1048       if (stack.empty()) {
1049         if (error_ptr)
1050           error_ptr->SetErrorString(
1051               "Expression stack empty for DW_OP_deref_size.");
1052         return false;
1053       }
1054       uint8_t size = opcodes.GetU8(&offset);
1055       Value::ValueType value_type = stack.back().GetValueType();
1056       switch (value_type) {
1057       case Value::ValueType::HostAddress: {
1058         void *src = (void *)stack.back().GetScalar().ULongLong();
1059         intptr_t ptr;
1060         ::memcpy(&ptr, src, sizeof(void *));
1061         // I can't decide whether the size operand should apply to the bytes in
1062         // their
1063         // lldb-host endianness or the target endianness.. I doubt this'll ever
1064         // come up but I'll opt for assuming big endian regardless.
1065         switch (size) {
1066         case 1:
1067           ptr = ptr & 0xff;
1068           break;
1069         case 2:
1070           ptr = ptr & 0xffff;
1071           break;
1072         case 3:
1073           ptr = ptr & 0xffffff;
1074           break;
1075         case 4:
1076           ptr = ptr & 0xffffffff;
1077           break;
1078         // the casts are added to work around the case where intptr_t is a 32
1079         // bit quantity;
1080         // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1081         // program.
1082         case 5:
1083           ptr = (intptr_t)ptr & 0xffffffffffULL;
1084           break;
1085         case 6:
1086           ptr = (intptr_t)ptr & 0xffffffffffffULL;
1087           break;
1088         case 7:
1089           ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1090           break;
1091         default:
1092           break;
1093         }
1094         stack.back().GetScalar() = ptr;
1095         stack.back().ClearContext();
1096       } break;
1097       case Value::ValueType::FileAddress: {
1098         auto file_addr =
1099             stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1100         Address so_addr;
1101         auto maybe_load_addr =
1102             ResolveLoadAddress(exe_ctx, module_sp, error_ptr,
1103                                       "DW_OP_deref_size", file_addr, so_addr,
1104                                       /*check_sectionoffset=*/true);
1105 
1106         if (!maybe_load_addr)
1107           return false;
1108 
1109         addr_t load_addr = *maybe_load_addr;
1110 
1111         if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1112           uint8_t addr_bytes[8];
1113           Status error;
1114 
1115           if (exe_ctx->GetTargetRef().ReadMemory(
1116                   so_addr, &addr_bytes, size, error,
1117                   /*force_live_memory=*/false) == size) {
1118             ObjectFile *objfile = module_sp->GetObjectFile();
1119 
1120             stack.back().GetScalar() = DerefSizeExtractDataHelper(
1121                 addr_bytes, size, objfile->GetByteOrder(), size);
1122             stack.back().ClearContext();
1123             break;
1124           } else {
1125             if (error_ptr)
1126               error_ptr->SetErrorStringWithFormat(
1127                   "Failed to dereference pointer for for DW_OP_deref_size: "
1128                   "%s\n",
1129                   error.AsCString());
1130             return false;
1131           }
1132         }
1133         stack.back().GetScalar() = load_addr;
1134         // Fall through to load address promotion code below.
1135       }
1136 
1137         LLVM_FALLTHROUGH;
1138       case Value::ValueType::Scalar:
1139       case Value::ValueType::LoadAddress:
1140         if (exe_ctx) {
1141           if (process) {
1142             lldb::addr_t pointer_addr =
1143                 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1144             uint8_t addr_bytes[sizeof(lldb::addr_t)];
1145             Status error;
1146             if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1147                 size) {
1148 
1149               stack.back().GetScalar() =
1150                   DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1151                                              process->GetByteOrder(), size);
1152               stack.back().ClearContext();
1153             } else {
1154               if (error_ptr)
1155                 error_ptr->SetErrorStringWithFormat(
1156                     "Failed to dereference pointer from 0x%" PRIx64
1157                     " for DW_OP_deref: %s\n",
1158                     pointer_addr, error.AsCString());
1159               return false;
1160             }
1161           } else {
1162             if (error_ptr)
1163               error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1164             return false;
1165           }
1166         } else {
1167           if (error_ptr)
1168             error_ptr->SetErrorString(
1169                 "NULL execution context for DW_OP_deref_size.\n");
1170           return false;
1171         }
1172         break;
1173 
1174       case Value::ValueType::Invalid:
1175         if (error_ptr)
1176           error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1177         return false;
1178       }
1179 
1180     } break;
1181 
1182     // OPCODE: DW_OP_xderef_size
1183     // OPERANDS: 1
1184     //  1 - uint8_t that specifies the size of the data to dereference.
1185     // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1186     // the top of the stack is treated as an address. The second stack entry is
1187     // treated as an "address space identifier" for those architectures that
1188     // support multiple address spaces. The top two stack elements are popped,
1189     // a data item is retrieved through an implementation-defined address
1190     // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1191     // operation, however, the size in bytes of the data retrieved from the
1192     // dereferenced address is specified by the single operand. This operand is
1193     // a 1-byte unsigned integral constant whose value may not be larger than
1194     // the size of an address on the target machine. The data retrieved is zero
1195     // extended to the size of an address on the target machine before being
1196     // pushed on the expression stack.
1197     case DW_OP_xderef_size:
1198       if (error_ptr)
1199         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1200       return false;
1201     // OPCODE: DW_OP_xderef
1202     // OPERANDS: none
1203     // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1204     // the top of the stack is treated as an address. The second stack entry is
1205     // treated as an "address space identifier" for those architectures that
1206     // support multiple address spaces. The top two stack elements are popped,
1207     // a data item is retrieved through an implementation-defined address
1208     // calculation and pushed as the new stack top. The size of the data
1209     // retrieved from the dereferenced address is the size of an address on the
1210     // target machine.
1211     case DW_OP_xderef:
1212       if (error_ptr)
1213         error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1214       return false;
1215 
1216     // All DW_OP_constXXX opcodes have a single operand as noted below:
1217     //
1218     // Opcode           Operand 1
1219     // DW_OP_const1u    1-byte unsigned integer constant
1220     // DW_OP_const1s    1-byte signed integer constant
1221     // DW_OP_const2u    2-byte unsigned integer constant
1222     // DW_OP_const2s    2-byte signed integer constant
1223     // DW_OP_const4u    4-byte unsigned integer constant
1224     // DW_OP_const4s    4-byte signed integer constant
1225     // DW_OP_const8u    8-byte unsigned integer constant
1226     // DW_OP_const8s    8-byte signed integer constant
1227     // DW_OP_constu     unsigned LEB128 integer constant
1228     // DW_OP_consts     signed LEB128 integer constant
1229     case DW_OP_const1u:
1230       stack.push_back(to_generic(opcodes.GetU8(&offset)));
1231       break;
1232     case DW_OP_const1s:
1233       stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1234       break;
1235     case DW_OP_const2u:
1236       stack.push_back(to_generic(opcodes.GetU16(&offset)));
1237       break;
1238     case DW_OP_const2s:
1239       stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1240       break;
1241     case DW_OP_const4u:
1242       stack.push_back(to_generic(opcodes.GetU32(&offset)));
1243       break;
1244     case DW_OP_const4s:
1245       stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1246       break;
1247     case DW_OP_const8u:
1248       stack.push_back(to_generic(opcodes.GetU64(&offset)));
1249       break;
1250     case DW_OP_const8s:
1251       stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1252       break;
1253     // These should also use to_generic, but we can't do that due to a
1254     // producer-side bug in llvm. See llvm.org/pr48087.
1255     case DW_OP_constu:
1256       stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1257       break;
1258     case DW_OP_consts:
1259       stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1260       break;
1261 
1262     // OPCODE: DW_OP_dup
1263     // OPERANDS: none
1264     // DESCRIPTION: duplicates the value at the top of the stack
1265     case DW_OP_dup:
1266       if (stack.empty()) {
1267         if (error_ptr)
1268           error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1269         return false;
1270       } else
1271         stack.push_back(stack.back());
1272       break;
1273 
1274     // OPCODE: DW_OP_drop
1275     // OPERANDS: none
1276     // DESCRIPTION: pops the value at the top of the stack
1277     case DW_OP_drop:
1278       if (stack.empty()) {
1279         if (error_ptr)
1280           error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1281         return false;
1282       } else
1283         stack.pop_back();
1284       break;
1285 
1286     // OPCODE: DW_OP_over
1287     // OPERANDS: none
1288     // DESCRIPTION: Duplicates the entry currently second in the stack at
1289     // the top of the stack.
1290     case DW_OP_over:
1291       if (stack.size() < 2) {
1292         if (error_ptr)
1293           error_ptr->SetErrorString(
1294               "Expression stack needs at least 2 items for DW_OP_over.");
1295         return false;
1296       } else
1297         stack.push_back(stack[stack.size() - 2]);
1298       break;
1299 
1300     // OPCODE: DW_OP_pick
1301     // OPERANDS: uint8_t index into the current stack
1302     // DESCRIPTION: The stack entry with the specified index (0 through 255,
1303     // inclusive) is pushed on the stack
1304     case DW_OP_pick: {
1305       uint8_t pick_idx = opcodes.GetU8(&offset);
1306       if (pick_idx < stack.size())
1307         stack.push_back(stack[stack.size() - 1 - pick_idx]);
1308       else {
1309         if (error_ptr)
1310           error_ptr->SetErrorStringWithFormat(
1311               "Index %u out of range for DW_OP_pick.\n", pick_idx);
1312         return false;
1313       }
1314     } break;
1315 
1316     // OPCODE: DW_OP_swap
1317     // OPERANDS: none
1318     // DESCRIPTION: swaps the top two stack entries. The entry at the top
1319     // of the stack becomes the second stack entry, and the second entry
1320     // becomes the top of the stack
1321     case DW_OP_swap:
1322       if (stack.size() < 2) {
1323         if (error_ptr)
1324           error_ptr->SetErrorString(
1325               "Expression stack needs at least 2 items for DW_OP_swap.");
1326         return false;
1327       } else {
1328         tmp = stack.back();
1329         stack.back() = stack[stack.size() - 2];
1330         stack[stack.size() - 2] = tmp;
1331       }
1332       break;
1333 
1334     // OPCODE: DW_OP_rot
1335     // OPERANDS: none
1336     // DESCRIPTION: Rotates the first three stack entries. The entry at
1337     // the top of the stack becomes the third stack entry, the second entry
1338     // becomes the top of the stack, and the third entry becomes the second
1339     // entry.
1340     case DW_OP_rot:
1341       if (stack.size() < 3) {
1342         if (error_ptr)
1343           error_ptr->SetErrorString(
1344               "Expression stack needs at least 3 items for DW_OP_rot.");
1345         return false;
1346       } else {
1347         size_t last_idx = stack.size() - 1;
1348         Value old_top = stack[last_idx];
1349         stack[last_idx] = stack[last_idx - 1];
1350         stack[last_idx - 1] = stack[last_idx - 2];
1351         stack[last_idx - 2] = old_top;
1352       }
1353       break;
1354 
1355     // OPCODE: DW_OP_abs
1356     // OPERANDS: none
1357     // DESCRIPTION: pops the top stack entry, interprets it as a signed
1358     // value and pushes its absolute value. If the absolute value can not be
1359     // represented, the result is undefined.
1360     case DW_OP_abs:
1361       if (stack.empty()) {
1362         if (error_ptr)
1363           error_ptr->SetErrorString(
1364               "Expression stack needs at least 1 item for DW_OP_abs.");
1365         return false;
1366       } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1367         if (error_ptr)
1368           error_ptr->SetErrorString(
1369               "Failed to take the absolute value of the first stack item.");
1370         return false;
1371       }
1372       break;
1373 
1374     // OPCODE: DW_OP_and
1375     // OPERANDS: none
1376     // DESCRIPTION: pops the top two stack values, performs a bitwise and
1377     // operation on the two, and pushes the result.
1378     case DW_OP_and:
1379       if (stack.size() < 2) {
1380         if (error_ptr)
1381           error_ptr->SetErrorString(
1382               "Expression stack needs at least 2 items for DW_OP_and.");
1383         return false;
1384       } else {
1385         tmp = stack.back();
1386         stack.pop_back();
1387         stack.back().ResolveValue(exe_ctx) =
1388             stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1389       }
1390       break;
1391 
1392     // OPCODE: DW_OP_div
1393     // OPERANDS: none
1394     // DESCRIPTION: pops the top two stack values, divides the former second
1395     // entry by the former top of the stack using signed division, and pushes
1396     // the result.
1397     case DW_OP_div:
1398       if (stack.size() < 2) {
1399         if (error_ptr)
1400           error_ptr->SetErrorString(
1401               "Expression stack needs at least 2 items for DW_OP_div.");
1402         return false;
1403       } else {
1404         tmp = stack.back();
1405         if (tmp.ResolveValue(exe_ctx).IsZero()) {
1406           if (error_ptr)
1407             error_ptr->SetErrorString("Divide by zero.");
1408           return false;
1409         } else {
1410           stack.pop_back();
1411           stack.back() =
1412               stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1413           if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1414             if (error_ptr)
1415               error_ptr->SetErrorString("Divide failed.");
1416             return false;
1417           }
1418         }
1419       }
1420       break;
1421 
1422     // OPCODE: DW_OP_minus
1423     // OPERANDS: none
1424     // DESCRIPTION: pops the top two stack values, subtracts the former top
1425     // of the stack from the former second entry, and pushes the result.
1426     case DW_OP_minus:
1427       if (stack.size() < 2) {
1428         if (error_ptr)
1429           error_ptr->SetErrorString(
1430               "Expression stack needs at least 2 items for DW_OP_minus.");
1431         return false;
1432       } else {
1433         tmp = stack.back();
1434         stack.pop_back();
1435         stack.back().ResolveValue(exe_ctx) =
1436             stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1437       }
1438       break;
1439 
1440     // OPCODE: DW_OP_mod
1441     // OPERANDS: none
1442     // DESCRIPTION: pops the top two stack values and pushes the result of
1443     // the calculation: former second stack entry modulo the former top of the
1444     // stack.
1445     case DW_OP_mod:
1446       if (stack.size() < 2) {
1447         if (error_ptr)
1448           error_ptr->SetErrorString(
1449               "Expression stack needs at least 2 items for DW_OP_mod.");
1450         return false;
1451       } else {
1452         tmp = stack.back();
1453         stack.pop_back();
1454         stack.back().ResolveValue(exe_ctx) =
1455             stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1456       }
1457       break;
1458 
1459     // OPCODE: DW_OP_mul
1460     // OPERANDS: none
1461     // DESCRIPTION: pops the top two stack entries, multiplies them
1462     // together, and pushes the result.
1463     case DW_OP_mul:
1464       if (stack.size() < 2) {
1465         if (error_ptr)
1466           error_ptr->SetErrorString(
1467               "Expression stack needs at least 2 items for DW_OP_mul.");
1468         return false;
1469       } else {
1470         tmp = stack.back();
1471         stack.pop_back();
1472         stack.back().ResolveValue(exe_ctx) =
1473             stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1474       }
1475       break;
1476 
1477     // OPCODE: DW_OP_neg
1478     // OPERANDS: none
1479     // DESCRIPTION: pops the top stack entry, and pushes its negation.
1480     case DW_OP_neg:
1481       if (stack.empty()) {
1482         if (error_ptr)
1483           error_ptr->SetErrorString(
1484               "Expression stack needs at least 1 item for DW_OP_neg.");
1485         return false;
1486       } else {
1487         if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1488           if (error_ptr)
1489             error_ptr->SetErrorString("Unary negate failed.");
1490           return false;
1491         }
1492       }
1493       break;
1494 
1495     // OPCODE: DW_OP_not
1496     // OPERANDS: none
1497     // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1498     // complement
1499     case DW_OP_not:
1500       if (stack.empty()) {
1501         if (error_ptr)
1502           error_ptr->SetErrorString(
1503               "Expression stack needs at least 1 item for DW_OP_not.");
1504         return false;
1505       } else {
1506         if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1507           if (error_ptr)
1508             error_ptr->SetErrorString("Logical NOT failed.");
1509           return false;
1510         }
1511       }
1512       break;
1513 
1514     // OPCODE: DW_OP_or
1515     // OPERANDS: none
1516     // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1517     // operation on the two, and pushes the result.
1518     case DW_OP_or:
1519       if (stack.size() < 2) {
1520         if (error_ptr)
1521           error_ptr->SetErrorString(
1522               "Expression stack needs at least 2 items for DW_OP_or.");
1523         return false;
1524       } else {
1525         tmp = stack.back();
1526         stack.pop_back();
1527         stack.back().ResolveValue(exe_ctx) =
1528             stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1529       }
1530       break;
1531 
1532     // OPCODE: DW_OP_plus
1533     // OPERANDS: none
1534     // DESCRIPTION: pops the top two stack entries, adds them together, and
1535     // pushes the result.
1536     case DW_OP_plus:
1537       if (stack.size() < 2) {
1538         if (error_ptr)
1539           error_ptr->SetErrorString(
1540               "Expression stack needs at least 2 items for DW_OP_plus.");
1541         return false;
1542       } else {
1543         tmp = stack.back();
1544         stack.pop_back();
1545         stack.back().GetScalar() += tmp.GetScalar();
1546       }
1547       break;
1548 
1549     // OPCODE: DW_OP_plus_uconst
1550     // OPERANDS: none
1551     // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1552     // constant operand and pushes the result.
1553     case DW_OP_plus_uconst:
1554       if (stack.empty()) {
1555         if (error_ptr)
1556           error_ptr->SetErrorString(
1557               "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1558         return false;
1559       } else {
1560         const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1561         // Implicit conversion from a UINT to a Scalar...
1562         stack.back().GetScalar() += uconst_value;
1563         if (!stack.back().GetScalar().IsValid()) {
1564           if (error_ptr)
1565             error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1566           return false;
1567         }
1568       }
1569       break;
1570 
1571     // OPCODE: DW_OP_shl
1572     // OPERANDS: none
1573     // DESCRIPTION:  pops the top two stack entries, shifts the former
1574     // second entry left by the number of bits specified by the former top of
1575     // the stack, and pushes the result.
1576     case DW_OP_shl:
1577       if (stack.size() < 2) {
1578         if (error_ptr)
1579           error_ptr->SetErrorString(
1580               "Expression stack needs at least 2 items for DW_OP_shl.");
1581         return false;
1582       } else {
1583         tmp = stack.back();
1584         stack.pop_back();
1585         stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1586       }
1587       break;
1588 
1589     // OPCODE: DW_OP_shr
1590     // OPERANDS: none
1591     // DESCRIPTION: pops the top two stack entries, shifts the former second
1592     // entry right logically (filling with zero bits) by the number of bits
1593     // specified by the former top of the stack, and pushes the result.
1594     case DW_OP_shr:
1595       if (stack.size() < 2) {
1596         if (error_ptr)
1597           error_ptr->SetErrorString(
1598               "Expression stack needs at least 2 items for DW_OP_shr.");
1599         return false;
1600       } else {
1601         tmp = stack.back();
1602         stack.pop_back();
1603         if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1604                 tmp.ResolveValue(exe_ctx))) {
1605           if (error_ptr)
1606             error_ptr->SetErrorString("DW_OP_shr failed.");
1607           return false;
1608         }
1609       }
1610       break;
1611 
1612     // OPCODE: DW_OP_shra
1613     // OPERANDS: none
1614     // DESCRIPTION: pops the top two stack entries, shifts the former second
1615     // entry right arithmetically (divide the magnitude by 2, keep the same
1616     // sign for the result) by the number of bits specified by the former top
1617     // of the stack, and pushes the result.
1618     case DW_OP_shra:
1619       if (stack.size() < 2) {
1620         if (error_ptr)
1621           error_ptr->SetErrorString(
1622               "Expression stack needs at least 2 items for DW_OP_shra.");
1623         return false;
1624       } else {
1625         tmp = stack.back();
1626         stack.pop_back();
1627         stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1628       }
1629       break;
1630 
1631     // OPCODE: DW_OP_xor
1632     // OPERANDS: none
1633     // DESCRIPTION: pops the top two stack entries, performs the bitwise
1634     // exclusive-or operation on the two, and pushes the result.
1635     case DW_OP_xor:
1636       if (stack.size() < 2) {
1637         if (error_ptr)
1638           error_ptr->SetErrorString(
1639               "Expression stack needs at least 2 items for DW_OP_xor.");
1640         return false;
1641       } else {
1642         tmp = stack.back();
1643         stack.pop_back();
1644         stack.back().ResolveValue(exe_ctx) =
1645             stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1646       }
1647       break;
1648 
1649     // OPCODE: DW_OP_skip
1650     // OPERANDS: int16_t
1651     // DESCRIPTION:  An unconditional branch. Its single operand is a 2-byte
1652     // signed integer constant. The 2-byte constant is the number of bytes of
1653     // the DWARF expression to skip forward or backward from the current
1654     // operation, beginning after the 2-byte constant.
1655     case DW_OP_skip: {
1656       int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1657       lldb::offset_t new_offset = offset + skip_offset;
1658       // New offset can point at the end of the data, in this case we should
1659       // terminate the DWARF expression evaluation (will happen in the loop
1660       // condition).
1661       if (new_offset <= opcodes.GetByteSize())
1662         offset = new_offset;
1663       else {
1664         if (error_ptr)
1665           error_ptr->SetErrorStringWithFormatv(
1666               "Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}", offset,
1667               skip_offset, opcodes.GetByteSize());
1668         return false;
1669       }
1670     } break;
1671 
1672     // OPCODE: DW_OP_bra
1673     // OPERANDS: int16_t
1674     // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1675     // signed integer constant. This operation pops the top of stack. If the
1676     // value popped is not the constant 0, the 2-byte constant operand is the
1677     // number of bytes of the DWARF expression to skip forward or backward from
1678     // the current operation, beginning after the 2-byte constant.
1679     case DW_OP_bra:
1680       if (stack.empty()) {
1681         if (error_ptr)
1682           error_ptr->SetErrorString(
1683               "Expression stack needs at least 1 item for DW_OP_bra.");
1684         return false;
1685       } else {
1686         tmp = stack.back();
1687         stack.pop_back();
1688         int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1689         Scalar zero(0);
1690         if (tmp.ResolveValue(exe_ctx) != zero) {
1691           lldb::offset_t new_offset = offset + bra_offset;
1692           // New offset can point at the end of the data, in this case we should
1693           // terminate the DWARF expression evaluation (will happen in the loop
1694           // condition).
1695           if (new_offset <= opcodes.GetByteSize())
1696             offset = new_offset;
1697           else {
1698             if (error_ptr)
1699               error_ptr->SetErrorStringWithFormatv(
1700                   "Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}", offset,
1701                   bra_offset, opcodes.GetByteSize());
1702             return false;
1703           }
1704         }
1705       }
1706       break;
1707 
1708     // OPCODE: DW_OP_eq
1709     // OPERANDS: none
1710     // DESCRIPTION: pops the top two stack values, compares using the
1711     // equals (==) operator.
1712     // STACK RESULT: push the constant value 1 onto the stack if the result
1713     // of the operation is true or the constant value 0 if the result of the
1714     // operation is false.
1715     case DW_OP_eq:
1716       if (stack.size() < 2) {
1717         if (error_ptr)
1718           error_ptr->SetErrorString(
1719               "Expression stack needs at least 2 items for DW_OP_eq.");
1720         return false;
1721       } else {
1722         tmp = stack.back();
1723         stack.pop_back();
1724         stack.back().ResolveValue(exe_ctx) =
1725             stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1726       }
1727       break;
1728 
1729     // OPCODE: DW_OP_ge
1730     // OPERANDS: none
1731     // DESCRIPTION: pops the top two stack values, compares using the
1732     // greater than or equal to (>=) operator.
1733     // STACK RESULT: push the constant value 1 onto the stack if the result
1734     // of the operation is true or the constant value 0 if the result of the
1735     // operation is false.
1736     case DW_OP_ge:
1737       if (stack.size() < 2) {
1738         if (error_ptr)
1739           error_ptr->SetErrorString(
1740               "Expression stack needs at least 2 items for DW_OP_ge.");
1741         return false;
1742       } else {
1743         tmp = stack.back();
1744         stack.pop_back();
1745         stack.back().ResolveValue(exe_ctx) =
1746             stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1747       }
1748       break;
1749 
1750     // OPCODE: DW_OP_gt
1751     // OPERANDS: none
1752     // DESCRIPTION: pops the top two stack values, compares using the
1753     // greater than (>) operator.
1754     // STACK RESULT: push the constant value 1 onto the stack if the result
1755     // of the operation is true or the constant value 0 if the result of the
1756     // operation is false.
1757     case DW_OP_gt:
1758       if (stack.size() < 2) {
1759         if (error_ptr)
1760           error_ptr->SetErrorString(
1761               "Expression stack needs at least 2 items for DW_OP_gt.");
1762         return false;
1763       } else {
1764         tmp = stack.back();
1765         stack.pop_back();
1766         stack.back().ResolveValue(exe_ctx) =
1767             stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1768       }
1769       break;
1770 
1771     // OPCODE: DW_OP_le
1772     // OPERANDS: none
1773     // DESCRIPTION: pops the top two stack values, compares using the
1774     // less than or equal to (<=) operator.
1775     // STACK RESULT: push the constant value 1 onto the stack if the result
1776     // of the operation is true or the constant value 0 if the result of the
1777     // operation is false.
1778     case DW_OP_le:
1779       if (stack.size() < 2) {
1780         if (error_ptr)
1781           error_ptr->SetErrorString(
1782               "Expression stack needs at least 2 items for DW_OP_le.");
1783         return false;
1784       } else {
1785         tmp = stack.back();
1786         stack.pop_back();
1787         stack.back().ResolveValue(exe_ctx) =
1788             stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1789       }
1790       break;
1791 
1792     // OPCODE: DW_OP_lt
1793     // OPERANDS: none
1794     // DESCRIPTION: pops the top two stack values, compares using the
1795     // less than (<) operator.
1796     // STACK RESULT: push the constant value 1 onto the stack if the result
1797     // of the operation is true or the constant value 0 if the result of the
1798     // operation is false.
1799     case DW_OP_lt:
1800       if (stack.size() < 2) {
1801         if (error_ptr)
1802           error_ptr->SetErrorString(
1803               "Expression stack needs at least 2 items for DW_OP_lt.");
1804         return false;
1805       } else {
1806         tmp = stack.back();
1807         stack.pop_back();
1808         stack.back().ResolveValue(exe_ctx) =
1809             stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1810       }
1811       break;
1812 
1813     // OPCODE: DW_OP_ne
1814     // OPERANDS: none
1815     // DESCRIPTION: pops the top two stack values, compares using the
1816     // not equal (!=) operator.
1817     // STACK RESULT: push the constant value 1 onto the stack if the result
1818     // of the operation is true or the constant value 0 if the result of the
1819     // operation is false.
1820     case DW_OP_ne:
1821       if (stack.size() < 2) {
1822         if (error_ptr)
1823           error_ptr->SetErrorString(
1824               "Expression stack needs at least 2 items for DW_OP_ne.");
1825         return false;
1826       } else {
1827         tmp = stack.back();
1828         stack.pop_back();
1829         stack.back().ResolveValue(exe_ctx) =
1830             stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1831       }
1832       break;
1833 
1834     // OPCODE: DW_OP_litn
1835     // OPERANDS: none
1836     // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1837     // STACK RESULT: push the unsigned literal constant value onto the top
1838     // of the stack.
1839     case DW_OP_lit0:
1840     case DW_OP_lit1:
1841     case DW_OP_lit2:
1842     case DW_OP_lit3:
1843     case DW_OP_lit4:
1844     case DW_OP_lit5:
1845     case DW_OP_lit6:
1846     case DW_OP_lit7:
1847     case DW_OP_lit8:
1848     case DW_OP_lit9:
1849     case DW_OP_lit10:
1850     case DW_OP_lit11:
1851     case DW_OP_lit12:
1852     case DW_OP_lit13:
1853     case DW_OP_lit14:
1854     case DW_OP_lit15:
1855     case DW_OP_lit16:
1856     case DW_OP_lit17:
1857     case DW_OP_lit18:
1858     case DW_OP_lit19:
1859     case DW_OP_lit20:
1860     case DW_OP_lit21:
1861     case DW_OP_lit22:
1862     case DW_OP_lit23:
1863     case DW_OP_lit24:
1864     case DW_OP_lit25:
1865     case DW_OP_lit26:
1866     case DW_OP_lit27:
1867     case DW_OP_lit28:
1868     case DW_OP_lit29:
1869     case DW_OP_lit30:
1870     case DW_OP_lit31:
1871       stack.push_back(to_generic(op - DW_OP_lit0));
1872       break;
1873 
1874     // OPCODE: DW_OP_regN
1875     // OPERANDS: none
1876     // DESCRIPTION: Push the value in register n on the top of the stack.
1877     case DW_OP_reg0:
1878     case DW_OP_reg1:
1879     case DW_OP_reg2:
1880     case DW_OP_reg3:
1881     case DW_OP_reg4:
1882     case DW_OP_reg5:
1883     case DW_OP_reg6:
1884     case DW_OP_reg7:
1885     case DW_OP_reg8:
1886     case DW_OP_reg9:
1887     case DW_OP_reg10:
1888     case DW_OP_reg11:
1889     case DW_OP_reg12:
1890     case DW_OP_reg13:
1891     case DW_OP_reg14:
1892     case DW_OP_reg15:
1893     case DW_OP_reg16:
1894     case DW_OP_reg17:
1895     case DW_OP_reg18:
1896     case DW_OP_reg19:
1897     case DW_OP_reg20:
1898     case DW_OP_reg21:
1899     case DW_OP_reg22:
1900     case DW_OP_reg23:
1901     case DW_OP_reg24:
1902     case DW_OP_reg25:
1903     case DW_OP_reg26:
1904     case DW_OP_reg27:
1905     case DW_OP_reg28:
1906     case DW_OP_reg29:
1907     case DW_OP_reg30:
1908     case DW_OP_reg31: {
1909       dwarf4_location_description_kind = Register;
1910       reg_num = op - DW_OP_reg0;
1911 
1912       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1913         stack.push_back(tmp);
1914       else
1915         return false;
1916     } break;
1917     // OPCODE: DW_OP_regx
1918     // OPERANDS:
1919     //      ULEB128 literal operand that encodes the register.
1920     // DESCRIPTION: Push the value in register on the top of the stack.
1921     case DW_OP_regx: {
1922       dwarf4_location_description_kind = Register;
1923       reg_num = opcodes.GetULEB128(&offset);
1924       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1925         stack.push_back(tmp);
1926       else
1927         return false;
1928     } break;
1929 
1930     // OPCODE: DW_OP_bregN
1931     // OPERANDS:
1932     //      SLEB128 offset from register N
1933     // DESCRIPTION: Value is in memory at the address specified by register
1934     // N plus an offset.
1935     case DW_OP_breg0:
1936     case DW_OP_breg1:
1937     case DW_OP_breg2:
1938     case DW_OP_breg3:
1939     case DW_OP_breg4:
1940     case DW_OP_breg5:
1941     case DW_OP_breg6:
1942     case DW_OP_breg7:
1943     case DW_OP_breg8:
1944     case DW_OP_breg9:
1945     case DW_OP_breg10:
1946     case DW_OP_breg11:
1947     case DW_OP_breg12:
1948     case DW_OP_breg13:
1949     case DW_OP_breg14:
1950     case DW_OP_breg15:
1951     case DW_OP_breg16:
1952     case DW_OP_breg17:
1953     case DW_OP_breg18:
1954     case DW_OP_breg19:
1955     case DW_OP_breg20:
1956     case DW_OP_breg21:
1957     case DW_OP_breg22:
1958     case DW_OP_breg23:
1959     case DW_OP_breg24:
1960     case DW_OP_breg25:
1961     case DW_OP_breg26:
1962     case DW_OP_breg27:
1963     case DW_OP_breg28:
1964     case DW_OP_breg29:
1965     case DW_OP_breg30:
1966     case DW_OP_breg31: {
1967       reg_num = op - DW_OP_breg0;
1968 
1969       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
1970                                     tmp)) {
1971         int64_t breg_offset = opcodes.GetSLEB128(&offset);
1972         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1973         tmp.ClearContext();
1974         stack.push_back(tmp);
1975         stack.back().SetValueType(Value::ValueType::LoadAddress);
1976       } else
1977         return false;
1978     } break;
1979     // OPCODE: DW_OP_bregx
1980     // OPERANDS: 2
1981     //      ULEB128 literal operand that encodes the register.
1982     //      SLEB128 offset from register N
1983     // DESCRIPTION: Value is in memory at the address specified by register
1984     // N plus an offset.
1985     case DW_OP_bregx: {
1986       reg_num = opcodes.GetULEB128(&offset);
1987 
1988       if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
1989                                     tmp)) {
1990         int64_t breg_offset = opcodes.GetSLEB128(&offset);
1991         tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1992         tmp.ClearContext();
1993         stack.push_back(tmp);
1994         stack.back().SetValueType(Value::ValueType::LoadAddress);
1995       } else
1996         return false;
1997     } break;
1998 
1999     case DW_OP_fbreg:
2000       if (exe_ctx) {
2001         if (frame) {
2002           Scalar value;
2003           if (frame->GetFrameBaseValue(value, error_ptr)) {
2004             int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2005             value += fbreg_offset;
2006             stack.push_back(value);
2007             stack.back().SetValueType(Value::ValueType::LoadAddress);
2008           } else
2009             return false;
2010         } else {
2011           if (error_ptr)
2012             error_ptr->SetErrorString(
2013                 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2014           return false;
2015         }
2016       } else {
2017         if (error_ptr)
2018           error_ptr->SetErrorString(
2019               "NULL execution context for DW_OP_fbreg.\n");
2020         return false;
2021       }
2022 
2023       break;
2024 
2025     // OPCODE: DW_OP_nop
2026     // OPERANDS: none
2027     // DESCRIPTION: A place holder. It has no effect on the location stack
2028     // or any of its values.
2029     case DW_OP_nop:
2030       break;
2031 
2032     // OPCODE: DW_OP_piece
2033     // OPERANDS: 1
2034     //      ULEB128: byte size of the piece
2035     // DESCRIPTION: The operand describes the size in bytes of the piece of
2036     // the object referenced by the DWARF expression whose result is at the top
2037     // of the stack. If the piece is located in a register, but does not occupy
2038     // the entire register, the placement of the piece within that register is
2039     // defined by the ABI.
2040     //
2041     // Many compilers store a single variable in sets of registers, or store a
2042     // variable partially in memory and partially in registers. DW_OP_piece
2043     // provides a way of describing how large a part of a variable a particular
2044     // DWARF expression refers to.
2045     case DW_OP_piece: {
2046       LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2047       // Reset for the next piece.
2048       dwarf4_location_description_kind = Memory;
2049 
2050       const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2051 
2052       if (piece_byte_size > 0) {
2053         Value curr_piece;
2054 
2055         if (stack.empty()) {
2056           UpdateValueTypeFromLocationDescription(
2057               log, dwarf_cu, LocationDescriptionKind::Empty);
2058           // In a multi-piece expression, this means that the current piece is
2059           // not available. Fill with zeros for now by resizing the data and
2060           // appending it
2061           curr_piece.ResizeData(piece_byte_size);
2062           // Note that "0" is not a correct value for the unknown bits.
2063           // It would be better to also return a mask of valid bits together
2064           // with the expression result, so the debugger can print missing
2065           // members as "<optimized out>" or something.
2066           ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2067           pieces.AppendDataToHostBuffer(curr_piece);
2068         } else {
2069           Status error;
2070           // Extract the current piece into "curr_piece"
2071           Value curr_piece_source_value(stack.back());
2072           stack.pop_back();
2073           UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2074                                                  &curr_piece_source_value);
2075 
2076           const Value::ValueType curr_piece_source_value_type =
2077               curr_piece_source_value.GetValueType();
2078           switch (curr_piece_source_value_type) {
2079           case Value::ValueType::Invalid:
2080             return false;
2081           case Value::ValueType::LoadAddress:
2082             if (process) {
2083               if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2084                 lldb::addr_t load_addr =
2085                     curr_piece_source_value.GetScalar().ULongLong(
2086                         LLDB_INVALID_ADDRESS);
2087                 if (process->ReadMemory(
2088                         load_addr, curr_piece.GetBuffer().GetBytes(),
2089                         piece_byte_size, error) != piece_byte_size) {
2090                   if (error_ptr)
2091                     error_ptr->SetErrorStringWithFormat(
2092                         "failed to read memory DW_OP_piece(%" PRIu64
2093                         ") from 0x%" PRIx64,
2094                         piece_byte_size, load_addr);
2095                   return false;
2096                 }
2097               } else {
2098                 if (error_ptr)
2099                   error_ptr->SetErrorStringWithFormat(
2100                       "failed to resize the piece memory buffer for "
2101                       "DW_OP_piece(%" PRIu64 ")",
2102                       piece_byte_size);
2103                 return false;
2104               }
2105             }
2106             break;
2107 
2108           case Value::ValueType::FileAddress:
2109           case Value::ValueType::HostAddress:
2110             if (error_ptr) {
2111               lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2112                   LLDB_INVALID_ADDRESS);
2113               error_ptr->SetErrorStringWithFormat(
2114                   "failed to read memory DW_OP_piece(%" PRIu64
2115                   ") from %s address 0x%" PRIx64,
2116                   piece_byte_size, curr_piece_source_value.GetValueType() ==
2117                                            Value::ValueType::FileAddress
2118                                        ? "file"
2119                                        : "host",
2120                   addr);
2121             }
2122             return false;
2123 
2124           case Value::ValueType::Scalar: {
2125             uint32_t bit_size = piece_byte_size * 8;
2126             uint32_t bit_offset = 0;
2127             Scalar &scalar = curr_piece_source_value.GetScalar();
2128             if (!scalar.ExtractBitfield(
2129                     bit_size, bit_offset)) {
2130               if (error_ptr)
2131                 error_ptr->SetErrorStringWithFormat(
2132                     "unable to extract %" PRIu64 " bytes from a %" PRIu64
2133                     " byte scalar value.",
2134                     piece_byte_size,
2135                     (uint64_t)curr_piece_source_value.GetScalar()
2136                         .GetByteSize());
2137               return false;
2138             }
2139             // Create curr_piece with bit_size. By default Scalar
2140             // grows to the nearest host integer type.
2141             llvm::APInt fail_value(1, 0, false);
2142             llvm::APInt ap_int = scalar.UInt128(fail_value);
2143             assert(ap_int.getBitWidth() >= bit_size);
2144             llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2145                                          ap_int.getNumWords()};
2146             curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2147           } break;
2148           }
2149 
2150           // Check if this is the first piece?
2151           if (op_piece_offset == 0) {
2152             // This is the first piece, we should push it back onto the stack
2153             // so subsequent pieces will be able to access this piece and add
2154             // to it.
2155             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2156               if (error_ptr)
2157                 error_ptr->SetErrorString("failed to append piece data");
2158               return false;
2159             }
2160           } else {
2161             // If this is the second or later piece there should be a value on
2162             // the stack.
2163             if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2164               if (error_ptr)
2165                 error_ptr->SetErrorStringWithFormat(
2166                     "DW_OP_piece for offset %" PRIu64
2167                     " but top of stack is of size %" PRIu64,
2168                     op_piece_offset, pieces.GetBuffer().GetByteSize());
2169               return false;
2170             }
2171 
2172             if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2173               if (error_ptr)
2174                 error_ptr->SetErrorString("failed to append piece data");
2175               return false;
2176             }
2177           }
2178         }
2179         op_piece_offset += piece_byte_size;
2180       }
2181     } break;
2182 
2183     case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2184       if (stack.size() < 1) {
2185         UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2186                                                LocationDescriptionKind::Empty);
2187         // Reset for the next piece.
2188         dwarf4_location_description_kind = Memory;
2189         if (error_ptr)
2190           error_ptr->SetErrorString(
2191               "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2192         return false;
2193       } else {
2194         UpdateValueTypeFromLocationDescription(
2195             log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2196         // Reset for the next piece.
2197         dwarf4_location_description_kind = Memory;
2198         const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2199         const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2200         switch (stack.back().GetValueType()) {
2201         case Value::ValueType::Invalid:
2202           return false;
2203         case Value::ValueType::Scalar: {
2204           if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2205                                                         piece_bit_offset)) {
2206             if (error_ptr)
2207               error_ptr->SetErrorStringWithFormat(
2208                   "unable to extract %" PRIu64 " bit value with %" PRIu64
2209                   " bit offset from a %" PRIu64 " bit scalar value.",
2210                   piece_bit_size, piece_bit_offset,
2211                   (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2212             return false;
2213           }
2214         } break;
2215 
2216         case Value::ValueType::FileAddress:
2217         case Value::ValueType::LoadAddress:
2218         case Value::ValueType::HostAddress:
2219           if (error_ptr) {
2220             error_ptr->SetErrorStringWithFormat(
2221                 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2222                 ", bit_offset = %" PRIu64 ") from an address value.",
2223                 piece_bit_size, piece_bit_offset);
2224           }
2225           return false;
2226         }
2227       }
2228       break;
2229 
2230     // OPCODE: DW_OP_implicit_value
2231     // OPERANDS: 2
2232     //      ULEB128  size of the value block in bytes
2233     //      uint8_t* block bytes encoding value in target's memory
2234     //      representation
2235     // DESCRIPTION: Value is immediately stored in block in the debug info with
2236     // the memory representation of the target.
2237     case DW_OP_implicit_value: {
2238       dwarf4_location_description_kind = Implicit;
2239 
2240       const uint32_t len = opcodes.GetULEB128(&offset);
2241       const void *data = opcodes.GetData(&offset, len);
2242 
2243       if (!data) {
2244         LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2245         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2246                     DW_OP_value_to_name(op));
2247         return false;
2248       }
2249 
2250       Value result(data, len);
2251       stack.push_back(result);
2252       break;
2253     }
2254 
2255     case DW_OP_implicit_pointer: {
2256       dwarf4_location_description_kind = Implicit;
2257       LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2258       return false;
2259     }
2260 
2261     // OPCODE: DW_OP_push_object_address
2262     // OPERANDS: none
2263     // DESCRIPTION: Pushes the address of the object currently being
2264     // evaluated as part of evaluation of a user presented expression. This
2265     // object may correspond to an independent variable described by its own
2266     // DIE or it may be a component of an array, structure, or class whose
2267     // address has been dynamically determined by an earlier step during user
2268     // expression evaluation.
2269     case DW_OP_push_object_address:
2270       if (object_address_ptr)
2271         stack.push_back(*object_address_ptr);
2272       else {
2273         if (error_ptr)
2274           error_ptr->SetErrorString("DW_OP_push_object_address used without "
2275                                     "specifying an object address");
2276         return false;
2277       }
2278       break;
2279 
2280     // OPCODE: DW_OP_call2
2281     // OPERANDS:
2282     //      uint16_t compile unit relative offset of a DIE
2283     // DESCRIPTION: Performs subroutine calls during evaluation
2284     // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2285     // debugging information entry in the current compilation unit.
2286     //
2287     // Operand interpretation is exactly like that for DW_FORM_ref2.
2288     //
2289     // This operation transfers control of DWARF expression evaluation to the
2290     // DW_AT_location attribute of the referenced DIE. If there is no such
2291     // attribute, then there is no effect. Execution of the DWARF expression of
2292     // a DW_AT_location attribute may add to and/or remove from values on the
2293     // stack. Execution returns to the point following the call when the end of
2294     // the attribute is reached. Values on the stack at the time of the call
2295     // may be used as parameters by the called expression and values left on
2296     // the stack by the called expression may be used as return values by prior
2297     // agreement between the calling and called expressions.
2298     case DW_OP_call2:
2299       if (error_ptr)
2300         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2301       return false;
2302     // OPCODE: DW_OP_call4
2303     // OPERANDS: 1
2304     //      uint32_t compile unit relative offset of a DIE
2305     // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2306     // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2307     // a debugging information entry in  the current compilation unit.
2308     //
2309     // Operand interpretation DW_OP_call4 is exactly like that for
2310     // DW_FORM_ref4.
2311     //
2312     // This operation transfers control of DWARF expression evaluation to the
2313     // DW_AT_location attribute of the referenced DIE. If there is no such
2314     // attribute, then there is no effect. Execution of the DWARF expression of
2315     // a DW_AT_location attribute may add to and/or remove from values on the
2316     // stack. Execution returns to the point following the call when the end of
2317     // the attribute is reached. Values on the stack at the time of the call
2318     // may be used as parameters by the called expression and values left on
2319     // the stack by the called expression may be used as return values by prior
2320     // agreement between the calling and called expressions.
2321     case DW_OP_call4:
2322       if (error_ptr)
2323         error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2324       return false;
2325 
2326     // OPCODE: DW_OP_stack_value
2327     // OPERANDS: None
2328     // DESCRIPTION: Specifies that the object does not exist in memory but
2329     // rather is a constant value.  The value from the top of the stack is the
2330     // value to be used.  This is the actual object value and not the location.
2331     case DW_OP_stack_value:
2332       dwarf4_location_description_kind = Implicit;
2333       if (stack.empty()) {
2334         if (error_ptr)
2335           error_ptr->SetErrorString(
2336               "Expression stack needs at least 1 item for DW_OP_stack_value.");
2337         return false;
2338       }
2339       stack.back().SetValueType(Value::ValueType::Scalar);
2340       break;
2341 
2342     // OPCODE: DW_OP_convert
2343     // OPERANDS: 1
2344     //      A ULEB128 that is either a DIE offset of a
2345     //      DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2346     //
2347     // DESCRIPTION: Pop the top stack element, convert it to a
2348     // different type, and push the result.
2349     case DW_OP_convert: {
2350       if (stack.size() < 1) {
2351         if (error_ptr)
2352           error_ptr->SetErrorString(
2353               "Expression stack needs at least 1 item for DW_OP_convert.");
2354         return false;
2355       }
2356       const uint64_t die_offset = opcodes.GetULEB128(&offset);
2357       uint64_t bit_size;
2358       bool sign;
2359       if (die_offset == 0) {
2360         // The generic type has the size of an address on the target
2361         // machine and an unspecified signedness. Scalar has no
2362         // "unspecified signedness", so we use unsigned types.
2363         if (!module_sp) {
2364           if (error_ptr)
2365             error_ptr->SetErrorString("No module");
2366           return false;
2367         }
2368         sign = false;
2369         bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2370         if (!bit_size) {
2371           if (error_ptr)
2372             error_ptr->SetErrorString("unspecified architecture");
2373           return false;
2374         }
2375       } else {
2376         // Retrieve the type DIE that the value is being converted to.
2377         // FIXME: the constness has annoying ripple effects.
2378         DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(die_offset);
2379         if (!die) {
2380           if (error_ptr)
2381             error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2382           return false;
2383         }
2384         uint64_t encoding =
2385             die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2386         bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2387         if (!bit_size)
2388           bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2389         if (!bit_size) {
2390           if (error_ptr)
2391             error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2392           return false;
2393         }
2394         switch (encoding) {
2395         case DW_ATE_signed:
2396         case DW_ATE_signed_char:
2397           sign = true;
2398           break;
2399         case DW_ATE_unsigned:
2400         case DW_ATE_unsigned_char:
2401           sign = false;
2402           break;
2403         default:
2404           if (error_ptr)
2405             error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2406           return false;
2407         }
2408       }
2409       Scalar &top = stack.back().ResolveValue(exe_ctx);
2410       top.TruncOrExtendTo(bit_size, sign);
2411       break;
2412     }
2413 
2414     // OPCODE: DW_OP_call_frame_cfa
2415     // OPERANDS: None
2416     // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2417     // the canonical frame address consistent with the call frame information
2418     // located in .debug_frame (or in the FDEs of the eh_frame section).
2419     case DW_OP_call_frame_cfa:
2420       if (frame) {
2421         // Note that we don't have to parse FDEs because this DWARF expression
2422         // is commonly evaluated with a valid stack frame.
2423         StackID id = frame->GetStackID();
2424         addr_t cfa = id.GetCallFrameAddress();
2425         if (cfa != LLDB_INVALID_ADDRESS) {
2426           stack.push_back(Scalar(cfa));
2427           stack.back().SetValueType(Value::ValueType::LoadAddress);
2428         } else if (error_ptr)
2429           error_ptr->SetErrorString("Stack frame does not include a canonical "
2430                                     "frame address for DW_OP_call_frame_cfa "
2431                                     "opcode.");
2432       } else {
2433         if (error_ptr)
2434           error_ptr->SetErrorString("Invalid stack frame in context for "
2435                                     "DW_OP_call_frame_cfa opcode.");
2436         return false;
2437       }
2438       break;
2439 
2440     // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2441     // opcode, DW_OP_GNU_push_tls_address)
2442     // OPERANDS: none
2443     // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2444     // an address in the current thread's thread-local storage block, and
2445     // pushes it on the stack.
2446     case DW_OP_form_tls_address:
2447     case DW_OP_GNU_push_tls_address: {
2448       if (stack.size() < 1) {
2449         if (error_ptr) {
2450           if (op == DW_OP_form_tls_address)
2451             error_ptr->SetErrorString(
2452                 "DW_OP_form_tls_address needs an argument.");
2453           else
2454             error_ptr->SetErrorString(
2455                 "DW_OP_GNU_push_tls_address needs an argument.");
2456         }
2457         return false;
2458       }
2459 
2460       if (!exe_ctx || !module_sp) {
2461         if (error_ptr)
2462           error_ptr->SetErrorString("No context to evaluate TLS within.");
2463         return false;
2464       }
2465 
2466       Thread *thread = exe_ctx->GetThreadPtr();
2467       if (!thread) {
2468         if (error_ptr)
2469           error_ptr->SetErrorString("No thread to evaluate TLS within.");
2470         return false;
2471       }
2472 
2473       // Lookup the TLS block address for this thread and module.
2474       const addr_t tls_file_addr =
2475           stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2476       const addr_t tls_load_addr =
2477           thread->GetThreadLocalData(module_sp, tls_file_addr);
2478 
2479       if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2480         if (error_ptr)
2481           error_ptr->SetErrorString(
2482               "No TLS data currently exists for this thread.");
2483         return false;
2484       }
2485 
2486       stack.back().GetScalar() = tls_load_addr;
2487       stack.back().SetValueType(Value::ValueType::LoadAddress);
2488     } break;
2489 
2490     // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2491     // OPERANDS: 1
2492     //      ULEB128: index to the .debug_addr section
2493     // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2494     // section with the base address specified by the DW_AT_addr_base attribute
2495     // and the 0 based index is the ULEB128 encoded index.
2496     case DW_OP_addrx:
2497     case DW_OP_GNU_addr_index: {
2498       if (!dwarf_cu) {
2499         if (error_ptr)
2500           error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2501                                     "compile unit being specified");
2502         return false;
2503       }
2504       uint64_t index = opcodes.GetULEB128(&offset);
2505       lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2506       stack.push_back(Scalar(value));
2507       stack.back().SetValueType(Value::ValueType::FileAddress);
2508     } break;
2509 
2510     // OPCODE: DW_OP_GNU_const_index
2511     // OPERANDS: 1
2512     //      ULEB128: index to the .debug_addr section
2513     // DESCRIPTION: Pushes an constant with the size of a machine address to
2514     // the stack from the .debug_addr section with the base address specified
2515     // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2516     // encoded index.
2517     case DW_OP_GNU_const_index: {
2518       if (!dwarf_cu) {
2519         if (error_ptr)
2520           error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2521                                     "compile unit being specified");
2522         return false;
2523       }
2524       uint64_t index = opcodes.GetULEB128(&offset);
2525       lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2526       stack.push_back(Scalar(value));
2527     } break;
2528 
2529     case DW_OP_GNU_entry_value:
2530     case DW_OP_entry_value: {
2531       if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2532                                       error_ptr, log)) {
2533         LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2534                     DW_OP_value_to_name(op));
2535         return false;
2536       }
2537       break;
2538     }
2539 
2540     default:
2541       if (error_ptr)
2542         error_ptr->SetErrorStringWithFormatv(
2543             "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2544       return false;
2545     }
2546   }
2547 
2548   if (stack.empty()) {
2549     // Nothing on the stack, check if we created a piece value from DW_OP_piece
2550     // or DW_OP_bit_piece opcodes
2551     if (pieces.GetBuffer().GetByteSize()) {
2552       result = pieces;
2553       return true;
2554     }
2555     if (error_ptr)
2556       error_ptr->SetErrorString("Stack empty after evaluation.");
2557     return false;
2558   }
2559 
2560   UpdateValueTypeFromLocationDescription(
2561       log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2562 
2563   if (log && log->GetVerbose()) {
2564     size_t count = stack.size();
2565     LLDB_LOGF(log,
2566               "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2567     for (size_t i = 0; i < count; ++i) {
2568       StreamString new_value;
2569       new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2570       stack[i].Dump(&new_value);
2571       LLDB_LOGF(log, "  %s", new_value.GetData());
2572     }
2573   }
2574   result = stack.back();
2575   return true; // Return true on success
2576 }
2577 
2578 bool DWARFExpression::ParseDWARFLocationList(
2579     const DWARFUnit *dwarf_cu, const DataExtractor &data,
2580     DWARFExpressionList *location_list) {
2581   location_list->Clear();
2582   std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2583       dwarf_cu->GetLocationTable(data);
2584   Log *log = GetLog(LLDBLog::Expressions);
2585   auto lookup_addr =
2586       [&](uint32_t index) -> llvm::Optional<llvm::object::SectionedAddress> {
2587     addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2588     if (address == LLDB_INVALID_ADDRESS)
2589       return llvm::None;
2590     return llvm::object::SectionedAddress{address};
2591   };
2592   auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2593     if (!loc) {
2594       LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2595       return true;
2596     }
2597     auto buffer_sp =
2598         std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2599     DWARFExpression expr = DWARFExpression(DataExtractor(
2600         buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2601     location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2602     return true;
2603   };
2604   llvm::Error error = loctable_up->visitAbsoluteLocationList(
2605       0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2606       lookup_addr, process_list);
2607   location_list->Sort();
2608   if (error) {
2609     LLDB_LOG_ERROR(log, std::move(error), "{0}");
2610     return false;
2611   }
2612   return true;
2613 }
2614 
2615 bool DWARFExpression::MatchesOperand(
2616     StackFrame &frame, const Instruction::Operand &operand) const {
2617   using namespace OperandMatchers;
2618 
2619   RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2620   if (!reg_ctx_sp) {
2621     return false;
2622   }
2623 
2624   DataExtractor opcodes(m_data);
2625 
2626   lldb::offset_t op_offset = 0;
2627   uint8_t opcode = opcodes.GetU8(&op_offset);
2628 
2629   if (opcode == DW_OP_fbreg) {
2630     int64_t offset = opcodes.GetSLEB128(&op_offset);
2631 
2632     DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2633     if (!fb_expr) {
2634       return false;
2635     }
2636 
2637     auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2638       return fb_expr->MatchesOperand(frame, child);
2639     };
2640 
2641     if (!offset &&
2642         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2643                      recurse)(operand)) {
2644       return true;
2645     }
2646 
2647     return MatchUnaryOp(
2648         MatchOpType(Instruction::Operand::Type::Dereference),
2649         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2650                       MatchImmOp(offset), recurse))(operand);
2651   }
2652 
2653   bool dereference = false;
2654   const RegisterInfo *reg = nullptr;
2655   int64_t offset = 0;
2656 
2657   if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2658     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2659   } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2660     offset = opcodes.GetSLEB128(&op_offset);
2661     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2662   } else if (opcode == DW_OP_regx) {
2663     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2664     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2665   } else if (opcode == DW_OP_bregx) {
2666     uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2667     offset = opcodes.GetSLEB128(&op_offset);
2668     reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2669   } else {
2670     return false;
2671   }
2672 
2673   if (!reg) {
2674     return false;
2675   }
2676 
2677   if (dereference) {
2678     if (!offset &&
2679         MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2680                      MatchRegOp(*reg))(operand)) {
2681       return true;
2682     }
2683 
2684     return MatchUnaryOp(
2685         MatchOpType(Instruction::Operand::Type::Dereference),
2686         MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2687                       MatchRegOp(*reg),
2688                       MatchImmOp(offset)))(operand);
2689   } else {
2690     return MatchRegOp(*reg)(operand);
2691   }
2692 }
2693