1 //===-- ABISysV_ppc.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ABISysV_ppc.h"
10 
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Triple.h"
13 
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/PluginManager.h"
16 #include "lldb/Core/Value.h"
17 #include "lldb/Core/ValueObjectConstResult.h"
18 #include "lldb/Core/ValueObjectMemory.h"
19 #include "lldb/Core/ValueObjectRegister.h"
20 #include "lldb/Symbol/UnwindPlan.h"
21 #include "lldb/Target/Process.h"
22 #include "lldb/Target/RegisterContext.h"
23 #include "lldb/Target/StackFrame.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Target/Thread.h"
26 #include "lldb/Utility/ConstString.h"
27 #include "lldb/Utility/DataExtractor.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/RegisterValue.h"
30 #include "lldb/Utility/Status.h"
31 
32 using namespace lldb;
33 using namespace lldb_private;
34 
35 LLDB_PLUGIN_DEFINE(ABISysV_ppc)
36 
37 enum dwarf_regnums {
38   dwarf_r0 = 0,
39   dwarf_r1,
40   dwarf_r2,
41   dwarf_r3,
42   dwarf_r4,
43   dwarf_r5,
44   dwarf_r6,
45   dwarf_r7,
46   dwarf_r8,
47   dwarf_r9,
48   dwarf_r10,
49   dwarf_r11,
50   dwarf_r12,
51   dwarf_r13,
52   dwarf_r14,
53   dwarf_r15,
54   dwarf_r16,
55   dwarf_r17,
56   dwarf_r18,
57   dwarf_r19,
58   dwarf_r20,
59   dwarf_r21,
60   dwarf_r22,
61   dwarf_r23,
62   dwarf_r24,
63   dwarf_r25,
64   dwarf_r26,
65   dwarf_r27,
66   dwarf_r28,
67   dwarf_r29,
68   dwarf_r30,
69   dwarf_r31,
70   dwarf_f0,
71   dwarf_f1,
72   dwarf_f2,
73   dwarf_f3,
74   dwarf_f4,
75   dwarf_f5,
76   dwarf_f6,
77   dwarf_f7,
78   dwarf_f8,
79   dwarf_f9,
80   dwarf_f10,
81   dwarf_f11,
82   dwarf_f12,
83   dwarf_f13,
84   dwarf_f14,
85   dwarf_f15,
86   dwarf_f16,
87   dwarf_f17,
88   dwarf_f18,
89   dwarf_f19,
90   dwarf_f20,
91   dwarf_f21,
92   dwarf_f22,
93   dwarf_f23,
94   dwarf_f24,
95   dwarf_f25,
96   dwarf_f26,
97   dwarf_f27,
98   dwarf_f28,
99   dwarf_f29,
100   dwarf_f30,
101   dwarf_f31,
102   dwarf_cr,
103   dwarf_fpscr,
104   dwarf_xer = 101,
105   dwarf_lr = 108,
106   dwarf_ctr,
107   dwarf_pc,
108   dwarf_cfa,
109 };
110 
111 // Note that the size and offset will be updated by platform-specific classes.
112 #define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4)                       \
113   {                                                                            \
114     #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
115                                                  nullptr, nullptr, nullptr, 0  \
116   }
117 
118 static const RegisterInfo g_register_infos[] = {
119     // General purpose registers.             eh_frame,                 DWARF,
120     // Generic,    Process Plugin
121     DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
122                LLDB_INVALID_REGNUM),
123     DEFINE_GPR(r1, "sp", dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
124                LLDB_INVALID_REGNUM),
125     DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
126                LLDB_INVALID_REGNUM),
127     DEFINE_GPR(r3, "arg1", dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
128                LLDB_INVALID_REGNUM),
129     DEFINE_GPR(r4, "arg2", dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
130                LLDB_INVALID_REGNUM),
131     DEFINE_GPR(r5, "arg3", dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
132                LLDB_INVALID_REGNUM),
133     DEFINE_GPR(r6, "arg4", dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
134                LLDB_INVALID_REGNUM),
135     DEFINE_GPR(r7, "arg5", dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
136                LLDB_INVALID_REGNUM),
137     DEFINE_GPR(r8, "arg6", dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
138                LLDB_INVALID_REGNUM),
139     DEFINE_GPR(r9, "arg7", dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
140                LLDB_INVALID_REGNUM),
141     DEFINE_GPR(r10, "arg8", dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
142                LLDB_INVALID_REGNUM),
143     DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
144                LLDB_INVALID_REGNUM),
145     DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
146                LLDB_INVALID_REGNUM),
147     DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
148                LLDB_INVALID_REGNUM),
149     DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
150                LLDB_INVALID_REGNUM),
151     DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
152                LLDB_INVALID_REGNUM),
153     DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
154                LLDB_INVALID_REGNUM),
155     DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
156                LLDB_INVALID_REGNUM),
157     DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
158                LLDB_INVALID_REGNUM),
159     DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
160                LLDB_INVALID_REGNUM),
161     DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
162                LLDB_INVALID_REGNUM),
163     DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
164                LLDB_INVALID_REGNUM),
165     DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
166                LLDB_INVALID_REGNUM),
167     DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
168                LLDB_INVALID_REGNUM),
169     DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
170                LLDB_INVALID_REGNUM),
171     DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
172                LLDB_INVALID_REGNUM),
173     DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
174                LLDB_INVALID_REGNUM),
175     DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
176                LLDB_INVALID_REGNUM),
177     DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
178                LLDB_INVALID_REGNUM),
179     DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
180                LLDB_INVALID_REGNUM),
181     DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
182                LLDB_INVALID_REGNUM),
183     DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
184                LLDB_INVALID_REGNUM),
185     DEFINE_GPR(lr, "lr", dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
186                LLDB_INVALID_REGNUM),
187     DEFINE_GPR(cr, "cr", dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
188                LLDB_INVALID_REGNUM),
189     DEFINE_GPR(xer, "xer", dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
190                LLDB_INVALID_REGNUM),
191     DEFINE_GPR(ctr, "ctr", dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
192                LLDB_INVALID_REGNUM),
193     DEFINE_GPR(pc, "pc", dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
194                LLDB_INVALID_REGNUM),
195     {nullptr,
196      nullptr,
197      8,
198      0,
199      eEncodingUint,
200      eFormatHex,
201      {dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
202      nullptr,
203      nullptr,
204      nullptr,
205      0}};
206 
207 static const uint32_t k_num_register_infos =
208     llvm::array_lengthof(g_register_infos);
209 
210 const lldb_private::RegisterInfo *
211 ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
212   count = k_num_register_infos;
213   return g_register_infos;
214 }
215 
216 size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
217 
218 // Static Functions
219 
220 ABISP
221 ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
222   if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
223     return ABISP(
224         new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch)));
225   }
226   return ABISP();
227 }
228 
229 bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
230                                      addr_t func_addr, addr_t return_addr,
231                                      llvm::ArrayRef<addr_t> args) const {
232   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
233 
234   if (log) {
235     StreamString s;
236     s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
237              ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
238              ", return_addr = 0x%" PRIx64,
239              thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
240              (uint64_t)return_addr);
241 
242     for (size_t i = 0; i < args.size(); ++i)
243       s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
244                args[i]);
245     s.PutCString(")");
246     log->PutString(s.GetString());
247   }
248 
249   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
250   if (!reg_ctx)
251     return false;
252 
253   const RegisterInfo *reg_info = nullptr;
254 
255   if (args.size() > 8) // TODO handle more than 8 arguments
256     return false;
257 
258   for (size_t i = 0; i < args.size(); ++i) {
259     reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
260                                         LLDB_REGNUM_GENERIC_ARG1 + i);
261     LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
262               static_cast<uint64_t>(i + 1), args[i], reg_info->name);
263     if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
264       return false;
265   }
266 
267   // First, align the SP
268 
269   LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
270             (uint64_t)sp, (uint64_t)(sp & ~0xfull));
271 
272   sp &= ~(0xfull); // 16-byte alignment
273 
274   sp -= 8;
275 
276   Status error;
277   const RegisterInfo *pc_reg_info =
278       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
279   const RegisterInfo *sp_reg_info =
280       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
281   ProcessSP process_sp(thread.GetProcess());
282 
283   RegisterValue reg_value;
284 
285   LLDB_LOGF(log,
286             "Pushing the return address onto the stack: 0x%" PRIx64
287             ": 0x%" PRIx64,
288             (uint64_t)sp, (uint64_t)return_addr);
289 
290   // Save return address onto the stack
291   if (!process_sp->WritePointerToMemory(sp, return_addr, error))
292     return false;
293 
294   // %r1 is set to the actual stack value.
295 
296   LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
297 
298   if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
299     return false;
300 
301   // %pc is set to the address of the called function.
302 
303   LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
304 
305   if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
306     return false;
307 
308   return true;
309 }
310 
311 static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
312                                 bool is_signed, Thread &thread,
313                                 uint32_t *argument_register_ids,
314                                 unsigned int &current_argument_register,
315                                 addr_t &current_stack_argument) {
316   if (bit_width > 64)
317     return false; // Scalar can't hold large integer arguments
318 
319   if (current_argument_register < 6) {
320     scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
321         argument_register_ids[current_argument_register], 0);
322     current_argument_register++;
323     if (is_signed)
324       scalar.SignExtend(bit_width);
325   } else {
326     uint32_t byte_size = (bit_width + (8 - 1)) / 8;
327     Status error;
328     if (thread.GetProcess()->ReadScalarIntegerFromMemory(
329             current_stack_argument, byte_size, is_signed, scalar, error)) {
330       current_stack_argument += byte_size;
331       return true;
332     }
333     return false;
334   }
335   return true;
336 }
337 
338 bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
339   unsigned int num_values = values.GetSize();
340   unsigned int value_index;
341 
342   // Extract the register context so we can read arguments from registers
343 
344   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
345 
346   if (!reg_ctx)
347     return false;
348 
349   // Get the pointer to the first stack argument so we have a place to start
350   // when reading data
351 
352   addr_t sp = reg_ctx->GetSP(0);
353 
354   if (!sp)
355     return false;
356 
357   addr_t current_stack_argument = sp + 48; // jump over return address
358 
359   uint32_t argument_register_ids[8];
360 
361   argument_register_ids[0] =
362       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
363           ->kinds[eRegisterKindLLDB];
364   argument_register_ids[1] =
365       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
366           ->kinds[eRegisterKindLLDB];
367   argument_register_ids[2] =
368       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
369           ->kinds[eRegisterKindLLDB];
370   argument_register_ids[3] =
371       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
372           ->kinds[eRegisterKindLLDB];
373   argument_register_ids[4] =
374       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
375           ->kinds[eRegisterKindLLDB];
376   argument_register_ids[5] =
377       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
378           ->kinds[eRegisterKindLLDB];
379   argument_register_ids[6] =
380       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
381           ->kinds[eRegisterKindLLDB];
382   argument_register_ids[7] =
383       reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
384           ->kinds[eRegisterKindLLDB];
385 
386   unsigned int current_argument_register = 0;
387 
388   for (value_index = 0; value_index < num_values; ++value_index) {
389     Value *value = values.GetValueAtIndex(value_index);
390 
391     if (!value)
392       return false;
393 
394     // We currently only support extracting values with Clang QualTypes. Do we
395     // care about others?
396     CompilerType compiler_type = value->GetCompilerType();
397     llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
398     if (!bit_size)
399       return false;
400     bool is_signed;
401     if (compiler_type.IsIntegerOrEnumerationType(is_signed))
402       ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
403                           argument_register_ids, current_argument_register,
404                           current_stack_argument);
405     else if (compiler_type.IsPointerType())
406       ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
407                           argument_register_ids, current_argument_register,
408                           current_stack_argument);
409   }
410 
411   return true;
412 }
413 
414 Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
415                                          lldb::ValueObjectSP &new_value_sp) {
416   Status error;
417   if (!new_value_sp) {
418     error.SetErrorString("Empty value object for return value.");
419     return error;
420   }
421 
422   CompilerType compiler_type = new_value_sp->GetCompilerType();
423   if (!compiler_type) {
424     error.SetErrorString("Null clang type for return value.");
425     return error;
426   }
427 
428   Thread *thread = frame_sp->GetThread().get();
429 
430   bool is_signed;
431   uint32_t count;
432   bool is_complex;
433 
434   RegisterContext *reg_ctx = thread->GetRegisterContext().get();
435 
436   bool set_it_simple = false;
437   if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
438       compiler_type.IsPointerType()) {
439     const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
440 
441     DataExtractor data;
442     Status data_error;
443     size_t num_bytes = new_value_sp->GetData(data, data_error);
444     if (data_error.Fail()) {
445       error.SetErrorStringWithFormat(
446           "Couldn't convert return value to raw data: %s",
447           data_error.AsCString());
448       return error;
449     }
450     lldb::offset_t offset = 0;
451     if (num_bytes <= 8) {
452       uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
453 
454       if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
455         set_it_simple = true;
456     } else {
457       error.SetErrorString("We don't support returning longer than 64 bit "
458                            "integer values at present.");
459     }
460   } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
461     if (is_complex)
462       error.SetErrorString(
463           "We don't support returning complex values at present");
464     else {
465       llvm::Optional<uint64_t> bit_width =
466           compiler_type.GetBitSize(frame_sp.get());
467       if (!bit_width) {
468         error.SetErrorString("can't get type size");
469         return error;
470       }
471       if (*bit_width <= 64) {
472         DataExtractor data;
473         Status data_error;
474         size_t num_bytes = new_value_sp->GetData(data, data_error);
475         if (data_error.Fail()) {
476           error.SetErrorStringWithFormat(
477               "Couldn't convert return value to raw data: %s",
478               data_error.AsCString());
479           return error;
480         }
481 
482         unsigned char buffer[16];
483         ByteOrder byte_order = data.GetByteOrder();
484 
485         data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
486         set_it_simple = true;
487       } else {
488         // FIXME - don't know how to do 80 bit long doubles yet.
489         error.SetErrorString(
490             "We don't support returning float values > 64 bits at present");
491       }
492     }
493   }
494 
495   if (!set_it_simple) {
496     // Okay we've got a structure or something that doesn't fit in a simple
497     // register. We should figure out where it really goes, but we don't
498     // support this yet.
499     error.SetErrorString("We only support setting simple integer and float "
500                          "return types at present.");
501   }
502 
503   return error;
504 }
505 
506 ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
507     Thread &thread, CompilerType &return_compiler_type) const {
508   ValueObjectSP return_valobj_sp;
509   Value value;
510 
511   if (!return_compiler_type)
512     return return_valobj_sp;
513 
514   // value.SetContext (Value::eContextTypeClangType, return_value_type);
515   value.SetCompilerType(return_compiler_type);
516 
517   RegisterContext *reg_ctx = thread.GetRegisterContext().get();
518   if (!reg_ctx)
519     return return_valobj_sp;
520 
521   const uint32_t type_flags = return_compiler_type.GetTypeInfo();
522   if (type_flags & eTypeIsScalar) {
523     value.SetValueType(Value::ValueType::Scalar);
524 
525     bool success = false;
526     if (type_flags & eTypeIsInteger) {
527       // Extract the register context so we can read arguments from registers
528 
529       llvm::Optional<uint64_t> byte_size =
530           return_compiler_type.GetByteSize(&thread);
531       if (!byte_size)
532         return return_valobj_sp;
533       uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
534           reg_ctx->GetRegisterInfoByName("r3", 0), 0);
535       const bool is_signed = (type_flags & eTypeIsSigned) != 0;
536       switch (*byte_size) {
537       default:
538         break;
539 
540       case sizeof(uint64_t):
541         if (is_signed)
542           value.GetScalar() = (int64_t)(raw_value);
543         else
544           value.GetScalar() = (uint64_t)(raw_value);
545         success = true;
546         break;
547 
548       case sizeof(uint32_t):
549         if (is_signed)
550           value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
551         else
552           value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
553         success = true;
554         break;
555 
556       case sizeof(uint16_t):
557         if (is_signed)
558           value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
559         else
560           value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
561         success = true;
562         break;
563 
564       case sizeof(uint8_t):
565         if (is_signed)
566           value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
567         else
568           value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
569         success = true;
570         break;
571       }
572     } else if (type_flags & eTypeIsFloat) {
573       if (type_flags & eTypeIsComplex) {
574         // Don't handle complex yet.
575       } else {
576         llvm::Optional<uint64_t> byte_size =
577             return_compiler_type.GetByteSize(&thread);
578         if (byte_size && *byte_size <= sizeof(long double)) {
579           const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
580           RegisterValue f1_value;
581           if (reg_ctx->ReadRegister(f1_info, f1_value)) {
582             DataExtractor data;
583             if (f1_value.GetData(data)) {
584               lldb::offset_t offset = 0;
585               if (*byte_size == sizeof(float)) {
586                 value.GetScalar() = (float)data.GetFloat(&offset);
587                 success = true;
588               } else if (*byte_size == sizeof(double)) {
589                 value.GetScalar() = (double)data.GetDouble(&offset);
590                 success = true;
591               }
592             }
593           }
594         }
595       }
596     }
597 
598     if (success)
599       return_valobj_sp = ValueObjectConstResult::Create(
600           thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
601   } else if (type_flags & eTypeIsPointer) {
602     unsigned r3_id =
603         reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
604     value.GetScalar() =
605         (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
606     value.SetValueType(Value::ValueType::Scalar);
607     return_valobj_sp = ValueObjectConstResult::Create(
608         thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
609   } else if (type_flags & eTypeIsVector) {
610     llvm::Optional<uint64_t> byte_size =
611         return_compiler_type.GetByteSize(&thread);
612     if (byte_size && *byte_size > 0) {
613       const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
614       if (altivec_reg) {
615         if (*byte_size <= altivec_reg->byte_size) {
616           ProcessSP process_sp(thread.GetProcess());
617           if (process_sp) {
618             std::unique_ptr<DataBufferHeap> heap_data_up(
619                 new DataBufferHeap(*byte_size, 0));
620             const ByteOrder byte_order = process_sp->GetByteOrder();
621             RegisterValue reg_value;
622             if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
623               Status error;
624               if (reg_value.GetAsMemoryData(
625                       altivec_reg, heap_data_up->GetBytes(),
626                       heap_data_up->GetByteSize(), byte_order, error)) {
627                 DataExtractor data(DataBufferSP(heap_data_up.release()),
628                                    byte_order,
629                                    process_sp->GetTarget()
630                                        .GetArchitecture()
631                                        .GetAddressByteSize());
632                 return_valobj_sp = ValueObjectConstResult::Create(
633                     &thread, return_compiler_type, ConstString(""), data);
634               }
635             }
636           }
637         }
638       }
639     }
640   }
641 
642   return return_valobj_sp;
643 }
644 
645 ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
646     Thread &thread, CompilerType &return_compiler_type) const {
647   ValueObjectSP return_valobj_sp;
648 
649   if (!return_compiler_type)
650     return return_valobj_sp;
651 
652   ExecutionContext exe_ctx(thread.shared_from_this());
653   return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
654   if (return_valobj_sp)
655     return return_valobj_sp;
656 
657   RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
658   if (!reg_ctx_sp)
659     return return_valobj_sp;
660 
661   llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
662   if (!bit_width)
663     return return_valobj_sp;
664   if (return_compiler_type.IsAggregateType()) {
665     Target *target = exe_ctx.GetTargetPtr();
666     bool is_memory = true;
667     if (*bit_width <= 128) {
668       ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
669       DataBufferSP data_sp(new DataBufferHeap(16, 0));
670       DataExtractor return_ext(data_sp, target_byte_order,
671                                target->GetArchitecture().GetAddressByteSize());
672 
673       const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
674       const RegisterInfo *rdx_info =
675           reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
676 
677       RegisterValue r3_value, rdx_value;
678       reg_ctx_sp->ReadRegister(r3_info, r3_value);
679       reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
680 
681       DataExtractor r3_data, rdx_data;
682 
683       r3_value.GetData(r3_data);
684       rdx_value.GetData(rdx_data);
685 
686       uint32_t integer_bytes =
687           0; // Tracks how much of the r3/rds registers we've consumed so far
688 
689       const uint32_t num_children = return_compiler_type.GetNumFields();
690 
691       // Since we are in the small struct regime, assume we are not in memory.
692       is_memory = false;
693 
694       for (uint32_t idx = 0; idx < num_children; idx++) {
695         std::string name;
696         uint64_t field_bit_offset = 0;
697         bool is_signed;
698         bool is_complex;
699         uint32_t count;
700 
701         CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
702             idx, name, &field_bit_offset, nullptr, nullptr);
703         llvm::Optional<uint64_t> field_bit_width =
704             field_compiler_type.GetBitSize(&thread);
705         if (!field_bit_width)
706           return return_valobj_sp;
707 
708         // If there are any unaligned fields, this is stored in memory.
709         if (field_bit_offset % *field_bit_width != 0) {
710           is_memory = true;
711           break;
712         }
713 
714         uint32_t field_byte_width = *field_bit_width / 8;
715         uint32_t field_byte_offset = field_bit_offset / 8;
716 
717         DataExtractor *copy_from_extractor = nullptr;
718         uint32_t copy_from_offset = 0;
719 
720         if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
721             field_compiler_type.IsPointerType()) {
722           if (integer_bytes < 8) {
723             if (integer_bytes + field_byte_width <= 8) {
724               // This is in RAX, copy from register to our result structure:
725               copy_from_extractor = &r3_data;
726               copy_from_offset = integer_bytes;
727               integer_bytes += field_byte_width;
728             } else {
729               // The next field wouldn't fit in the remaining space, so we
730               // pushed it to rdx.
731               copy_from_extractor = &rdx_data;
732               copy_from_offset = 0;
733               integer_bytes = 8 + field_byte_width;
734             }
735           } else if (integer_bytes + field_byte_width <= 16) {
736             copy_from_extractor = &rdx_data;
737             copy_from_offset = integer_bytes - 8;
738             integer_bytes += field_byte_width;
739           } else {
740             // The last field didn't fit.  I can't see how that would happen
741             // w/o the overall size being greater than 16 bytes.  For now,
742             // return a nullptr return value object.
743             return return_valobj_sp;
744           }
745         } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
746           // Structs with long doubles are always passed in memory.
747           if (*field_bit_width == 128) {
748             is_memory = true;
749             break;
750           } else if (*field_bit_width == 64) {
751             copy_from_offset = 0;
752           } else if (*field_bit_width == 32) {
753             // This one is kind of complicated.  If we are in an "eightbyte"
754             // with another float, we'll be stuffed into an xmm register with
755             // it.  If we are in an "eightbyte" with one or more ints, then we
756             // will be stuffed into the appropriate GPR with them.
757             bool in_gpr;
758             if (field_byte_offset % 8 == 0) {
759               // We are at the beginning of one of the eightbytes, so check the
760               // next element (if any)
761               if (idx == num_children - 1)
762                 in_gpr = false;
763               else {
764                 uint64_t next_field_bit_offset = 0;
765                 CompilerType next_field_compiler_type =
766                     return_compiler_type.GetFieldAtIndex(idx + 1, name,
767                                                          &next_field_bit_offset,
768                                                          nullptr, nullptr);
769                 if (next_field_compiler_type.IsIntegerOrEnumerationType(
770                         is_signed))
771                   in_gpr = true;
772                 else {
773                   copy_from_offset = 0;
774                   in_gpr = false;
775                 }
776               }
777             } else if (field_byte_offset % 4 == 0) {
778               // We are inside of an eightbyte, so see if the field before us
779               // is floating point: This could happen if somebody put padding
780               // in the structure.
781               if (idx == 0)
782                 in_gpr = false;
783               else {
784                 uint64_t prev_field_bit_offset = 0;
785                 CompilerType prev_field_compiler_type =
786                     return_compiler_type.GetFieldAtIndex(idx - 1, name,
787                                                          &prev_field_bit_offset,
788                                                          nullptr, nullptr);
789                 if (prev_field_compiler_type.IsIntegerOrEnumerationType(
790                         is_signed))
791                   in_gpr = true;
792                 else {
793                   copy_from_offset = 4;
794                   in_gpr = false;
795                 }
796               }
797             } else {
798               is_memory = true;
799               continue;
800             }
801 
802             // Okay, we've figured out whether we are in GPR or XMM, now figure
803             // out which one.
804             if (in_gpr) {
805               if (integer_bytes < 8) {
806                 // This is in RAX, copy from register to our result structure:
807                 copy_from_extractor = &r3_data;
808                 copy_from_offset = integer_bytes;
809                 integer_bytes += field_byte_width;
810               } else {
811                 copy_from_extractor = &rdx_data;
812                 copy_from_offset = integer_bytes - 8;
813                 integer_bytes += field_byte_width;
814               }
815             }
816           }
817         }
818 
819         // These two tests are just sanity checks.  If I somehow get the type
820         // calculation wrong above it is better to just return nothing than to
821         // assert or crash.
822         if (!copy_from_extractor)
823           return return_valobj_sp;
824         if (copy_from_offset + field_byte_width >
825             copy_from_extractor->GetByteSize())
826           return return_valobj_sp;
827 
828         copy_from_extractor->CopyByteOrderedData(
829             copy_from_offset, field_byte_width,
830             data_sp->GetBytes() + field_byte_offset, field_byte_width,
831             target_byte_order);
832       }
833 
834       if (!is_memory) {
835         // The result is in our data buffer.  Let's make a variable object out
836         // of it:
837         return_valobj_sp = ValueObjectConstResult::Create(
838             &thread, return_compiler_type, ConstString(""), return_ext);
839       }
840     }
841 
842     // FIXME: This is just taking a guess, r3 may very well no longer hold the
843     // return storage location.
844     // If we are going to do this right, when we make a new frame we should
845     // check to see if it uses a memory return, and if we are at the first
846     // instruction and if so stash away the return location.  Then we would
847     // only return the memory return value if we know it is valid.
848 
849     if (is_memory) {
850       unsigned r3_id =
851           reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
852       lldb::addr_t storage_addr =
853           (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
854                                                                         0);
855       return_valobj_sp = ValueObjectMemory::Create(
856           &thread, "", Address(storage_addr, nullptr), return_compiler_type);
857     }
858   }
859 
860   return return_valobj_sp;
861 }
862 
863 bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
864   unwind_plan.Clear();
865   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
866 
867   uint32_t lr_reg_num = dwarf_lr;
868   uint32_t sp_reg_num = dwarf_r1;
869   uint32_t pc_reg_num = dwarf_pc;
870 
871   UnwindPlan::RowSP row(new UnwindPlan::Row);
872 
873   // Our Call Frame Address is the stack pointer value
874   row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
875 
876   // The previous PC is in the LR
877   row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
878   unwind_plan.AppendRow(row);
879 
880   // All other registers are the same.
881 
882   unwind_plan.SetSourceName("ppc at-func-entry default");
883   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
884 
885   return true;
886 }
887 
888 bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
889   unwind_plan.Clear();
890   unwind_plan.SetRegisterKind(eRegisterKindDWARF);
891 
892   uint32_t sp_reg_num = dwarf_r1;
893   uint32_t pc_reg_num = dwarf_lr;
894 
895   UnwindPlan::RowSP row(new UnwindPlan::Row);
896 
897   const int32_t ptr_size = 4;
898   row->SetUnspecifiedRegistersAreUndefined(true);
899   row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
900 
901   row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
902   row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
903 
904   unwind_plan.AppendRow(row);
905   unwind_plan.SetSourceName("ppc default unwind plan");
906   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
907   unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
908   unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
909   unwind_plan.SetReturnAddressRegister(dwarf_lr);
910   return true;
911 }
912 
913 bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
914   return !RegisterIsCalleeSaved(reg_info);
915 }
916 
917 // See "Register Usage" in the
918 // "System V Application Binary Interface"
919 // "64-bit PowerPC ELF Application Binary Interface Supplement" current version
920 // is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
921 // elf64abi-1.9.pdf
922 
923 bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
924   if (reg_info) {
925     // Preserved registers are :
926     //    r1,r2,r13-r31
927     //    f14-f31 (not yet)
928     //    v20-v31 (not yet)
929     //    vrsave (not yet)
930 
931     const char *name = reg_info->name;
932     if (name[0] == 'r') {
933       if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
934         return true;
935       if (name[1] == '1' && name[2] > '2')
936         return true;
937       if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
938         return true;
939     }
940 
941     if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
942       if (name[3] == '1' && name[4] >= '4')
943         return true;
944       if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
945         return true;
946     }
947 
948     if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
949       return true;
950     if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
951       return true;
952     if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
953       return true;
954   }
955   return false;
956 }
957 
958 void ABISysV_ppc::Initialize() {
959   PluginManager::RegisterPlugin(GetPluginNameStatic(),
960                                 "System V ABI for ppc targets", CreateInstance);
961 }
962 
963 void ABISysV_ppc::Terminate() {
964   PluginManager::UnregisterPlugin(CreateInstance);
965 }
966 
967 lldb_private::ConstString ABISysV_ppc::GetPluginNameStatic() {
968   static ConstString g_name("sysv-ppc");
969   return g_name;
970 }
971 
972 // PluginInterface protocol
973 
974 lldb_private::ConstString ABISysV_ppc::GetPluginName() {
975   return GetPluginNameStatic();
976 }
977 
978 uint32_t ABISysV_ppc::GetPluginVersion() { return 1; }
979