1 //===-- ClangExpressionParser.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
37 
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44 
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 #include "llvm/Support/Signals.h"
52 
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
56 
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
69 
70 #include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71 #include "lldb/Core/Debugger.h"
72 #include "lldb/Core/Disassembler.h"
73 #include "lldb/Core/Module.h"
74 #include "lldb/Core/StreamFile.h"
75 #include "lldb/Expression/IRExecutionUnit.h"
76 #include "lldb/Expression/IRInterpreter.h"
77 #include "lldb/Host/File.h"
78 #include "lldb/Host/HostInfo.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/Process.h"
83 #include "lldb/Target/Target.h"
84 #include "lldb/Target/ThreadPlanCallFunction.h"
85 #include "lldb/Utility/DataBufferHeap.h"
86 #include "lldb/Utility/LLDBAssert.h"
87 #include "lldb/Utility/Log.h"
88 #include "lldb/Utility/ReproducerProvider.h"
89 #include "lldb/Utility/Stream.h"
90 #include "lldb/Utility/StreamString.h"
91 #include "lldb/Utility/StringList.h"
92 
93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
94 #include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h"
95 
96 #include <cctype>
97 #include <memory>
98 
99 using namespace clang;
100 using namespace llvm;
101 using namespace lldb_private;
102 
103 //===----------------------------------------------------------------------===//
104 // Utility Methods for Clang
105 //===----------------------------------------------------------------------===//
106 
107 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
108   ClangModulesDeclVendor &m_decl_vendor;
109   ClangPersistentVariables &m_persistent_vars;
110   clang::SourceManager &m_source_mgr;
111   StreamString m_error_stream;
112   bool m_has_errors = false;
113 
114 public:
115   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
116                             ClangPersistentVariables &persistent_vars,
117                             clang::SourceManager &source_mgr)
118       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
119         m_source_mgr(source_mgr) {}
120 
121   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
122                     const clang::Module * /*null*/) override {
123     // Ignore modules that are imported in the wrapper code as these are not
124     // loaded by the user.
125     llvm::StringRef filename =
126         m_source_mgr.getPresumedLoc(import_location).getFilename();
127     if (filename == ClangExpressionSourceCode::g_prefix_file_name)
128       return;
129 
130     SourceModule module;
131 
132     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
133       module.path.push_back(ConstString(component.first->getName()));
134 
135     StreamString error_stream;
136 
137     ClangModulesDeclVendor::ModuleVector exported_modules;
138     if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
139       m_has_errors = true;
140 
141     for (ClangModulesDeclVendor::ModuleID module : exported_modules)
142       m_persistent_vars.AddHandLoadedClangModule(module);
143   }
144 
145   bool hasErrors() { return m_has_errors; }
146 
147   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
148 };
149 
150 static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
151   for (auto &fix_it : Info.getFixItHints()) {
152     if (fix_it.isNull())
153       continue;
154     diag->AddFixitHint(fix_it);
155   }
156 }
157 
158 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
159 public:
160   ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
161     DiagnosticOptions *options = new DiagnosticOptions(opts);
162     options->ShowPresumedLoc = true;
163     options->ShowLevel = false;
164     m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
165     m_passthrough =
166         std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
167   }
168 
169   void ResetManager(DiagnosticManager *manager = nullptr) {
170     m_manager = manager;
171   }
172 
173   /// Returns the last ClangDiagnostic message that the DiagnosticManager
174   /// received or a nullptr if the DiagnosticMangager hasn't seen any
175   /// Clang diagnostics yet.
176   ClangDiagnostic *MaybeGetLastClangDiag() const {
177     if (m_manager->Diagnostics().empty())
178       return nullptr;
179     lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
180     ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
181     return clang_diag;
182   }
183 
184   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
185                         const clang::Diagnostic &Info) override {
186     if (!m_manager) {
187       // We have no DiagnosticManager before/after parsing but we still could
188       // receive diagnostics (e.g., by the ASTImporter failing to copy decls
189       // when we move the expression result ot the ScratchASTContext). Let's at
190       // least log these diagnostics until we find a way to properly render
191       // them and display them to the user.
192       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
193       if (log) {
194         llvm::SmallVector<char, 32> diag_str;
195         Info.FormatDiagnostic(diag_str);
196         diag_str.push_back('\0');
197         const char *plain_diag = diag_str.data();
198         LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
199       }
200       return;
201     }
202 
203     // Update error/warning counters.
204     DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
205 
206     // Render diagnostic message to m_output.
207     m_output.clear();
208     m_passthrough->HandleDiagnostic(DiagLevel, Info);
209     m_os->flush();
210 
211     lldb_private::DiagnosticSeverity severity;
212     bool make_new_diagnostic = true;
213 
214     switch (DiagLevel) {
215     case DiagnosticsEngine::Level::Fatal:
216     case DiagnosticsEngine::Level::Error:
217       severity = eDiagnosticSeverityError;
218       break;
219     case DiagnosticsEngine::Level::Warning:
220       severity = eDiagnosticSeverityWarning;
221       break;
222     case DiagnosticsEngine::Level::Remark:
223     case DiagnosticsEngine::Level::Ignored:
224       severity = eDiagnosticSeverityRemark;
225       break;
226     case DiagnosticsEngine::Level::Note:
227       m_manager->AppendMessageToDiagnostic(m_output);
228       make_new_diagnostic = false;
229 
230       // 'note:' diagnostics for errors and warnings can also contain Fix-Its.
231       // We add these Fix-Its to the last error diagnostic to make sure
232       // that we later have all Fix-Its related to an 'error' diagnostic when
233       // we apply them to the user expression.
234       auto *clang_diag = MaybeGetLastClangDiag();
235       // If we don't have a previous diagnostic there is nothing to do.
236       // If the previous diagnostic already has its own Fix-Its, assume that
237       // the 'note:' Fix-It is just an alternative way to solve the issue and
238       // ignore these Fix-Its.
239       if (!clang_diag || clang_diag->HasFixIts())
240         break;
241       // Ignore all Fix-Its that are not associated with an error.
242       if (clang_diag->GetSeverity() != eDiagnosticSeverityError)
243         break;
244       AddAllFixIts(clang_diag, Info);
245       break;
246     }
247     if (make_new_diagnostic) {
248       // ClangDiagnostic messages are expected to have no whitespace/newlines
249       // around them.
250       std::string stripped_output =
251           std::string(llvm::StringRef(m_output).trim());
252 
253       auto new_diagnostic = std::make_unique<ClangDiagnostic>(
254           stripped_output, severity, Info.getID());
255 
256       // Don't store away warning fixits, since the compiler doesn't have
257       // enough context in an expression for the warning to be useful.
258       // FIXME: Should we try to filter out FixIts that apply to our generated
259       // code, and not the user's expression?
260       if (severity == eDiagnosticSeverityError)
261         AddAllFixIts(new_diagnostic.get(), Info);
262 
263       m_manager->AddDiagnostic(std::move(new_diagnostic));
264     }
265   }
266 
267   void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
268     m_passthrough->BeginSourceFile(LO, PP);
269   }
270 
271   void EndSourceFile() override { m_passthrough->EndSourceFile(); }
272 
273 private:
274   DiagnosticManager *m_manager = nullptr;
275   std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
276   /// Output stream of m_passthrough.
277   std::shared_ptr<llvm::raw_string_ostream> m_os;
278   /// Output string filled by m_os.
279   std::string m_output;
280 };
281 
282 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
283                                    std::vector<std::string> include_directories,
284                                    lldb::TargetSP target_sp) {
285   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
286 
287   HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
288 
289   for (const std::string &dir : include_directories) {
290     search_opts.AddPath(dir, frontend::System, false, true);
291     LLDB_LOG(log, "Added user include dir: {0}", dir);
292   }
293 
294   llvm::SmallString<128> module_cache;
295   const auto &props = ModuleList::GetGlobalModuleListProperties();
296   props.GetClangModulesCachePath().GetPath(module_cache);
297   search_opts.ModuleCachePath = std::string(module_cache.str());
298   LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
299 
300   search_opts.ResourceDir = GetClangResourceDir().GetPath();
301 
302   search_opts.ImplicitModuleMaps = true;
303 }
304 
305 /// Iff the given identifier is a C++ keyword, remove it from the
306 /// identifier table (i.e., make the token a normal identifier).
307 static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) {
308   // FIXME: 'using' is used by LLDB for local variables, so we can't remove
309   // this keyword without breaking this functionality.
310   if (token == "using")
311     return;
312   // GCC's '__null' is used by LLDB to define NULL/Nil/nil.
313   if (token == "__null")
314     return;
315 
316   LangOptions cpp_lang_opts;
317   cpp_lang_opts.CPlusPlus = true;
318   cpp_lang_opts.CPlusPlus11 = true;
319   cpp_lang_opts.CPlusPlus20 = true;
320 
321   clang::IdentifierInfo &ii = idents.get(token);
322   // The identifier has to be a C++-exclusive keyword. if not, then there is
323   // nothing to do.
324   if (!ii.isCPlusPlusKeyword(cpp_lang_opts))
325     return;
326   // If the token is already an identifier, then there is nothing to do.
327   if (ii.getTokenID() == clang::tok::identifier)
328     return;
329   // Otherwise the token is a C++ keyword, so turn it back into a normal
330   // identifier.
331   ii.revertTokenIDToIdentifier();
332 }
333 
334 /// Remove all C++ keywords from the given identifier table.
335 static void RemoveAllCppKeywords(IdentifierTable &idents) {
336 #define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME));
337 #include "clang/Basic/TokenKinds.def"
338 }
339 
340 /// Configures Clang diagnostics for the expression parser.
341 static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) {
342   // List of Clang warning groups that are not useful when parsing expressions.
343   const std::vector<const char *> groupsToIgnore = {
344       "unused-value",
345       "odr",
346       "unused-getter-return-value",
347   };
348   for (const char *group : groupsToIgnore) {
349     compiler.getDiagnostics().setSeverityForGroup(
350         clang::diag::Flavor::WarningOrError, group,
351         clang::diag::Severity::Ignored, SourceLocation());
352   }
353 }
354 
355 //===----------------------------------------------------------------------===//
356 // Implementation of ClangExpressionParser
357 //===----------------------------------------------------------------------===//
358 
359 ClangExpressionParser::ClangExpressionParser(
360     ExecutionContextScope *exe_scope, Expression &expr,
361     bool generate_debug_info, std::vector<std::string> include_directories,
362     std::string filename)
363     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
364       m_pp_callbacks(nullptr),
365       m_include_directories(std::move(include_directories)),
366       m_filename(std::move(filename)) {
367   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
368 
369   // We can't compile expressions without a target.  So if the exe_scope is
370   // null or doesn't have a target, then we just need to get out of here.  I'll
371   // lldbassert and not make any of the compiler objects since
372   // I can't return errors directly from the constructor.  Further calls will
373   // check if the compiler was made and
374   // bag out if it wasn't.
375 
376   if (!exe_scope) {
377     lldbassert(exe_scope &&
378                "Can't make an expression parser with a null scope.");
379     return;
380   }
381 
382   lldb::TargetSP target_sp;
383   target_sp = exe_scope->CalculateTarget();
384   if (!target_sp) {
385     lldbassert(target_sp.get() &&
386                "Can't make an expression parser with a null target.");
387     return;
388   }
389 
390   // 1. Create a new compiler instance.
391   m_compiler = std::make_unique<CompilerInstance>();
392 
393   // When capturing a reproducer, hook up the file collector with clang to
394   // collector modules and headers.
395   if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
396     repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
397     m_compiler->setModuleDepCollector(
398         std::make_shared<ModuleDependencyCollectorAdaptor>(
399             fp.GetFileCollector()));
400     DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
401     opts.IncludeSystemHeaders = true;
402     opts.IncludeModuleFiles = true;
403   }
404 
405   // Make sure clang uses the same VFS as LLDB.
406   m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
407 
408   lldb::LanguageType frame_lang =
409       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
410   bool overridden_target_opts = false;
411   lldb_private::LanguageRuntime *lang_rt = nullptr;
412 
413   std::string abi;
414   ArchSpec target_arch;
415   target_arch = target_sp->GetArchitecture();
416 
417   const auto target_machine = target_arch.GetMachine();
418 
419   // If the expression is being evaluated in the context of an existing stack
420   // frame, we introspect to see if the language runtime is available.
421 
422   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
423   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
424 
425   // Make sure the user hasn't provided a preferred execution language with
426   // `expression --language X -- ...`
427   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
428     frame_lang = frame_sp->GetLanguage();
429 
430   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
431     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
432     LLDB_LOGF(log, "Frame has language of type %s",
433               Language::GetNameForLanguageType(frame_lang));
434   }
435 
436   // 2. Configure the compiler with a set of default options that are
437   // appropriate for most situations.
438   if (target_arch.IsValid()) {
439     std::string triple = target_arch.GetTriple().str();
440     m_compiler->getTargetOpts().Triple = triple;
441     LLDB_LOGF(log, "Using %s as the target triple",
442               m_compiler->getTargetOpts().Triple.c_str());
443   } else {
444     // If we get here we don't have a valid target and just have to guess.
445     // Sometimes this will be ok to just use the host target triple (when we
446     // evaluate say "2+3", but other expressions like breakpoint conditions and
447     // other things that _are_ target specific really shouldn't just be using
448     // the host triple. In such a case the language runtime should expose an
449     // overridden options set (3), below.
450     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
451     LLDB_LOGF(log, "Using default target triple of %s",
452               m_compiler->getTargetOpts().Triple.c_str());
453   }
454   // Now add some special fixes for known architectures: Any arm32 iOS
455   // environment, but not on arm64
456   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
457       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
458       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
459     m_compiler->getTargetOpts().ABI = "apcs-gnu";
460   }
461   // Supported subsets of x86
462   if (target_machine == llvm::Triple::x86 ||
463       target_machine == llvm::Triple::x86_64) {
464     m_compiler->getTargetOpts().Features.push_back("+sse");
465     m_compiler->getTargetOpts().Features.push_back("+sse2");
466   }
467 
468   // Set the target CPU to generate code for. This will be empty for any CPU
469   // that doesn't really need to make a special
470   // CPU string.
471   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
472 
473   // Set the target ABI
474   abi = GetClangTargetABI(target_arch);
475   if (!abi.empty())
476     m_compiler->getTargetOpts().ABI = abi;
477 
478   // 3. Now allow the runtime to provide custom configuration options for the
479   // target. In this case, a specialized language runtime is available and we
480   // can query it for extra options. For 99% of use cases, this will not be
481   // needed and should be provided when basic platform detection is not enough.
482   // FIXME: Generalize this. Only RenderScriptRuntime currently supports this
483   // currently. Hardcoding this isn't ideal but it's better than LanguageRuntime
484   // having knowledge of clang::TargetOpts.
485   if (auto *renderscript_rt =
486           llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt))
487     overridden_target_opts =
488         renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
489 
490   if (overridden_target_opts)
491     if (log && log->GetVerbose()) {
492       LLDB_LOGV(
493           log, "Using overridden target options for the expression evaluation");
494 
495       auto opts = m_compiler->getTargetOpts();
496       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
497       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
498       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
499       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
500       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
501       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
502       StringList::LogDump(log, opts.Features, "Features");
503     }
504 
505   // 4. Create and install the target on the compiler.
506   m_compiler->createDiagnostics();
507   // Limit the number of error diagnostics we emit.
508   // A value of 0 means no limit for both LLDB and Clang.
509   m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit());
510 
511   auto target_info = TargetInfo::CreateTargetInfo(
512       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
513   if (log) {
514     LLDB_LOGF(log, "Using SIMD alignment: %d",
515               target_info->getSimdDefaultAlign());
516     LLDB_LOGF(log, "Target datalayout string: '%s'",
517               target_info->getDataLayoutString());
518     LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
519     LLDB_LOGF(log, "Target vector alignment: %d",
520               target_info->getMaxVectorAlign());
521   }
522   m_compiler->setTarget(target_info);
523 
524   assert(m_compiler->hasTarget());
525 
526   // 5. Set language options.
527   lldb::LanguageType language = expr.Language();
528   LangOptions &lang_opts = m_compiler->getLangOpts();
529 
530   switch (language) {
531   case lldb::eLanguageTypeC:
532   case lldb::eLanguageTypeC89:
533   case lldb::eLanguageTypeC99:
534   case lldb::eLanguageTypeC11:
535     // FIXME: the following language option is a temporary workaround,
536     // to "ask for C, get C++."
537     // For now, the expression parser must use C++ anytime the language is a C
538     // family language, because the expression parser uses features of C++ to
539     // capture values.
540     lang_opts.CPlusPlus = true;
541     break;
542   case lldb::eLanguageTypeObjC:
543     lang_opts.ObjC = true;
544     // FIXME: the following language option is a temporary workaround,
545     // to "ask for ObjC, get ObjC++" (see comment above).
546     lang_opts.CPlusPlus = true;
547 
548     // Clang now sets as default C++14 as the default standard (with
549     // GNU extensions), so we do the same here to avoid mismatches that
550     // cause compiler error when evaluating expressions (e.g. nullptr not found
551     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
552     // two lines below) so we decide to be consistent with that, but this could
553     // be re-evaluated in the future.
554     lang_opts.CPlusPlus11 = true;
555     break;
556   case lldb::eLanguageTypeC_plus_plus:
557   case lldb::eLanguageTypeC_plus_plus_11:
558   case lldb::eLanguageTypeC_plus_plus_14:
559     lang_opts.CPlusPlus11 = true;
560     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
561     LLVM_FALLTHROUGH;
562   case lldb::eLanguageTypeC_plus_plus_03:
563     lang_opts.CPlusPlus = true;
564     if (process_sp)
565       lang_opts.ObjC =
566           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
567     break;
568   case lldb::eLanguageTypeObjC_plus_plus:
569   case lldb::eLanguageTypeUnknown:
570   default:
571     lang_opts.ObjC = true;
572     lang_opts.CPlusPlus = true;
573     lang_opts.CPlusPlus11 = true;
574     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
575     break;
576   }
577 
578   lang_opts.Bool = true;
579   lang_opts.WChar = true;
580   lang_opts.Blocks = true;
581   lang_opts.DebuggerSupport =
582       true; // Features specifically for debugger clients
583   if (expr.DesiredResultType() == Expression::eResultTypeId)
584     lang_opts.DebuggerCastResultToId = true;
585 
586   lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
587                                .CharIsSignedByDefault();
588 
589   // Spell checking is a nice feature, but it ends up completing a lot of types
590   // that we didn't strictly speaking need to complete. As a result, we spend a
591   // long time parsing and importing debug information.
592   lang_opts.SpellChecking = false;
593 
594   auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
595   if (clang_expr && clang_expr->DidImportCxxModules()) {
596     LLDB_LOG(log, "Adding lang options for importing C++ modules");
597 
598     lang_opts.Modules = true;
599     // We want to implicitly build modules.
600     lang_opts.ImplicitModules = true;
601     // To automatically import all submodules when we import 'std'.
602     lang_opts.ModulesLocalVisibility = false;
603 
604     // We use the @import statements, so we need this:
605     // FIXME: We could use the modules-ts, but that currently doesn't work.
606     lang_opts.ObjC = true;
607 
608     // Options we need to parse libc++ code successfully.
609     // FIXME: We should ask the driver for the appropriate default flags.
610     lang_opts.GNUMode = true;
611     lang_opts.GNUKeywords = true;
612     lang_opts.DoubleSquareBracketAttributes = true;
613     lang_opts.CPlusPlus11 = true;
614 
615     // The Darwin libc expects this macro to be set.
616     lang_opts.GNUCVersion = 40201;
617 
618     SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
619                            target_sp);
620   }
621 
622   if (process_sp && lang_opts.ObjC) {
623     if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
624       if (runtime->GetRuntimeVersion() ==
625           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
626         lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
627       else
628         lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
629                                   VersionTuple(10, 7));
630 
631       if (runtime->HasNewLiteralsAndIndexing())
632         lang_opts.DebuggerObjCLiteral = true;
633     }
634   }
635 
636   lang_opts.ThreadsafeStatics = false;
637   lang_opts.AccessControl = false; // Debuggers get universal access
638   lang_opts.DollarIdents = true;   // $ indicates a persistent variable name
639   // We enable all builtin functions beside the builtins from libc/libm (e.g.
640   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
641   // additionally enabling them as expandable builtins is breaking Clang.
642   lang_opts.NoBuiltin = true;
643 
644   // Set CodeGen options
645   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
646   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
647   m_compiler->getCodeGenOpts().setFramePointer(
648                                     CodeGenOptions::FramePointerKind::All);
649   if (generate_debug_info)
650     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
651   else
652     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
653 
654   // Disable some warnings.
655   SetupDefaultClangDiagnostics(*m_compiler);
656 
657   // Inform the target of the language options
658   //
659   // FIXME: We shouldn't need to do this, the target should be immutable once
660   // created. This complexity should be lifted elsewhere.
661   m_compiler->getTarget().adjust(m_compiler->getDiagnostics(),
662 		                 m_compiler->getLangOpts());
663 
664   // 6. Set up the diagnostic buffer for reporting errors
665 
666   auto diag_mgr = new ClangDiagnosticManagerAdapter(
667       m_compiler->getDiagnostics().getDiagnosticOptions());
668   m_compiler->getDiagnostics().setClient(diag_mgr);
669 
670   // 7. Set up the source management objects inside the compiler
671   m_compiler->createFileManager();
672   if (!m_compiler->hasSourceManager())
673     m_compiler->createSourceManager(m_compiler->getFileManager());
674   m_compiler->createPreprocessor(TU_Complete);
675 
676   switch (language) {
677   case lldb::eLanguageTypeC:
678   case lldb::eLanguageTypeC89:
679   case lldb::eLanguageTypeC99:
680   case lldb::eLanguageTypeC11:
681   case lldb::eLanguageTypeObjC:
682     // This is not a C++ expression but we enabled C++ as explained above.
683     // Remove all C++ keywords from the PP so that the user can still use
684     // variables that have C++ keywords as names (e.g. 'int template;').
685     RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable());
686     break;
687   default:
688     break;
689   }
690 
691   if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
692           target_sp->GetPersistentExpressionStateForLanguage(
693               lldb::eLanguageTypeC))) {
694     if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
695             clang_persistent_vars->GetClangModulesDeclVendor()) {
696       std::unique_ptr<PPCallbacks> pp_callbacks(
697           new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
698                                         m_compiler->getSourceManager()));
699       m_pp_callbacks =
700           static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
701       m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
702     }
703   }
704 
705   // 8. Most of this we get from the CompilerInstance, but we also want to give
706   // the context an ExternalASTSource.
707 
708   auto &PP = m_compiler->getPreprocessor();
709   auto &builtin_context = PP.getBuiltinInfo();
710   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
711                                      m_compiler->getLangOpts());
712 
713   m_compiler->createASTContext();
714   clang::ASTContext &ast_context = m_compiler->getASTContext();
715 
716   m_ast_context = std::make_unique<TypeSystemClang>(
717       "Expression ASTContext for '" + m_filename + "'", ast_context);
718 
719   std::string module_name("$__lldb_module");
720 
721   m_llvm_context = std::make_unique<LLVMContext>();
722   m_code_generator.reset(CreateLLVMCodeGen(
723       m_compiler->getDiagnostics(), module_name,
724       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
725       m_compiler->getCodeGenOpts(), *m_llvm_context));
726 }
727 
728 ClangExpressionParser::~ClangExpressionParser() = default;
729 
730 namespace {
731 
732 /// \class CodeComplete
733 ///
734 /// A code completion consumer for the clang Sema that is responsible for
735 /// creating the completion suggestions when a user requests completion
736 /// of an incomplete `expr` invocation.
737 class CodeComplete : public CodeCompleteConsumer {
738   CodeCompletionTUInfo m_info;
739 
740   std::string m_expr;
741   unsigned m_position = 0;
742   /// The printing policy we use when printing declarations for our completion
743   /// descriptions.
744   clang::PrintingPolicy m_desc_policy;
745 
746   struct CompletionWithPriority {
747     CompletionResult::Completion completion;
748     /// See CodeCompletionResult::Priority;
749     unsigned Priority;
750 
751     /// Establishes a deterministic order in a list of CompletionWithPriority.
752     /// The order returned here is the order in which the completions are
753     /// displayed to the user.
754     bool operator<(const CompletionWithPriority &o) const {
755       // High priority results should come first.
756       if (Priority != o.Priority)
757         return Priority > o.Priority;
758 
759       // Identical priority, so just make sure it's a deterministic order.
760       return completion.GetUniqueKey() < o.completion.GetUniqueKey();
761     }
762   };
763 
764   /// The stored completions.
765   /// Warning: These are in a non-deterministic order until they are sorted
766   /// and returned back to the caller.
767   std::vector<CompletionWithPriority> m_completions;
768 
769   /// Returns true if the given character can be used in an identifier.
770   /// This also returns true for numbers because for completion we usually
771   /// just iterate backwards over iterators.
772   ///
773   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
774   static bool IsIdChar(char c) {
775     return c == '_' || std::isalnum(c) || c == '$';
776   }
777 
778   /// Returns true if the given character is used to separate arguments
779   /// in the command line of lldb.
780   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
781 
782   /// Drops all tokens in front of the expression that are unrelated for
783   /// the completion of the cmd line. 'unrelated' means here that the token
784   /// is not interested for the lldb completion API result.
785   StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
786     if (cmd.empty())
787       return cmd;
788 
789     // If we are at the start of a word, then all tokens are unrelated to
790     // the current completion logic.
791     if (IsTokenSeparator(cmd.back()))
792       return StringRef();
793 
794     // Remove all previous tokens from the string as they are unrelated
795     // to completing the current token.
796     StringRef to_remove = cmd;
797     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
798       to_remove = to_remove.drop_back();
799     }
800     cmd = cmd.drop_front(to_remove.size());
801 
802     return cmd;
803   }
804 
805   /// Removes the last identifier token from the given cmd line.
806   StringRef removeLastToken(StringRef cmd) const {
807     while (!cmd.empty() && IsIdChar(cmd.back())) {
808       cmd = cmd.drop_back();
809     }
810     return cmd;
811   }
812 
813   /// Attempts to merge the given completion from the given position into the
814   /// existing command. Returns the completion string that can be returned to
815   /// the lldb completion API.
816   std::string mergeCompletion(StringRef existing, unsigned pos,
817                               StringRef completion) const {
818     StringRef existing_command = existing.substr(0, pos);
819     // We rewrite the last token with the completion, so let's drop that
820     // token from the command.
821     existing_command = removeLastToken(existing_command);
822     // We also should remove all previous tokens from the command as they
823     // would otherwise be added to the completion that already has the
824     // completion.
825     existing_command = dropUnrelatedFrontTokens(existing_command);
826     return existing_command.str() + completion.str();
827   }
828 
829 public:
830   /// Constructs a CodeComplete consumer that can be attached to a Sema.
831   ///
832   /// \param[out] expr
833   ///    The whole expression string that we are currently parsing. This
834   ///    string needs to be equal to the input the user typed, and NOT the
835   ///    final code that Clang is parsing.
836   /// \param[out] position
837   ///    The character position of the user cursor in the `expr` parameter.
838   ///
839   CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
840       : CodeCompleteConsumer(CodeCompleteOptions()),
841         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
842         m_position(position), m_desc_policy(ops) {
843 
844     // Ensure that the printing policy is producing a description that is as
845     // short as possible.
846     m_desc_policy.SuppressScope = true;
847     m_desc_policy.SuppressTagKeyword = true;
848     m_desc_policy.FullyQualifiedName = false;
849     m_desc_policy.TerseOutput = true;
850     m_desc_policy.IncludeNewlines = false;
851     m_desc_policy.UseVoidForZeroParams = false;
852     m_desc_policy.Bool = true;
853   }
854 
855   /// \name Code-completion filtering
856   /// Check if the result should be filtered out.
857   bool isResultFilteredOut(StringRef Filter,
858                            CodeCompletionResult Result) override {
859     // This code is mostly copied from CodeCompleteConsumer.
860     switch (Result.Kind) {
861     case CodeCompletionResult::RK_Declaration:
862       return !(
863           Result.Declaration->getIdentifier() &&
864           Result.Declaration->getIdentifier()->getName().startswith(Filter));
865     case CodeCompletionResult::RK_Keyword:
866       return !StringRef(Result.Keyword).startswith(Filter);
867     case CodeCompletionResult::RK_Macro:
868       return !Result.Macro->getName().startswith(Filter);
869     case CodeCompletionResult::RK_Pattern:
870       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
871     }
872     // If we trigger this assert or the above switch yields a warning, then
873     // CodeCompletionResult has been enhanced with more kinds of completion
874     // results. Expand the switch above in this case.
875     assert(false && "Unknown completion result type?");
876     // If we reach this, then we should just ignore whatever kind of unknown
877     // result we got back. We probably can't turn it into any kind of useful
878     // completion suggestion with the existing code.
879     return true;
880   }
881 
882 private:
883   /// Generate the completion strings for the given CodeCompletionResult.
884   /// Note that this function has to process results that could come in
885   /// non-deterministic order, so this function should have no side effects.
886   /// To make this easier to enforce, this function and all its parameters
887   /// should always be const-qualified.
888   /// \return Returns llvm::None if no completion should be provided for the
889   ///         given CodeCompletionResult.
890   llvm::Optional<CompletionWithPriority>
891   getCompletionForResult(const CodeCompletionResult &R) const {
892     std::string ToInsert;
893     std::string Description;
894     // Handle the different completion kinds that come from the Sema.
895     switch (R.Kind) {
896     case CodeCompletionResult::RK_Declaration: {
897       const NamedDecl *D = R.Declaration;
898       ToInsert = R.Declaration->getNameAsString();
899       // If we have a function decl that has no arguments we want to
900       // complete the empty parantheses for the user. If the function has
901       // arguments, we at least complete the opening bracket.
902       if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
903         if (F->getNumParams() == 0)
904           ToInsert += "()";
905         else
906           ToInsert += "(";
907         raw_string_ostream OS(Description);
908         F->print(OS, m_desc_policy, false);
909         OS.flush();
910       } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
911         Description = V->getType().getAsString(m_desc_policy);
912       } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
913         Description = F->getType().getAsString(m_desc_policy);
914       } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
915         // If we try to complete a namespace, then we can directly append
916         // the '::'.
917         if (!N->isAnonymousNamespace())
918           ToInsert += "::";
919       }
920       break;
921     }
922     case CodeCompletionResult::RK_Keyword:
923       ToInsert = R.Keyword;
924       break;
925     case CodeCompletionResult::RK_Macro:
926       ToInsert = R.Macro->getName().str();
927       break;
928     case CodeCompletionResult::RK_Pattern:
929       ToInsert = R.Pattern->getTypedText();
930       break;
931     }
932     // We also filter some internal lldb identifiers here. The user
933     // shouldn't see these.
934     if (llvm::StringRef(ToInsert).startswith("$__lldb_"))
935       return llvm::None;
936     if (ToInsert.empty())
937       return llvm::None;
938     // Merge the suggested Token into the existing command line to comply
939     // with the kind of result the lldb API expects.
940     std::string CompletionSuggestion =
941         mergeCompletion(m_expr, m_position, ToInsert);
942 
943     CompletionResult::Completion completion(CompletionSuggestion, Description,
944                                             CompletionMode::Normal);
945     return {{completion, R.Priority}};
946   }
947 
948 public:
949   /// Adds the completions to the given CompletionRequest.
950   void GetCompletions(CompletionRequest &request) {
951     // Bring m_completions into a deterministic order and pass it on to the
952     // CompletionRequest.
953     llvm::sort(m_completions);
954 
955     for (const CompletionWithPriority &C : m_completions)
956       request.AddCompletion(C.completion.GetCompletion(),
957                             C.completion.GetDescription(),
958                             C.completion.GetMode());
959   }
960 
961   /// \name Code-completion callbacks
962   /// Process the finalized code-completion results.
963   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
964                                   CodeCompletionResult *Results,
965                                   unsigned NumResults) override {
966 
967     // The Sema put the incomplete token we try to complete in here during
968     // lexing, so we need to retrieve it here to know what we are completing.
969     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
970 
971     // Iterate over all the results. Filter out results we don't want and
972     // process the rest.
973     for (unsigned I = 0; I != NumResults; ++I) {
974       // Filter the results with the information from the Sema.
975       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
976         continue;
977 
978       CodeCompletionResult &R = Results[I];
979       llvm::Optional<CompletionWithPriority> CompletionAndPriority =
980           getCompletionForResult(R);
981       if (!CompletionAndPriority)
982         continue;
983       m_completions.push_back(*CompletionAndPriority);
984     }
985   }
986 
987   /// \param S the semantic-analyzer object for which code-completion is being
988   /// done.
989   ///
990   /// \param CurrentArg the index of the current argument.
991   ///
992   /// \param Candidates an array of overload candidates.
993   ///
994   /// \param NumCandidates the number of overload candidates
995   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
996                                  OverloadCandidate *Candidates,
997                                  unsigned NumCandidates,
998                                  SourceLocation OpenParLoc) override {
999     // At the moment we don't filter out any overloaded candidates.
1000   }
1001 
1002   CodeCompletionAllocator &getAllocator() override {
1003     return m_info.getAllocator();
1004   }
1005 
1006   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
1007 };
1008 } // namespace
1009 
1010 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
1011                                      unsigned pos, unsigned typed_pos) {
1012   DiagnosticManager mgr;
1013   // We need the raw user expression here because that's what the CodeComplete
1014   // class uses to provide completion suggestions.
1015   // However, the `Text` method only gives us the transformed expression here.
1016   // To actually get the raw user input here, we have to cast our expression to
1017   // the LLVMUserExpression which exposes the right API. This should never fail
1018   // as we always have a ClangUserExpression whenever we call this.
1019   ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
1020   CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
1021                   typed_pos);
1022   // We don't need a code generator for parsing.
1023   m_code_generator.reset();
1024   // Start parsing the expression with our custom code completion consumer.
1025   ParseInternal(mgr, &CC, line, pos);
1026   CC.GetCompletions(request);
1027   return true;
1028 }
1029 
1030 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
1031   return ParseInternal(diagnostic_manager);
1032 }
1033 
1034 unsigned
1035 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
1036                                      CodeCompleteConsumer *completion_consumer,
1037                                      unsigned completion_line,
1038                                      unsigned completion_column) {
1039   ClangDiagnosticManagerAdapter *adapter =
1040       static_cast<ClangDiagnosticManagerAdapter *>(
1041           m_compiler->getDiagnostics().getClient());
1042 
1043   adapter->ResetManager(&diagnostic_manager);
1044 
1045   const char *expr_text = m_expr.Text();
1046 
1047   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
1048   bool created_main_file = false;
1049 
1050   // Clang wants to do completion on a real file known by Clang's file manager,
1051   // so we have to create one to make this work.
1052   // TODO: We probably could also simulate to Clang's file manager that there
1053   // is a real file that contains our code.
1054   bool should_create_file = completion_consumer != nullptr;
1055 
1056   // We also want a real file on disk if we generate full debug info.
1057   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
1058                         codegenoptions::FullDebugInfo;
1059 
1060   if (should_create_file) {
1061     int temp_fd = -1;
1062     llvm::SmallString<128> result_path;
1063     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
1064       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1065       std::string temp_source_path = tmpdir_file_spec.GetPath();
1066       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1067     } else {
1068       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1069     }
1070 
1071     if (temp_fd != -1) {
1072       lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true);
1073       const size_t expr_text_len = strlen(expr_text);
1074       size_t bytes_written = expr_text_len;
1075       if (file.Write(expr_text, bytes_written).Success()) {
1076         if (bytes_written == expr_text_len) {
1077           file.Close();
1078           if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef(
1079                   result_path)) {
1080             source_mgr.setMainFileID(source_mgr.createFileID(
1081                 *fileEntry,
1082                 SourceLocation(), SrcMgr::C_User));
1083             created_main_file = true;
1084           }
1085         }
1086       }
1087     }
1088   }
1089 
1090   if (!created_main_file) {
1091     std::unique_ptr<MemoryBuffer> memory_buffer =
1092         MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1093     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1094   }
1095 
1096   adapter->BeginSourceFile(m_compiler->getLangOpts(),
1097                            &m_compiler->getPreprocessor());
1098 
1099   ClangExpressionHelper *type_system_helper =
1100       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1101 
1102   // If we want to parse for code completion, we need to attach our code
1103   // completion consumer to the Sema and specify a completion position.
1104   // While parsing the Sema will call this consumer with the provided
1105   // completion suggestions.
1106   if (completion_consumer) {
1107     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
1108     auto &PP = m_compiler->getPreprocessor();
1109     // Lines and columns start at 1 in Clang, but code completion positions are
1110     // indexed from 0, so we need to add 1 to the line and column here.
1111     ++completion_line;
1112     ++completion_column;
1113     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
1114   }
1115 
1116   ASTConsumer *ast_transformer =
1117       type_system_helper->ASTTransformer(m_code_generator.get());
1118 
1119   std::unique_ptr<clang::ASTConsumer> Consumer;
1120   if (ast_transformer) {
1121     Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1122   } else if (m_code_generator) {
1123     Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1124   } else {
1125     Consumer = std::make_unique<ASTConsumer>();
1126   }
1127 
1128   clang::ASTContext &ast_context = m_compiler->getASTContext();
1129 
1130   m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1131                                *Consumer, TU_Complete, completion_consumer));
1132   m_compiler->setASTConsumer(std::move(Consumer));
1133 
1134   if (ast_context.getLangOpts().Modules) {
1135     m_compiler->createASTReader();
1136     m_ast_context->setSema(&m_compiler->getSema());
1137   }
1138 
1139   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1140   if (decl_map) {
1141     decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1142     decl_map->InstallDiagnosticManager(diagnostic_manager);
1143 
1144     clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1145 
1146     if (ast_context.getExternalSource()) {
1147       auto module_wrapper =
1148           new ExternalASTSourceWrapper(ast_context.getExternalSource());
1149 
1150       auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1151 
1152       auto multiplexer =
1153           new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1154       IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1155       ast_context.setExternalSource(Source);
1156     } else {
1157       ast_context.setExternalSource(ast_source);
1158     }
1159     decl_map->InstallASTContext(*m_ast_context);
1160   }
1161 
1162   // Check that the ASTReader is properly attached to ASTContext and Sema.
1163   if (ast_context.getLangOpts().Modules) {
1164     assert(m_compiler->getASTContext().getExternalSource() &&
1165            "ASTContext doesn't know about the ASTReader?");
1166     assert(m_compiler->getSema().getExternalSource() &&
1167            "Sema doesn't know about the ASTReader?");
1168   }
1169 
1170   {
1171     llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1172         &m_compiler->getSema());
1173     ParseAST(m_compiler->getSema(), false, false);
1174   }
1175 
1176   // Make sure we have no pointer to the Sema we are about to destroy.
1177   if (ast_context.getLangOpts().Modules)
1178     m_ast_context->setSema(nullptr);
1179   // Destroy the Sema. This is necessary because we want to emulate the
1180   // original behavior of ParseAST (which also destroys the Sema after parsing).
1181   m_compiler->setSema(nullptr);
1182 
1183   adapter->EndSourceFile();
1184 
1185   unsigned num_errors = adapter->getNumErrors();
1186 
1187   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1188     num_errors++;
1189     diagnostic_manager.PutString(eDiagnosticSeverityError,
1190                                  "while importing modules:");
1191     diagnostic_manager.AppendMessageToDiagnostic(
1192         m_pp_callbacks->getErrorString());
1193   }
1194 
1195   if (!num_errors) {
1196     type_system_helper->CommitPersistentDecls();
1197   }
1198 
1199   adapter->ResetManager();
1200 
1201   return num_errors;
1202 }
1203 
1204 std::string
1205 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1206   std::string abi;
1207 
1208   if (target_arch.IsMIPS()) {
1209     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1210     case ArchSpec::eMIPSABI_N64:
1211       abi = "n64";
1212       break;
1213     case ArchSpec::eMIPSABI_N32:
1214       abi = "n32";
1215       break;
1216     case ArchSpec::eMIPSABI_O32:
1217       abi = "o32";
1218       break;
1219     default:
1220       break;
1221     }
1222   }
1223   return abi;
1224 }
1225 
1226 /// Applies the given Fix-It hint to the given commit.
1227 static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1228   // This is cobbed from clang::Rewrite::FixItRewriter.
1229   if (fixit.CodeToInsert.empty()) {
1230     if (fixit.InsertFromRange.isValid()) {
1231       commit.insertFromRange(fixit.RemoveRange.getBegin(),
1232                              fixit.InsertFromRange, /*afterToken=*/false,
1233                              fixit.BeforePreviousInsertions);
1234       return;
1235     }
1236     commit.remove(fixit.RemoveRange);
1237     return;
1238   }
1239   if (fixit.RemoveRange.isTokenRange() ||
1240       fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1241     commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1242     return;
1243   }
1244   commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1245                 /*afterToken=*/false, fixit.BeforePreviousInsertions);
1246 }
1247 
1248 bool ClangExpressionParser::RewriteExpression(
1249     DiagnosticManager &diagnostic_manager) {
1250   clang::SourceManager &source_manager = m_compiler->getSourceManager();
1251   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1252                                    nullptr);
1253   clang::edit::Commit commit(editor);
1254   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1255 
1256   class RewritesReceiver : public edit::EditsReceiver {
1257     Rewriter &rewrite;
1258 
1259   public:
1260     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1261 
1262     void insert(SourceLocation loc, StringRef text) override {
1263       rewrite.InsertText(loc, text);
1264     }
1265     void replace(CharSourceRange range, StringRef text) override {
1266       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1267     }
1268   };
1269 
1270   RewritesReceiver rewrites_receiver(rewriter);
1271 
1272   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1273   size_t num_diags = diagnostics.size();
1274   if (num_diags == 0)
1275     return false;
1276 
1277   for (const auto &diag : diagnostic_manager.Diagnostics()) {
1278     const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1279     if (!diagnostic)
1280       continue;
1281     if (!diagnostic->HasFixIts())
1282       continue;
1283     for (const FixItHint &fixit : diagnostic->FixIts())
1284       ApplyFixIt(fixit, commit);
1285   }
1286 
1287   // FIXME - do we want to try to propagate specific errors here?
1288   if (!commit.isCommitable())
1289     return false;
1290   else if (!editor.commit(commit))
1291     return false;
1292 
1293   // Now play all the edits, and stash the result in the diagnostic manager.
1294   editor.applyRewrites(rewrites_receiver);
1295   RewriteBuffer &main_file_buffer =
1296       rewriter.getEditBuffer(source_manager.getMainFileID());
1297 
1298   std::string fixed_expression;
1299   llvm::raw_string_ostream out_stream(fixed_expression);
1300 
1301   main_file_buffer.write(out_stream);
1302   out_stream.flush();
1303   diagnostic_manager.SetFixedExpression(fixed_expression);
1304 
1305   return true;
1306 }
1307 
1308 static bool FindFunctionInModule(ConstString &mangled_name,
1309                                  llvm::Module *module, const char *orig_name) {
1310   for (const auto &func : module->getFunctionList()) {
1311     const StringRef &name = func.getName();
1312     if (name.find(orig_name) != StringRef::npos) {
1313       mangled_name.SetString(name);
1314       return true;
1315     }
1316   }
1317 
1318   return false;
1319 }
1320 
1321 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1322     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1323     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1324     bool &can_interpret, ExecutionPolicy execution_policy) {
1325   func_addr = LLDB_INVALID_ADDRESS;
1326   func_end = LLDB_INVALID_ADDRESS;
1327   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1328 
1329   lldb_private::Status err;
1330 
1331   std::unique_ptr<llvm::Module> llvm_module_up(
1332       m_code_generator->ReleaseModule());
1333 
1334   if (!llvm_module_up) {
1335     err.SetErrorToGenericError();
1336     err.SetErrorString("IR doesn't contain a module");
1337     return err;
1338   }
1339 
1340   ConstString function_name;
1341 
1342   if (execution_policy != eExecutionPolicyTopLevel) {
1343     // Find the actual name of the function (it's often mangled somehow)
1344 
1345     if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1346                               m_expr.FunctionName())) {
1347       err.SetErrorToGenericError();
1348       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1349                                    m_expr.FunctionName());
1350       return err;
1351     } else {
1352       LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1353                 m_expr.FunctionName());
1354     }
1355   }
1356 
1357   SymbolContext sc;
1358 
1359   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1360     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1361   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1362     sc.target_sp = target_sp;
1363   }
1364 
1365   LLVMUserExpression::IRPasses custom_passes;
1366   {
1367     auto lang = m_expr.Language();
1368     LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1369               Language::GetNameForLanguageType(lang));
1370     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1371     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1372       auto runtime = process_sp->GetLanguageRuntime(lang);
1373       if (runtime)
1374         runtime->GetIRPasses(custom_passes);
1375     }
1376   }
1377 
1378   if (custom_passes.EarlyPasses) {
1379     LLDB_LOGF(log,
1380               "%s - Running Early IR Passes from LanguageRuntime on "
1381               "expression module '%s'",
1382               __FUNCTION__, m_expr.FunctionName());
1383 
1384     custom_passes.EarlyPasses->run(*llvm_module_up);
1385   }
1386 
1387   execution_unit_sp = std::make_shared<IRExecutionUnit>(
1388       m_llvm_context, // handed off here
1389       llvm_module_up, // handed off here
1390       function_name, exe_ctx.GetTargetSP(), sc,
1391       m_compiler->getTargetOpts().Features);
1392 
1393   ClangExpressionHelper *type_system_helper =
1394       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1395   ClangExpressionDeclMap *decl_map =
1396       type_system_helper->DeclMap(); // result can be NULL
1397 
1398   if (decl_map) {
1399     StreamString error_stream;
1400     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1401                               *execution_unit_sp, error_stream,
1402                               function_name.AsCString());
1403 
1404     if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1405       err.SetErrorString(error_stream.GetString());
1406       return err;
1407     }
1408 
1409     Process *process = exe_ctx.GetProcessPtr();
1410 
1411     if (execution_policy != eExecutionPolicyAlways &&
1412         execution_policy != eExecutionPolicyTopLevel) {
1413       lldb_private::Status interpret_error;
1414 
1415       bool interpret_function_calls =
1416           !process ? false : process->CanInterpretFunctionCalls();
1417       can_interpret = IRInterpreter::CanInterpret(
1418           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1419           interpret_error, interpret_function_calls);
1420 
1421       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1422         err.SetErrorStringWithFormat(
1423             "Can't evaluate the expression without a running target due to: %s",
1424             interpret_error.AsCString());
1425         return err;
1426       }
1427     }
1428 
1429     if (!process && execution_policy == eExecutionPolicyAlways) {
1430       err.SetErrorString("Expression needed to run in the target, but the "
1431                          "target can't be run");
1432       return err;
1433     }
1434 
1435     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1436       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1437                          "target, but the target can't be run");
1438       return err;
1439     }
1440 
1441     if (execution_policy == eExecutionPolicyAlways ||
1442         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1443       if (m_expr.NeedsValidation() && process) {
1444         if (!process->GetDynamicCheckers()) {
1445           ClangDynamicCheckerFunctions *dynamic_checkers =
1446               new ClangDynamicCheckerFunctions();
1447 
1448           DiagnosticManager install_diagnostics;
1449 
1450           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1451             if (install_diagnostics.Diagnostics().size())
1452               err.SetErrorString(install_diagnostics.GetString().c_str());
1453             else
1454               err.SetErrorString("couldn't install checkers, unknown error");
1455 
1456             return err;
1457           }
1458 
1459           process->SetDynamicCheckers(dynamic_checkers);
1460 
1461           LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1462                          "Finished installing dynamic checkers ==");
1463         }
1464 
1465         if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1466                 process->GetDynamicCheckers())) {
1467           IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1468                                             function_name.AsCString());
1469 
1470           llvm::Module *module = execution_unit_sp->GetModule();
1471           if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1472             err.SetErrorToGenericError();
1473             err.SetErrorString("Couldn't add dynamic checks to the expression");
1474             return err;
1475           }
1476 
1477           if (custom_passes.LatePasses) {
1478             LLDB_LOGF(log,
1479                       "%s - Running Late IR Passes from LanguageRuntime on "
1480                       "expression module '%s'",
1481                       __FUNCTION__, m_expr.FunctionName());
1482 
1483             custom_passes.LatePasses->run(*module);
1484           }
1485         }
1486       }
1487     }
1488 
1489     if (execution_policy == eExecutionPolicyAlways ||
1490         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1491       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1492     }
1493   } else {
1494     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1495   }
1496 
1497   return err;
1498 }
1499 
1500 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1501     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1502   lldb_private::Status err;
1503 
1504   lldbassert(execution_unit_sp.get());
1505   lldbassert(exe_ctx.HasThreadScope());
1506 
1507   if (!execution_unit_sp.get()) {
1508     err.SetErrorString(
1509         "can't run static initializers for a NULL execution unit");
1510     return err;
1511   }
1512 
1513   if (!exe_ctx.HasThreadScope()) {
1514     err.SetErrorString("can't run static initializers without a thread");
1515     return err;
1516   }
1517 
1518   std::vector<lldb::addr_t> static_initializers;
1519 
1520   execution_unit_sp->GetStaticInitializers(static_initializers);
1521 
1522   for (lldb::addr_t static_initializer : static_initializers) {
1523     EvaluateExpressionOptions options;
1524 
1525     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1526         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1527         llvm::ArrayRef<lldb::addr_t>(), options));
1528 
1529     DiagnosticManager execution_errors;
1530     lldb::ExpressionResults results =
1531         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1532             exe_ctx, call_static_initializer, options, execution_errors);
1533 
1534     if (results != lldb::eExpressionCompleted) {
1535       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1536                                    execution_errors.GetString().c_str());
1537       return err;
1538     }
1539   }
1540 
1541   return err;
1542 }
1543