1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/ExternalASTSource.h"
12 #include "clang/AST/PrettyPrinter.h"
13 #include "clang/Basic/Builtins.h"
14 #include "clang/Basic/DiagnosticIDs.h"
15 #include "clang/Basic/SourceLocation.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/Version.h"
18 #include "clang/CodeGen/CodeGenAction.h"
19 #include "clang/CodeGen/ModuleBuilder.h"
20 #include "clang/Edit/Commit.h"
21 #include "clang/Edit/EditedSource.h"
22 #include "clang/Edit/EditsReceiver.h"
23 #include "clang/Frontend/CompilerInstance.h"
24 #include "clang/Frontend/CompilerInvocation.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/FrontendPluginRegistry.h"
28 #include "clang/Frontend/TextDiagnosticBuffer.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Parse/ParseAST.h"
32 #include "clang/Rewrite/Core/Rewriter.h"
33 #include "clang/Rewrite/Frontend/FrontendActions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaConsumer.h"
37 
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ExecutionEngine/ExecutionEngine.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/TargetSelect.h"
44 
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/DynamicLibrary.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Host.h"
50 #include "llvm/Support/MemoryBuffer.h"
51 #include "llvm/Support/Signals.h"
52 
53 #include "ClangDiagnostic.h"
54 #include "ClangExpressionParser.h"
55 #include "ClangUserExpression.h"
56 
57 #include "ASTUtils.h"
58 #include "ClangASTSource.h"
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionDeclMap.h"
61 #include "ClangExpressionHelper.h"
62 #include "ClangExpressionParser.h"
63 #include "ClangHost.h"
64 #include "ClangModulesDeclVendor.h"
65 #include "ClangPersistentVariables.h"
66 #include "IRDynamicChecks.h"
67 #include "IRForTarget.h"
68 #include "ModuleDependencyCollector.h"
69 
70 #include "lldb/Core/Debugger.h"
71 #include "lldb/Core/Disassembler.h"
72 #include "lldb/Core/Module.h"
73 #include "lldb/Core/StreamFile.h"
74 #include "lldb/Expression/IRExecutionUnit.h"
75 #include "lldb/Expression/IRInterpreter.h"
76 #include "lldb/Host/File.h"
77 #include "lldb/Host/HostInfo.h"
78 #include "lldb/Symbol/ClangASTContext.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/Process.h"
83 #include "lldb/Target/Target.h"
84 #include "lldb/Target/ThreadPlanCallFunction.h"
85 #include "lldb/Utility/DataBufferHeap.h"
86 #include "lldb/Utility/LLDBAssert.h"
87 #include "lldb/Utility/Log.h"
88 #include "lldb/Utility/Reproducer.h"
89 #include "lldb/Utility/Stream.h"
90 #include "lldb/Utility/StreamString.h"
91 #include "lldb/Utility/StringList.h"
92 
93 #include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
94 
95 #include <cctype>
96 #include <memory>
97 
98 using namespace clang;
99 using namespace llvm;
100 using namespace lldb_private;
101 
102 //===----------------------------------------------------------------------===//
103 // Utility Methods for Clang
104 //===----------------------------------------------------------------------===//
105 
106 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
107   ClangModulesDeclVendor &m_decl_vendor;
108   ClangPersistentVariables &m_persistent_vars;
109   clang::SourceManager &m_source_mgr;
110   StreamString m_error_stream;
111   bool m_has_errors = false;
112 
113 public:
114   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
115                             ClangPersistentVariables &persistent_vars,
116                             clang::SourceManager &source_mgr)
117       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
118         m_source_mgr(source_mgr) {}
119 
120   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
121                     const clang::Module * /*null*/) override {
122     // Ignore modules that are imported in the wrapper code as these are not
123     // loaded by the user.
124     llvm::StringRef filename =
125         m_source_mgr.getPresumedLoc(import_location).getFilename();
126     if (filename == ClangExpressionSourceCode::g_prefix_file_name)
127       return;
128 
129     SourceModule module;
130 
131     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
132       module.path.push_back(ConstString(component.first->getName()));
133 
134     StreamString error_stream;
135 
136     ClangModulesDeclVendor::ModuleVector exported_modules;
137     if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
138       m_has_errors = true;
139 
140     for (ClangModulesDeclVendor::ModuleID module : exported_modules)
141       m_persistent_vars.AddHandLoadedClangModule(module);
142   }
143 
144   bool hasErrors() { return m_has_errors; }
145 
146   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
147 };
148 
149 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
150 public:
151   ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
152     DiagnosticOptions *m_options = new DiagnosticOptions(opts);
153     m_options->ShowPresumedLoc = true;
154     m_options->ShowLevel = false;
155     m_os.reset(new llvm::raw_string_ostream(m_output));
156     m_passthrough.reset(
157         new clang::TextDiagnosticPrinter(*m_os, m_options, false));
158   }
159 
160   void ResetManager(DiagnosticManager *manager = nullptr) {
161     m_manager = manager;
162   }
163 
164   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
165                         const clang::Diagnostic &Info) override {
166     if (!m_manager) {
167       // We have no DiagnosticManager before/after parsing but we still could
168       // receive diagnostics (e.g., by the ASTImporter failing to copy decls
169       // when we move the expression result ot the ScratchASTContext). Let's at
170       // least log these diagnostics until we find a way to properly render
171       // them and display them to the user.
172       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
173       if (log) {
174         llvm::SmallVector<char, 32> diag_str;
175         Info.FormatDiagnostic(diag_str);
176         diag_str.push_back('\0');
177         const char *plain_diag = diag_str.data();
178         LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
179       }
180       return;
181     }
182 
183     // Render diagnostic message to m_output.
184     m_output.clear();
185     m_passthrough->HandleDiagnostic(DiagLevel, Info);
186     m_os->flush();
187 
188     lldb_private::DiagnosticSeverity severity;
189     bool make_new_diagnostic = true;
190 
191     switch (DiagLevel) {
192     case DiagnosticsEngine::Level::Fatal:
193     case DiagnosticsEngine::Level::Error:
194       severity = eDiagnosticSeverityError;
195       break;
196     case DiagnosticsEngine::Level::Warning:
197       severity = eDiagnosticSeverityWarning;
198       break;
199     case DiagnosticsEngine::Level::Remark:
200     case DiagnosticsEngine::Level::Ignored:
201       severity = eDiagnosticSeverityRemark;
202       break;
203     case DiagnosticsEngine::Level::Note:
204       m_manager->AppendMessageToDiagnostic(m_output);
205       make_new_diagnostic = false;
206     }
207     if (make_new_diagnostic) {
208       // ClangDiagnostic messages are expected to have no whitespace/newlines
209       // around them.
210       std::string stripped_output = llvm::StringRef(m_output).trim();
211 
212       auto new_diagnostic = std::make_unique<ClangDiagnostic>(
213           stripped_output, severity, Info.getID());
214 
215       // Don't store away warning fixits, since the compiler doesn't have
216       // enough context in an expression for the warning to be useful.
217       // FIXME: Should we try to filter out FixIts that apply to our generated
218       // code, and not the user's expression?
219       if (severity == eDiagnosticSeverityError) {
220         size_t num_fixit_hints = Info.getNumFixItHints();
221         for (size_t i = 0; i < num_fixit_hints; i++) {
222           const clang::FixItHint &fixit = Info.getFixItHint(i);
223           if (!fixit.isNull())
224             new_diagnostic->AddFixitHint(fixit);
225         }
226       }
227 
228       m_manager->AddDiagnostic(std::move(new_diagnostic));
229     }
230   }
231 
232   clang::TextDiagnosticPrinter *GetPassthrough() { return m_passthrough.get(); }
233 
234 private:
235   DiagnosticManager *m_manager = nullptr;
236   std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
237   /// Output stream of m_passthrough.
238   std::shared_ptr<llvm::raw_string_ostream> m_os;
239   /// Output string filled by m_os.
240   std::string m_output;
241 };
242 
243 static void SetupModuleHeaderPaths(CompilerInstance *compiler,
244                                    std::vector<std::string> include_directories,
245                                    lldb::TargetSP target_sp) {
246   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
247 
248   HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
249 
250   for (const std::string &dir : include_directories) {
251     search_opts.AddPath(dir, frontend::System, false, true);
252     LLDB_LOG(log, "Added user include dir: {0}", dir);
253   }
254 
255   llvm::SmallString<128> module_cache;
256   auto props = ModuleList::GetGlobalModuleListProperties();
257   props.GetClangModulesCachePath().GetPath(module_cache);
258   search_opts.ModuleCachePath = module_cache.str();
259   LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
260 
261   search_opts.ResourceDir = GetClangResourceDir().GetPath();
262 
263   search_opts.ImplicitModuleMaps = true;
264 }
265 
266 //===----------------------------------------------------------------------===//
267 // Implementation of ClangExpressionParser
268 //===----------------------------------------------------------------------===//
269 
270 ClangExpressionParser::ClangExpressionParser(
271     ExecutionContextScope *exe_scope, Expression &expr,
272     bool generate_debug_info, std::vector<std::string> include_directories,
273     std::string filename)
274     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
275       m_pp_callbacks(nullptr),
276       m_include_directories(std::move(include_directories)),
277       m_filename(std::move(filename)) {
278   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
279 
280   // We can't compile expressions without a target.  So if the exe_scope is
281   // null or doesn't have a target, then we just need to get out of here.  I'll
282   // lldb_assert and not make any of the compiler objects since
283   // I can't return errors directly from the constructor.  Further calls will
284   // check if the compiler was made and
285   // bag out if it wasn't.
286 
287   if (!exe_scope) {
288     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
289                 __FUNCTION__, __FILE__, __LINE__);
290     return;
291   }
292 
293   lldb::TargetSP target_sp;
294   target_sp = exe_scope->CalculateTarget();
295   if (!target_sp) {
296     lldb_assert(target_sp.get(),
297                 "Can't make an expression parser with a null target.",
298                 __FUNCTION__, __FILE__, __LINE__);
299     return;
300   }
301 
302   // 1. Create a new compiler instance.
303   m_compiler.reset(new CompilerInstance());
304 
305   // When capturing a reproducer, hook up the file collector with clang to
306   // collector modules and headers.
307   if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
308     repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
309     m_compiler->setModuleDepCollector(
310         std::make_shared<ModuleDependencyCollectorAdaptor>(
311             fp.GetFileCollector()));
312     DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
313     opts.IncludeSystemHeaders = true;
314     opts.IncludeModuleFiles = true;
315   }
316 
317   // Make sure clang uses the same VFS as LLDB.
318   m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
319 
320   lldb::LanguageType frame_lang =
321       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
322   bool overridden_target_opts = false;
323   lldb_private::LanguageRuntime *lang_rt = nullptr;
324 
325   std::string abi;
326   ArchSpec target_arch;
327   target_arch = target_sp->GetArchitecture();
328 
329   const auto target_machine = target_arch.GetMachine();
330 
331   // If the expression is being evaluated in the context of an existing stack
332   // frame, we introspect to see if the language runtime is available.
333 
334   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
335   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
336 
337   // Make sure the user hasn't provided a preferred execution language with
338   // `expression --language X -- ...`
339   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
340     frame_lang = frame_sp->GetLanguage();
341 
342   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
343     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
344     LLDB_LOGF(log, "Frame has language of type %s",
345               Language::GetNameForLanguageType(frame_lang));
346   }
347 
348   // 2. Configure the compiler with a set of default options that are
349   // appropriate for most situations.
350   if (target_arch.IsValid()) {
351     std::string triple = target_arch.GetTriple().str();
352     m_compiler->getTargetOpts().Triple = triple;
353     LLDB_LOGF(log, "Using %s as the target triple",
354               m_compiler->getTargetOpts().Triple.c_str());
355   } else {
356     // If we get here we don't have a valid target and just have to guess.
357     // Sometimes this will be ok to just use the host target triple (when we
358     // evaluate say "2+3", but other expressions like breakpoint conditions and
359     // other things that _are_ target specific really shouldn't just be using
360     // the host triple. In such a case the language runtime should expose an
361     // overridden options set (3), below.
362     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
363     LLDB_LOGF(log, "Using default target triple of %s",
364               m_compiler->getTargetOpts().Triple.c_str());
365   }
366   // Now add some special fixes for known architectures: Any arm32 iOS
367   // environment, but not on arm64
368   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
369       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
370       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
371     m_compiler->getTargetOpts().ABI = "apcs-gnu";
372   }
373   // Supported subsets of x86
374   if (target_machine == llvm::Triple::x86 ||
375       target_machine == llvm::Triple::x86_64) {
376     m_compiler->getTargetOpts().Features.push_back("+sse");
377     m_compiler->getTargetOpts().Features.push_back("+sse2");
378   }
379 
380   // Set the target CPU to generate code for. This will be empty for any CPU
381   // that doesn't really need to make a special
382   // CPU string.
383   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
384 
385   // Set the target ABI
386   abi = GetClangTargetABI(target_arch);
387   if (!abi.empty())
388     m_compiler->getTargetOpts().ABI = abi;
389 
390   // 3. Now allow the runtime to provide custom configuration options for the
391   // target. In this case, a specialized language runtime is available and we
392   // can query it for extra options. For 99% of use cases, this will not be
393   // needed and should be provided when basic platform detection is not enough.
394   if (lang_rt)
395     overridden_target_opts =
396         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
397 
398   if (overridden_target_opts)
399     if (log && log->GetVerbose()) {
400       LLDB_LOGV(
401           log, "Using overridden target options for the expression evaluation");
402 
403       auto opts = m_compiler->getTargetOpts();
404       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
405       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
406       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
407       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
408       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
409       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
410       StringList::LogDump(log, opts.Features, "Features");
411     }
412 
413   // 4. Create and install the target on the compiler.
414   m_compiler->createDiagnostics();
415   auto target_info = TargetInfo::CreateTargetInfo(
416       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
417   if (log) {
418     LLDB_LOGF(log, "Using SIMD alignment: %d",
419               target_info->getSimdDefaultAlign());
420     LLDB_LOGF(log, "Target datalayout string: '%s'",
421               target_info->getDataLayout().getStringRepresentation().c_str());
422     LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
423     LLDB_LOGF(log, "Target vector alignment: %d",
424               target_info->getMaxVectorAlign());
425   }
426   m_compiler->setTarget(target_info);
427 
428   assert(m_compiler->hasTarget());
429 
430   // 5. Set language options.
431   lldb::LanguageType language = expr.Language();
432   LangOptions &lang_opts = m_compiler->getLangOpts();
433 
434   switch (language) {
435   case lldb::eLanguageTypeC:
436   case lldb::eLanguageTypeC89:
437   case lldb::eLanguageTypeC99:
438   case lldb::eLanguageTypeC11:
439     // FIXME: the following language option is a temporary workaround,
440     // to "ask for C, get C++."
441     // For now, the expression parser must use C++ anytime the language is a C
442     // family language, because the expression parser uses features of C++ to
443     // capture values.
444     lang_opts.CPlusPlus = true;
445     break;
446   case lldb::eLanguageTypeObjC:
447     lang_opts.ObjC = true;
448     // FIXME: the following language option is a temporary workaround,
449     // to "ask for ObjC, get ObjC++" (see comment above).
450     lang_opts.CPlusPlus = true;
451 
452     // Clang now sets as default C++14 as the default standard (with
453     // GNU extensions), so we do the same here to avoid mismatches that
454     // cause compiler error when evaluating expressions (e.g. nullptr not found
455     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
456     // two lines below) so we decide to be consistent with that, but this could
457     // be re-evaluated in the future.
458     lang_opts.CPlusPlus11 = true;
459     break;
460   case lldb::eLanguageTypeC_plus_plus:
461   case lldb::eLanguageTypeC_plus_plus_11:
462   case lldb::eLanguageTypeC_plus_plus_14:
463     lang_opts.CPlusPlus11 = true;
464     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
465     LLVM_FALLTHROUGH;
466   case lldb::eLanguageTypeC_plus_plus_03:
467     lang_opts.CPlusPlus = true;
468     if (process_sp)
469       lang_opts.ObjC =
470           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
471     break;
472   case lldb::eLanguageTypeObjC_plus_plus:
473   case lldb::eLanguageTypeUnknown:
474   default:
475     lang_opts.ObjC = true;
476     lang_opts.CPlusPlus = true;
477     lang_opts.CPlusPlus11 = true;
478     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
479     break;
480   }
481 
482   lang_opts.Bool = true;
483   lang_opts.WChar = true;
484   lang_opts.Blocks = true;
485   lang_opts.DebuggerSupport =
486       true; // Features specifically for debugger clients
487   if (expr.DesiredResultType() == Expression::eResultTypeId)
488     lang_opts.DebuggerCastResultToId = true;
489 
490   lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
491                                .CharIsSignedByDefault();
492 
493   // Spell checking is a nice feature, but it ends up completing a lot of types
494   // that we didn't strictly speaking need to complete. As a result, we spend a
495   // long time parsing and importing debug information.
496   lang_opts.SpellChecking = false;
497 
498   auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
499   if (clang_expr && clang_expr->DidImportCxxModules()) {
500     LLDB_LOG(log, "Adding lang options for importing C++ modules");
501 
502     lang_opts.Modules = true;
503     // We want to implicitly build modules.
504     lang_opts.ImplicitModules = true;
505     // To automatically import all submodules when we import 'std'.
506     lang_opts.ModulesLocalVisibility = false;
507 
508     // We use the @import statements, so we need this:
509     // FIXME: We could use the modules-ts, but that currently doesn't work.
510     lang_opts.ObjC = true;
511 
512     // Options we need to parse libc++ code successfully.
513     // FIXME: We should ask the driver for the appropriate default flags.
514     lang_opts.GNUMode = true;
515     lang_opts.GNUKeywords = true;
516     lang_opts.DoubleSquareBracketAttributes = true;
517     lang_opts.CPlusPlus11 = true;
518 
519     // The Darwin libc expects this macro to be set.
520     lang_opts.GNUCVersion = 40201;
521 
522     SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
523                            target_sp);
524   }
525 
526   if (process_sp && lang_opts.ObjC) {
527     if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
528       if (runtime->GetRuntimeVersion() ==
529           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
530         lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
531       else
532         lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
533                                   VersionTuple(10, 7));
534 
535       if (runtime->HasNewLiteralsAndIndexing())
536         lang_opts.DebuggerObjCLiteral = true;
537     }
538   }
539 
540   lang_opts.ThreadsafeStatics = false;
541   lang_opts.AccessControl = false; // Debuggers get universal access
542   lang_opts.DollarIdents = true;   // $ indicates a persistent variable name
543   // We enable all builtin functions beside the builtins from libc/libm (e.g.
544   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
545   // additionally enabling them as expandable builtins is breaking Clang.
546   lang_opts.NoBuiltin = true;
547 
548   // Set CodeGen options
549   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
550   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
551   m_compiler->getCodeGenOpts().setFramePointer(
552                                     CodeGenOptions::FramePointerKind::All);
553   if (generate_debug_info)
554     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
555   else
556     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
557 
558   // Disable some warnings.
559   m_compiler->getDiagnostics().setSeverityForGroup(
560       clang::diag::Flavor::WarningOrError, "unused-value",
561       clang::diag::Severity::Ignored, SourceLocation());
562   m_compiler->getDiagnostics().setSeverityForGroup(
563       clang::diag::Flavor::WarningOrError, "odr",
564       clang::diag::Severity::Ignored, SourceLocation());
565 
566   // Inform the target of the language options
567   //
568   // FIXME: We shouldn't need to do this, the target should be immutable once
569   // created. This complexity should be lifted elsewhere.
570   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
571 
572   // 6. Set up the diagnostic buffer for reporting errors
573 
574   auto diag_mgr = new ClangDiagnosticManagerAdapter(
575       m_compiler->getDiagnostics().getDiagnosticOptions());
576   m_compiler->getDiagnostics().setClient(diag_mgr);
577 
578   // 7. Set up the source management objects inside the compiler
579   m_compiler->createFileManager();
580   if (!m_compiler->hasSourceManager())
581     m_compiler->createSourceManager(m_compiler->getFileManager());
582   m_compiler->createPreprocessor(TU_Complete);
583 
584   if (ClangModulesDeclVendor *decl_vendor =
585           target_sp->GetClangModulesDeclVendor()) {
586     if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
587             target_sp->GetPersistentExpressionStateForLanguage(
588                 lldb::eLanguageTypeC))) {
589       std::unique_ptr<PPCallbacks> pp_callbacks(
590           new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
591                                         m_compiler->getSourceManager()));
592       m_pp_callbacks =
593           static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
594       m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
595     }
596   }
597 
598   // 8. Most of this we get from the CompilerInstance, but we also want to give
599   // the context an ExternalASTSource.
600 
601   auto &PP = m_compiler->getPreprocessor();
602   auto &builtin_context = PP.getBuiltinInfo();
603   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
604                                      m_compiler->getLangOpts());
605 
606   m_compiler->createASTContext();
607   clang::ASTContext &ast_context = m_compiler->getASTContext();
608 
609   m_ast_context.reset(new ClangASTContext(ast_context));
610 
611   std::string module_name("$__lldb_module");
612 
613   m_llvm_context.reset(new LLVMContext());
614   m_code_generator.reset(CreateLLVMCodeGen(
615       m_compiler->getDiagnostics(), module_name,
616       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
617       m_compiler->getCodeGenOpts(), *m_llvm_context));
618 }
619 
620 ClangExpressionParser::~ClangExpressionParser() {}
621 
622 namespace {
623 
624 /// \class CodeComplete
625 ///
626 /// A code completion consumer for the clang Sema that is responsible for
627 /// creating the completion suggestions when a user requests completion
628 /// of an incomplete `expr` invocation.
629 class CodeComplete : public CodeCompleteConsumer {
630   CodeCompletionTUInfo m_info;
631 
632   std::string m_expr;
633   unsigned m_position = 0;
634   CompletionRequest &m_request;
635   /// The printing policy we use when printing declarations for our completion
636   /// descriptions.
637   clang::PrintingPolicy m_desc_policy;
638 
639   /// Returns true if the given character can be used in an identifier.
640   /// This also returns true for numbers because for completion we usually
641   /// just iterate backwards over iterators.
642   ///
643   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
644   static bool IsIdChar(char c) {
645     return c == '_' || std::isalnum(c) || c == '$';
646   }
647 
648   /// Returns true if the given character is used to separate arguments
649   /// in the command line of lldb.
650   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
651 
652   /// Drops all tokens in front of the expression that are unrelated for
653   /// the completion of the cmd line. 'unrelated' means here that the token
654   /// is not interested for the lldb completion API result.
655   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
656     if (cmd.empty())
657       return cmd;
658 
659     // If we are at the start of a word, then all tokens are unrelated to
660     // the current completion logic.
661     if (IsTokenSeparator(cmd.back()))
662       return StringRef();
663 
664     // Remove all previous tokens from the string as they are unrelated
665     // to completing the current token.
666     StringRef to_remove = cmd;
667     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
668       to_remove = to_remove.drop_back();
669     }
670     cmd = cmd.drop_front(to_remove.size());
671 
672     return cmd;
673   }
674 
675   /// Removes the last identifier token from the given cmd line.
676   StringRef removeLastToken(StringRef cmd) {
677     while (!cmd.empty() && IsIdChar(cmd.back())) {
678       cmd = cmd.drop_back();
679     }
680     return cmd;
681   }
682 
683   /// Attemps to merge the given completion from the given position into the
684   /// existing command. Returns the completion string that can be returned to
685   /// the lldb completion API.
686   std::string mergeCompletion(StringRef existing, unsigned pos,
687                               StringRef completion) {
688     StringRef existing_command = existing.substr(0, pos);
689     // We rewrite the last token with the completion, so let's drop that
690     // token from the command.
691     existing_command = removeLastToken(existing_command);
692     // We also should remove all previous tokens from the command as they
693     // would otherwise be added to the completion that already has the
694     // completion.
695     existing_command = dropUnrelatedFrontTokens(existing_command);
696     return existing_command.str() + completion.str();
697   }
698 
699 public:
700   /// Constructs a CodeComplete consumer that can be attached to a Sema.
701   ///
702   /// \param[out] expr
703   ///    The whole expression string that we are currently parsing. This
704   ///    string needs to be equal to the input the user typed, and NOT the
705   ///    final code that Clang is parsing.
706   /// \param[out] position
707   ///    The character position of the user cursor in the `expr` parameter.
708   ///
709   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
710                std::string expr, unsigned position)
711       : CodeCompleteConsumer(CodeCompleteOptions()),
712         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
713         m_position(position), m_request(request), m_desc_policy(ops) {
714 
715     // Ensure that the printing policy is producing a description that is as
716     // short as possible.
717     m_desc_policy.SuppressScope = true;
718     m_desc_policy.SuppressTagKeyword = true;
719     m_desc_policy.FullyQualifiedName = false;
720     m_desc_policy.TerseOutput = true;
721     m_desc_policy.IncludeNewlines = false;
722     m_desc_policy.UseVoidForZeroParams = false;
723     m_desc_policy.Bool = true;
724   }
725 
726   /// Deregisters and destroys this code-completion consumer.
727   ~CodeComplete() override {}
728 
729   /// \name Code-completion filtering
730   /// Check if the result should be filtered out.
731   bool isResultFilteredOut(StringRef Filter,
732                            CodeCompletionResult Result) override {
733     // This code is mostly copied from CodeCompleteConsumer.
734     switch (Result.Kind) {
735     case CodeCompletionResult::RK_Declaration:
736       return !(
737           Result.Declaration->getIdentifier() &&
738           Result.Declaration->getIdentifier()->getName().startswith(Filter));
739     case CodeCompletionResult::RK_Keyword:
740       return !StringRef(Result.Keyword).startswith(Filter);
741     case CodeCompletionResult::RK_Macro:
742       return !Result.Macro->getName().startswith(Filter);
743     case CodeCompletionResult::RK_Pattern:
744       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
745     }
746     // If we trigger this assert or the above switch yields a warning, then
747     // CodeCompletionResult has been enhanced with more kinds of completion
748     // results. Expand the switch above in this case.
749     assert(false && "Unknown completion result type?");
750     // If we reach this, then we should just ignore whatever kind of unknown
751     // result we got back. We probably can't turn it into any kind of useful
752     // completion suggestion with the existing code.
753     return true;
754   }
755 
756   /// \name Code-completion callbacks
757   /// Process the finalized code-completion results.
758   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
759                                   CodeCompletionResult *Results,
760                                   unsigned NumResults) override {
761 
762     // The Sema put the incomplete token we try to complete in here during
763     // lexing, so we need to retrieve it here to know what we are completing.
764     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
765 
766     // Iterate over all the results. Filter out results we don't want and
767     // process the rest.
768     for (unsigned I = 0; I != NumResults; ++I) {
769       // Filter the results with the information from the Sema.
770       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
771         continue;
772 
773       CodeCompletionResult &R = Results[I];
774       std::string ToInsert;
775       std::string Description;
776       // Handle the different completion kinds that come from the Sema.
777       switch (R.Kind) {
778       case CodeCompletionResult::RK_Declaration: {
779         const NamedDecl *D = R.Declaration;
780         ToInsert = R.Declaration->getNameAsString();
781         // If we have a function decl that has no arguments we want to
782         // complete the empty parantheses for the user. If the function has
783         // arguments, we at least complete the opening bracket.
784         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
785           if (F->getNumParams() == 0)
786             ToInsert += "()";
787           else
788             ToInsert += "(";
789           raw_string_ostream OS(Description);
790           F->print(OS, m_desc_policy, false);
791           OS.flush();
792         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
793           Description = V->getType().getAsString(m_desc_policy);
794         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
795           Description = F->getType().getAsString(m_desc_policy);
796         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
797           // If we try to complete a namespace, then we can directly append
798           // the '::'.
799           if (!N->isAnonymousNamespace())
800             ToInsert += "::";
801         }
802         break;
803       }
804       case CodeCompletionResult::RK_Keyword:
805         ToInsert = R.Keyword;
806         break;
807       case CodeCompletionResult::RK_Macro:
808         ToInsert = R.Macro->getName().str();
809         break;
810       case CodeCompletionResult::RK_Pattern:
811         ToInsert = R.Pattern->getTypedText();
812         break;
813       }
814       // At this point all information is in the ToInsert string.
815 
816       // We also filter some internal lldb identifiers here. The user
817       // shouldn't see these.
818       if (StringRef(ToInsert).startswith("$__lldb_"))
819         continue;
820       if (!ToInsert.empty()) {
821         // Merge the suggested Token into the existing command line to comply
822         // with the kind of result the lldb API expects.
823         std::string CompletionSuggestion =
824             mergeCompletion(m_expr, m_position, ToInsert);
825         m_request.AddCompletion(CompletionSuggestion, Description);
826       }
827     }
828   }
829 
830   /// \param S the semantic-analyzer object for which code-completion is being
831   /// done.
832   ///
833   /// \param CurrentArg the index of the current argument.
834   ///
835   /// \param Candidates an array of overload candidates.
836   ///
837   /// \param NumCandidates the number of overload candidates
838   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
839                                  OverloadCandidate *Candidates,
840                                  unsigned NumCandidates,
841                                  SourceLocation OpenParLoc) override {
842     // At the moment we don't filter out any overloaded candidates.
843   }
844 
845   CodeCompletionAllocator &getAllocator() override {
846     return m_info.getAllocator();
847   }
848 
849   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
850 };
851 } // namespace
852 
853 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
854                                      unsigned pos, unsigned typed_pos) {
855   DiagnosticManager mgr;
856   // We need the raw user expression here because that's what the CodeComplete
857   // class uses to provide completion suggestions.
858   // However, the `Text` method only gives us the transformed expression here.
859   // To actually get the raw user input here, we have to cast our expression to
860   // the LLVMUserExpression which exposes the right API. This should never fail
861   // as we always have a ClangUserExpression whenever we call this.
862   ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
863   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr->GetUserText(),
864                   typed_pos);
865   // We don't need a code generator for parsing.
866   m_code_generator.reset();
867   // Start parsing the expression with our custom code completion consumer.
868   ParseInternal(mgr, &CC, line, pos);
869   return true;
870 }
871 
872 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
873   return ParseInternal(diagnostic_manager);
874 }
875 
876 unsigned
877 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
878                                      CodeCompleteConsumer *completion_consumer,
879                                      unsigned completion_line,
880                                      unsigned completion_column) {
881   ClangDiagnosticManagerAdapter *adapter =
882       static_cast<ClangDiagnosticManagerAdapter *>(
883           m_compiler->getDiagnostics().getClient());
884   auto diag_buf = adapter->GetPassthrough();
885 
886   adapter->ResetManager(&diagnostic_manager);
887 
888   const char *expr_text = m_expr.Text();
889 
890   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
891   bool created_main_file = false;
892 
893   // Clang wants to do completion on a real file known by Clang's file manager,
894   // so we have to create one to make this work.
895   // TODO: We probably could also simulate to Clang's file manager that there
896   // is a real file that contains our code.
897   bool should_create_file = completion_consumer != nullptr;
898 
899   // We also want a real file on disk if we generate full debug info.
900   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
901                         codegenoptions::FullDebugInfo;
902 
903   if (should_create_file) {
904     int temp_fd = -1;
905     llvm::SmallString<128> result_path;
906     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
907       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
908       std::string temp_source_path = tmpdir_file_spec.GetPath();
909       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
910     } else {
911       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
912     }
913 
914     if (temp_fd != -1) {
915       lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true);
916       const size_t expr_text_len = strlen(expr_text);
917       size_t bytes_written = expr_text_len;
918       if (file.Write(expr_text, bytes_written).Success()) {
919         if (bytes_written == expr_text_len) {
920           file.Close();
921           if (auto fileEntry =
922                   m_compiler->getFileManager().getFile(result_path)) {
923             source_mgr.setMainFileID(source_mgr.createFileID(
924                 *fileEntry,
925                 SourceLocation(), SrcMgr::C_User));
926             created_main_file = true;
927           }
928         }
929       }
930     }
931   }
932 
933   if (!created_main_file) {
934     std::unique_ptr<MemoryBuffer> memory_buffer =
935         MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
936     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
937   }
938 
939   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
940                             &m_compiler->getPreprocessor());
941 
942   ClangExpressionHelper *type_system_helper =
943       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
944 
945   // If we want to parse for code completion, we need to attach our code
946   // completion consumer to the Sema and specify a completion position.
947   // While parsing the Sema will call this consumer with the provided
948   // completion suggestions.
949   if (completion_consumer) {
950     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
951     auto &PP = m_compiler->getPreprocessor();
952     // Lines and columns start at 1 in Clang, but code completion positions are
953     // indexed from 0, so we need to add 1 to the line and column here.
954     ++completion_line;
955     ++completion_column;
956     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
957   }
958 
959   ASTConsumer *ast_transformer =
960       type_system_helper->ASTTransformer(m_code_generator.get());
961 
962   std::unique_ptr<clang::ASTConsumer> Consumer;
963   if (ast_transformer) {
964     Consumer.reset(new ASTConsumerForwarder(ast_transformer));
965   } else if (m_code_generator) {
966     Consumer.reset(new ASTConsumerForwarder(m_code_generator.get()));
967   } else {
968     Consumer.reset(new ASTConsumer());
969   }
970 
971   clang::ASTContext &ast_context = m_compiler->getASTContext();
972 
973   m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
974                                *Consumer, TU_Complete, completion_consumer));
975   m_compiler->setASTConsumer(std::move(Consumer));
976 
977   if (ast_context.getLangOpts().Modules) {
978     m_compiler->createASTReader();
979     m_ast_context->setSema(&m_compiler->getSema());
980   }
981 
982   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
983   if (decl_map) {
984     decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
985 
986     clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
987 
988     if (ast_context.getExternalSource()) {
989       auto module_wrapper =
990           new ExternalASTSourceWrapper(ast_context.getExternalSource());
991 
992       auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
993 
994       auto multiplexer =
995           new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
996       IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
997       ast_context.setExternalSource(Source);
998     } else {
999       ast_context.setExternalSource(ast_source);
1000     }
1001     decl_map->InstallASTContext(*m_ast_context);
1002   }
1003 
1004   // Check that the ASTReader is properly attached to ASTContext and Sema.
1005   if (ast_context.getLangOpts().Modules) {
1006     assert(m_compiler->getASTContext().getExternalSource() &&
1007            "ASTContext doesn't know about the ASTReader?");
1008     assert(m_compiler->getSema().getExternalSource() &&
1009            "Sema doesn't know about the ASTReader?");
1010   }
1011 
1012   {
1013     llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1014         &m_compiler->getSema());
1015     ParseAST(m_compiler->getSema(), false, false);
1016   }
1017 
1018   // Make sure we have no pointer to the Sema we are about to destroy.
1019   if (ast_context.getLangOpts().Modules)
1020     m_ast_context->setSema(nullptr);
1021   // Destroy the Sema. This is necessary because we want to emulate the
1022   // original behavior of ParseAST (which also destroys the Sema after parsing).
1023   m_compiler->setSema(nullptr);
1024 
1025   diag_buf->EndSourceFile();
1026 
1027   unsigned num_errors = diag_buf->getNumErrors();
1028 
1029   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1030     num_errors++;
1031     diagnostic_manager.PutString(eDiagnosticSeverityError,
1032                                  "while importing modules:");
1033     diagnostic_manager.AppendMessageToDiagnostic(
1034         m_pp_callbacks->getErrorString());
1035   }
1036 
1037   if (!num_errors) {
1038     type_system_helper->CommitPersistentDecls();
1039   }
1040 
1041   adapter->ResetManager();
1042 
1043   return num_errors;
1044 }
1045 
1046 std::string
1047 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1048   std::string abi;
1049 
1050   if (target_arch.IsMIPS()) {
1051     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1052     case ArchSpec::eMIPSABI_N64:
1053       abi = "n64";
1054       break;
1055     case ArchSpec::eMIPSABI_N32:
1056       abi = "n32";
1057       break;
1058     case ArchSpec::eMIPSABI_O32:
1059       abi = "o32";
1060       break;
1061     default:
1062       break;
1063     }
1064   }
1065   return abi;
1066 }
1067 
1068 bool ClangExpressionParser::RewriteExpression(
1069     DiagnosticManager &diagnostic_manager) {
1070   clang::SourceManager &source_manager = m_compiler->getSourceManager();
1071   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1072                                    nullptr);
1073   clang::edit::Commit commit(editor);
1074   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1075 
1076   class RewritesReceiver : public edit::EditsReceiver {
1077     Rewriter &rewrite;
1078 
1079   public:
1080     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1081 
1082     void insert(SourceLocation loc, StringRef text) override {
1083       rewrite.InsertText(loc, text);
1084     }
1085     void replace(CharSourceRange range, StringRef text) override {
1086       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1087     }
1088   };
1089 
1090   RewritesReceiver rewrites_receiver(rewriter);
1091 
1092   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1093   size_t num_diags = diagnostics.size();
1094   if (num_diags == 0)
1095     return false;
1096 
1097   for (const auto &diag : diagnostic_manager.Diagnostics()) {
1098     const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1099     if (diagnostic && diagnostic->HasFixIts()) {
1100       for (const FixItHint &fixit : diagnostic->FixIts()) {
1101         // This is cobbed from clang::Rewrite::FixItRewriter.
1102         if (fixit.CodeToInsert.empty()) {
1103           if (fixit.InsertFromRange.isValid()) {
1104             commit.insertFromRange(fixit.RemoveRange.getBegin(),
1105                                    fixit.InsertFromRange, /*afterToken=*/false,
1106                                    fixit.BeforePreviousInsertions);
1107           } else
1108             commit.remove(fixit.RemoveRange);
1109         } else {
1110           if (fixit.RemoveRange.isTokenRange() ||
1111               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1112             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1113           else
1114             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1115                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1116         }
1117       }
1118     }
1119   }
1120 
1121   // FIXME - do we want to try to propagate specific errors here?
1122   if (!commit.isCommitable())
1123     return false;
1124   else if (!editor.commit(commit))
1125     return false;
1126 
1127   // Now play all the edits, and stash the result in the diagnostic manager.
1128   editor.applyRewrites(rewrites_receiver);
1129   RewriteBuffer &main_file_buffer =
1130       rewriter.getEditBuffer(source_manager.getMainFileID());
1131 
1132   std::string fixed_expression;
1133   llvm::raw_string_ostream out_stream(fixed_expression);
1134 
1135   main_file_buffer.write(out_stream);
1136   out_stream.flush();
1137   diagnostic_manager.SetFixedExpression(fixed_expression);
1138 
1139   return true;
1140 }
1141 
1142 static bool FindFunctionInModule(ConstString &mangled_name,
1143                                  llvm::Module *module, const char *orig_name) {
1144   for (const auto &func : module->getFunctionList()) {
1145     const StringRef &name = func.getName();
1146     if (name.find(orig_name) != StringRef::npos) {
1147       mangled_name.SetString(name);
1148       return true;
1149     }
1150   }
1151 
1152   return false;
1153 }
1154 
1155 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1156     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1157     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1158     bool &can_interpret, ExecutionPolicy execution_policy) {
1159   func_addr = LLDB_INVALID_ADDRESS;
1160   func_end = LLDB_INVALID_ADDRESS;
1161   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1162 
1163   lldb_private::Status err;
1164 
1165   std::unique_ptr<llvm::Module> llvm_module_up(
1166       m_code_generator->ReleaseModule());
1167 
1168   if (!llvm_module_up) {
1169     err.SetErrorToGenericError();
1170     err.SetErrorString("IR doesn't contain a module");
1171     return err;
1172   }
1173 
1174   ConstString function_name;
1175 
1176   if (execution_policy != eExecutionPolicyTopLevel) {
1177     // Find the actual name of the function (it's often mangled somehow)
1178 
1179     if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1180                               m_expr.FunctionName())) {
1181       err.SetErrorToGenericError();
1182       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1183                                    m_expr.FunctionName());
1184       return err;
1185     } else {
1186       LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1187                 m_expr.FunctionName());
1188     }
1189   }
1190 
1191   SymbolContext sc;
1192 
1193   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1194     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1195   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1196     sc.target_sp = target_sp;
1197   }
1198 
1199   LLVMUserExpression::IRPasses custom_passes;
1200   {
1201     auto lang = m_expr.Language();
1202     LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1203               Language::GetNameForLanguageType(lang));
1204     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1205     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1206       auto runtime = process_sp->GetLanguageRuntime(lang);
1207       if (runtime)
1208         runtime->GetIRPasses(custom_passes);
1209     }
1210   }
1211 
1212   if (custom_passes.EarlyPasses) {
1213     LLDB_LOGF(log,
1214               "%s - Running Early IR Passes from LanguageRuntime on "
1215               "expression module '%s'",
1216               __FUNCTION__, m_expr.FunctionName());
1217 
1218     custom_passes.EarlyPasses->run(*llvm_module_up);
1219   }
1220 
1221   execution_unit_sp = std::make_shared<IRExecutionUnit>(
1222       m_llvm_context, // handed off here
1223       llvm_module_up, // handed off here
1224       function_name, exe_ctx.GetTargetSP(), sc,
1225       m_compiler->getTargetOpts().Features);
1226 
1227   ClangExpressionHelper *type_system_helper =
1228       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1229   ClangExpressionDeclMap *decl_map =
1230       type_system_helper->DeclMap(); // result can be NULL
1231 
1232   if (decl_map) {
1233     Target *target = exe_ctx.GetTargetPtr();
1234     auto &error_stream = target->GetDebugger().GetErrorStream();
1235     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1236                               *execution_unit_sp, error_stream,
1237                               function_name.AsCString());
1238 
1239     bool ir_can_run =
1240         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1241 
1242     if (!ir_can_run) {
1243       err.SetErrorString(
1244           "The expression could not be prepared to run in the target");
1245       return err;
1246     }
1247 
1248     Process *process = exe_ctx.GetProcessPtr();
1249 
1250     if (execution_policy != eExecutionPolicyAlways &&
1251         execution_policy != eExecutionPolicyTopLevel) {
1252       lldb_private::Status interpret_error;
1253 
1254       bool interpret_function_calls =
1255           !process ? false : process->CanInterpretFunctionCalls();
1256       can_interpret = IRInterpreter::CanInterpret(
1257           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1258           interpret_error, interpret_function_calls);
1259 
1260       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1261         err.SetErrorStringWithFormat(
1262             "Can't evaluate the expression without a running target due to: %s",
1263             interpret_error.AsCString());
1264         return err;
1265       }
1266     }
1267 
1268     if (!process && execution_policy == eExecutionPolicyAlways) {
1269       err.SetErrorString("Expression needed to run in the target, but the "
1270                          "target can't be run");
1271       return err;
1272     }
1273 
1274     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1275       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1276                          "target, but the target can't be run");
1277       return err;
1278     }
1279 
1280     if (execution_policy == eExecutionPolicyAlways ||
1281         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1282       if (m_expr.NeedsValidation() && process) {
1283         if (!process->GetDynamicCheckers()) {
1284           ClangDynamicCheckerFunctions *dynamic_checkers =
1285               new ClangDynamicCheckerFunctions();
1286 
1287           DiagnosticManager install_diagnostics;
1288 
1289           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1290             if (install_diagnostics.Diagnostics().size())
1291               err.SetErrorString(install_diagnostics.GetString().c_str());
1292             else
1293               err.SetErrorString("couldn't install checkers, unknown error");
1294 
1295             return err;
1296           }
1297 
1298           process->SetDynamicCheckers(dynamic_checkers);
1299 
1300           LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1301                          "Finished installing dynamic checkers ==");
1302         }
1303 
1304         if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1305                 process->GetDynamicCheckers())) {
1306           IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1307                                             function_name.AsCString());
1308 
1309           llvm::Module *module = execution_unit_sp->GetModule();
1310           if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1311             err.SetErrorToGenericError();
1312             err.SetErrorString("Couldn't add dynamic checks to the expression");
1313             return err;
1314           }
1315 
1316           if (custom_passes.LatePasses) {
1317             LLDB_LOGF(log,
1318                       "%s - Running Late IR Passes from LanguageRuntime on "
1319                       "expression module '%s'",
1320                       __FUNCTION__, m_expr.FunctionName());
1321 
1322             custom_passes.LatePasses->run(*module);
1323           }
1324         }
1325       }
1326     }
1327 
1328     if (execution_policy == eExecutionPolicyAlways ||
1329         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1330       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1331     }
1332   } else {
1333     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1334   }
1335 
1336   return err;
1337 }
1338 
1339 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1340     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1341   lldb_private::Status err;
1342 
1343   lldbassert(execution_unit_sp.get());
1344   lldbassert(exe_ctx.HasThreadScope());
1345 
1346   if (!execution_unit_sp.get()) {
1347     err.SetErrorString(
1348         "can't run static initializers for a NULL execution unit");
1349     return err;
1350   }
1351 
1352   if (!exe_ctx.HasThreadScope()) {
1353     err.SetErrorString("can't run static initializers without a thread");
1354     return err;
1355   }
1356 
1357   std::vector<lldb::addr_t> static_initializers;
1358 
1359   execution_unit_sp->GetStaticInitializers(static_initializers);
1360 
1361   for (lldb::addr_t static_initializer : static_initializers) {
1362     EvaluateExpressionOptions options;
1363 
1364     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1365         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1366         llvm::ArrayRef<lldb::addr_t>(), options));
1367 
1368     DiagnosticManager execution_errors;
1369     lldb::ExpressionResults results =
1370         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1371             exe_ctx, call_static_initializer, options, execution_errors);
1372 
1373     if (results != lldb::eExpressionCompleted) {
1374       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1375                                    execution_errors.GetString().c_str());
1376       return err;
1377     }
1378   }
1379 
1380   return err;
1381 }
1382