1 //===-- x86AssemblyInspectionEngine.cpp -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "x86AssemblyInspectionEngine.h"
10 
11 #include <memory>
12 
13 #include "llvm-c/Disassembler.h"
14 
15 #include "lldb/Core/Address.h"
16 #include "lldb/Symbol/UnwindPlan.h"
17 #include "lldb/Target/RegisterContext.h"
18 #include "lldb/Target/UnwindAssembly.h"
19 
20 using namespace lldb_private;
21 using namespace lldb;
22 
23 x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
24     : m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
25       m_machine_sp_regnum(LLDB_INVALID_REGNUM),
26       m_machine_fp_regnum(LLDB_INVALID_REGNUM),
27       m_machine_alt_fp_regnum(LLDB_INVALID_REGNUM),
28       m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
29       m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
30       m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
31       m_lldb_alt_fp_regnum(LLDB_INVALID_REGNUM), m_reg_map(), m_arch(arch),
32       m_cpu(k_cpu_unspecified), m_wordsize(-1),
33       m_register_map_initialized(false), m_disasm_context() {
34   m_disasm_context =
35       ::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
36                          /*TagType=*/1, nullptr, nullptr);
37 }
38 
39 x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
40   ::LLVMDisasmDispose(m_disasm_context);
41 }
42 
43 void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
44   m_cpu = k_cpu_unspecified;
45   m_wordsize = -1;
46   m_register_map_initialized = false;
47 
48   const llvm::Triple::ArchType cpu = m_arch.GetMachine();
49   if (cpu == llvm::Triple::x86)
50     m_cpu = k_i386;
51   else if (cpu == llvm::Triple::x86_64)
52     m_cpu = k_x86_64;
53 
54   if (m_cpu == k_cpu_unspecified)
55     return;
56 
57   if (reg_ctx.get() == nullptr)
58     return;
59 
60   if (m_cpu == k_i386) {
61     m_machine_ip_regnum = k_machine_eip;
62     m_machine_sp_regnum = k_machine_esp;
63     m_machine_fp_regnum = k_machine_ebp;
64     m_machine_alt_fp_regnum = k_machine_ebx;
65     m_wordsize = 4;
66 
67     struct lldb_reg_info reginfo;
68     reginfo.name = "eax";
69     m_reg_map[k_machine_eax] = reginfo;
70     reginfo.name = "edx";
71     m_reg_map[k_machine_edx] = reginfo;
72     reginfo.name = "esp";
73     m_reg_map[k_machine_esp] = reginfo;
74     reginfo.name = "esi";
75     m_reg_map[k_machine_esi] = reginfo;
76     reginfo.name = "eip";
77     m_reg_map[k_machine_eip] = reginfo;
78     reginfo.name = "ecx";
79     m_reg_map[k_machine_ecx] = reginfo;
80     reginfo.name = "ebx";
81     m_reg_map[k_machine_ebx] = reginfo;
82     reginfo.name = "ebp";
83     m_reg_map[k_machine_ebp] = reginfo;
84     reginfo.name = "edi";
85     m_reg_map[k_machine_edi] = reginfo;
86   } else {
87     m_machine_ip_regnum = k_machine_rip;
88     m_machine_sp_regnum = k_machine_rsp;
89     m_machine_fp_regnum = k_machine_rbp;
90     m_machine_alt_fp_regnum = k_machine_rbx;
91     m_wordsize = 8;
92 
93     struct lldb_reg_info reginfo;
94     reginfo.name = "rax";
95     m_reg_map[k_machine_rax] = reginfo;
96     reginfo.name = "rdx";
97     m_reg_map[k_machine_rdx] = reginfo;
98     reginfo.name = "rsp";
99     m_reg_map[k_machine_rsp] = reginfo;
100     reginfo.name = "rsi";
101     m_reg_map[k_machine_rsi] = reginfo;
102     reginfo.name = "r8";
103     m_reg_map[k_machine_r8] = reginfo;
104     reginfo.name = "r10";
105     m_reg_map[k_machine_r10] = reginfo;
106     reginfo.name = "r12";
107     m_reg_map[k_machine_r12] = reginfo;
108     reginfo.name = "r14";
109     m_reg_map[k_machine_r14] = reginfo;
110     reginfo.name = "rip";
111     m_reg_map[k_machine_rip] = reginfo;
112     reginfo.name = "rcx";
113     m_reg_map[k_machine_rcx] = reginfo;
114     reginfo.name = "rbx";
115     m_reg_map[k_machine_rbx] = reginfo;
116     reginfo.name = "rbp";
117     m_reg_map[k_machine_rbp] = reginfo;
118     reginfo.name = "rdi";
119     m_reg_map[k_machine_rdi] = reginfo;
120     reginfo.name = "r9";
121     m_reg_map[k_machine_r9] = reginfo;
122     reginfo.name = "r11";
123     m_reg_map[k_machine_r11] = reginfo;
124     reginfo.name = "r13";
125     m_reg_map[k_machine_r13] = reginfo;
126     reginfo.name = "r15";
127     m_reg_map[k_machine_r15] = reginfo;
128   }
129 
130   for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
131        it != m_reg_map.end(); ++it) {
132     const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
133     if (ri)
134       it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
135   }
136 
137   uint32_t lldb_regno;
138   if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
139     m_lldb_sp_regnum = lldb_regno;
140   if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
141     m_lldb_fp_regnum = lldb_regno;
142   if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
143     m_lldb_alt_fp_regnum = lldb_regno;
144   if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
145     m_lldb_ip_regnum = lldb_regno;
146 
147   m_register_map_initialized = true;
148 }
149 
150 void x86AssemblyInspectionEngine::Initialize(
151     std::vector<lldb_reg_info> &reg_info) {
152   m_cpu = k_cpu_unspecified;
153   m_wordsize = -1;
154   m_register_map_initialized = false;
155 
156   const llvm::Triple::ArchType cpu = m_arch.GetMachine();
157   if (cpu == llvm::Triple::x86)
158     m_cpu = k_i386;
159   else if (cpu == llvm::Triple::x86_64)
160     m_cpu = k_x86_64;
161 
162   if (m_cpu == k_cpu_unspecified)
163     return;
164 
165   if (m_cpu == k_i386) {
166     m_machine_ip_regnum = k_machine_eip;
167     m_machine_sp_regnum = k_machine_esp;
168     m_machine_fp_regnum = k_machine_ebp;
169     m_machine_alt_fp_regnum = k_machine_ebx;
170     m_wordsize = 4;
171 
172     struct lldb_reg_info reginfo;
173     reginfo.name = "eax";
174     m_reg_map[k_machine_eax] = reginfo;
175     reginfo.name = "edx";
176     m_reg_map[k_machine_edx] = reginfo;
177     reginfo.name = "esp";
178     m_reg_map[k_machine_esp] = reginfo;
179     reginfo.name = "esi";
180     m_reg_map[k_machine_esi] = reginfo;
181     reginfo.name = "eip";
182     m_reg_map[k_machine_eip] = reginfo;
183     reginfo.name = "ecx";
184     m_reg_map[k_machine_ecx] = reginfo;
185     reginfo.name = "ebx";
186     m_reg_map[k_machine_ebx] = reginfo;
187     reginfo.name = "ebp";
188     m_reg_map[k_machine_ebp] = reginfo;
189     reginfo.name = "edi";
190     m_reg_map[k_machine_edi] = reginfo;
191   } else {
192     m_machine_ip_regnum = k_machine_rip;
193     m_machine_sp_regnum = k_machine_rsp;
194     m_machine_fp_regnum = k_machine_rbp;
195     m_machine_alt_fp_regnum = k_machine_rbx;
196     m_wordsize = 8;
197 
198     struct lldb_reg_info reginfo;
199     reginfo.name = "rax";
200     m_reg_map[k_machine_rax] = reginfo;
201     reginfo.name = "rdx";
202     m_reg_map[k_machine_rdx] = reginfo;
203     reginfo.name = "rsp";
204     m_reg_map[k_machine_rsp] = reginfo;
205     reginfo.name = "rsi";
206     m_reg_map[k_machine_rsi] = reginfo;
207     reginfo.name = "r8";
208     m_reg_map[k_machine_r8] = reginfo;
209     reginfo.name = "r10";
210     m_reg_map[k_machine_r10] = reginfo;
211     reginfo.name = "r12";
212     m_reg_map[k_machine_r12] = reginfo;
213     reginfo.name = "r14";
214     m_reg_map[k_machine_r14] = reginfo;
215     reginfo.name = "rip";
216     m_reg_map[k_machine_rip] = reginfo;
217     reginfo.name = "rcx";
218     m_reg_map[k_machine_rcx] = reginfo;
219     reginfo.name = "rbx";
220     m_reg_map[k_machine_rbx] = reginfo;
221     reginfo.name = "rbp";
222     m_reg_map[k_machine_rbp] = reginfo;
223     reginfo.name = "rdi";
224     m_reg_map[k_machine_rdi] = reginfo;
225     reginfo.name = "r9";
226     m_reg_map[k_machine_r9] = reginfo;
227     reginfo.name = "r11";
228     m_reg_map[k_machine_r11] = reginfo;
229     reginfo.name = "r13";
230     m_reg_map[k_machine_r13] = reginfo;
231     reginfo.name = "r15";
232     m_reg_map[k_machine_r15] = reginfo;
233   }
234 
235   for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
236        it != m_reg_map.end(); ++it) {
237     for (size_t i = 0; i < reg_info.size(); ++i) {
238       if (::strcmp(reg_info[i].name, it->second.name) == 0) {
239         it->second.lldb_regnum = reg_info[i].lldb_regnum;
240         break;
241       }
242     }
243   }
244 
245   uint32_t lldb_regno;
246   if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
247     m_lldb_sp_regnum = lldb_regno;
248   if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
249     m_lldb_fp_regnum = lldb_regno;
250   if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
251     m_lldb_alt_fp_regnum = lldb_regno;
252   if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
253     m_lldb_ip_regnum = lldb_regno;
254 
255   m_register_map_initialized = true;
256 }
257 
258 // This function expects an x86 native register number (i.e. the bits stripped
259 // out of the actual instruction), not an lldb register number.
260 //
261 // FIXME: This is ABI dependent, it shouldn't be hardcoded here.
262 
263 bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
264   if (m_cpu == k_i386) {
265     switch (machine_regno) {
266     case k_machine_ebx:
267     case k_machine_ebp: // not actually a nonvolatile but often treated as such
268                         // by convention
269     case k_machine_esi:
270     case k_machine_edi:
271     case k_machine_esp:
272       return true;
273     default:
274       return false;
275     }
276   }
277   if (m_cpu == k_x86_64) {
278     switch (machine_regno) {
279     case k_machine_rbx:
280     case k_machine_rsp:
281     case k_machine_rbp: // not actually a nonvolatile but often treated as such
282                         // by convention
283     case k_machine_r12:
284     case k_machine_r13:
285     case k_machine_r14:
286     case k_machine_r15:
287       return true;
288     default:
289       return false;
290     }
291   }
292   return false;
293 }
294 
295 // Macro to detect if this is a REX mode prefix byte.
296 #define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
297 
298 // The high bit which should be added to the source register number (the "R"
299 // bit)
300 #define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
301 
302 // The high bit which should be added to the destination register number (the
303 // "B" bit)
304 #define REX_W_DSTREG(opcode) ((opcode)&0x1)
305 
306 // pushq %rbp [0x55]
307 bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
308   uint8_t *p = m_cur_insn;
309   return *p == 0x55;
310 }
311 
312 // pushq $0 ; the first instruction in start() [0x6a 0x00]
313 bool x86AssemblyInspectionEngine::push_0_pattern_p() {
314   uint8_t *p = m_cur_insn;
315   return *p == 0x6a && *(p + 1) == 0x0;
316 }
317 
318 // pushq $0
319 // pushl $0
320 bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
321   uint8_t *p = m_cur_insn;
322   return *p == 0x68 || *p == 0x6a;
323 }
324 
325 // pushl imm8(%esp)
326 //
327 // e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
328 // 0x20(%rsp)' in an x86_64 program)
329 //
330 // 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
331 // three bits used to specify the opcode)
332 //      mod == b01, opcode == b110, R/M == b100
333 //      "+disp8"
334 // 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
335 
336 bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
337   if (*m_cur_insn == 0xff) {
338     // Get the 3 opcode bits from the ModR/M byte
339     uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
340     if (opcode == 6) {
341       // I'm only looking for 0xff /6 here - I
342       // don't really care what value is being pushed, just that we're pushing
343       // a 32/64 bit value on to the stack is enough.
344       return true;
345     }
346   }
347   return false;
348 }
349 
350 // instructions only valid in 32-bit mode:
351 // 0x0e - push cs
352 // 0x16 - push ss
353 // 0x1e - push ds
354 // 0x06 - push es
355 bool x86AssemblyInspectionEngine::push_misc_reg_p() {
356   uint8_t p = *m_cur_insn;
357   if (m_wordsize == 4) {
358     if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
359       return true;
360   }
361   return false;
362 }
363 
364 // pushq %rbx
365 // pushl %ebx
366 bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
367   uint8_t *p = m_cur_insn;
368   int regno_prefix_bit = 0;
369   // If we have a rex prefix byte, check to see if a B bit is set
370   if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
371     regno_prefix_bit = (*p & 1) << 3;
372     p++;
373   }
374   if (*p >= 0x50 && *p <= 0x57) {
375     regno = (*p - 0x50) | regno_prefix_bit;
376     return true;
377   }
378   return false;
379 }
380 
381 // movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
382 // 0xec] or [0x89 0xe5]
383 bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
384   uint8_t *p = m_cur_insn;
385   if (m_wordsize == 8 && *p == 0x48)
386     p++;
387   if (*(p) == 0x8b && *(p + 1) == 0xec)
388     return true;
389   if (*(p) == 0x89 && *(p + 1) == 0xe5)
390     return true;
391   return false;
392 }
393 
394 // movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
395 // movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
396 bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
397   uint8_t *p = m_cur_insn;
398   if (m_wordsize == 8 && *p == 0x48)
399     p++;
400   if (*(p) == 0x8b && *(p + 1) == 0xdc)
401     return true;
402   if (*(p) == 0x89 && *(p + 1) == 0xe3)
403     return true;
404   return false;
405 }
406 
407 // movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
408 // movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
409 bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
410   uint8_t *p = m_cur_insn;
411   if (m_wordsize == 8 && *p == 0x48)
412     p++;
413   if (*(p) == 0x8b && *(p + 1) == 0xe5)
414     return true;
415   if (*(p) == 0x89 && *(p + 1) == 0xec)
416     return true;
417   return false;
418 }
419 
420 // movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
421 // movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
422 bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
423   uint8_t *p = m_cur_insn;
424   if (m_wordsize == 8 && *p == 0x48)
425     p++;
426   if (*(p) == 0x8b && *(p + 1) == 0xe3)
427     return true;
428   if (*(p) == 0x89 && *(p + 1) == 0xdc)
429     return true;
430   return false;
431 }
432 
433 // subq $0x20, %rsp
434 bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
435   uint8_t *p = m_cur_insn;
436   if (m_wordsize == 8 && *p == 0x48)
437     p++;
438   // 8-bit immediate operand
439   if (*p == 0x83 && *(p + 1) == 0xec) {
440     amount = (int8_t) * (p + 2);
441     return true;
442   }
443   // 32-bit immediate operand
444   if (*p == 0x81 && *(p + 1) == 0xec) {
445     amount = (int32_t)extract_4(p + 2);
446     return true;
447   }
448   return false;
449 }
450 
451 // addq $0x20, %rsp
452 bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
453   uint8_t *p = m_cur_insn;
454   if (m_wordsize == 8 && *p == 0x48)
455     p++;
456   // 8-bit immediate operand
457   if (*p == 0x83 && *(p + 1) == 0xc4) {
458     amount = (int8_t) * (p + 2);
459     return true;
460   }
461   // 32-bit immediate operand
462   if (*p == 0x81 && *(p + 1) == 0xc4) {
463     amount = (int32_t)extract_4(p + 2);
464     return true;
465   }
466   return false;
467 }
468 
469 // lea esp, [esp - 0x28]
470 // lea esp, [esp + 0x28]
471 bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
472   uint8_t *p = m_cur_insn;
473   if (m_wordsize == 8 && *p == 0x48)
474     p++;
475 
476   // Check opcode
477   if (*p != 0x8d)
478     return false;
479 
480   // 8 bit displacement
481   if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
482     amount = (int8_t) * (p + 3);
483     return true;
484   }
485 
486   // 32 bit displacement
487   if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
488     amount = (int32_t)extract_4(p + 3);
489     return true;
490   }
491 
492   return false;
493 }
494 
495 // lea -0x28(%ebp), %esp
496 // (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
497 bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
498   uint8_t *p = m_cur_insn;
499   if (m_wordsize == 8 && *p == 0x48)
500     p++;
501 
502   // Check opcode
503   if (*p != 0x8d)
504     return false;
505   ++p;
506 
507   // 8 bit displacement
508   if (*p == 0x65) {
509     amount = (int8_t)p[1];
510     return true;
511   }
512 
513   // 32 bit displacement
514   if (*p == 0xa5) {
515     amount = (int32_t)extract_4(p + 1);
516     return true;
517   }
518 
519   return false;
520 }
521 
522 // lea -0x28(%ebx), %esp
523 // (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
524 bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) {
525   uint8_t *p = m_cur_insn;
526   if (m_wordsize == 8 && *p == 0x48)
527     p++;
528 
529   // Check opcode
530   if (*p != 0x8d)
531     return false;
532   ++p;
533 
534   // 8 bit displacement
535   if (*p == 0x63) {
536     amount = (int8_t)p[1];
537     return true;
538   }
539 
540   // 32 bit displacement
541   if (*p == 0xa3) {
542     amount = (int32_t)extract_4(p + 1);
543     return true;
544   }
545 
546   return false;
547 }
548 
549 // and -0xfffffff0, %esp
550 // (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
551 bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
552   uint8_t *p = m_cur_insn;
553   if (m_wordsize == 8 && *p == 0x48)
554     p++;
555 
556   if (*p != 0x81 && *p != 0x83)
557     return false;
558 
559   return *++p == 0xe4;
560 }
561 
562 // popq %rbx
563 // popl %ebx
564 bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
565   uint8_t *p = m_cur_insn;
566   int regno_prefix_bit = 0;
567   // If we have a rex prefix byte, check to see if a B bit is set
568   if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
569     regno_prefix_bit = (*p & 1) << 3;
570     p++;
571   }
572   if (*p >= 0x58 && *p <= 0x5f) {
573     regno = (*p - 0x58) | regno_prefix_bit;
574     return true;
575   }
576   return false;
577 }
578 
579 // popq %rbp [0x5d]
580 // popl %ebp [0x5d]
581 bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
582   uint8_t *p = m_cur_insn;
583   return (*p == 0x5d);
584 }
585 
586 // instructions valid only in 32-bit mode:
587 // 0x1f - pop ds
588 // 0x07 - pop es
589 // 0x17 - pop ss
590 bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
591   uint8_t p = *m_cur_insn;
592   if (m_wordsize == 4) {
593     if (p == 0x1f || p == 0x07 || p == 0x17)
594       return true;
595   }
596   return false;
597 }
598 
599 // leave [0xc9]
600 bool x86AssemblyInspectionEngine::leave_pattern_p() {
601   uint8_t *p = m_cur_insn;
602   return (*p == 0xc9);
603 }
604 
605 // call $0 [0xe8 0x0 0x0 0x0 0x0]
606 bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
607   uint8_t *p = m_cur_insn;
608   return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
609          (*(p + 3) == 0x0) && (*(p + 4) == 0x0);
610 }
611 
612 // Look for an instruction sequence storing a nonvolatile register on to the
613 // stack frame.
614 
615 //  movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
616 //  movl %eax, -0xc(%ebp)  [0x89 0x45 0xf4]
617 
618 // The offset value returned in rbp_offset will be positive -- but it must be
619 // subtraced from the frame base register to get the actual location.  The
620 // positive value returned for the offset is a convention used elsewhere for
621 // CFA offsets et al.
622 
623 bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
624     int &regno, int &rbp_offset) {
625   uint8_t *p = m_cur_insn;
626   int src_reg_prefix_bit = 0;
627   int target_reg_prefix_bit = 0;
628 
629   if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
630     src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
631     target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
632     if (target_reg_prefix_bit == 1) {
633       // rbp/ebp don't need a prefix bit - we know this isn't the reg we care
634       // about.
635       return false;
636     }
637     p++;
638   }
639 
640   if (*p == 0x89) {
641     /* Mask off the 3-5 bits which indicate the destination register
642        if this is a ModR/M byte.  */
643     int opcode_destreg_masked_out = *(p + 1) & (~0x38);
644 
645     /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
646        and three bits between them, e.g. 01nnn101
647        We're looking for a destination of ebp-disp8 or ebp-disp32.   */
648     int immsize;
649     if (opcode_destreg_masked_out == 0x45)
650       immsize = 2;
651     else if (opcode_destreg_masked_out == 0x85)
652       immsize = 4;
653     else
654       return false;
655 
656     int offset = 0;
657     if (immsize == 2)
658       offset = (int8_t) * (p + 2);
659     if (immsize == 4)
660       offset = (uint32_t)extract_4(p + 2);
661     if (offset > 0)
662       return false;
663 
664     regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
665     rbp_offset = offset > 0 ? offset : -offset;
666     return true;
667   }
668   return false;
669 }
670 
671 // Returns true if this is a jmp instruction where we can't
672 // know the destination address statically.
673 //
674 // ff e0                                   jmpq   *%rax
675 // ff e1                                   jmpq   *%rcx
676 // ff 60 28                                jmpq   *0x28(%rax)
677 // ff 60 60                                jmpq   *0x60(%rax)
678 bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
679   if (*m_cur_insn != 0xff)
680     return false;
681 
682   // The second byte is a ModR/M /4 byte, strip off the registers
683   uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7;
684 
685   // [reg]
686   if (second_byte_sans_reg == 0x20)
687     return true;
688 
689   // [reg]+disp8
690   if (second_byte_sans_reg == 0x60)
691     return true;
692 
693   // [reg]+disp32
694   if (second_byte_sans_reg == 0xa0)
695     return true;
696 
697   // reg
698   if (second_byte_sans_reg == 0xe0)
699     return true;
700 
701   return false;
702 }
703 
704 // Detect branches to fixed pc-relative offsets.
705 // Returns the offset from the address of the next instruction
706 // that may be branch/jumped to.
707 //
708 // Cannot determine the offset of a JMP that jumps to the address in
709 // a register ("jmpq *%rax") or offset from a register value
710 // ("jmpq *0x28(%rax)"), this method will return false on those
711 // instructions.
712 //
713 // These instructions all end in either a relative 8/16/32 bit value
714 // depending on the instruction and the current execution mode of the
715 // inferior process.  Once we know the size of the opcode instruction,
716 // we can use the total instruction length to determine the size of
717 // the relative offset without having to compute it correctly.
718 
719 bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
720     const int instruction_length, int &offset)
721 {
722   int opcode_size = 0;
723 
724   uint8_t b1 = m_cur_insn[0];
725 
726   switch (b1) {
727     case 0x77: // JA/JNBE rel8
728     case 0x73: // JAE/JNB/JNC rel8
729     case 0x72: // JB/JC/JNAE rel8
730     case 0x76: // JBE/JNA rel8
731     case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
732     case 0x74: // JE/JZ rel8
733     case 0x7f: // JG/JNLE rel8
734     case 0x7d: // JGE/JNL rel8
735     case 0x7c: // JL/JNGE rel8
736     case 0x7e: // JNG/JLE rel8
737     case 0x71: // JNO rel8
738     case 0x7b: // JNP/JPO rel8
739     case 0x79: // JNS rel8
740     case 0x75: // JNE/JNZ rel8
741     case 0x70: // JO rel8
742     case 0x7a: // JP/JPE rel8
743     case 0x78: // JS rel8
744     case 0xeb: // JMP rel8
745     case 0xe9: // JMP rel16/rel32
746       opcode_size = 1;
747       break;
748     default:
749       break;
750   }
751   if (b1 == 0x0f && opcode_size == 0) {
752     uint8_t b2 = m_cur_insn[1];
753     switch (b2) {
754       case 0x87: // JA/JNBE rel16/rel32
755       case 0x86: // JBE/JNA rel16/rel32
756       case 0x84: // JE/JZ rel16/rel32
757       case 0x8f: // JG/JNLE rel16/rel32
758       case 0x8d: // JNL/JGE rel16/rel32
759       case 0x8e: // JLE rel16/rel32
760       case 0x82: // JB/JC/JNAE rel16/rel32
761       case 0x83: // JAE/JNB/JNC rel16/rel32
762       case 0x85: // JNE/JNZ rel16/rel32
763       case 0x8c: // JL/JNGE rel16/rel32
764       case 0x81: // JNO rel16/rel32
765       case 0x8b: // JNP/JPO rel16/rel32
766       case 0x89: // JNS rel16/rel32
767       case 0x80: // JO rel16/rel32
768       case 0x8a: // JP rel16/rel32
769       case 0x88: // JS rel16/rel32
770         opcode_size = 2;
771         break;
772       default:
773         break;
774     }
775   }
776 
777   if (opcode_size == 0)
778     return false;
779 
780   offset = 0;
781   if (instruction_length - opcode_size == 1) {
782     int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size);
783     offset = rel8;
784   } else if (instruction_length - opcode_size == 2) {
785     int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size);
786     offset = rel16;
787   } else if (instruction_length - opcode_size == 4) {
788     int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size);
789     offset = rel32;
790   } else {
791     return false;
792   }
793   return true;
794 }
795 
796 // Returns true if this instruction is a intra-function branch or jump -
797 // a branch/jump within the bounds of this same function.
798 // Cannot predict where a jump through a register value ("jmpq *%rax")
799 // will go, so it will return false on that instruction.
800 bool x86AssemblyInspectionEngine::local_branch_p (
801     const addr_t current_func_text_offset,
802     const AddressRange &func_range,
803     const int instruction_length,
804     addr_t &target_insn_offset) {
805   int offset;
806   if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) {
807     addr_t next_pc_value = current_func_text_offset + instruction_length;
808     if (offset < 0 && addr_t(-offset) > current_func_text_offset) {
809       // Branch target is before the start of this function
810       return false;
811     }
812     if (offset + next_pc_value > func_range.GetByteSize()) {
813       // Branch targets outside this function's bounds
814       return false;
815     }
816     // This instruction branches to target_insn_offset (byte offset into the function)
817     target_insn_offset = next_pc_value + offset;
818     return true;
819   }
820   return false;
821 }
822 
823 // Returns true if this instruction is a inter-function branch or jump - a
824 // branch/jump to another function.
825 // Cannot predict where a jump through a register value ("jmpq *%rax")
826 // will go, so it will return false on that instruction.
827 bool x86AssemblyInspectionEngine::non_local_branch_p (
828     const addr_t current_func_text_offset,
829     const AddressRange &func_range,
830     const int instruction_length) {
831   int offset;
832   addr_t target_insn_offset;
833   if (pc_rel_branch_or_jump_p (instruction_length, offset)) {
834     return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset);
835   }
836   return false;
837 }
838 
839 // ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
840 bool x86AssemblyInspectionEngine::ret_pattern_p() {
841   uint8_t *p = m_cur_insn;
842   return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb;
843 }
844 
845 uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) {
846   uint16_t v = 0;
847   for (int i = 1; i >= 0; i--)
848     v = (v << 8) | b[i];
849   return v;
850 }
851 
852 int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) {
853   int16_t v = 0;
854   for (int i = 1; i >= 0; i--)
855     v = (v << 8) | b[i];
856   return v;
857 }
858 
859 uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
860   uint32_t v = 0;
861   for (int i = 3; i >= 0; i--)
862     v = (v << 8) | b[i];
863   return v;
864 }
865 
866 int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) {
867   int32_t v = 0;
868   for (int i = 3; i >= 0; i--)
869     v = (v << 8) | b[i];
870   return v;
871 }
872 
873 
874 bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
875                                                      int &length,
876                                                      uint32_t buffer_remaining_bytes) {
877 
878   uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
879   llvm::SmallVector<uint8_t, 32> opcode_data;
880   opcode_data.resize(max_op_byte_size);
881 
882   char out_string[512];
883   const size_t inst_size =
884       ::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
885                               out_string, sizeof(out_string));
886 
887   length = inst_size;
888   return true;
889 }
890 
891 bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
892     int machine_regno, uint32_t &lldb_regno) {
893   MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
894   if (it != m_reg_map.end()) {
895     lldb_regno = it->second.lldb_regnum;
896     return true;
897   }
898   return false;
899 }
900 
901 bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
902     uint8_t *data, size_t size, AddressRange &func_range,
903     UnwindPlan &unwind_plan) {
904   unwind_plan.Clear();
905 
906   if (data == nullptr || size == 0)
907     return false;
908 
909   if (!m_register_map_initialized)
910     return false;
911 
912   addr_t current_func_text_offset = 0;
913   int current_sp_bytes_offset_from_fa = 0;
914   bool is_aligned = false;
915   UnwindPlan::Row::RegisterLocation initial_regloc;
916   UnwindPlan::RowSP row(new UnwindPlan::Row);
917 
918   unwind_plan.SetPlanValidAddressRange(func_range);
919   unwind_plan.SetRegisterKind(eRegisterKindLLDB);
920 
921   // At the start of the function, find the CFA by adding wordsize to the SP
922   // register
923   row->SetOffset(current_func_text_offset);
924   row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
925 
926   // caller's stack pointer value before the call insn is the CFA address
927   initial_regloc.SetIsCFAPlusOffset(0);
928   row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
929 
930   // saved instruction pointer can be found at CFA - wordsize.
931   current_sp_bytes_offset_from_fa = m_wordsize;
932   initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
933   row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
934 
935   unwind_plan.AppendRow(row);
936 
937   // Allocate a new Row, populate it with the existing Row contents.
938   UnwindPlan::Row *newrow = new UnwindPlan::Row;
939   *newrow = *row.get();
940   row.reset(newrow);
941 
942   // Track which registers have been saved so far in the prologue. If we see
943   // another push of that register, it's not part of the prologue. The register
944   // numbers used here are the machine register #'s (i386_register_numbers,
945   // x86_64_register_numbers).
946   std::vector<bool> saved_registers(32, false);
947 
948   // Once the prologue has completed we'll save a copy of the unwind
949   // instructions If there is an epilogue in the middle of the function, after
950   // that epilogue we'll reinstate the unwind setup -- we assume that some code
951   // path jumps over the mid-function epilogue
952 
953   UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
954   int prologue_completed_sp_bytes_offset_from_cfa = 0; // The sp value before the
955                                                    // epilogue started executed
956   bool prologue_completed_is_aligned = false;
957   std::vector<bool> prologue_completed_saved_registers;
958 
959   while (current_func_text_offset < size) {
960     int stack_offset, insn_len;
961     int machine_regno;   // register numbers masked directly out of instructions
962     uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
963                          // numbering scheme
964 
965     bool in_epilogue = false; // we're in the middle of an epilogue sequence
966     bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
967 
968     m_cur_insn = data + current_func_text_offset;
969     if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
970         || insn_len == 0
971         || insn_len > kMaxInstructionByteSize) {
972       // An unrecognized/junk instruction
973       break;
974     }
975 
976     auto &cfa_value = row->GetCFAValue();
977     auto &afa_value = row->GetAFAValue();
978     auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value;
979 
980     if (mov_rsp_rbp_pattern_p()) {
981       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
982         fa_value_ptr->SetIsRegisterPlusOffset(
983             m_lldb_fp_regnum, fa_value_ptr->GetOffset());
984         row_updated = true;
985       }
986     }
987 
988     else if (mov_rsp_rbx_pattern_p()) {
989       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
990         fa_value_ptr->SetIsRegisterPlusOffset(
991             m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset());
992         row_updated = true;
993       }
994     }
995 
996     else if (and_rsp_pattern_p()) {
997       current_sp_bytes_offset_from_fa = 0;
998       afa_value.SetIsRegisterPlusOffset(
999           m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1000       fa_value_ptr = &afa_value;
1001       is_aligned = true;
1002       row_updated = true;
1003     }
1004 
1005     else if (mov_rbp_rsp_pattern_p()) {
1006       if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
1007       {
1008         is_aligned = false;
1009         fa_value_ptr = &cfa_value;
1010         afa_value.SetUnspecified();
1011         row_updated = true;
1012       }
1013       if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
1014         current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1015     }
1016 
1017     else if (mov_rbx_rsp_pattern_p()) {
1018       if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum)
1019       {
1020         is_aligned = false;
1021         fa_value_ptr = &cfa_value;
1022         afa_value.SetUnspecified();
1023         row_updated = true;
1024       }
1025       if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum)
1026         current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1027     }
1028 
1029     // This is the start() function (or a pthread equivalent), it starts with a
1030     // pushl $0x0 which puts the saved pc value of 0 on the stack.  In this
1031     // case we want to pretend we didn't see a stack movement at all --
1032     // normally the saved pc value is already on the stack by the time the
1033     // function starts executing.
1034     else if (push_0_pattern_p()) {
1035     }
1036 
1037     else if (push_reg_p(machine_regno)) {
1038       current_sp_bytes_offset_from_fa += m_wordsize;
1039       // the PUSH instruction has moved the stack pointer - if the FA is set
1040       // in terms of the stack pointer, we need to add a new row of
1041       // instructions.
1042       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1043         fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1044         row_updated = true;
1045       }
1046       // record where non-volatile (callee-saved, spilled) registers are saved
1047       // on the stack
1048       if (nonvolatile_reg_p(machine_regno) &&
1049           machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1050           !saved_registers[machine_regno]) {
1051         UnwindPlan::Row::RegisterLocation regloc;
1052         if (is_aligned)
1053             regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa);
1054         else
1055             regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
1056         row->SetRegisterInfo(lldb_regno, regloc);
1057         saved_registers[machine_regno] = true;
1058         row_updated = true;
1059       }
1060     }
1061 
1062     else if (pop_reg_p(machine_regno)) {
1063       current_sp_bytes_offset_from_fa -= m_wordsize;
1064 
1065       if (nonvolatile_reg_p(machine_regno) &&
1066           machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1067           saved_registers[machine_regno]) {
1068         saved_registers[machine_regno] = false;
1069         row->RemoveRegisterInfo(lldb_regno);
1070 
1071         if (lldb_regno == fa_value_ptr->GetRegisterNumber()) {
1072           fa_value_ptr->SetIsRegisterPlusOffset(
1073               m_lldb_sp_regnum, fa_value_ptr->GetOffset());
1074         }
1075 
1076         in_epilogue = true;
1077         row_updated = true;
1078       }
1079 
1080       // the POP instruction has moved the stack pointer - if the FA is set in
1081       // terms of the stack pointer, we need to add a new row of instructions.
1082       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1083         fa_value_ptr->SetIsRegisterPlusOffset(
1084             m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1085         row_updated = true;
1086       }
1087     }
1088 
1089     else if (pop_misc_reg_p()) {
1090       current_sp_bytes_offset_from_fa -= m_wordsize;
1091       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1092         fa_value_ptr->SetIsRegisterPlusOffset(
1093             m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1094         row_updated = true;
1095       }
1096     }
1097 
1098     // The LEAVE instruction moves the value from rbp into rsp and pops a value
1099     // off the stack into rbp (restoring the caller's rbp value). It is the
1100     // opposite of ENTER, or 'push rbp, mov rsp rbp'.
1101     else if (leave_pattern_p()) {
1102       if (saved_registers[m_machine_fp_regnum]) {
1103         saved_registers[m_machine_fp_regnum] = false;
1104         row->RemoveRegisterInfo(m_lldb_fp_regnum);
1105 
1106         row_updated = true;
1107       }
1108 
1109       if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
1110       {
1111         is_aligned = false;
1112         fa_value_ptr = &cfa_value;
1113         afa_value.SetUnspecified();
1114         row_updated = true;
1115       }
1116 
1117       if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
1118       {
1119         fa_value_ptr->SetIsRegisterPlusOffset(
1120             m_lldb_sp_regnum, fa_value_ptr->GetOffset());
1121 
1122         current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1123       }
1124 
1125       current_sp_bytes_offset_from_fa -= m_wordsize;
1126 
1127       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1128         fa_value_ptr->SetIsRegisterPlusOffset(
1129             m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1130         row_updated = true;
1131       }
1132 
1133       in_epilogue = true;
1134     }
1135 
1136     else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
1137              nonvolatile_reg_p(machine_regno) &&
1138              machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1139              !saved_registers[machine_regno]) {
1140       saved_registers[machine_regno] = true;
1141 
1142       UnwindPlan::Row::RegisterLocation regloc;
1143 
1144       // stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
1145       // want to express this as the offset from the FA.  If the frame base is
1146       // rbp (like the above instruction), the FA offset for rbp is probably
1147       // 16.  So we want to say that the value is stored at the FA address -
1148       // 96.
1149       if (is_aligned)
1150           regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
1151       else
1152           regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
1153 
1154       row->SetRegisterInfo(lldb_regno, regloc);
1155 
1156       row_updated = true;
1157     }
1158 
1159     else if (sub_rsp_pattern_p(stack_offset)) {
1160       current_sp_bytes_offset_from_fa += stack_offset;
1161       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1162         fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1163         row_updated = true;
1164       }
1165     }
1166 
1167     else if (add_rsp_pattern_p(stack_offset)) {
1168       current_sp_bytes_offset_from_fa -= stack_offset;
1169       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1170         fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1171         row_updated = true;
1172       }
1173       in_epilogue = true;
1174     }
1175 
1176     else if (push_extended_pattern_p() || push_imm_pattern_p() ||
1177              push_misc_reg_p()) {
1178       current_sp_bytes_offset_from_fa += m_wordsize;
1179       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1180         fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1181         row_updated = true;
1182       }
1183     }
1184 
1185     else if (lea_rsp_pattern_p(stack_offset)) {
1186       current_sp_bytes_offset_from_fa -= stack_offset;
1187       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1188         fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1189         row_updated = true;
1190       }
1191       if (stack_offset > 0)
1192         in_epilogue = true;
1193     }
1194 
1195     else if (lea_rbp_rsp_pattern_p(stack_offset)) {
1196       if (is_aligned &&
1197           cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) {
1198         is_aligned = false;
1199         fa_value_ptr = &cfa_value;
1200         afa_value.SetUnspecified();
1201         row_updated = true;
1202       }
1203       if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
1204         current_sp_bytes_offset_from_fa =
1205           fa_value_ptr->GetOffset() - stack_offset;
1206       }
1207     }
1208 
1209     else if (lea_rbx_rsp_pattern_p(stack_offset)) {
1210       if (is_aligned &&
1211           cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) {
1212         is_aligned = false;
1213         fa_value_ptr = &cfa_value;
1214         afa_value.SetUnspecified();
1215         row_updated = true;
1216       }
1217       if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
1218         current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset;
1219       }
1220     }
1221 
1222     else if (prologue_completed_row.get() &&
1223              (ret_pattern_p() ||
1224               non_local_branch_p (current_func_text_offset, func_range, insn_len) ||
1225               jmp_to_reg_p())) {
1226       // Check if the current instruction is the end of an epilogue sequence,
1227       // and if so, re-instate the prologue-completed unwind state.
1228 
1229       // The current instruction is a branch/jump outside this function,
1230       // a ret, or a jump through a register value which we cannot
1231       // determine the effcts of.  Verify that the stack frame state
1232       // has been unwound to the same as it was at function entry to avoid
1233       // mis-identifying a JMP instruction as an epilogue.
1234       UnwindPlan::Row::RegisterLocation sp, pc;
1235       if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) &&
1236           row->GetRegisterInfo(m_lldb_ip_regnum, pc)) {
1237         // Any ret instruction variant is definitely indicative of an
1238         // epilogue; for other insn patterns verify that we're back to
1239         // the original unwind state.
1240         if (ret_pattern_p() ||
1241             (sp.IsCFAPlusOffset() && sp.GetOffset() == 0 &&
1242             pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) {
1243           // Reinstate the saved prologue setup for any instructions that come
1244           // after the epilogue
1245 
1246           UnwindPlan::Row *newrow = new UnwindPlan::Row;
1247           *newrow = *prologue_completed_row.get();
1248           row.reset(newrow);
1249           current_sp_bytes_offset_from_fa =
1250               prologue_completed_sp_bytes_offset_from_cfa;
1251           is_aligned = prologue_completed_is_aligned;
1252 
1253           saved_registers.clear();
1254           saved_registers.resize(prologue_completed_saved_registers.size(), false);
1255           for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
1256             saved_registers[i] = prologue_completed_saved_registers[i];
1257           }
1258 
1259           in_epilogue = true;
1260           row_updated = true;
1261         }
1262       }
1263     }
1264 
1265     // call next instruction
1266     //     call 0
1267     //  => pop  %ebx
1268     // This is used in i386 programs to get the PIC base address for finding
1269     // global data
1270     else if (call_next_insn_pattern_p()) {
1271       current_sp_bytes_offset_from_fa += m_wordsize;
1272       if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1273         fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1274         row_updated = true;
1275       }
1276     }
1277 
1278     if (row_updated) {
1279       if (current_func_text_offset + insn_len < size) {
1280         row->SetOffset(current_func_text_offset + insn_len);
1281         unwind_plan.AppendRow(row);
1282         // Allocate a new Row, populate it with the existing Row contents.
1283         newrow = new UnwindPlan::Row;
1284         *newrow = *row.get();
1285         row.reset(newrow);
1286       }
1287     }
1288 
1289     if (!in_epilogue && row_updated) {
1290       // If we're not in an epilogue sequence, save the updated Row
1291       UnwindPlan::Row *newrow = new UnwindPlan::Row;
1292       *newrow = *row.get();
1293       prologue_completed_row.reset(newrow);
1294 
1295       prologue_completed_saved_registers.clear();
1296       prologue_completed_saved_registers.resize(saved_registers.size(), false);
1297       for (size_t i = 0; i < saved_registers.size(); ++i) {
1298         prologue_completed_saved_registers[i] = saved_registers[i];
1299       }
1300     }
1301 
1302     // We may change the sp value without adding a new Row necessarily -- keep
1303     // track of it either way.
1304     if (!in_epilogue) {
1305       prologue_completed_sp_bytes_offset_from_cfa =
1306           current_sp_bytes_offset_from_fa;
1307       prologue_completed_is_aligned = is_aligned;
1308     }
1309 
1310     m_cur_insn = m_cur_insn + insn_len;
1311     current_func_text_offset += insn_len;
1312   }
1313 
1314   unwind_plan.SetSourceName("assembly insn profiling");
1315   unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1316   unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1317   unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
1318 
1319   return true;
1320 }
1321 
1322 bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
1323     uint8_t *data, size_t size, AddressRange &func_range,
1324     UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
1325   Address addr_start = func_range.GetBaseAddress();
1326   if (!addr_start.IsValid())
1327     return false;
1328 
1329   // We either need a live RegisterContext, or we need the UnwindPlan to
1330   // already be in the lldb register numbering scheme.
1331   if (reg_ctx.get() == nullptr &&
1332       unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
1333     return false;
1334 
1335   // Is original unwind_plan valid?
1336   // unwind_plan should have at least one row which is ABI-default (CFA
1337   // register is sp), and another row in mid-function.
1338   if (unwind_plan.GetRowCount() < 2)
1339     return false;
1340 
1341   UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
1342   if (first_row->GetOffset() != 0)
1343     return false;
1344   uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
1345   if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1346     cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1347         unwind_plan.GetRegisterKind(),
1348         first_row->GetCFAValue().GetRegisterNumber());
1349   }
1350   if (cfa_reg != m_lldb_sp_regnum ||
1351       first_row->GetCFAValue().GetOffset() != m_wordsize)
1352     return false;
1353 
1354   UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
1355 
1356   size_t offset = 0;
1357   int row_id = 1;
1358   bool unwind_plan_updated = false;
1359   UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
1360 
1361   // After a mid-function epilogue we will need to re-insert the original
1362   // unwind rules so unwinds work for the remainder of the function.  These
1363   // aren't common with clang/gcc on x86 but it is possible.
1364   bool reinstate_unwind_state = false;
1365 
1366   while (offset < size) {
1367     m_cur_insn = data + offset;
1368     int insn_len;
1369     if (!instruction_length(m_cur_insn, insn_len, size - offset) ||
1370         insn_len == 0 || insn_len > kMaxInstructionByteSize) {
1371       // An unrecognized/junk instruction.
1372       break;
1373     }
1374 
1375     // Advance offsets.
1376     offset += insn_len;
1377 
1378     // offset is pointing beyond the bounds of the function; stop looping.
1379     if (offset >= size)
1380       continue;
1381 
1382     if (reinstate_unwind_state) {
1383       UnwindPlan::RowSP new_row(new UnwindPlan::Row());
1384       *new_row = *original_last_row;
1385       new_row->SetOffset(offset);
1386       unwind_plan.AppendRow(new_row);
1387       row = std::make_shared<UnwindPlan::Row>();
1388       *row = *new_row;
1389       reinstate_unwind_state = false;
1390       unwind_plan_updated = true;
1391       continue;
1392     }
1393 
1394     // If we already have one row for this instruction, we can continue.
1395     while (row_id < unwind_plan.GetRowCount() &&
1396            unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
1397       row_id++;
1398     }
1399     UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
1400     if (original_row->GetOffset() == offset) {
1401       *row = *original_row;
1402       continue;
1403     }
1404 
1405     if (row_id == 0) {
1406       // If we are here, compiler didn't generate CFI for prologue. This won't
1407       // happen to GCC or clang. In this case, bail out directly.
1408       return false;
1409     }
1410 
1411     // Inspect the instruction to check if we need a new row for it.
1412     cfa_reg = row->GetCFAValue().GetRegisterNumber();
1413     if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1414       cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1415           unwind_plan.GetRegisterKind(),
1416           row->GetCFAValue().GetRegisterNumber());
1417     }
1418     if (cfa_reg == m_lldb_sp_regnum) {
1419       // CFA register is sp.
1420 
1421       // call next instruction
1422       //     call 0
1423       //  => pop  %ebx
1424       if (call_next_insn_pattern_p()) {
1425         row->SetOffset(offset);
1426         row->GetCFAValue().IncOffset(m_wordsize);
1427 
1428         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1429         unwind_plan.InsertRow(new_row);
1430         unwind_plan_updated = true;
1431         continue;
1432       }
1433 
1434       // push/pop register
1435       int regno;
1436       if (push_reg_p(regno)) {
1437         row->SetOffset(offset);
1438         row->GetCFAValue().IncOffset(m_wordsize);
1439 
1440         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1441         unwind_plan.InsertRow(new_row);
1442         unwind_plan_updated = true;
1443         continue;
1444       }
1445       if (pop_reg_p(regno)) {
1446         // Technically, this might be a nonvolatile register recover in
1447         // epilogue. We should reset RegisterInfo for the register. But in
1448         // practice, previous rule for the register is still valid... So we
1449         // ignore this case.
1450 
1451         row->SetOffset(offset);
1452         row->GetCFAValue().IncOffset(-m_wordsize);
1453 
1454         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1455         unwind_plan.InsertRow(new_row);
1456         unwind_plan_updated = true;
1457         continue;
1458       }
1459 
1460       if (pop_misc_reg_p()) {
1461         row->SetOffset(offset);
1462         row->GetCFAValue().IncOffset(-m_wordsize);
1463 
1464         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1465         unwind_plan.InsertRow(new_row);
1466         unwind_plan_updated = true;
1467         continue;
1468       }
1469 
1470       // push imm
1471       if (push_imm_pattern_p()) {
1472         row->SetOffset(offset);
1473         row->GetCFAValue().IncOffset(m_wordsize);
1474         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1475         unwind_plan.InsertRow(new_row);
1476         unwind_plan_updated = true;
1477         continue;
1478       }
1479 
1480       // push extended
1481       if (push_extended_pattern_p() || push_misc_reg_p()) {
1482         row->SetOffset(offset);
1483         row->GetCFAValue().IncOffset(m_wordsize);
1484         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1485         unwind_plan.InsertRow(new_row);
1486         unwind_plan_updated = true;
1487         continue;
1488       }
1489 
1490       // add/sub %rsp/%esp
1491       int amount;
1492       if (add_rsp_pattern_p(amount)) {
1493         row->SetOffset(offset);
1494         row->GetCFAValue().IncOffset(-amount);
1495 
1496         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1497         unwind_plan.InsertRow(new_row);
1498         unwind_plan_updated = true;
1499         continue;
1500       }
1501       if (sub_rsp_pattern_p(amount)) {
1502         row->SetOffset(offset);
1503         row->GetCFAValue().IncOffset(amount);
1504 
1505         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1506         unwind_plan.InsertRow(new_row);
1507         unwind_plan_updated = true;
1508         continue;
1509       }
1510 
1511       // lea %rsp, [%rsp + $offset]
1512       if (lea_rsp_pattern_p(amount)) {
1513         row->SetOffset(offset);
1514         row->GetCFAValue().IncOffset(-amount);
1515 
1516         UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1517         unwind_plan.InsertRow(new_row);
1518         unwind_plan_updated = true;
1519         continue;
1520       }
1521 
1522       if (ret_pattern_p()) {
1523         reinstate_unwind_state = true;
1524         continue;
1525       }
1526     } else if (cfa_reg == m_lldb_fp_regnum) {
1527       // CFA register is fp.
1528 
1529       // The only case we care about is epilogue:
1530       //     [0x5d] pop %rbp/%ebp
1531       //  => [0xc3] ret
1532       if (pop_rbp_pattern_p() || leave_pattern_p()) {
1533         m_cur_insn++;
1534         if (ret_pattern_p()) {
1535           row->SetOffset(offset);
1536           row->GetCFAValue().SetIsRegisterPlusOffset(
1537               first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
1538 
1539           UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1540           unwind_plan.InsertRow(new_row);
1541           unwind_plan_updated = true;
1542           reinstate_unwind_state = true;
1543           continue;
1544         }
1545       }
1546     } else {
1547       // CFA register is not sp or fp.
1548 
1549       // This must be hand-written assembly.
1550       // Just trust eh_frame and assume we have finished.
1551       break;
1552     }
1553   }
1554 
1555   unwind_plan.SetPlanValidAddressRange(func_range);
1556   if (unwind_plan_updated) {
1557     std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
1558     unwind_plan_source += " plus augmentation from assembly parsing";
1559     unwind_plan.SetSourceName(unwind_plan_source.c_str());
1560     unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1561     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1562   }
1563   return true;
1564 }
1565 
1566 bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
1567     uint8_t *data, size_t size, size_t &offset) {
1568   offset = 0;
1569 
1570   if (!m_register_map_initialized)
1571     return false;
1572 
1573   while (offset < size) {
1574     int regno;
1575     int insn_len;
1576     int scratch;
1577 
1578     m_cur_insn = data + offset;
1579     if (!instruction_length(m_cur_insn, insn_len, size - offset)
1580         || insn_len > kMaxInstructionByteSize
1581         || insn_len == 0) {
1582       // An error parsing the instruction, i.e. probably data/garbage - stop
1583       // scanning
1584       break;
1585     }
1586 
1587     if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
1588         sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
1589         mov_reg_to_local_stack_frame_p(regno, scratch) ||
1590         (lea_rsp_pattern_p(scratch) && offset == 0)) {
1591       offset += insn_len;
1592       continue;
1593     }
1594     //
1595     // Unknown non-prologue instruction - stop scanning
1596     break;
1597   }
1598 
1599   return true;
1600 }
1601