1 //===-- Type.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <cstdio>
10 
11 #include "lldb/Core/Module.h"
12 #include "lldb/Utility/DataBufferHeap.h"
13 #include "lldb/Utility/DataExtractor.h"
14 #include "lldb/Utility/LLDBLog.h"
15 #include "lldb/Utility/Log.h"
16 #include "lldb/Utility/Scalar.h"
17 #include "lldb/Utility/StreamString.h"
18 
19 #include "lldb/Symbol/CompilerType.h"
20 #include "lldb/Symbol/ObjectFile.h"
21 #include "lldb/Symbol/SymbolContextScope.h"
22 #include "lldb/Symbol/SymbolFile.h"
23 #include "lldb/Symbol/SymbolVendor.h"
24 #include "lldb/Symbol/Type.h"
25 #include "lldb/Symbol/TypeList.h"
26 #include "lldb/Symbol/TypeSystem.h"
27 
28 #include "lldb/Target/ExecutionContext.h"
29 #include "lldb/Target/Process.h"
30 #include "lldb/Target/Target.h"
31 
32 #include "llvm/ADT/StringRef.h"
33 
34 using namespace lldb;
35 using namespace lldb_private;
36 
37 bool lldb_private::contextMatches(llvm::ArrayRef<CompilerContext> context_chain,
38                                   llvm::ArrayRef<CompilerContext> pattern) {
39   auto ctx = context_chain.begin();
40   auto ctx_end = context_chain.end();
41   for (const CompilerContext &pat : pattern) {
42     // Early exit if the pattern is too long.
43     if (ctx == ctx_end)
44       return false;
45     if (*ctx != pat) {
46       // Skip any number of module matches.
47       if (pat.kind == CompilerContextKind::AnyModule) {
48         // Greedily match 0..n modules.
49         ctx = std::find_if(ctx, ctx_end, [](const CompilerContext &ctx) {
50           return ctx.kind != CompilerContextKind::Module;
51         });
52         continue;
53       }
54       // See if there is a kind mismatch; they should have 1 bit in common.
55       if (((uint16_t)ctx->kind & (uint16_t)pat.kind) == 0)
56         return false;
57       // The name is ignored for AnyModule, but not for AnyType.
58       if (pat.kind != CompilerContextKind::AnyModule && ctx->name != pat.name)
59         return false;
60     }
61     ++ctx;
62   }
63   return true;
64 }
65 
66 void CompilerContext::Dump() const {
67   switch (kind) {
68   default:
69     printf("Invalid");
70     break;
71   case CompilerContextKind::TranslationUnit:
72     printf("TranslationUnit");
73     break;
74   case CompilerContextKind::Module:
75     printf("Module");
76     break;
77   case CompilerContextKind::Namespace:
78     printf("Namespace");
79     break;
80   case CompilerContextKind::Class:
81     printf("Class");
82     break;
83   case CompilerContextKind::Struct:
84     printf("Structure");
85     break;
86   case CompilerContextKind::Union:
87     printf("Union");
88     break;
89   case CompilerContextKind::Function:
90     printf("Function");
91     break;
92   case CompilerContextKind::Variable:
93     printf("Variable");
94     break;
95   case CompilerContextKind::Enum:
96     printf("Enumeration");
97     break;
98   case CompilerContextKind::Typedef:
99     printf("Typedef");
100     break;
101   case CompilerContextKind::AnyModule:
102     printf("AnyModule");
103     break;
104   case CompilerContextKind::AnyType:
105     printf("AnyType");
106     break;
107   }
108   printf("(\"%s\")\n", name.GetCString());
109 }
110 
111 class TypeAppendVisitor {
112 public:
113   TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {}
114 
115   bool operator()(const lldb::TypeSP &type) {
116     m_type_list.Append(TypeImplSP(new TypeImpl(type)));
117     return true;
118   }
119 
120 private:
121   TypeListImpl &m_type_list;
122 };
123 
124 void TypeListImpl::Append(const lldb_private::TypeList &type_list) {
125   TypeAppendVisitor cb(*this);
126   type_list.ForEach(cb);
127 }
128 
129 SymbolFileType::SymbolFileType(SymbolFile &symbol_file,
130                                const lldb::TypeSP &type_sp)
131     : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID),
132       m_symbol_file(symbol_file), m_type_sp(type_sp) {}
133 
134 Type *SymbolFileType::GetType() {
135   if (!m_type_sp) {
136     Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID());
137     if (resolved_type)
138       m_type_sp = resolved_type->shared_from_this();
139   }
140   return m_type_sp.get();
141 }
142 
143 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, ConstString name,
144            llvm::Optional<uint64_t> byte_size, SymbolContextScope *context,
145            user_id_t encoding_uid, EncodingDataType encoding_uid_type,
146            const Declaration &decl, const CompilerType &compiler_type,
147            ResolveState compiler_type_resolve_state, uint32_t opaque_payload)
148     : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name),
149       m_symbol_file(symbol_file), m_context(context),
150       m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type),
151       m_decl(decl), m_compiler_type(compiler_type),
152       m_compiler_type_resolve_state(compiler_type ? compiler_type_resolve_state
153                                                   : ResolveState::Unresolved),
154       m_payload(opaque_payload) {
155   if (byte_size) {
156     m_byte_size = *byte_size;
157     m_byte_size_has_value = true;
158   } else {
159     m_byte_size = 0;
160     m_byte_size_has_value = false;
161   }
162 }
163 
164 Type::Type()
165     : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"),
166       m_payload(0) {
167   m_byte_size = 0;
168   m_byte_size_has_value = false;
169 }
170 
171 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level,
172                           bool show_name, ExecutionContextScope *exe_scope) {
173   *s << "id = " << (const UserID &)*this;
174 
175   // Call the name accessor to make sure we resolve the type name
176   if (show_name) {
177     ConstString type_name = GetName();
178     if (type_name) {
179       *s << ", name = \"" << type_name << '"';
180       ConstString qualified_type_name(GetQualifiedName());
181       if (qualified_type_name != type_name) {
182         *s << ", qualified = \"" << qualified_type_name << '"';
183       }
184     }
185   }
186 
187   // Call the get byte size accesor so we resolve our byte size
188   if (GetByteSize(exe_scope))
189     s->Printf(", byte-size = %" PRIu64, m_byte_size);
190   bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose);
191   m_decl.Dump(s, show_fullpaths);
192 
193   if (m_compiler_type.IsValid()) {
194     *s << ", compiler_type = \"";
195     GetForwardCompilerType().DumpTypeDescription(s);
196     *s << '"';
197   } else if (m_encoding_uid != LLDB_INVALID_UID) {
198     s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid);
199     switch (m_encoding_uid_type) {
200     case eEncodingInvalid:
201       break;
202     case eEncodingIsUID:
203       s->PutCString(" (unresolved type)");
204       break;
205     case eEncodingIsConstUID:
206       s->PutCString(" (unresolved const type)");
207       break;
208     case eEncodingIsRestrictUID:
209       s->PutCString(" (unresolved restrict type)");
210       break;
211     case eEncodingIsVolatileUID:
212       s->PutCString(" (unresolved volatile type)");
213       break;
214     case eEncodingIsAtomicUID:
215       s->PutCString(" (unresolved atomic type)");
216       break;
217     case eEncodingIsTypedefUID:
218       s->PutCString(" (unresolved typedef)");
219       break;
220     case eEncodingIsPointerUID:
221       s->PutCString(" (unresolved pointer)");
222       break;
223     case eEncodingIsLValueReferenceUID:
224       s->PutCString(" (unresolved L value reference)");
225       break;
226     case eEncodingIsRValueReferenceUID:
227       s->PutCString(" (unresolved R value reference)");
228       break;
229     case eEncodingIsSyntheticUID:
230       s->PutCString(" (synthetic type)");
231       break;
232     }
233   }
234 }
235 
236 void Type::Dump(Stream *s, bool show_context, lldb::DescriptionLevel level) {
237   s->Printf("%p: ", static_cast<void *>(this));
238   s->Indent();
239   *s << "Type" << static_cast<const UserID &>(*this) << ' ';
240   if (m_name)
241     *s << ", name = \"" << m_name << "\"";
242 
243   if (m_byte_size_has_value)
244     s->Printf(", size = %" PRIu64, m_byte_size);
245 
246   if (show_context && m_context != nullptr) {
247     s->PutCString(", context = ( ");
248     m_context->DumpSymbolContext(s);
249     s->PutCString(" )");
250   }
251 
252   bool show_fullpaths = false;
253   m_decl.Dump(s, show_fullpaths);
254 
255   if (m_compiler_type.IsValid()) {
256     *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' ';
257     GetForwardCompilerType().DumpTypeDescription(s, level);
258   } else if (m_encoding_uid != LLDB_INVALID_UID) {
259     s->Format(", type_data = {0:x-16}", m_encoding_uid);
260     switch (m_encoding_uid_type) {
261     case eEncodingInvalid:
262       break;
263     case eEncodingIsUID:
264       s->PutCString(" (unresolved type)");
265       break;
266     case eEncodingIsConstUID:
267       s->PutCString(" (unresolved const type)");
268       break;
269     case eEncodingIsRestrictUID:
270       s->PutCString(" (unresolved restrict type)");
271       break;
272     case eEncodingIsVolatileUID:
273       s->PutCString(" (unresolved volatile type)");
274       break;
275     case eEncodingIsAtomicUID:
276       s->PutCString(" (unresolved atomic type)");
277       break;
278     case eEncodingIsTypedefUID:
279       s->PutCString(" (unresolved typedef)");
280       break;
281     case eEncodingIsPointerUID:
282       s->PutCString(" (unresolved pointer)");
283       break;
284     case eEncodingIsLValueReferenceUID:
285       s->PutCString(" (unresolved L value reference)");
286       break;
287     case eEncodingIsRValueReferenceUID:
288       s->PutCString(" (unresolved R value reference)");
289       break;
290     case eEncodingIsSyntheticUID:
291       s->PutCString(" (synthetic type)");
292       break;
293     }
294   }
295 
296   //
297   //  if (m_access)
298   //      s->Printf(", access = %u", m_access);
299   s->EOL();
300 }
301 
302 ConstString Type::GetName() {
303   if (!m_name)
304     m_name = GetForwardCompilerType().GetTypeName();
305   return m_name;
306 }
307 
308 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); }
309 
310 void Type::DumpValue(ExecutionContext *exe_ctx, Stream *s,
311                      const DataExtractor &data, uint32_t data_byte_offset,
312                      bool show_types, bool show_summary, bool verbose,
313                      lldb::Format format) {
314   if (ResolveCompilerType(ResolveState::Forward)) {
315     if (show_types) {
316       s->PutChar('(');
317       if (verbose)
318         s->Printf("Type{0x%8.8" PRIx64 "} ", GetID());
319       DumpTypeName(s);
320       s->PutCString(") ");
321     }
322 
323     GetForwardCompilerType().DumpValue(
324         exe_ctx, s, format == lldb::eFormatDefault ? GetFormat() : format, data,
325         data_byte_offset,
326         GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr)
327             .value_or(0),
328         0, // Bitfield bit size
329         0, // Bitfield bit offset
330         show_types, show_summary, verbose, 0);
331   }
332 }
333 
334 Type *Type::GetEncodingType() {
335   if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID)
336     m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
337   return m_encoding_type;
338 }
339 
340 llvm::Optional<uint64_t> Type::GetByteSize(ExecutionContextScope *exe_scope) {
341   if (m_byte_size_has_value)
342     return m_byte_size;
343 
344   switch (m_encoding_uid_type) {
345   case eEncodingInvalid:
346   case eEncodingIsSyntheticUID:
347     break;
348   case eEncodingIsUID:
349   case eEncodingIsConstUID:
350   case eEncodingIsRestrictUID:
351   case eEncodingIsVolatileUID:
352   case eEncodingIsAtomicUID:
353   case eEncodingIsTypedefUID: {
354     Type *encoding_type = GetEncodingType();
355     if (encoding_type)
356       if (llvm::Optional<uint64_t> size = encoding_type->GetByteSize(exe_scope)) {
357         m_byte_size = *size;
358         m_byte_size_has_value = true;
359         return m_byte_size;
360       }
361 
362     if (llvm::Optional<uint64_t> size =
363             GetLayoutCompilerType().GetByteSize(exe_scope)) {
364       m_byte_size = *size;
365       m_byte_size_has_value = true;
366         return m_byte_size;
367     }
368   } break;
369 
370     // If we are a pointer or reference, then this is just a pointer size;
371     case eEncodingIsPointerUID:
372     case eEncodingIsLValueReferenceUID:
373     case eEncodingIsRValueReferenceUID: {
374       if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) {
375         m_byte_size = arch.GetAddressByteSize();
376         m_byte_size_has_value = true;
377         return m_byte_size;
378       }
379     } break;
380   }
381   return {};
382 }
383 
384 uint32_t Type::GetNumChildren(bool omit_empty_base_classes) {
385   return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr);
386 }
387 
388 bool Type::IsAggregateType() {
389   return GetForwardCompilerType().IsAggregateType();
390 }
391 
392 lldb::TypeSP Type::GetTypedefType() {
393   lldb::TypeSP type_sp;
394   if (IsTypedef()) {
395     Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
396     if (typedef_type)
397       type_sp = typedef_type->shared_from_this();
398   }
399   return type_sp;
400 }
401 
402 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); }
403 
404 lldb::Encoding Type::GetEncoding(uint64_t &count) {
405   // Make sure we resolve our type if it already hasn't been.
406   return GetForwardCompilerType().GetEncoding(count);
407 }
408 
409 bool Type::DumpValueInMemory(ExecutionContext *exe_ctx, Stream *s,
410                              lldb::addr_t address, AddressType address_type,
411                              bool show_types, bool show_summary, bool verbose) {
412   if (address != LLDB_INVALID_ADDRESS) {
413     DataExtractor data;
414     Target *target = nullptr;
415     if (exe_ctx)
416       target = exe_ctx->GetTargetPtr();
417     if (target)
418       data.SetByteOrder(target->GetArchitecture().GetByteOrder());
419     if (ReadFromMemory(exe_ctx, address, address_type, data)) {
420       DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose);
421       return true;
422     }
423   }
424   return false;
425 }
426 
427 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
428                           AddressType address_type, DataExtractor &data) {
429   if (address_type == eAddressTypeFile) {
430     // Can't convert a file address to anything valid without more context
431     // (which Module it came from)
432     return false;
433   }
434 
435   const uint64_t byte_size =
436       GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : nullptr)
437           .value_or(0);
438   if (data.GetByteSize() < byte_size) {
439     lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0'));
440     data.SetData(data_sp);
441   }
442 
443   uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size));
444   if (dst != nullptr) {
445     if (address_type == eAddressTypeHost) {
446       // The address is an address in this process, so just copy it
447       if (addr == 0)
448         return false;
449       memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size);
450       return true;
451     } else {
452       if (exe_ctx) {
453         Process *process = exe_ctx->GetProcessPtr();
454         if (process) {
455           Status error;
456           return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size,
457                                                       error) == byte_size;
458         }
459       }
460     }
461   }
462   return false;
463 }
464 
465 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
466                          AddressType address_type, DataExtractor &data) {
467   return false;
468 }
469 
470 const Declaration &Type::GetDeclaration() const { return m_decl; }
471 
472 bool Type::ResolveCompilerType(ResolveState compiler_type_resolve_state) {
473   // TODO: This needs to consider the correct type system to use.
474   Type *encoding_type = nullptr;
475   if (!m_compiler_type.IsValid()) {
476     encoding_type = GetEncodingType();
477     if (encoding_type) {
478       switch (m_encoding_uid_type) {
479       case eEncodingIsUID: {
480         CompilerType encoding_compiler_type =
481             encoding_type->GetForwardCompilerType();
482         if (encoding_compiler_type.IsValid()) {
483           m_compiler_type = encoding_compiler_type;
484           m_compiler_type_resolve_state =
485               encoding_type->m_compiler_type_resolve_state;
486         }
487       } break;
488 
489       case eEncodingIsConstUID:
490         m_compiler_type =
491             encoding_type->GetForwardCompilerType().AddConstModifier();
492         break;
493 
494       case eEncodingIsRestrictUID:
495         m_compiler_type =
496             encoding_type->GetForwardCompilerType().AddRestrictModifier();
497         break;
498 
499       case eEncodingIsVolatileUID:
500         m_compiler_type =
501             encoding_type->GetForwardCompilerType().AddVolatileModifier();
502         break;
503 
504       case eEncodingIsAtomicUID:
505         m_compiler_type =
506             encoding_type->GetForwardCompilerType().GetAtomicType();
507         break;
508 
509       case eEncodingIsTypedefUID:
510         m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef(
511             m_name.AsCString("__lldb_invalid_typedef_name"),
512             GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
513         m_name.Clear();
514         break;
515 
516       case eEncodingIsPointerUID:
517         m_compiler_type =
518             encoding_type->GetForwardCompilerType().GetPointerType();
519         break;
520 
521       case eEncodingIsLValueReferenceUID:
522         m_compiler_type =
523             encoding_type->GetForwardCompilerType().GetLValueReferenceType();
524         break;
525 
526       case eEncodingIsRValueReferenceUID:
527         m_compiler_type =
528             encoding_type->GetForwardCompilerType().GetRValueReferenceType();
529         break;
530 
531       default:
532         llvm_unreachable("Unhandled encoding_data_type.");
533       }
534     } else {
535       // We have no encoding type, return void?
536       auto type_system_or_err =
537           m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC);
538       if (auto err = type_system_or_err.takeError()) {
539         LLDB_LOG_ERROR(GetLog(LLDBLog::Symbols), std::move(err),
540                        "Unable to construct void type from TypeSystemClang");
541       } else {
542         CompilerType void_compiler_type =
543             type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid);
544         switch (m_encoding_uid_type) {
545         case eEncodingIsUID:
546           m_compiler_type = void_compiler_type;
547           break;
548 
549         case eEncodingIsConstUID:
550           m_compiler_type = void_compiler_type.AddConstModifier();
551           break;
552 
553         case eEncodingIsRestrictUID:
554           m_compiler_type = void_compiler_type.AddRestrictModifier();
555           break;
556 
557         case eEncodingIsVolatileUID:
558           m_compiler_type = void_compiler_type.AddVolatileModifier();
559           break;
560 
561         case eEncodingIsAtomicUID:
562           m_compiler_type = void_compiler_type.GetAtomicType();
563           break;
564 
565         case eEncodingIsTypedefUID:
566           m_compiler_type = void_compiler_type.CreateTypedef(
567               m_name.AsCString("__lldb_invalid_typedef_name"),
568               GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
569           break;
570 
571         case eEncodingIsPointerUID:
572           m_compiler_type = void_compiler_type.GetPointerType();
573           break;
574 
575         case eEncodingIsLValueReferenceUID:
576           m_compiler_type = void_compiler_type.GetLValueReferenceType();
577           break;
578 
579         case eEncodingIsRValueReferenceUID:
580           m_compiler_type = void_compiler_type.GetRValueReferenceType();
581           break;
582 
583         default:
584           llvm_unreachable("Unhandled encoding_data_type.");
585         }
586       }
587     }
588 
589     // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is
590     // set to eResolveStateUnresolved so we need to update it to say that we
591     // now have a forward declaration since that is what we created above.
592     if (m_compiler_type.IsValid())
593       m_compiler_type_resolve_state = ResolveState::Forward;
594   }
595 
596   // Check if we have a forward reference to a class/struct/union/enum?
597   if (compiler_type_resolve_state == ResolveState::Layout ||
598       compiler_type_resolve_state == ResolveState::Full) {
599     // Check if we have a forward reference to a class/struct/union/enum?
600     if (m_compiler_type.IsValid() &&
601         m_compiler_type_resolve_state < compiler_type_resolve_state) {
602       m_compiler_type_resolve_state = ResolveState::Full;
603       if (!m_compiler_type.IsDefined()) {
604         // We have a forward declaration, we need to resolve it to a complete
605         // definition.
606         m_symbol_file->CompleteType(m_compiler_type);
607       }
608     }
609   }
610 
611   // If we have an encoding type, then we need to make sure it is resolved
612   // appropriately.
613   if (m_encoding_uid != LLDB_INVALID_UID) {
614     if (encoding_type == nullptr)
615       encoding_type = GetEncodingType();
616     if (encoding_type) {
617       ResolveState encoding_compiler_type_resolve_state =
618           compiler_type_resolve_state;
619 
620       if (compiler_type_resolve_state == ResolveState::Layout) {
621         switch (m_encoding_uid_type) {
622         case eEncodingIsPointerUID:
623         case eEncodingIsLValueReferenceUID:
624         case eEncodingIsRValueReferenceUID:
625           encoding_compiler_type_resolve_state = ResolveState::Forward;
626           break;
627         default:
628           break;
629         }
630       }
631       encoding_type->ResolveCompilerType(encoding_compiler_type_resolve_state);
632     }
633   }
634   return m_compiler_type.IsValid();
635 }
636 uint32_t Type::GetEncodingMask() {
637   uint32_t encoding_mask = 1u << m_encoding_uid_type;
638   Type *encoding_type = GetEncodingType();
639   assert(encoding_type != this);
640   if (encoding_type)
641     encoding_mask |= encoding_type->GetEncodingMask();
642   return encoding_mask;
643 }
644 
645 CompilerType Type::GetFullCompilerType() {
646   ResolveCompilerType(ResolveState::Full);
647   return m_compiler_type;
648 }
649 
650 CompilerType Type::GetLayoutCompilerType() {
651   ResolveCompilerType(ResolveState::Layout);
652   return m_compiler_type;
653 }
654 
655 CompilerType Type::GetForwardCompilerType() {
656   ResolveCompilerType(ResolveState::Forward);
657   return m_compiler_type;
658 }
659 
660 ConstString Type::GetQualifiedName() {
661   return GetForwardCompilerType().GetTypeName();
662 }
663 
664 bool Type::GetTypeScopeAndBasename(llvm::StringRef name,
665                                    llvm::StringRef &scope,
666                                    llvm::StringRef &basename,
667                                    TypeClass &type_class) {
668   type_class = eTypeClassAny;
669 
670   if (name.empty())
671     return false;
672 
673   basename = name;
674   if (basename.consume_front("struct "))
675     type_class = eTypeClassStruct;
676   else if (basename.consume_front("class "))
677     type_class = eTypeClassClass;
678   else if (basename.consume_front("union "))
679     type_class = eTypeClassUnion;
680   else if (basename.consume_front("enum "))
681     type_class = eTypeClassEnumeration;
682   else if (basename.consume_front("typedef "))
683     type_class = eTypeClassTypedef;
684 
685   size_t namespace_separator = basename.find("::");
686   if (namespace_separator == llvm::StringRef::npos)
687     return false;
688 
689   size_t template_begin = basename.find('<');
690   while (namespace_separator != llvm::StringRef::npos) {
691     if (template_begin != llvm::StringRef::npos &&
692         namespace_separator > template_begin) {
693       size_t template_depth = 1;
694       llvm::StringRef template_arg =
695           basename.drop_front(template_begin + 1);
696       while (template_depth > 0 && !template_arg.empty()) {
697         if (template_arg.front() == '<')
698           template_depth++;
699         else if (template_arg.front() == '>')
700           template_depth--;
701         template_arg = template_arg.drop_front(1);
702       }
703       if (template_depth != 0)
704         return false; // We have an invalid type name. Bail out.
705       if (template_arg.empty())
706         break; // The template ends at the end of the full name.
707       basename = template_arg;
708     } else {
709       basename = basename.drop_front(namespace_separator + 2);
710     }
711     template_begin = basename.find('<');
712     namespace_separator = basename.find("::");
713   }
714   if (basename.size() < name.size()) {
715     scope = name.take_front(name.size() - basename.size());
716     return true;
717   }
718   return false;
719 }
720 
721 ModuleSP Type::GetModule() {
722   if (m_symbol_file)
723     return m_symbol_file->GetObjectFile()->GetModule();
724   return ModuleSP();
725 }
726 
727 ModuleSP Type::GetExeModule() {
728   if (m_compiler_type) {
729     SymbolFile *symbol_file = m_compiler_type.GetTypeSystem()->GetSymbolFile();
730     if (symbol_file)
731       return symbol_file->GetObjectFile()->GetModule();
732   }
733   return ModuleSP();
734 }
735 
736 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) {
737   if (in_type_sp) {
738     m_compiler_type = in_type_sp->GetForwardCompilerType();
739     m_type_name = in_type_sp->GetName();
740   }
741 }
742 
743 TypeAndOrName::TypeAndOrName(const char *in_type_str)
744     : m_type_name(in_type_str) {}
745 
746 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string)
747     : m_type_name(in_type_const_string) {}
748 
749 bool TypeAndOrName::operator==(const TypeAndOrName &other) const {
750   if (m_compiler_type != other.m_compiler_type)
751     return false;
752   if (m_type_name != other.m_type_name)
753     return false;
754   return true;
755 }
756 
757 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const {
758   return !(*this == other);
759 }
760 
761 ConstString TypeAndOrName::GetName() const {
762   if (m_type_name)
763     return m_type_name;
764   if (m_compiler_type)
765     return m_compiler_type.GetTypeName();
766   return ConstString("<invalid>");
767 }
768 
769 void TypeAndOrName::SetName(ConstString type_name) {
770   m_type_name = type_name;
771 }
772 
773 void TypeAndOrName::SetName(const char *type_name_cstr) {
774   m_type_name.SetCString(type_name_cstr);
775 }
776 
777 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) {
778   if (type_sp) {
779     m_compiler_type = type_sp->GetForwardCompilerType();
780     m_type_name = type_sp->GetName();
781   } else
782     Clear();
783 }
784 
785 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) {
786   m_compiler_type = compiler_type;
787   if (m_compiler_type)
788     m_type_name = m_compiler_type.GetTypeName();
789 }
790 
791 bool TypeAndOrName::IsEmpty() const {
792   return !((bool)m_type_name || (bool)m_compiler_type);
793 }
794 
795 void TypeAndOrName::Clear() {
796   m_type_name.Clear();
797   m_compiler_type.Clear();
798 }
799 
800 bool TypeAndOrName::HasName() const { return (bool)m_type_name; }
801 
802 bool TypeAndOrName::HasCompilerType() const {
803   return m_compiler_type.IsValid();
804 }
805 
806 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp)
807     : m_module_wp(), m_static_type(), m_dynamic_type() {
808   SetType(type_sp);
809 }
810 
811 TypeImpl::TypeImpl(const CompilerType &compiler_type)
812     : m_module_wp(), m_static_type(), m_dynamic_type() {
813   SetType(compiler_type);
814 }
815 
816 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic)
817     : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) {
818   SetType(type_sp, dynamic);
819 }
820 
821 TypeImpl::TypeImpl(const CompilerType &static_type,
822                    const CompilerType &dynamic_type)
823     : m_module_wp(), m_static_type(), m_dynamic_type() {
824   SetType(static_type, dynamic_type);
825 }
826 
827 void TypeImpl::SetType(const lldb::TypeSP &type_sp) {
828   if (type_sp) {
829     m_static_type = type_sp->GetForwardCompilerType();
830     m_exe_module_wp = type_sp->GetExeModule();
831     m_module_wp = type_sp->GetModule();
832   } else {
833     m_static_type.Clear();
834     m_module_wp = lldb::ModuleWP();
835   }
836 }
837 
838 void TypeImpl::SetType(const CompilerType &compiler_type) {
839   m_module_wp = lldb::ModuleWP();
840   m_static_type = compiler_type;
841 }
842 
843 void TypeImpl::SetType(const lldb::TypeSP &type_sp,
844                        const CompilerType &dynamic) {
845   SetType(type_sp);
846   m_dynamic_type = dynamic;
847 }
848 
849 void TypeImpl::SetType(const CompilerType &compiler_type,
850                        const CompilerType &dynamic) {
851   m_module_wp = lldb::ModuleWP();
852   m_static_type = compiler_type;
853   m_dynamic_type = dynamic;
854 }
855 
856 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const {
857   return CheckModuleCommon(m_module_wp, module_sp);
858 }
859 
860 bool TypeImpl::CheckExeModule(lldb::ModuleSP &module_sp) const {
861   return CheckModuleCommon(m_exe_module_wp, module_sp);
862 }
863 
864 bool TypeImpl::CheckModuleCommon(const lldb::ModuleWP &input_module_wp,
865                                  lldb::ModuleSP &module_sp) const {
866   // Check if we have a module for this type. If we do and the shared pointer
867   // is can be successfully initialized with m_module_wp, return true. Else
868   // return false if we didn't have a module, or if we had a module and it has
869   // been deleted. Any functions doing anything with a TypeSP in this TypeImpl
870   // class should call this function and only do anything with the ivars if
871   // this function returns true. If we have a module, the "module_sp" will be
872   // filled in with a strong reference to the module so that the module will at
873   // least stay around long enough for the type query to succeed.
874   module_sp = input_module_wp.lock();
875   if (!module_sp) {
876     lldb::ModuleWP empty_module_wp;
877     // If either call to "std::weak_ptr::owner_before(...) value returns true,
878     // this indicates that m_module_wp once contained (possibly still does) a
879     // reference to a valid shared pointer. This helps us know if we had a
880     // valid reference to a section which is now invalid because the module it
881     // was in was deleted
882     if (empty_module_wp.owner_before(input_module_wp) ||
883         input_module_wp.owner_before(empty_module_wp)) {
884       // input_module_wp had a valid reference to a module, but all strong
885       // references have been released and the module has been deleted
886       return false;
887     }
888   }
889   // We either successfully locked the module, or didn't have one to begin with
890   return true;
891 }
892 
893 bool TypeImpl::operator==(const TypeImpl &rhs) const {
894   return m_static_type == rhs.m_static_type &&
895          m_dynamic_type == rhs.m_dynamic_type;
896 }
897 
898 bool TypeImpl::operator!=(const TypeImpl &rhs) const {
899   return !(*this == rhs);
900 }
901 
902 bool TypeImpl::IsValid() const {
903   // just a name is not valid
904   ModuleSP module_sp;
905   if (CheckModule(module_sp))
906     return m_static_type.IsValid() || m_dynamic_type.IsValid();
907   return false;
908 }
909 
910 TypeImpl::operator bool() const { return IsValid(); }
911 
912 void TypeImpl::Clear() {
913   m_module_wp = lldb::ModuleWP();
914   m_static_type.Clear();
915   m_dynamic_type.Clear();
916 }
917 
918 ModuleSP TypeImpl::GetModule() const {
919   lldb::ModuleSP module_sp;
920   if (CheckExeModule(module_sp))
921     return module_sp;
922   return nullptr;
923 }
924 
925 ConstString TypeImpl::GetName() const {
926   ModuleSP module_sp;
927   if (CheckModule(module_sp)) {
928     if (m_dynamic_type)
929       return m_dynamic_type.GetTypeName();
930     return m_static_type.GetTypeName();
931   }
932   return ConstString();
933 }
934 
935 ConstString TypeImpl::GetDisplayTypeName() const {
936   ModuleSP module_sp;
937   if (CheckModule(module_sp)) {
938     if (m_dynamic_type)
939       return m_dynamic_type.GetDisplayTypeName();
940     return m_static_type.GetDisplayTypeName();
941   }
942   return ConstString();
943 }
944 
945 TypeImpl TypeImpl::GetPointerType() const {
946   ModuleSP module_sp;
947   if (CheckModule(module_sp)) {
948     if (m_dynamic_type.IsValid()) {
949       return TypeImpl(m_static_type.GetPointerType(),
950                       m_dynamic_type.GetPointerType());
951     }
952     return TypeImpl(m_static_type.GetPointerType());
953   }
954   return TypeImpl();
955 }
956 
957 TypeImpl TypeImpl::GetPointeeType() const {
958   ModuleSP module_sp;
959   if (CheckModule(module_sp)) {
960     if (m_dynamic_type.IsValid()) {
961       return TypeImpl(m_static_type.GetPointeeType(),
962                       m_dynamic_type.GetPointeeType());
963     }
964     return TypeImpl(m_static_type.GetPointeeType());
965   }
966   return TypeImpl();
967 }
968 
969 TypeImpl TypeImpl::GetReferenceType() const {
970   ModuleSP module_sp;
971   if (CheckModule(module_sp)) {
972     if (m_dynamic_type.IsValid()) {
973       return TypeImpl(m_static_type.GetLValueReferenceType(),
974                       m_dynamic_type.GetLValueReferenceType());
975     }
976     return TypeImpl(m_static_type.GetLValueReferenceType());
977   }
978   return TypeImpl();
979 }
980 
981 TypeImpl TypeImpl::GetTypedefedType() const {
982   ModuleSP module_sp;
983   if (CheckModule(module_sp)) {
984     if (m_dynamic_type.IsValid()) {
985       return TypeImpl(m_static_type.GetTypedefedType(),
986                       m_dynamic_type.GetTypedefedType());
987     }
988     return TypeImpl(m_static_type.GetTypedefedType());
989   }
990   return TypeImpl();
991 }
992 
993 TypeImpl TypeImpl::GetDereferencedType() const {
994   ModuleSP module_sp;
995   if (CheckModule(module_sp)) {
996     if (m_dynamic_type.IsValid()) {
997       return TypeImpl(m_static_type.GetNonReferenceType(),
998                       m_dynamic_type.GetNonReferenceType());
999     }
1000     return TypeImpl(m_static_type.GetNonReferenceType());
1001   }
1002   return TypeImpl();
1003 }
1004 
1005 TypeImpl TypeImpl::GetUnqualifiedType() const {
1006   ModuleSP module_sp;
1007   if (CheckModule(module_sp)) {
1008     if (m_dynamic_type.IsValid()) {
1009       return TypeImpl(m_static_type.GetFullyUnqualifiedType(),
1010                       m_dynamic_type.GetFullyUnqualifiedType());
1011     }
1012     return TypeImpl(m_static_type.GetFullyUnqualifiedType());
1013   }
1014   return TypeImpl();
1015 }
1016 
1017 TypeImpl TypeImpl::GetCanonicalType() const {
1018   ModuleSP module_sp;
1019   if (CheckModule(module_sp)) {
1020     if (m_dynamic_type.IsValid()) {
1021       return TypeImpl(m_static_type.GetCanonicalType(),
1022                       m_dynamic_type.GetCanonicalType());
1023     }
1024     return TypeImpl(m_static_type.GetCanonicalType());
1025   }
1026   return TypeImpl();
1027 }
1028 
1029 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) {
1030   ModuleSP module_sp;
1031   if (CheckModule(module_sp)) {
1032     if (prefer_dynamic) {
1033       if (m_dynamic_type.IsValid())
1034         return m_dynamic_type;
1035     }
1036     return m_static_type;
1037   }
1038   return CompilerType();
1039 }
1040 
1041 TypeSystem *TypeImpl::GetTypeSystem(bool prefer_dynamic) {
1042   ModuleSP module_sp;
1043   if (CheckModule(module_sp)) {
1044     if (prefer_dynamic) {
1045       if (m_dynamic_type.IsValid())
1046         return m_dynamic_type.GetTypeSystem();
1047     }
1048     return m_static_type.GetTypeSystem();
1049   }
1050   return nullptr;
1051 }
1052 
1053 bool TypeImpl::GetDescription(lldb_private::Stream &strm,
1054                               lldb::DescriptionLevel description_level) {
1055   ModuleSP module_sp;
1056   if (CheckModule(module_sp)) {
1057     if (m_dynamic_type.IsValid()) {
1058       strm.Printf("Dynamic:\n");
1059       m_dynamic_type.DumpTypeDescription(&strm);
1060       strm.Printf("\nStatic:\n");
1061     }
1062     m_static_type.DumpTypeDescription(&strm);
1063   } else {
1064     strm.PutCString("Invalid TypeImpl module for type has been deleted\n");
1065   }
1066   return true;
1067 }
1068 
1069 bool TypeMemberFunctionImpl::IsValid() {
1070   return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown;
1071 }
1072 
1073 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; }
1074 
1075 ConstString TypeMemberFunctionImpl::GetMangledName() const {
1076   return m_decl.GetMangledName();
1077 }
1078 
1079 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; }
1080 
1081 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const {
1082   return m_kind;
1083 }
1084 
1085 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) {
1086   switch (m_kind) {
1087   case lldb::eMemberFunctionKindUnknown:
1088     return false;
1089   case lldb::eMemberFunctionKindConstructor:
1090     stream.Printf("constructor for %s",
1091                   m_type.GetTypeName().AsCString("<unknown>"));
1092     break;
1093   case lldb::eMemberFunctionKindDestructor:
1094     stream.Printf("destructor for %s",
1095                   m_type.GetTypeName().AsCString("<unknown>"));
1096     break;
1097   case lldb::eMemberFunctionKindInstanceMethod:
1098     stream.Printf("instance method %s of type %s", m_name.AsCString(),
1099                   m_decl.GetDeclContext().GetName().AsCString());
1100     break;
1101   case lldb::eMemberFunctionKindStaticMethod:
1102     stream.Printf("static method %s of type %s", m_name.AsCString(),
1103                   m_decl.GetDeclContext().GetName().AsCString());
1104     break;
1105   }
1106   return true;
1107 }
1108 
1109 CompilerType TypeMemberFunctionImpl::GetReturnType() const {
1110   if (m_type)
1111     return m_type.GetFunctionReturnType();
1112   return m_decl.GetFunctionReturnType();
1113 }
1114 
1115 size_t TypeMemberFunctionImpl::GetNumArguments() const {
1116   if (m_type)
1117     return m_type.GetNumberOfFunctionArguments();
1118   else
1119     return m_decl.GetNumFunctionArguments();
1120 }
1121 
1122 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const {
1123   if (m_type)
1124     return m_type.GetFunctionArgumentAtIndex(idx);
1125   else
1126     return m_decl.GetFunctionArgumentType(idx);
1127 }
1128 
1129 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp,
1130                                        ConstString name,
1131                                        const llvm::APSInt &value)
1132     : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value),
1133       m_valid((bool)name && (bool)integer_type_sp)
1134 
1135 {}
1136